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Summary

The use of computational techniques increasingly permeates developmental biology, from the

acquisition, processing and analysis of experimental data to the construction of models of

organisms. Specifically, models help to untangle the non-intuitive relations between local

morphogenetic processes and global patterns and forms. We survey the modeling techniques

and selected models that are designed to elucidate plant development in mechanistic terms,

with an emphasis on: the history of mathematical and computational approaches to develop-

mental plant biology; the key objectives and methodological aspects of model construction;

the diverse mathematical and computational methods related to plant modeling; and the

essence of two classes of models, which approach plant morphogenesis from the geometric

and molecular perspectives. In the geometric domain, we review models of cell division pat-

terns, phyllotaxis, the form and vascular patterns of leaves, and branching patterns. In the

molecular-level domain, we focus on the currently most extensively developed theme: the

role of auxin in plant morphogenesis. The review is addressed to both biologists and computa-

tional modelers.

I. A brief history of plant models

How far mathematics will suffice to describe, and physics
to explain, the fabric of the body, no man can foresee.

D’Arcy Wentworth Thompson (1942, p. 13)

In Book VI of the Enquiry into Plants, Theophrastus (1948; c.
370–285 BCE) wrote: ‘most [roses] have five petals, but some

have twelve or twenty, and some a great many more than these’.
Although this observation appears to be off by one (Fibonacci
numbers of petals, 13 and 21, are more likely to occur than 12
and 20), it represents the longest historical link between observa-
tions and a mathematically flavored research problem in develop-
mental plant biology. Numerical canalization, or the surprising
tendency of some plant organs to occur preferentially in some spe-
cific numbers (Battjes et al., 1993), was described quantitatively

Contents

Summary 549

I. A brief history of plant models 549

II. Modeling as a methodology 550

III. Mathematics of developmental models 551

IV. Geometric models of morphogenesis 555

V. Molecular-level models 560

VI. Conclusions 564

Acknowledgements 564

References 565

Review

� 2012 The Authors

New Phytologist � 2012 New Phytologist Trust

New Phytologist (2012) 193: 549–569 549
www.newphytologist.com



in the first half of the 20th century (Hirmer, 1931), analyzed geo-
metrically at the end of that century (Battjes & Prusinkiewicz,
1998), and remains an active area of research. Its genetic under-
pinnings (e.g. the regulation of ray floret differentiation within a
capitulum (Coen et al., 1995; Broholm et al., 2008)) continue to
be studied. Less extensive in their historical span, many other
links between early observations and current research problems
also exist. For instance, several hypotheses attempting to charac-
terize patterns of cell division were formulated in the 19th cen-
tury (e.g. Errera, 1886) and discussed in the early 20th century
(D’Arcy Thompson, 1942, first edition 1917), before becoming
the subject of computational studies (Korn & Spalding, 1973),
which continue to this day (Nakielski, 2008; Sahlin & Jönsson,
2010; Besson & Dumais, 2011; Robinson et al., 2011).

A broad program of using mathematical reasoning in the study
of the development and form of living organisms was initiated
almost 100 yr ago by D’Arcy Thompson (1942) in his landmark
book On Growth and Form (see Keller, 2002, for a historical anal-
ysis). One of his most influential contributions was the ‘theory of
transformations’, which showed how forms of different species
could be geometrically related to each other. The theory of trans-
formations was extended to relate younger and older forms of a
developing organism (Richards & Kavanagh, 1945), but did not
incorporate the formation and differentiation of new organs.
This limitation was addressed a quarter of a century later by
Lindenmayer (1968, 1971), who introduced an original mathe-
matical formalism, subsequently called L-systems, to describe the
development of linear and branching structures at the cellular
level. By the mid 1970s, computational models based on L-
systems and other formalisms had been applied to study several
aspects of plant development, including the development of
leaves and inflorescences, and the formation of phyllotactic pat-
terns (Lindenmayer, 1978). The questions being asked included
the impact of distinct modes of information transfer (lineage vs
interaction) on plant development, and the relationship between
local development and global form. Similar interests underlied
the independent pioneering work of Honda and co-workers on
the modeling of trees (Honda, 1971; Borchert & Honda, 1984).

Another class of models was pioneered by Turing (1952), who
showed mathematically that, in a system of two or more diffusing
reagents, a pattern of high and low concentrations may spontane-
ously emerge from an initially uniform distribution. This was a
surprising result, as it appeared to contradict the second law of
thermodynamics: the general tendency of systems to proceed
from more organized states toward disorder (the apparent para-
dox is resolved by jointly considering the reaction–diffusion
system and its surroundings). Related models were introduced,
under the name of activator–inhibitor and activator-substrate
(depletion) systems, by Gierer & Meinhardt (1972), and exten-
sively investigated by Meinhardt (1982). Reaction–diffusion sys-
tems showed how, in principle, molecular-level interactions may
lead to morphogenesis and differentiation. In plants, reaction–
diffusion-type models have been used to explain the patterning of
trichomes in leaves and hair cells in roots (Digiuni et al., 2008;
Savage et al., 2008; Jönsson & Krupinski, 2010; Benı́tez et al.,
2011). Nevertheless, the extent to which reaction–diffusion

models apply to the plant kingdom appears to be limited (Kepinski
& Leyser, 2005; Berleth et al., 2007). A significant role is played
instead by mechanisms involving active transport of the plant
hormone auxin (Section V). In some cases, such as the generation
of phyllotactic patterns, this reliance on active transport is
difficult to explain in evolutionary terms, as reaction–diffusion
systems can generate the same patterns. Spatio-temporal coordi-
nation of other developmental processes, however, such as bud
activation, requires long-distance signaling. Active transport may
thus have evolved to overcome the limitations of diffusion, which
is very slow over long distances (Crick, 1971).

In the last decade, computational modeling has become a main-
stream technique in developmental plant biology, as reflected in
numerous reviews (e.g. Prusinkiewicz, 2004b; Prusinkiewicz &
Rolland-Lagan, 2006; Grieneisen & Scheres, 2009; Chickarmane
et al., 2010; Jönsson & Krupinski, 2010; Jönsson et al., 2012). On
the one hand, the sequencing of the human genome put in focus
the chasm between knowing the genome of an organism and
understanding how this organism develops and functions. Compu-
tational models bridge this chasm. On the other hand, successes of
early conceptual models that relate patterns of gene expression
to the form of animals (Lawrence, 1992) and plants (Coen &
Meyerowitz, 1991) have prompted a quest for a comprehensive,
mechanistic understanding of development (Coen, 1999). Current
experimental techniques for tracking growth and observing marked
proteins in living tissues (Reddy et al., 2004; Fernandez et al.,
2010) are yielding a wealth of data that correlate molecular-level
processes with plant development and form. Computational
models play an increasingly important role in interpreting these data.

The use of models has been accelerated by the advancements
in computer hardware, software, and modeling methodologies.
General-purpose mathematical software (e.g. Mathematica and
MATLAB), modeling programs built on the basis of this software
(e.g. GFtbox, Kennaway et al., 2011) and specialized packages
for modeling plants (e.g. the Virtual Laboratory and L-studio
(Prusinkiewicz, 2004a), OpenAlea (Pradal et al., 2008) and
VirtualLeaf (Merks et al., 2011)) facilitate model construction,
compared with general-purpose programming languages. Fur-
thermore, current computers are sufficiently fast to simulate and
visualize many models at interactive or close-to-interactive rates,
which is convenient for model exploration.

II. Modeling as a methodology

1. What can be expected from models?

The epistemological value of models in biology has been the sub-
ject of numerous inquiries and surveys, both of a general charac-
ter (Haefner, 1996) and focused on the understanding of plant
development (Room et al., 1996; Prusinkiewicz, 1998b; Coen
et al., 2004; Chickarmane et al., 2010; Jönsson et al., 2012).
Some arguments advanced in support of computational model-
ing are listed below.

Description of form. Developmental biology deals with dynamic
forms, and description of form is the domain of geometry.
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Computational models extend geometry to structures that are too
complex to characterize in traditional geometric terms.

Analysis of causality. The understanding of causal relations
underlying observed phenomena lies at the heart of science.
Causal relations, however, are not observed directly, but inferred
from observations and experiments. Modeling offers a powerful
method for studying causality, because in models cause-effect
relations can be defined explicitly, opening the door to rigorous
study of their implications.

Analysis of self-organization. The form of plants is not coded
directly in their DNA, but is produced by a hierarchy of develop-
mental processes that link molecular-level phenomena to macro-
scopic forms. Many of these processes have a self-organizing
character, which means that forms and patterns emerge from
interactions between components of the whole system (Camazine
et al., 2001), in this case a growing plant. For a variety of reasons,
such as the presence of multiple feedback loops and the spatial
character of interactions, self-organizing processes are often ‘com-
plex’: non-intuitive, and difficult to analyze and comprehend.
Computational models are an essential tool for dissecting such
processes. Simulations offer an insight into the role of low-level
regulatory mechanisms and their parameters, and show how they
can be integrated into the global behavior of the system.

Decomposition of problems. Thinking in computational terms
creates a frame of mind that facilitates the description and analy-
sis of complex systems by decomposing them into modules (also
called components or agents) or levels of abstraction. It also leads
to a precise characterization of their operation in terms of algo-
rithms, interfaces, and information flow (Wing, 2006).

Hypothesis-driven experimentation. The process of model con-
struction reveals gaps in our understanding, guides experiments
where data are lacking, and facilitates comparisons of alternative
hypotheses.

Integrative view of development. Models reveal whether differ-
ent partial hypotheses and explanations are compatible with each
other and can be combined, leading to a synthesis of knowledge.

2. What constitutes a good model?

In order to be credible and useful, models must be verified, vali-
dated and evaluated. The purpose of verification is to show that
the model (computer program) is internally correct, that is, oper-
ates according to its specifications, in the way we believe it does.
Good programming practices and verification methods devised
within computer science can minimize programming errors,
while an independent reproduction of the results can further con-
firm the internal correctness of the models.

In contrast to verification, validation proceeds by comparing
model predictions with experimental data. An agreement of the
model with new data, not used in the model construction, sup-
ports the model. One can never be certain that the model is valid,

as its predictions may be contradicted by future experiments, and
because different assumptions and models may lead to the same
predictions. For example, Prusinkiewicz & Lindenmayer (1990,
Section 3.3.3) present two distinct models of flowering sequences
in a herbaceous plant that produce exactly the same result. The
objective of validation is thus to support the model to the extent
possible, or falsify the hypotheses of the model (Kemeny, 1959).

Once verified and validated, models can be evaluated by
comparing the richness, precision and depth of the insights they
provide (the output of the model) with the number and extent of
the underlying assumptions (the input) (Gaines, 1977;
Prusinkiewicz, 1998a). High output to input ratios may be found
both in the abstract models designed to elucidate a fundamental
principle with minimal assumptions and in the models that rely
on extensive input to provide quantitatively accurate predictions.
Applications of such models can be found in agriculture, horti-
culture and forestry. It thus depends on the purpose of the model
whether increasing its precision by augmenting input data or
introducing additional hypotheses will lead to a more useful
model or detract from the essence of the phenomenon under
study (Bak, 1996, pp. 41–45).

3. How does modeling fit into the process of scientific
inquiry?

According to one scenario, rooted in the canon of the scientific
method, a study in developmental biology may begin with the
acquisition of experimental data, which are used to formulate one
or more hypotheses. On this basis, computational models are
constructed to verify whether postulated mechanisms do indeed
produce the expected forms. The alternative scenario is to first
explore theoretical relations between local processes and the
emergent forms using abstract models, and then apply the results
to guide experiments that search for the underlying mechanisms.
In practice, these scenarios are complementary. Experiments are
indispensable, but without models the essential information may
be difficult to sift from the large amounts of unfocused data.
Similarly, models constructed outside the scope of experimental
data may diverge into mathematical investigations without clear
biological significance. An interplay between experimentation
and modeling is thus needed to focus both on the path of discov-
ery. This interplay usually takes the form of coupled iterations of
experimental and modeling efforts. Theoretical considerations
combined with experimental data guide the construction of mod-
els, while models integrate these data into an increasingly
comprehensive understanding of the studied phenomenon and
highlight loopholes in the data set. The history of research on
cellular patterns, phyllotaxis and branching structures, presented in
the following sections, provides good examples of such interplay.

III. Mathematics of developmental models

1. Equations and algorithms

Systems of equations are at the heart of mathematical modeling.
In some simple cases these equations can be solved analytically,
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that is, yield solutions that consist of mathematical expressions
built from well-known functions (e.g. exponential or trigonometric).
Such analytical or closed-form solutions may provide deep
insight into the operation of a model for diverse combinations of
model parameters. Unfortunately, most models of development
do not admit analytical solutions and can only be solved numeri-
cally, yielding a solution in the form of a set of numbers. Numerical
solutions provide a narrower view of a model’s operation, as they
are valid for a particular combination of parameter values and
do not offer mathematical insights stemming from the analysis
of expressions. They can, however, be obtained for a wider
range of models, where analytical solutions do not exist or are
impractically complex. This tradeoff was observed at the dawn of
computational studies of morphogenesis by Turing (1952), who
wrote:

The difficulties [in following morphogenetic processes
mathematically] are such that one cannot hope to have any
very embracing theory of such processes, beyond the state-
ment of the equations. It might be possible, however, to
treat a few particular cases in detail with the aid of a digital
computer. [...] The essential disadvantage of the method is
that one only gets results for particular cases.

An intermediate level of insight is offered by qualitative analy-
sis of equations. In this case, the general character of a solution,
for example the presence of stable states or oscillations, may
sometimes be predicted and analyzed even when the detailed
solution is not known. An analysis of the qualitative behavior of
equations is known as the theory of bifurcations or catastrophes
(Arnold, 1992), and has been applied to many problems in
mathematical biology. In the domain of plant development,
recent examples include an auxin-driven model of bud activation
(Prusinkiewicz et al., 2009), and a model of polar auxin transport
(Wabnik et al., 2010).

The use of computational methods also brings to the fore-
ground the notion of an algorithm, that is, the decomposition of
a computation into a sequence of simple, well-defined steps. In
the developmental context, these steps are often associated with
the progress of time, which relates algorithms to the notion of a
dynamical system. Most models of development have an inher-
ently spatio-temporal character, as development is a dynamic
process taking place in space. Time, space, and states of the
model at specific locations can be described in a continuous or
discrete manner – offering different levels of resolution, precision
and computational efficiency – and this distinction has a deep
impact on the mathematical structure of the models (Haefner,
1996; Giavitto et al., 2002) (Table 1). Both the formalisms that
have been previously devised in mathematics and mathematical
physics (e.g. differential equations) and those devised specifically
for biological modeling purposes (e.g. L-systems) have been used.
New mathematical methods specific to the modeling of develop-
ment are particularly indispensable when describing discrete spa-
tial structures, such as tissues made of cells. The well-established
formalism for describing processes taking place in continuous
space – partial differential equations (PDEs) – applies only as an
approximation of the discrete reality. A more faithful description

is in terms of coupled ordinary differential equations (ODEs),
that is, systems of ODEs that share selected variables. Coupling
may involve both the equations associated with individual com-
ponents of the system and the equations associated with neigh-
boring components. The respective examples include genetic
regulatory networks operating within each cell and the transport
of signaling molecules between cells. The shift from PDEs to sys-
tems of coupled ODEs is complicated by the changing number
and configuration of components in a developing structure. For
example, an increase in the number of cells as a result of cell divi-
sion leads to an increase in the number of variables and equations
that describe the tissue as a whole. Systems that admit a changing
number of equations are termed dynamic systems with a dynamic
structure (Giavitto et al., 2002) or variable structure systems
(Mjolsness, 2005), and are the subject of ongoing theoretical
investigation (Prusinkiewicz, 2009). The key problem of specify-
ing changes to a system of equations is typically resolved by
relating these equations to the topology of the system, which is
discussed in the next section.

2. Topology and structure

The physical principle of locality states that an object is only
influenced by its immediate surroundings. Consequently, con-
nections between the equations that describe a dynamical system
with a dynamic structure typically reflect the changing topology
of the system, that is, changing neighborhood relations between
the system components. A tree moving in the wind provides an
intuitive example of the distinction between geometry and topol-
ogy. As the branches bend and leaves reorient, the geometry
(shape) of the tree changes, but its topology, or the manner in
which the elements are connected, remains fixed (unless some
branches break off). At a smaller spatial scale, the neighborhood
relations between cells in a plant tissue are also an example of a
topological property. The cells of a plant are cemented together
(Steeves & Sussex, 1989, p. 2), and thus growth affects the size
and shape of the cells, but does not affect their neighborhoods,
which can only change as a result of cell division (exceptions may
occur, such as cell separation caused by the invasive growth of a
pollen tube penetrating stygmatic and stylar tissues (Gossot &
Geitmann, 2007)). As many features of a plant structure have a
topological character, the type and representation of topology
play an important role in model construction (Fig. 1). In

Table 1 Some formalisms used to specify structured dynamical systems
according to the continuous (C) or discrete (D) nature of space, time, and
state variables of the components. From Giavitto et al. (2002)

C : continuous
D : discrete PDE

Coupled
ODE

Numerical
solutions*

Cellular
automata

Space C D D D
Time C C D D
States C C C D

*The heading ‘Numerical solutions’ refers to numerical solutions of partial
differential equations (PDEs) and systems of coupled ordinary differential
equations (ODEs).
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particular, they determine how the neighbors of each element are
identified for simulating information flow (e.g. molecular signal-
ing or mechanical interactions between cells) and to effect
changes resulting from cell divisions.

A widely used representation of linear and branching structures
was introduced in the theory of L-systems (Lindenmayer, 1968;
Prusinkiewicz & Lindenmayer, 1990). In this representation, a
sequence of elements (e.g. cells in a filament, or consecutive inter-
nodes forming a plant axis) is written as a string of symbols, each
of which denotes an individual element. Branches are enclosed in
brackets. Information about the neighbors is gathered, and
changes in topology effected, using the mathematical construct
called a rewriting rule or production. For example, the produc-
tion C < A fi SA may specify that an apical cell A in the neigh-
borhood of a cell in state C will divide into a subapical cell S and
a new apical cell A. To characterize developing structures in more
detail, L-system symbols may be associated with numerical attri-
butes. For instance, C(l,d,a) may denote cell C with length l,
diameter d and auxin concentration a. This simple textual nota-
tion for productions and elements on which they operate is the
basis of several L-system-based modeling languages and pro-
grams, such as cpfg (Prusinkiewicz & Lindenmayer, 1990), L+C
(Karwowski & Prusinkiewicz, 2003) and GroIMP (Hemmerling
et al., 2008).

Two-dimensional structures, such as projections or sections of
cell layers, can be described by graphs: mathematical data struc-
tures consisting of vertices and edges. According to one interpre-
tation (Fig. 1d), the edges represent cell walls, and the vertices
denote junctions at which three or more walls meet
(Prusinkiewicz & Lindenmayer, 1990). In the dual interpretation
(Fig. 1e), the vertices represent cells rather than wall junctions

(Honda, 1983). Graphs with both interpretations can be coupled
and used simultaneously, thus providing an explicit representa-
tion for cells, cell walls and cell junctions. In either case, the edges
emanating from a vertex can be circularly ordered, forming a
graph rotation system (Edmonds, 1960). Graph rotation systems
provide a complete description of the topology of two-dimen-
sional cellular arrangements, can be easily searched for informa-
tion about the neighbors of a given cell, and modified to model
topological changes such as cell divisions. They are the founda-
tion of the modeling system VV (Smith & Prusinkiewicz, 2004;
Smith, 2006), which has been used, for example, to model divid-
ing cells in the epidermis of a growing shoot apical meristem
(Smith et al., 2006a) and the longitudinal cross-section of the
apex (Bayer et al., 2009).

An emerging general approach, applicable to structures of any
dimensions, is based on the topological notion of a cell complex
(Brisson, 1993). In this case, all elements of a structure are related
to their boundaries. Three-dimensional cells are thus related to
their bounding faces, the faces are related to their one-dimen-
sional edges, and the edges are related to the junction points at
which they meet (Fig. 1f). It can be shown that such a representa-
tion can be systematically traversed to provide information
regarding immediate (direct) and non-immediate (indirect)
neighbors of each cell, and locally modified to model cell
divisions (Lane et al., 2010).

3. Growth and form

While topology characterizes neighborhood relations between
components of a structure, geometry deals with metric attributes:
distances, angles, areas and volumes. As the geometry of

(a)

(d) (e) (f)

(b) (c)

Fig. 1 Examples of biological structures with different topologies. A filament (a) and a leaf margin (b) are one-dimensional (1D) structures, which can be
represented by strings of symbols. A tree or the skeleton of a compound leaf (c) is a branching 1D structure, which can be represented by a string of sym-
bols with brackets (matching pairs of brackets enclose branches). Two-dimensional (2D) cellular layers can be modeled using planar graphs (d, e), with the
vertices representing cell-wall junctions (d) or cells (e). A graph can be specified by listing all edges incident to each vertex in a circular order; this represen-
tation is also convenient when modifying or traversing the graph. For example, edge s is next to e in the counterclockwise list of edges incident in vertex v.
Three-dimensional (3D) cellular tissues can be represented using cell complexes, which consist of 3D cells (R, Q) with the associated 2D walls (e.g. w), 1D
edges (e), and 0D vertices (v). This representation suffices to specify the neighbors of any dimension and traverse the structure. For example, cell Q is the
unique neighbor of R across wall w.
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biological forms results from growth, modeling of growth
plays an essential role in the precise description of form (cf. Sec-
tion II).

Growth can be described and modeled in a global or local
manner. The global description has its origins in D’Arcy
Thompson’s observation that forms of related but different
organisms can be obtained one from another by transforming
the coordinate system in which they have been expressed (D’Arcy
Thompson, 1942; Richards & Kavanagh, 1945). From the
computational modeling perspective, transformations of the
coordinate systems are related to computer graphics techniques
for morphing (deforming) geometric objects (Gomes et al.,
1999). While providing a descriptive, rather than mechanistic,
characterization of growth, transformations of the coordinate
system and other morphing techniques are useful in coarsely
representing growing surfaces and volumes in which more
detailed morphogenetic processes take place. For example, trans-
formations were applied to model the growth of leaves underly-
ing the patterning of veins (Runions et al., 2005) and the growth
of shoot apical meristems in which phyllotactic patterning occurs
(Smith et al., 2006a,b).

Alternatively, growth can be described in a local manner, in
terms of changes in size and dimensions of small regions of the
developing structure (Fig. 2). At any time, and at each location,
growth in size is characterized by a single number: the relative ele-
mentary rate of growth in length, area, or volume (Richards &
Kavanagh, 1943, 1945). A complete characterization of growth
at any point requires several numbers, because growth rates in
different directions may be different (reviewed by Coen et al.,
2004). Silk & Erickson (1979), and Hejnowicz & Romberger
(1984) observed that these sets of numbers are tensors: mathe-
matical objects which can be represented as matrices obeying spe-
cific rules when transformed from one coordinate system to
another (Dodson & Poston, 1997).

Global growth results from the integration of growth tensors
in space and over time. This integration is subject to two key con-
straints. First, specific components of the growth tensor must be
spatially continuous, so that the tissue grows symplastically

(without tearing). Second, the tissue must fit in the available
space. In some cases, this space is limited by other tissues or
organs, such as the scales that constrain leaves growing within
buds (Couturier et al., 2009, 2011). Even empty ambient space,
however, constrains the range of forms that can be embedded in
it. For instance, fast growth at the margin compared with the
interior necessarily produces surfaces with a wavy margin.
Conversely, fast growth at the center compared with the margin
yields surfaces formed like a cup. The distinction between these
two cases is formalized in the notion of Gaussian curvature,
reviewed in a biological context by Prusinkiewicz & Barbier de
Reuille (2010).

Over the last decade, the relation between growth, metric,
curvature, and the global form of surfaces became a subject of
intensive research. This research combines a molecular genetic
perspective (Nath et al., 2003; Efroni et al., 2008; Green et al.,
2010) with a physical perspective rooted in elasticity theory and
differential geometry (Sharon et al., 2002; Klein et al., 2007;
Marder et al., 2007; Audoly & Pomeau, 2010; Liang & Mahadevan,
2011). The interdisciplinary links between these perspectives
stem from the observation that the growth tensor is mathemati-
cally equivalent to the strain rate tensor used to characterize local
deformations in continuum mechanics (Silk & Erickson, 1979;
Silk, 1984). Both parts of continuum mechanics, the mechanics
of fluids and the mechanics of solids, have been applied to
characterize biological growth (Skalak et al., 1982). The elasticity
theory approach based on solid mechanics turned out to be
particularly useful, as it offers an intuitive (although often
computationally involved) solution to the problem of embedding
a growing surface in the available space (Rodriguez et al., 1994;
Goriely & Ben Amar, 2007). Although geometric in nature, the
embedding problem is most conveniently solved as a physical
problem of minimizing the elastic energy of a surface or volume.
Links between geometry and elasticity theory motivated by bio-
logical problems have been reviewed by Audoly & Pomeau
(2010), and related material focused on the mathematics and
mechanics of growth by Yavari (2010). Boudaoud (2010) pre-
sents an introductory overview of the vigorously developing field

v v

u
Isotropic
growth

Anisotropic
growth

u

Initial state

Non-uniform
isotropic growth

(a) (b)

Fig. 2 Local growth and global changes of a growing tissue. In uniform growth (a), local growth rates (white arrows) are the same throughout the tissue.
Isotropic growth occurs if the rates are also the same in all directions (left). The tissue changes in size, but not in shape. Anisotropic growth occurs if local
growth rates depend on directions (right). The shape of the tissue changes. In non-uniform growth (b), local growth rates depend on the position in the
tissue. In the example shown, growth is isotropic, but growth rates increase along the u-axis (blue to red). The rates are specified in the tissue’s initial state
and are carried with the tissue as it grows. The shape of the tissue changes, and many regions are rotated as a result of global integration of growth.
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of plant biomechanics from a more biological standpoint, and
Hamant & Traas (2010) and Uyttewaal et al. (2010) present
recent surveys of this field.

An important practical consideration in the description and
modeling of growth is the distinction between Eulerian and
Lagrangian viewpoints (Silk & Erickson, 1979; Coen et al.,
2004; Merret et al., 2010). From the Eulerian viewpoint, growth
is described as a flow of matter through space (Fig. 3a). By con-
trast, from the Lagrangian viewpoint, growth is described as a
change of position of material points (e.g. cells) over time
(Fig. 3b). Bridson (2008, Chapter 1.3) provides an intuitive
explanation of this difference, using two ways of characterizing
river flow as an example. From the Eulerian viewpoint, this flow
is characterized by recording the velocity of the river at fixed
points along the riverbed. From the Lagrangian viewpoint, it can
be characterized by placing floating markers in the river and
recording the position of each marker over time. Although the
two descriptions are formally equivalent, in specific applications
one of them may offer distinct advantages. For example, growth
of plant axes has often been measured and modeled in Laplacian
terms, by recording the length of internodes over time
(Prusinkiewicz et al., 1994; Mündermann et al., 2005). By
contrast, the Eulerian viewpoint has been adopted to model the
growth of root (Hejnowicz & Karczewski, 1993) and shoot (Smith
et al., 2006a) apical meristems. In these models, the growth rates
change for each individual cell as it is displaced within its meristem,
but (in the steady state) these rates do not change over time when
measured with respect to these meristems. This invariance makes
the Eulerian viewpoint a more convenient choice.

IV. Geometric models of morphogenesis

In the process of development, new elements and patterns are
formed and incorporated into a growing plant. Both the topology
and geometry of the organism change. While these changes ulti-
mately have a molecular origin, comprehensive understanding of
the link between genetic information and form is facilitated by
decomposition of problems into a hierarchy of intermediate levels
of description and analysis (Section II). In this context, geometric
models of morphogenesis elucidate the emergence of global
patterns and forms by focusing on the temporal and spatial coor-
dination of development (Prusinkiewicz, 2000). For example,

such a coordination is manifest in the gradual progression of
stages of flower development in racemose inflorescences, radial or
bilateral symmetry of flowers, spiral phyllotactic arrangement of
florets in flower heads, and the self-similar forms of compound
leaves and inflorescences. Highly regular structures, such as
flower heads with spiral phyllotactic patterns or self-similar fern
leaves, are particularly conducive to analysis in geometric terms.
Such structures are easy to quantify, which simplifies validation
of the models and lends credibility to the explanations they provide.
Interestingly, however, geometric models are also useful in the
analysis of less regular patterns, such as the arrangements of cells
into tissues, venation patterns in leaves, and branching architec-
ture of shrubs and trees. In these cases, mathematical criteria
validating the models are often difficult to formulate, and visual
comparison of models with reality plays an important role
(Prusinkiewicz, 1998a). In the remainder of this section, we
review problems in which geometric models proved particularly
useful. Some of these models incorporate a mechanical compo-
nent, exemplifying a close interplay of geometric and mechanical
considerations (Audoly & Pomeau, 2010).

1. Cellular patterns

Models of the division and arrangement of cells into tissues are
important as a vehicle for understanding cellular patterns and as
a means for creating cellular spaces for simulating higher-level
processes, such as phyllotaxis and vascular patterning (Smith
et al., 2006a; Merks et al., 2007; Bayer et al., 2009; Wabnik
et al., 2010). Two-dimensional patterns have received the most
attention, although one-dimensional (Mitchison & Wilcox,
1972; Lindenmayer, 1978) and three-dimensional (Lindenmayer,
1984) patterns have also been modeled.

Modeling the division of individual cells is a prerequisite for
creating cellular-level models of tissue development. Several rules
aiming to characterize the geometry of cell division were pro-
posed as early as the 19th century. Focusing on isotropically
growing tissues, Hofmeister (1863) postulated that the dividing
wall is inserted at the right angle to the longitudinal axis of the
cell, Sachs (1878) suggested that the new wall meets side walls at
right angles, and Errera (1886) proposed that it is the shortest
wall partitioning the cell into equally sized daughters (reviewed
by Sahlin & Jönsson, 2010). Korn & Spalding (1973, p. 1364)

(a) (b)

Fig. 3 A comparison of Eulerian (a) and Lagrangian (b) specifications of leaf growth. In the Eulerian setting (a), growth is specified by discretizing the simu-
lation space and recording the contents of the grid points over time. In the Lagrangian setting (b), growth is specified by discretizing the growing tissue and
tracking positions of the grid points over time.
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observed that ‘an understanding of the rules of Hofmeister, Sachs
and Errera resides at the centre of the problem of plant cell orga-
nization’, and proposed an early simulation model of cellular pat-
terns generated with the rules of Hofmeister and Errera. More
recently, Sahlin & Jönsson (2010) created computer models of
tissues with the cells dividing according to the rule of Sachs, that
of Errera, or randomly, and evaluated statistical properties as well
as the visual appearance of the resulting patterns. The results
demonstrated that division patterns are not purely random, and
supported both the Sachs and Errera rules. However, experimen-
tal results show that neither rule is satisfied in all cases. Address-
ing this discrepancy, Besson & Dumais (2011) modified the
Errera rule by proposing that the inserted wall has a locally rather
than globally minimal length. The choice between multiple min-
ima is inherently random, with probabilities depending on the
energy associated with each minimum. The model of Besson &
Dumais has an important conceptual consequence. In the deter-
ministic framework of Errera, discrepancies between observations
and the model are viewed as prediction errors, which suggests
that a higher accuracy could potentially be achieved by refining
the Errera rule. With the new model, discrepancies between
observations and simulations are no longer considered errors, but
instead represent unavoidable differences between two runs of a
stochastic process. The quest for deterministic predictions of cell
division patterns has thus been made meaningless.

Another extension of the Errera rule was introduced by Robinson
et al. (2011) in a model of the asymmetric divisions of meristemoid
cells that lead to the differentiation of stomata. In this model, a new
division wall is defined as the shortest wall passing through the
nucleus, which is displaced from the centroid of the cell by a molecular
mechanism involving the BREAKING OF ASYMMETRY IN THE
STOMATAL LINEAGE (BASL) protein (Dong et al., 2009). A geo-
metric argument shows that this displacement may affect both the
position and the orientation of the division wall, explaining the char-
acteristic triangular shape of the meristemoid cell.

The dynamic pattern of cell arrangement in a tissue not only is
related to the position and orientation of division walls, but also
incorporates timing of cell division and growth of the tissue. A
historically significant early computational model of a developing

tissue was devised by Korn (1969), using the colonial alga
Coleocheate scutata as an example (Fig. 4a). In this model, cells
were represented as sets of points on a planar hexagonal lattice.
Growth was simulated by the addition of new points to a cell,
and was constrained to the colony margin by the rules of simula-
tion. The readiness for division was associated with cell size, and
the dividing wall was the shortest wall dividing the cell into two
cells of approximately equal area. When two or more equally
likely lines of division arose, one was chosen at random. The last-
ing value of this model stems from its anticipation of more recent
developments. For example, the representation of cells as arrays
of points was reintroduced in the cellular Potts model (Merks &
Glazier, 2005), which was subsequently applied to simulate root
development (Grieneisen et al., 2007). The same alga was chosen
in a model study of cellular patterns by Dupuy et al. (2010)
(Fig. 4b). A combination of the shortest-wall division rule with a
random choice between walls of similar length is the cornerstone
of the extension of Errera’s rule by Besson & Dumais (2011).

A different approach to modeling cellular arrangements,
focused on their topology rather than their geometry, was
proposed by Lindenmayer and coworkers. Map L-systems
(Lindenmayer & Rozenberg, 1979; Nakamura et al., 1986; de
Boer & de Does, 1990) and cellwork L-systems (Lindenmayer,
1984) extended the formalism of L-systems beyond branching
structures, to tissues and organs modeled in two and three dimen-
sions, respectively. In these models, cell divisions were triggered
by the progress of time rather than the increase in size of growing
cells. To specify how the cells divide, the insertion points of divi-
sion walls, identified by labels, were introduced. These points
represented the attachment points of preprophase bands of
microtubules, predicting the position of the division plate. Cell
walls were labeled as well, to distinguish between walls in differ-
ent states. Map L-systems were applied, among others, to explain
the contrasting forms of gametophytes of the ferns Microsorium
linguaeforme (disc-shaped) and Dryopteris thelypteris (heart-
shaped) in terms of different patterns of cell division (de Boer,
1990; Prusinkiewicz & Lindenmayer 1990). The notion of wall
state preceded the recent use of wall age in the model explaining
asymmetric division of meristemoid cells (Robinson et al., 2011).

(a) (b)

Fig. 4 Comparison of two models of the development of a multicellular pattern, using the colonial alga Coleochaete scutata as an example. (a) Steps 1, 15,
40, 62 and 383 of a simulation based on a gradual incorporation of lattice points into the growing colony, as proposed by Korn (1969). Early simulation
steps lead to the generation of a ring of eight cells (left). Further progress of development is visualized using colored rings (center). (b) A physically based
model inspired by Dupuy et al. (2010). Cell shape represents an equlibrium between wall tension and turgor pressure (Fracchia et al., 1990). In both cases,
growth is localized to the boundary of the colony, and cells divide according to the Errera rule.
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The modeling of differentiating tissues was subsequently facili-
tated by introducing labelled cells (de Boer et al., 1992).

To visualize map L-system models, Fracchia et al. (1990)
introduced a physically based mass-spring interpretation. With
its use, the shape of cells and the entire tissue is calculated as the
equilibrium between the internal (turgor) pressure within the
cells and the tension of walls (Lockhart, 1965; Hamant & Traas,
2010), modeled as elastic springs. The physically-based approach
was first used to improve the geometric structure of the models of
fern gametophytes (Fracchia et al., 1990; Prusinkiewicz &
Lindenmayer 1990). Recent improvements include the introduction
of viscoelastic springs (Dupuy et al., 2008), which approximate
the mechanical properties of cell walls better than elastic springs.
An appeal of mass-spring models stems from the simplicity of
their implementation, compared with potentially more accurate
finite element models, which are also used in studies of plant
development (Coen et al., 2004; Hamant et al., 2008; Green
et al., 2010; Kennaway et al., 2011; Liang & Mahadevan, 2011).
As understanding of the mechanical properties of cells and cell
walls advances (Baskin, 2005; Dyson & Jensen, 2010), one can
expect models explaining the development of tissues with an even
greater accuracy.

2. Phyllotaxis

Phyllotaxis, or the regular arrangements of organs such as leaves,
petals or flowers on their supporting stems, is an inherently geo-
metric phenomenon. Analysis of phyllotactic patterns, motivated
by their visual beauty and intriguing mathematical properties,
goes back to antiquity (Adler, 1974, Appendix G). The patterns
emerge from sequential production of primordia on a growing
surface of the shoot apical meristem (Kuhlemeier, 2007;
Braybrook & Kuhlemeier, 2010). The divergence angle between
consecutively issued primordia often assumes values close to the
golden angle (/�137.5�) or – less frequently – Lucas angle (/
�99.5�) (Jean, 1994). Furthermore, the primordia are arranged
into a lattice, in which two sets of spirals called parastichies
emerge, one turning in the clockwise and another in the counter-
clockwise direction. Van Iterson (1907) showed that for the
golden angle the numbers of parastichies in the clockwise and
counter-clockwise directions are pairs of consecutive Fibonacci
numbers (reviewed by Erickson, 1983, and Prusinkiewicz &
Lindenmayer, 1990). The Fibonacci sequence starts with num-
bers 1 and 2, and continues with each subsequent number being
the sum of the two previous ones: 3, 5, 8, 13, etc. Explanation of
the causal structure of these relations and patterns has been the
objective of extensive mathematical analysis and modeling.

The key question is how the position and time of primordia
initiation are determined. Hofmeister (1868) and later Snow &
Snow (1932) postulated that existing primordia exercise an
inhibitory effect on the incipient primordia, which emerge at the
locations where the inhibition is the weakest. In a purely geometric
version of this model, each primordium is surrounded by a circu-
lar inhibition zone, and a new primordium is inserted when and
where the space for it becomes available as the shoot apical meri-
stem grows (Mitchison, 1977). In generalizations of this model

(Mitchison, 1977; Douady & Couder, 1996; Smith et al.,
2006b), the inhibitory influence of each primordium decreases
with the distance from the primordium center in a continuous
rather than on-off fashion. The influences from different primor-
dia sum up, determining the inhibition value at each point of the
meristem. New primordia are created when and where the inhibi-
tion drops below a given threshold. This geometric model and its
generalizations show that the golden angle underlying most spiral
phyllotactic patterns can emerge robustly from the inhibitory
interactions between consecutively produced primordia. Less
common patterns, corresponding to different values of the
divergence angle, result from other parameter values or initial
conditions (placement of the initial primordia). Multijugate or
whorled patterns, in which several primordia appear at once, are
produced more readily if the inhibition falls off quickly outside
the inhibition region (Douady & Couder, 1996, Part II) or the
inhibitory function changes its profile over time (Smith et al.,
2006b). By stripping the logic of phyllotaxis down to its essen-
tials, the geometric-level models thus demonstrate that primordia
can self-organize into diverse phyllotactic patterns. An under-
standing of this self-organization provides the basis for more elab-
orate conceptual and computational models, which explain
phyllotaxis in molecular terms (Section V).

Nonetheless, even at the geometric level, not all aspects of
phyllotaxis are understood. In Asteraceae, new primordia often
appear at the capitulum periphery rather than near the center.
The distances between primordia across the receptacle are much
larger than the distances between primordia along the parasti-
chies, which suggests that the arrangement of primordia into a
lattice may be the cause, rather than an effect, of specific diver-
gence angles (Zagórska-Marek, 1987). Further complicating the
matter, generation of phyllotactic patterns may be influenced by
the vasculature in the stem (Larson, 1975; Banasiak, 2011). A
challenging open problem is also the generation of phyllotactic
patterns in mosses. It results from the activities of a single apical
cell rather than interactions within a multicellular apical meri-
stem, which suggests a distinct morphogenetic mechanism.

3. Leaf forms

The development of leaves is a particularly intriguing problem
because of the diversity of leaf forms, ranging from geometrically
simple to fractal. It is not clear what mathematical and modeling
techniques are best suited to characterize and explain this diver-
sity. The history of leaf modeling gives testimony to a variety of
approaches.

Geometric modeling of simple leaves was pioneered by Scholten
& Lindenmayer (1981). Their model characterized leaf forms in
terms of propagation of the leaf margin (Fig. 5a–d). A related
model was employed to simulate entire leaf blades as a basis for
modeling leaf venation patterns (Runions et al., 2005). In this
case, not only the leaf margin, but also all points in the leaf blade
propagated with explicitly specified velocities, dependent on the
points’ positions. A framework for more mechanistic modeling
of developing leaves and petals was described by Coen et al.
(2004). A critical aspect of this framework was the propagation
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of hypothetical morphogens that controlled the rates and direc-
tions of petal growth. A growing surface was approximated with a
set of triangles, and a finite-element method was applied to inte-
grate their expansion into that of the entire surface. A refinement of
this technique was more recently applied to model the develop-
ment of Antirrhinum majus (snapdragon) flowers (Green et al.,
2010). The resulting model highlights the role of polarity and
anisotropic growth in determining the final form of the flower, and

captures the development in three dimensions caused by changes
in metric and the resulting changes in curvature (Section III.3).

The branching structure of compound leaves was another tar-
get of early computational models (Lindenmayer, 1977, 1978)
(Fig. 5e). The models were formulated in terms of L-systems.
The focal problem was a characterization of the relation between
local production of leaflets and the repetitive, recursive global
structure of the resulting leaves. This relation was analyzed
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Fig. 5 Three classes of early computational leaf models. (a, b) Developmental model of a simple leaf (Scholten & Lindenmayer, 1981). Sample points on the
leaf margin (green circles) are moved away from the growth center (black circle) according to the angle h with respect to the midvein (red arrow, a). Itera-
tive application of this process simulates the development of leaf form (b). A more complex dependence of the displacement rate on the angle h produces
palmate (c) and compound palmate (d) leaves. (e) A model of the branching structure of a compound leaf (Lindenmayer, 1978). L-system productions are
shown in the inset. Ln represents the result of n simulation steps. An older tip (dark green) extends the current axis of the skeleton and initiates a lateral
branch (light green). Young leaflets develop further after a two-step delay. The leaf contours suggested by the growing skeleton were drawn by hand. (f)
A model of a lobed leaf margin (Rozenberg & Lindenmayer, 1973). The initial structure (axiom) and the L-system productions are shown in the inset. Green
symbols represent protrusions and red symbols represent indentations. The interpretation of yellow symbols is context-dependent. The strings of symbols
generated in three successive steps were interpreted geometrically by the draftsperson.
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further by Prusinkiewicz (2004c), who linked topological and
geometric characterizations of self-similarity in compound inflo-
rescences and leaves. Links between the self-similar geometry of
compound leaves and the biology of the underlying developmen-
tal processes are open to further study.

Intermediate between simple and compound leaves, the third
class of models was focused on the recursive distribution of pro-
trusions and indentations along the margin of lobed leaves
(Rozenberg & Lindenmayer, 1973; Lindenmayer, 1975)
(Fig. 5f). The models were focused on the sequences in which
protrusions and indentations appear in the course of develop-
ment, rather than their exact geometry. Consequently, the gener-
ated structures could not be visualized automatically and were
drawn by hand. The focus on the leaf margin pioneered by these
models is consistent with the important role attributed to the
margin by the current theoretical perspective (Hagemann, 1999)
and molecular-level studies (Hay et al., 2006; Nikovics et al.,
2006; Ori et al., 2007; Barkoulas et al., 2008; Blein et al., 2008;
Canales et al., 2010). However, the potentially important mor-
phogenetic role of changing metric relations in a growing leaf, for
example the increase in distances between lobes and indentations,
was ignored. These relations were introduced in the recent model
explaining the development of serrations in Arabidopsis in terms
of molecular processes operating on the leaf margin (Bilsborough
et al., 2011) (Section V). It is an interesting question whether a
similar model can capture and explain the development of lobed
and compound leaves as well.

An intriguing three-dimensional model of leaf development
was proposed recently by Couturier et al. (2009, 2011). They
found that the contour of many deeply lobed leaves is smooth
when the leaf is folded within a bud, presumably fitting the con-
fines of this bud (Fig. 6). Positions of folds are closely related to
the pattern of main veins, linking the form of the leaf to its vena-
tion. The close correspondence of the geometry of real and mod-
eled leaves is appealing, but whether the postulated role of
folding is indeed consistent with the biology of leaf development
remains an open question.

4. Venation patterns

Venation patterns in many leaves are relatively irregular, making
their morphogenesis even more puzzling than that of phyllotactic
patterns. Nevertheless, Runions et al. (2005) proposed a

geometric model of leaf venation that suggests similarities
between the two phenomena. The model operates by iteratively
extending partially formed veins toward points thought of as
sources of a vein-inducing signal (e.g. auxin), embedded in a
growing leaf blade. The sources are dynamically added as the leaf
grows, and removed as the veins approach them. Consequently,
the veins ‘colonize’ the growing leaf blade without ever becoming
too dense, in a process analogous to the emergence of well-spaced
primordia during phyllotactic patterning. The model suggests
that the apparent complexity of vascular patterns is likely a mani-
festation of a self-organizing process operating on a simple geo-
metric principle, and highlights the importance of growth in
driving this process. Although the model of Runions et al. (2005)
was conceived as a geometric abstraction of molecular processes
underlying vein pattern formation (canalization; c.f. Section V),
it has not yet been re-expressed directly in molecular terms.

Leaf growth also plays an essential role in the biomechanical
model of vein pattern formation proposed by Couder et al.
(2002). This model exploits a hypothetical analogy between vein
pattern formation and fracture propagation in a stretched mate-
rial. In its physical implementation, cracks are introduced in a
thin layer of drying gel (see Skjeltorp & Meakin, 1988, for a
related model). Laguna et al. (2008) proposed a computational
model of vascular patterning where vascular differentiation was
induced by the compression of fast-growing mesophyll cells by a
slow-growing epidermis, leading to the collapse of mesophyll
cells along the lines of principal stresses in the tissue. The model
produces hierarchical network patterns that are visually and
statistically similar to actual vein networks, but leaves open the
question of the relation between hormonal (auxin) and biome-
chanical control of vein patterning.

5. Branching architecture

Geometric modeling of the branching architecture of herbaceous
and woody plants has a rich history, bridging developmental
plant biology and computer graphics (Prusinkiewicz &
Lindenmayer, 1990; Prusinkiewicz, 1998b, 2004b; Godin et al.,
2005).The key question is the relation between endogenous
(internal to the plant) and exogenous (acting through the space
embedding the plant) control of branching. Correspondingly,
the models can be divided into two broad groups, excluding or
including the morphogenetic role of environment.

(a) (b) (c)

Fig. 6 Computer model of a folded (a), partially unfolded (b), and fully unfolded (c) palmate leaf. Anticlinal folds (red lines), corresponding to the primary
veins, terminate at the lobe tips. Synclinal folds (blue lines), located between the primary veins, terminate at the indentations. The unfolded form (c) is
determined by the pattern of folds and shape of the bud constraining the unfolded leaf (a).
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Models in the first group can be traced to L-system models
of inflorescences and herbaceous plants (Frijters, 1978;
Prusinkiewicz et al., 1988, 2007; Prusinkiewicz & Lindenmayer,
1990) and models of trees postulating their recursive structure
(Honda, 1971; de Reffye et al., 1988). The formalism of con-
text-sensitive L-systems provides a particularly convenient means
for incorporating long-distance signals that coordinate the
development of branching systems. For example, an abstract rep-
resentation of florigen and auxin propagating in the plant was
used to simulate the putative mechanism regulating branch
development and flowering in Mycelis muralis, a herbaceous
plant, as early as the 1980s (Janssen & Lindenmayer, 1987;
Prusinkiewicz & Lindenmayer, 1990). A recent L-system model
addressed the related issue of bud ctivation in Arabidopsis at the
molecular level (Prusinkiewicz et al., 2009). The focus was on
the feedback between the concentrations and flow of auxin, and
the distribution of auxin transporters, in particular PIN-
FORMED 1 (PIN1) proteins (Section V). The model demon-
strated that this feedback suffices to explain the essence of bud
activation in wild-type Arabidopsis as well as several mutant and
manipulated plants.

The second broad group of models emphasizes the role of envi-
ronment in the development of plants. It has its origins in the
abstract models of branching structures proposed by Ulam (1962)
and Cohen (1967). The models in this category assign a key mor-
phogenetic role to the self-organization resulting from competi-
tion between branches for space or light. Sachs & Novoplansky
(1995), and Sachs (2004) suggested that such competition indeed
plays a key role in the development of trees in nature. Consistent
with this claim, the space colonization algorithm by Runions et al.
(2007) shows that plausible tree structures can be generated by
ignoring all factors except for competition for space in a growing
three-dimensional branching structure. Interestingly, this model
is closely related to the geometric model of leaf venation by
Runions et al. (2005), suggesting a geometric link between the
two morphogenetic processes. The more complex model of Palub-
icki et al. (2009) extends competition for light with an endoge-
nous mechanism biasing this competition, and shows that diverse
tree forms may simply result from changes in this bias.

Relating the abstract mechanisms of geometric models to
molecular-level mechanisms of growth regulation and environ-
ment perception continues to be open problem. It includes the
incorporation of additional substances regulating branching and/
or flowering, such as florigen, cytokinin and strigolactones, simu-
lation of carbon acquisition and flow that may also affect
development (Allen et al., 2005), and incorporation of mechani-
cal forces shaping branching structures (Jirasek et al., 2000).
Methodological aspects of the creation of comprehensive
L-system models, integrating diverse aspects of the function and
structure of plants, have recently been addressed by Cieslak et al.
(2011).

V. Molecular-level models

A tight synergy between laboratory experiments and computa-
tional models underlies recent studies of growth regulation and

patterning focused on the role of auxin. These studies comple-
ment each other in forming an emerging integrative view of plant
development. According to this view, known as the reverse/
inverse fountain model (Benková et al., 2003), auxin performs
diverse patterning, signaling and regulatory functions, funda-
mental to plant development, as it flows from the shoot to the
root (Fig. 7). The morphogenetic role of auxin begins in the
embryo, where a dynamic, differential distribution of auxin
establishes the shoot–root polarity. In post-embryonic develop-
ment, auxin is produced in the vicinity of the shoot apical meri-
stem and is transported in the epidermis toward the peripheral
zone of the apex. There it accumulates in emergent convergence
points, which determine the phyllotactic pattern of the incipient
plant organs: leaf or flower primordia (Reinhardt et al., 2003;
Jönsson et al., 2006; Smith et al., 2006a). As a leaf grows and
becomes flat, new auxin convergence points appear at the leaf
margin (Hay et al., 2006; Scarpella et al., 2006). These

Phyllotaxis

Leaf form

Bud activation

Stem vasculature

Root tip maintenance 

Leaf venation

Lateral root
initiation

Fig. 7 Processes and patterns regulated by auxin in postembryonic
development according to the reverse (shoot) and inverse (root) fountain
model (Benková et al., 2003). Blue arrows indicate the paths and direc-
tions of auxin flow. Blue circles mark points of auxin accumulation.
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convergence points may be correlated with growth foci localized
near the leaf margin, leading to the formation of serrated (Hay
et al., 2006; Bilsborough et al., 2011), lobed, or compound
(Barkoulas et al., 2008; Koenig et al., 2009) leaves. From the pri-
mordia auxin flows into the subepidermal layers of the apex and,
subsequently, into the plant stem. In this process, it is ‘canalized’
into narrow paths (Sachs, 1969, 1991; Mitchison, 1980, 1981;
Rolland-Lagan & Prusinkiewicz, 2005; Bayer et al., 2009),
which, in the case of leaves, mark the location of the primary vein
and its extension into stem vasculature. Within the stem, auxin
regulates the activation of lateral buds (Bennett et al., 2006;
Prusinkiewicz et al., 2009; Crawford et al., 2010), and thus coor-
dinates the development of the branching plant structure (Leyser,
2011), which may reiterate the development of the main axis.
From the stem, auxin continues on to the root system, control-
ling its development.

The fountain model suggests the exciting perspective of reduc-
ing fundamental features of plant development to a small number
of general mechanisms. At a more immediate level, it presents a
structured set of hypotheses regarding some of the key elements
of plant development. We discuss these elements in more detail
in the remainder of this section.

1. Auxin transport

The existence of a long-distance signaling substance mediating
the reaction of plants to light and gravity was deduced by Darwin
(1880); it was subsequently identified as indoleacetic acid and
termed ‘auxin’. Due to the pH difference between the interior
and exterior of the cell, the export of auxin from a cell requires an
active mechanism. Its fundamental properties were characterized
by Rubery & Sheldrake (1974) and Goldsmith (1977), and are
known as the chemiosmotic theory of auxin transport. This the-
ory postulates that auxin enters cells passively, via diffusion, but
once inside the cell auxin becomes protonated and can only leave
the cell with the aid of an efflux carrier. Subsequent experimental
work has identified PIN1 proteins as the key efflux carriers
suggested by the chemiosmotic theory (Gälweiler et al., 1998).
Adding a level of precision, Kramer (2004) constructed a compu-
tational model operating at a subcellular scale to analyze the role
of auxin diffusion in the intercellular space as a component of
auxin transport. He concluded that diffusion, while not negligi-
ble, is significant only at relatively short distances (commensurate
with the size of the cell). At longer distances, active transport
prevails.

In principle, auxin could be exported from a cell in a non polar
manner (equally in all directions) or in a polar manner (preferen-
tially in some directions). There is ample experimental evidence
that auxin transport is often, if not always, polar (Sachs, 1981,
1991). A fundamental question is how this polarity is established.
In some cases the direction of auxin transport appears to be deter-
mined by external factors, such as gravity. In other cases, how-
ever, auxin appears to regulate its own transport. Such a feedback
may lead to pattern formation; consequently, the modeling of
auxin transport is intimately connected with the modeling of
auxin-induced patterning in plants.

2. Phyllotaxis

The first morphogenetic process involving auxin, in the order
implied by the reverse fountain model (Fig. 7), is the generation
of a phyllotactic pattern of leaf and flower primordia on the shoot
apical meristem (SAM). Microscopic observations of the meris-
tems in Arabidopsis and tomato (Solanum lycopersicum) showed
that PIN1 proteins are oriented toward spatially separated con-
vergence points, creating auxin maxima that predict the location
of new primordia (Reinhardt et al., 2003). Following these
observations, Reinhardt et al. proposed that phyllotactic patterns
emerge from a competition for auxin, during which primordia
drain auxin from their neighborhoods. This creates regions of
low auxin concentration surrounding each primordium, in which
new primordia cannot be formed. The conceptual model of
Reinhardt et al. can thus be viewed as a molecular implementa-
tion of the inhibitory mechanism of phyllotaxis proposed by
Hofmeister, in which the absence of auxin plays the role of an
inhibitor. The model leaves open, however, the question of what
information is used to polarize PINs toward a convergence point,
and what biochemical or biomechanical mechanisms effect this
polarization. Addressing the first question, Jönsson et al. (2006)
and Smith et al. (2006a) postulated a feedback between auxin
distribution and PIN localization. According to these models,
active auxin transport by PINs creates localized auxin maxima.
PINs orient themselves preferentially toward these maxima (i.e.
the neighboring cell or cells with the highest auxin concentra-
tion), promoting further auxin flux which reinforces them. Simu-
lations and mathematical analysis showed that this feedback
mechanism can generate one- and two-dimensional periodic pat-
terns of isolated auxin maxima (Jönsson et al., 2006; Smith et al.,
2006a), as well as two-dimensional patterns of stripes (Sahlin
et al., 2009), similar to those emerging in reaction–diffusion mod-
els (Meinhardt, 1982, Chapter 12). Operating on a growing sur-
face approximating the SAM, this mechanism creates semi-
regular arrangements of primordia in a growing SAM. However,
additional assumptions are needed to generate typical, highly reg-
ular spiral phyllotactic patterns. The assumptions considered
included the immobilization of auxin maxima and the strength-
ening of PIN1 polarization toward the incipient primordia after
their initiation (Smith et al., 2006a).

3. Leaf development

Once positioned, a leaf primordium begins to grow, bulging out
of the SAM and gradually flattening along the abaxial–adaxial
axis. During this growth, new convergence points emerge along
the leaf margin in addition to the convergence point that initiated
the leaf, which remains at the leaf tip (Hay et al., 2006; Scarpella
et al., 2006). The formation of convergence points along the leaf
margin appears to be governed by a mechanism similar to phyllo-
tactic patterning at the SAM (Smith & Bayer, 2009; Bilsborough
et al., 2011). As in the case of phyllotaxis, the existing conver-
gence points inhibit the formation of new points nearby by drain-
ing auxin, and new points only emerge when sufficient space is
created for them by leaf growth. Similar to their counterparts at
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the SAM, the convergence points at the leaf margin can mark
locations of increased outgrowth, yielding serrations in the case
of Arabidopsis leaves (Bilsborough et al., 2011) and, possibly,
lobes in leaves of other species (Barkoulas et al., 2008; Koenig
et al., 2009). This similarity is consistent with the ‘partial shoot
theory’ (Arber, 1950), which emphasizes parallels between the
growth of shoots and leaves. The strikingly different appearance
of spiral phyllotactic patterns and leaves would thus result not
from fundamentally different morphogenetic processes, but from
different geometries on which they operate: an approximately
paraboloid SAM dynamically maintaining its form vs. a flatten-
ing leaf that changes its shape and size.

A recent computational model of leaf serration in Arabidopsis
exploits and supports the above analogies (Bilsborough et al.,
2011). As in the case of phyllotaxis, an additional factor was
needed to stabilize auxin maxima and thus robustly position the
outgrowth. In the model, this role is fulfilled by the CUP-
SHAPED COTYLEDON 2 (CUC2) protein, known to play a
major role in leaf serration development (Nikovics et al., 2006;
Kawamura et al., 2010). On the basis of experimental data
(PIN1 convergence points do not form in cuc2 mutants), it was
hypothesized that PIN1 repolarization may only occur in the
presence of CUC2. Auxin, in turn, down-regulates CUC2 expres-
sion, thus fixing PIN1 localization at the convergence points. It is
an interesting question whether a related mechanism might stabi-
lize auxin maxima during phyllotactic pattern generation at the
SAM as well, as suggested by Nikovics et al. (2006) and Berger
et al. (2009).

4. Vascular patterning

The above models operate at the boundary of organs in the epi-
dermis of the SAM and in the marginal part of the leaf epidermis.
The localization of PIN1 proteins and the activation of the
synthetic auxin-inducible promoter DR5 in emerging leaves indicate
that auxin reaching convergence points is redirected there toward
the leaf interior. Its flow is then organized into canals: narrow
paths that define the position of future veins. A conceptual model
of canal formation was proposed by Sachs (1969, 1981, 1991,
2003) and is known as the canalization hypothesis. Historically,
it is the first model of morphogenesis involving auxin. According
to this model, the export of auxin across a cell wall promotes fur-
ther auxin transport in the same direction. Sachs (2003) postu-
lated that this feedback creates canals of auxin flow in a manner
analogous to the carving of riverbeds by rivers. Using a computa-
tional model operating on a square array of cells, Mitchison
(1980, 1981) showed that the ‘with-the-flow’ polarization model
proposed by Sachs can indeed generate canals of high auxin flux.
A reimplementation of Mitchison’s model by Rolland-Lagan &
Prusinkiewicz (2005) and its reinterpretation in terms of a
feedback between auxin flow and polarization of PIN1 proteins
confirmed that the canalization hypothesis is in many respects
consistent with experimental data concerning vein formation in
developing leaves. However, Mitchison’s model produces canals
with a high flux and a low concentration of auxin, whereas
experiments suggest that auxin concentration in canals is high

(Scarpella et al., 2006). Exploring this discrepancy, Feugier et al.
(2005) proposed and analyzed several variants of Mitchison’s
models. These variants operate according to two scenarios: with
PINs allocated to different membrane sectors independently, and
with PINs allocated to membranes from a fixed pool within each
cell. Simulations confirmed that, in the first case, the concentra-
tion of auxin in canals is lower than in the surrounding tissue, as
predicted by the original Mitchison’s model. In contrast, when
cell membranes competed for the PINs encased within each cell,
the models produced canals with auxin concentration higher than
in the surrounding tissue. This result removed a key inconsis-
tency between the canalization hypothesis and experimental data.

The proposed two modes of PIN polarization by auxin, up-
the-gradient (Jönsson et al., 2006, Smith et al., 2006a) and with-
the-flux (Sachs, 1969, Mitchison, 1980, 1981), give rise to the
question of how a plant decides where and when to deploy each
mode. Initially, efforts were made to explain up-the-gradient
phenomena using with-the-flux models (Stoma et al., 2008) and,
conversely, with-the-flux phenomena using up-the-gradient
polarization (Merks et al., 2007). However, neither attempt fully
reproduced the observed patterns of DR5 and PIN1 expression
during midvein initiation in leaves. Searching for an explanation,
Bayer et al. (2009) proposed a dual-polarization model, accord-
ing to which both polarization modes may operate concurrently,
with the weights dependent on the tissue type and auxin concen-
tration. The dual-polarization model captured the spatio-
temporal sequence of PIN1 orientation and auxin distribution in
a leaf primordium as observed in microscopic data. Specifically,
it showed that the up-the-gradient polarization of PINs supplying
auxin to the convergence points may plausibly coexist with the
with-the-flux polarization of PINs pumping auxin into the incip-
ient veins. The model also captured the gradual narrowing of
vein-defining canals during their formation, the basal orientation
of PINs in the vein precursor cells, and the towards-the-vein
orientation of PINs in neighboring cells. Finally, the model
predicted a transient polarization of PIN1 proteins in the subepi-
dermis toward the epidermis at the onset of the primordium
formation. This phenomenon was subsequently observed micro-
scopically, and thus supported the model.

A model that integrates the up-the-gradient polarization, lead-
ing to the formation of convergence points, and with-the-flow
polarization, leading to the production of canals, captures the for-
mation of the midvein and first-order lateral veins in open vena-
tion patterns, that is, patterns without loops (Smith & Bayer,
2009). Observations by Scarpella et al. (2006) suggest that loops
in closed venation patterns are formed by anastomosis, that is,
connection of canals. PIN1 proteins in these canals have opposite
orientations, pointing away from a bipolar cell at which the two
canals meet. Mitchison’s 1980 model and its recreation (Rolland-
Lagan & Prusinkiewicz, 2005) show that such a scenario of loop
creation is possible if the bipolar cell is a source of auxin, turned
on at a precisely defined time. A separate model of vein pattern-
ing in areoles developed by Dimitrov & Zucker (2006) also relies
on elevated auxin concentration to localize the meeting point.
However, the experimental data of Scarpella et al. (2006) did not
show elevated auxin concentration at the meeting points.
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Addressing this discrepancy, Feugier & Iwasa (2006) proposed a
loop formation model in which anastomosing canals are guided
toward each other by a hypothetical diffusing substance. The
existence of such a sustance has not yet been experimentally con-
firmed. Another possibility is that bipolar cells are located at weak
maxima of auxin concentration, not detected using the experimen-
tal techniques of Scarpella et al. (2006). Overall, the molecular
mechanism of vein pattern formation beyond the formation of
the midvein and first-order lateral branches remains unclear.

5. Molecular mechanism of PIN1 polarization

Although formulated in molecular terms, neither the up-the-
gradient nor the with-the-flux model explains the molecular
mechanism of PIN polarization. Addressing this question, Kramer
(2009) proposed that the flux sensing inherent in the latter model
could result from a readout of intracellular auxin gradients, and
highlighted the potential role of the auxin-binding protein ABP1
as a guide for localizing PIN1. However, vascular strands in
Kramer’s model are initiated at auxin sinks, in contrast to the
observations that suggest that they are initiated at sources (Bayer et al.,
2009). It is thus not clear whether this model can faithfully reproduce
the dynamics of PIN polarization during vascular initiation.

Another step toward an explanation was made by Wabnik
et al. (2010) (Fig. 8). They proposed that auxin gradients in the
apoplast generate asymmetric binding of ABP1 to the outside of
cell walls. The asymmetric localization of ABP1 proteins then
guides the localization of PIN1. The proposed model reproduces
numerous details of vascular patterning and regeneration. Inter-
estingly, bifurcation analysis indicates that the model is capable
of transitioning between up-the-gradient and with-the-flux

polarization regimes. It is thus possible that this model could be
extended to account for phyllotaxis and other up-the-gradient
type phenomena. However, the question of whether the auxin
gradient in a narrow intercellular space is sufficient to polarize
PINs remains open.

Yet another input for PIN polarization was proposed by Heis-
ler et al. (2010). They showed experimentally that mechanical
stresses affect the localization of PINs. Based on this result, they
created a computational model demonstrating that the feedback
between the localization of PINs by stresses in walls and the con-
trol of these stresses by auxin may lead to the formation of dis-
crete auxin maxima. An intricate feedback between growth and
mechanosensing may thus lead to PIN polarization and morpho-
genesis.

6. The role of auxin influx carriers

In addition to the polarized efflux controlled by PIN proteins,
the flow of auxin is affected by the AUXIN RESISTANT 1 /
LIKE AUX1 (AUX/LAX) proteins (Bennett et al., 1996; Parry
et al., 2001). These proteins are auxin influx carriers, and are typ-
ically, although not always (Swarup et al., 2001), located
uniformly on the cell membranes. The computational model by
Kramer (2004) showed the potential importance of AUX/LAX-
based auxin accumulation to the maintenance of a high concen-
tration of auxin in vascular strands. A subsequent model (Swarup
et al., 2005) pointed to the importance of AUX/LAX proteins in
maintaining gradients of auxin concentration responsible for
gravitropic responses in the root. Heisler & Jönsson (2006) used
computational models to support the hypothesis that AUX/LAX
proteins play a role in concentrating auxin in the epidermis of
SAMs (Reinhardt et al., 2003). Heisler & Jönsson (2006) also
showed that AUX/LAX proteins may fix auxin maxima at the
locations at which they emerged, and thus stabilize phyllotactic
patterns. This prediction was experimentally confirmed by the
observations of irregularities in the phyllotaxis of quadruple
aux1;lax1;lax2;lax3 mutants (Bainbridge et al., 2008).

7. Root development

In the root, PINs are localized toward the root apex in the vascu-
lature and away from it in the epidermis. Consistent with this
localization, auxin flows toward the root apex in the subepider-
mal layers and away from it in the epidermis. From the epider-
mis, auxin leaks to subepidermal layers, where it is recycled
toward the root tip. This recycling underlies the maintenance of
an auxin maximum at the root apex, as modeled by Grieneisen
et al. (2007) in a growing cellular template with static PIN local-
izations, and Stoma et al. (2008) in a static template with digi-
tized cell shapes and PIN polarities. Grieneisen et al. (2007) used
their model to propose that the recycling (‘reflux’) of auxin at the
root tip produces an ‘auxin capacitor’, where auxin is gradually
accumulated. An extension of this idea underlies the models of
lateral root initiation proposed by Lucas et al. (2008a,b). In these
models, the auxin capacitor at the root tip is charged by the
basipetal flux of auxin and periodically discharges when the auxin
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Fig. 8 Hypothetical relations underlying models of PIN1 polarization and
auxin transport by Wabnik et al. (2010). The concentration of PIN proteins
in the cell membrane is determined by an interplay between PIN exocytosis
(1) and endocytosis (2). At the cell membrane, PINs transport auxin from
the cell to the apoplast (3). The PIN proteins are localized to a portion of
the cell membrane, which results in polar auxin transport. The AUXIN-
BINDING PROTEIN 1 (ABP1), present in the apoplast, binds to the cell
membrane and slows the rate of endocytosis. This binding is regulated by
the auxin concentration in the region of the apoplast adjacent to the
affected membrane. From the apolast, auxin is transported into cells with
the help of AUX/LAX proteins (4), which are uniformly distributed along
the cell membranes.
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level exceeds a threshold. The models explain the timing of the
initiation of lateral roots and, although they do not have a spatial
character, they yield a spatial distribution of lateral roots when a
rate of main root growth is assumed.

As with leaf primordia and serrations, lateral root primordia
are initiated at discrete auxin maxima (Laskowski et al., 2008).
Similar to the SAM, the accumulation of auxin in incipient lat-
eral roots provides a form of lateral inhibition. This inhibition
suppresses the initiation of new roots in the proximity of existing
ones and yields a pattern of lateral root distribution with well-
defined statistical properties (Lucas et al., 2008b). Furthermore,
the location of lateral roots is primed by root geometry, as lateral
roots tend to initiate on the convex side of a curved root. In the
model proposed by Laskowski et al. (2008), the extended cells on
the outside of the curve accumulate more auxin than the com-
pressed cells on the inside, as a result of the relatively slow flux of
auxin through cells (as opposed to the faster transport through
cell walls). This accumulation is enhanced by auxin-dependent
up-regulation of AUX/LAX protein production, which leads to
additional auxin accumulation and the establishment of discrete
auxin maxima correlated with the curvature of the root. The
model of Laskowski et al., (2008) thus suggests a mode of auxin-
based patterning founded on selective retention of auxin by
auxin-dependent up-regulation of AUX/LAX protein production
rather than dynamic allocation of PINs (Smith & Bayer, 2009).

VI. Conclusions

Plant features of a mathematical character have been observed
since antiquity. They are most conspicuous in geometrically regu-
lar or numerically repetitious patterns, such as phyllotaxis and
the numerical canalization of plant organs. However, current
mathematical notions and modeling techniques also elucidate less
regular patterns and forms, such as leaf venation and the branch-
ing architecture of trees. As the mathematical and computational
techniques used in developmental plant biology mature and their
scope broadens, main directions of thought become increasingly
clear. They can be grouped as follows.
• Mathematical description of growth, combining differential
geometry with biomechanics. Pioneers include D’Arcy Thomp-
son, Ralph Erickson, Wendy Silk, Zygmunt Hejnowicz and Paul
Green. A recent development is the increasing recognition of the
role of space in morphogenesis. Furthermore, biomechanics is
increasingly applied to the modeling and analysis of phenomena
at the subcellular level.
• The quest for rules of patterning. This direction of study can be
traced to Hofmeister’s conceptual model of phyllotaxis, Errera’s
rule for cell division, Turing and Meinhardt’s reaction–diffusion
framework for pattern formation, and the canalization model of
vascular pattern formation by Tsvi Sachs. Patterning and mor-
phogenesis are a very active area of research, as exemplified by
recent extensions of the Errera rule.
• Development of new mathematical concepts and computa-
tional techniques for the description of growing spatial struc-
tures. Pioneering examples include Ulam and von Neumann’s
notion of cellular automata, and Lindenmayer systems. Recent

advances include the introduction of the cellular Potts model and
cell complexes to plant modeling. A current goal is to provide a
unifying framework for modeling development in one, two and
three dimensions.
• Development of specific models. Pioneering work includes Lin-
denmayer and Honda’s models of branching structures, and
Korn’s models of cellular patterns. In the relatively mature
domain of branching structure models, a recent advance is the
recognition of the prominent role of self-organization in the
development of trees. In addition, models combining the func-
tion and structure of different plants are being constructed to
provide a predictive basis for horticultural, agricultural and
forestry practices.

A fundamental advancement over the last decade is the link
between computational modeling and molecular biology. It has
opened the door to an integrative understanding of plant mor-
phogenesis from molecules to entire plants and plant ecosystems.
Interestingly, molecular considerations do not make geometric
models obsolete, but put them in a new light as an important
level of analysis and understanding of plant development.

Many open questions pertinent to plant morphogenesis
remain. Some appear to be on the verge of being answered, which
makes them particularly exciting. For example, given the ubiqui-
tous role of auxin in plant morphogenesis, an important question
is the mechanism of auxin transport regulation: How close to
reality is the model of Wabnik et al. (2010)? A more general
question is why mechanisms based on polar auxin transport have
evolved to play a prevalent role in plant morphogenesis even
when long-distance signaling is not needed.

Our most general observation concerns the crucial role of self-
organization at all levels of plant development. The genome pro-
vides a very low-level description of an organism: its proteins
(and RNA) and a mechanism for the regulation of their produc-
tion. From these elements, plant forms and patterns emerge
through a hierarchy of self-organizing processes. Almost by defi-
nition, emergent phenomena are characterized by a discrepancy
between the simplicity of local rules and the complexity of the
resulting form. This discrepancy is difficult to characterize with-
out the use of computer models and simulations. For this key rea-
son, computational models are becoming an indispensable part
of developmental biology.

Some of the concepts reviewed in this paper, such as the
morphogenetic role of spatial constraints and the reverse/inverse
fountain model of plant morphogenesis, unite diverse emergent
phenomena. The identification and study of general properties of
such processes may provide a unifying insight into the mecha-
nisms of development, gradually transforming developmental
biology into an experimentally based deductive science.
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Merks RMH, Guravage M, Inzé D, Beemster GTS. 2011. VirtualLeaf: an open-

source framework for cell-based modeling of plant tissue growth and

development. Plant Physiology 155: 656–666.
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RMH, Govaerts W, Friml J. 2010. Emergence of tissue polarization from

synergy of intracellular and extracellular auxin signaling. Molecular Systems
Biology 6: 447.

Wing JM. 2006. Computational thinking. Communications of the ACM 49:

33–35.

Yavari A. 2010. A geometric theory of growth mechanics. Journal of Nonlinear
Science 20: 781–830.
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