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Abstract

Developmental models of plant structure capture the spatial arrangement of
plant components and their development over time. Simulation results can be pre-
sented as schematic or realistic images of plants, and computer animations of de-
velopmental processes. The methods of model construction combine a variety of
mathematical notions and techniques, from regression analysis and function fitting
to Markov processes and Lindenmayer systems (L-systems). This paper presents
an overview of the wide range of spatial model categories, including both empir-
ical and causal (mechanistic) models. An emphasis is put on L-systems and their
extensions, viewed as a unifying framework for spatial model construction.

1 Introduction
Mathematical models in botany correspond to various levels of plant organization (Fig-
ure 1). In this paper, we focus on spatial organization of individual plants. A plant is
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Figure 1: A hierarchy of levels of plant organization. One objective of modeling is to
predict and understand phenomena taking place at a given level on the basis of models
operating at lower levels. Adapted from [170, 175].
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Figure 2: Selected modules and groups of modules (encircled with dashed lines) used
to describe plant structure. From [130].

viewed as a configuration of discrete constructional units or modules, which develop
over time. Modules represent repeating components of plant structure, such as flowers,
leaves, and internodes, or groupings of these components, such as metamers (single
internodes with an associated leaf and lateral bud) and branches (Figure 2) [10, 72,
119, 173]). (A different meaning of the term “module” is also found in the litera-
ture [4, 65, 155].) The modeling task is focused on the description of plant structure
and development as the integration of the development and functioning of individual
modules.

As with other models of nature, computer models of plant structure and develop-
ment can be divided into empirical (descriptive) or causal (mechanistic, physiologi-
cally based). The distinction between these two classes is described authoritatively by
Thornley and Johnson [170]. Summarizing their point, empirical models represent the
acquired data in a more convenient form, and are useful in making practical predic-
tions based on the interpolation of these data. In the context of the modeling hierarchy
shown in Figure 1, “the modeler attempts to describe level i behavior (observational
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data) in terms of level i attributes alone, without regard to any biological theory. The
approach is primarily one of examining the data, deciding on an equation or set of
equations, and fitting these to the data.” In contrast, mechanistic models follow the
traditional reductionist method of the natural sciences, in which phenomenon at level
i is described and understood in terms of processes at levels i − 1 and lower. These
models provide explanations and responses that integrate the underlying mechanisms,
thus contributing to our understanding of the processes under study. Potentially, their
predictive value is not limited to the interpolation of the collected data, and includes
extensive possibilities for asking “what if?” type questions. In practice, many plant
models combine empirical and mechanistic aspects. Although such models cannot be
unequivocally categorized, it is useful to categorize their individual features, in order
to fully understand the status and the predictive power of the model.

The distinction between empirical and causal models parallels the relation between
the top-down (analytic) and bottom-up (synthetic) approaches to modeling. In the top-
down case, the construction of the model is based on the analysis of empirical data.
In the bottom-up case, the model synthesizes known or postulated mechanisms of de-
velopment. The emphasis is on the properties of the whole model that emerge from
the interactions between individual components. In the most abstract form, construc-
tion of models with emergent properties crosses the line dividing biology and artificial
life [94, 168].

The spatial modeling of plants is a highly interdisciplinary area. Botany and ap-
plied plant sciences are at the roots of many approaches to model construction, and are
an important domain for model applications. Nevertheless, many visually convincing
plant models were created within computer graphics (for instance, see [15, 141, 174]).
The underlying modeling and visualization techniques are important from a biological
perspective, because realistic presentation adds credibility to the models and facilitates
their validation based on visual comparisons with nature [126]. In addition, computer
graphics has contributed methods for calculating light reflectance and distribution in
simulated environments [47]. They are important in the modeling of plants taking into
account their local light conditions (Section 5.4) and in the application of spatial mod-
els to remote sensing [17, 59, 60, 96].

Lindenmayer systems (L-systems) are another interdisciplinary component of ar-
chitectural plant modeling. They originated within theoretical biology [101] and were
extensively studied by mathematicians and computer scientists [77] before they became
an effective modeling tool [136] (for a historical perspective see [125]). L-systems be-
long to the class of mathematical formalisms known as rewriting systems or formal
grammars [157]. To a biologist they offer a conceptual framework for constructing
developmental plant models and expressing them in special-purpose modeling lan-
guages [68, 91, 136]. The use of a modeling language makes it possible to simulate
the development of a variety of organisms, from algae to herbaceous plants to trees,
using the same simulation program with different input files. This approach offers the
following benefits:

• The programming effort needed to develop L-system models of specific plants is
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significantly reduced in comparison to the effort needed to implement the same
models in a general-purpose programming language, such as Fortran or C1.

• The models can be easily modified during experimentation. These modifications
are not limited to the values of numerical parameters, but may also involve fun-
damental changes in model definition and operation.

• The L-system language makes it possible to document models in a compact and
precise manner (for example, in publications).

• The expression of models in the same language facilitates their comparisons.

Reflecting these advantages, all models illustrating this paper have been created or re-
produced from the original publications using the L-system-based simulation program
cpfg, included in the Virtual Plant Laboratory [121].

2 Data acquisition

2.1 Qualitative description of plant architecture
Data acquisition is the starting point for constructing all plant models, yet the type of
data used may vary greatly. On the most qualitative end of the spectrum one finds the
architectural unit, introduced by Edelin [38] (see also [8]) to characterize plants within
the conceptual framework of architectural models proposed by Hallé, Oldeman, and
Tomlinson [66]. The morphological characteristics incorporated into an architectural
unit can be directly observed or estimated without an extensive use of measuring in-
struments. They include, among others: the orientation of branches (e.g. orthotropic or
plagiotropic), type of branching (monopodial or sympodial), persistence of branches
(indefinite, long or short), degree of lateral shoot development as a function of their
position on the mother branch (acrotony, mesotony or basitony), type of meristematic
activity (rhythmic or continuous), number of internodes per growth unit, leaf arrange-
ment (phyllotaxis), and position of reproductive organs on the branches (terminal or
lateral). An authoritative description of these and other notions used to specify plant
architecture is given by Bell [10], and Caraglio and Barthélémy [18]. The architec-
tural unit is a set of these characteristics, given for all branch orders. For examples of
architectural description of specific trees in terms of architectural units see [2, 120].

Plant architecture is a dynamic concept, in the sense that the observed structural
features reflect plant development over time. As stated by Hallé et al., “The idea of
a form implicitly contains also the history of such a form” [66]. Correspondingly,
the architectural unit may be viewed as a sequence of branch types created over time,
rather than merely a set of branch types. “In this sequence, leading from axis 1 to the
ultimate axes following the specific branching pattern, each branch is the expression

1The programming effort needed to develop specific models may also be reduced using appropriate soft-
ware libraries, shared between various models. Such libraries have been created within the framework of
L-systems [64, 67] and outside of it [118].
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Figure 3: Example of a plant model (Lychnis coronaria) based on a qualitative descrip-
tion of the architecture [152]. Parameter values have been set interactively using the
control panel on the right to achieve proper appearance of the visual model.

of a particular state of meristematic activity and the branch series as a whole can be
considered to be tracking the overall activity” [8].

By itself, qualitative characterization is insufficient to construct a spatial model of
a plant. Nevertheless, interactive computer graphics makes it possible to incorporate
the lengths of internodes, the magnitudes of branching angles, and other quantitative
aspects into a model, even if these characteristics were not explicitly measured. The
observed architectural features form the basis of a model, in which the quantitative as-
pects are parametrized. The parameter values are manipulated interactively to achieve
proper appearance of the plant. This technique can be traced to the first computer tree
models devised by Honda [80]. It was also applied by Prusinkiewicz, Lindenmayer
and Hanan to model various types of inflorescences [68, 136] (Figure 3). An extended
graphical interface, which makes it possible to manipulate parameters of the model as
well as its underlying topological structure using graphical operations on the screen,
has been recently proposed by Deussen and Lintermann [34].

2.2 Description of plant topology
A description of a plant in terms of its architectural unit assumes a generalization per-
formed before the observed features are recorded. These features do not characterize
specific branches of a specific plant, but represent general characteristics of branches
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Figure 4: A hypothetical branching structure and the description of its topology using
the bracketed string notation. I: internode, L: leaf, B: bud, F: flower.

of a given order in any specimen of a given species.
Plant maps [26, 111] can be considered the first step towards characterizing the

structure of particular plants. This description captures the branching topology, that is
the aspects of the arrangement of branches, organs, and other features that do not de-
pend on the structure’s geometry (the lengths of internodes and the magnitudes of the
branching angles). Plant maps can be recorded using various notations. For example,
Hanan and Room [71] adapted for this purpose the bracketed string notation intro-
duced by Lindenmayer [101]. The essence of this notation is illustrated in Figure 4. A
different notation is presented by Rey et al. [148].

A refinement of the topological description of plants has been proposed by Godin
and Caraglio [56]. Their formalism, called multiscale tree graphs, makes it possible to
specify plant topology at different scales and levels of detail, and incorporate temporal
aspects into the descriptions. Multiscale tree graphs form the basis of a coding lan-
guage implemented in AMAPmod, an interactive program for analyzing the topologi-
cal structure of plants [57]. The need for multiscale representation of plant architecture
is also discussed by Remphrey and Prusinkiewicz [147].

2.3 Measurement of plant geometry
The processes of plant measurement and modeling influence each other. The initial,
hypothetical architectural model guides the first phase of data acquisition. Shortcom-
ings of the model that results from the incorporation of these data reveal the areas in
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which more data are needed. The cyclic process of model refinement continues un-
til the desired characteristics of the model have been reached. The choice of features
to be measured depends on the nature of the model (empirical or causal), its desired
accuracy, spatial scale, level of detail, time scope, and resolution [147].

Geometric features of small plants or plant parts can be measured using calipers
and a protractor. Unfortunately, this process is slow and costly. A faster method is
to use a three-dimensional digitizer, which records positions of selected features (for
example, the nodes of the branching structure) pointed to by the operator using a hand-
held probe. Digitizers used in the practice of plant measurement operate on a variety
of principles, including the measurement of the angles between the joints of an articu-
lated arm [93], propagation time of (ultra)sound between the probe and a set of micro-
phones [154, 160], and the distribution of a magnetic field around the probe [161, 162]
(see [112] for a review). Proper software makes it possible to enter measured data
directly into a database, complement them with additional information identifying the
feature being measured (e.g. position of a node, leaf, flower, or fruit), and schemat-
ically represent the measured plant on the computer screen for visual feedback and
error checking [70, 71]. The application of three-dimensional digitizers is limited by
the volume within which the measuring devices operate (currently not exceeding sev-
eral cubic meters), and the participation of a human operator. Circumventing the vol-
ume limitation, Ivanov et al. describe the use of images obtained by a pair of cameras
(stereovision) to collect structural data of maize plants in a field [85, 86]. This tech-
nique is limited to the top elements of the canopy (visible from both cameras) and,
at present, requires manual identification and digitization of matching leaves in both
images by an operator. The elimination of the operator’s involvement using computer
vision techniques is an open research problem.

Models of plant development are based on the observation and measurement of
plants over time. The frequency of these actions may vary greatly. For example, an
interval of one minute may be appropriate for time-lapse photography of opening flow-
ers. On the other hand, developmental models of trees and shrubs may be based on
measurements made at yearly intervals [143].

At a conceptual level, methods for expressing plant geometry at different levels
of spatial detail are needed as a natural extension of the multiscale tree graphs for
representing plant topology. The general problem of representing geometric objects
at different levels of spatial detail (multiresolution representations) was addressed in
computer graphics (e.g. citeHoppe1997vdr), but the proposed solutions have not yet
been adapted to highly branching plant structures. A related issue is the reconciliation
of numerical data at different levels of resolution (for example, the measured length
of an entire branch with the sum of the length of the internodes), which may exhibit
inconsistencies due to numerical errors. This issue has not yet been addressed in the
literature.
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3 Empirical models of plant structure

3.1 Reconstruction models
Reconstruction of three-dimensional plant structure based directly on the raw data ob-
tained by plant measurement can be considered the extreme case of empirical plant
modeling. The resulting reconstruction models can be created dynamically, during the
measurement process [71], or after all the measurements have been completed [58,
161, 162, 163]. Smith at al. [163, 164] indicate the value of reconstruction mod-
els in the analysis of spatial distribution of plant organs in the plant canopy (fruit in
kiwifruit vines). Reconstruction models may also be useful in such applications as
computer-assisted landscape and garden design, inclusion in plant registries, and adver-
tising of plant varieties to customers (Campbell Davidson, personal communication).
Recent effort towards standardization of the format for representing and transferring
three-dimensional models over the Internet (the Virtual Reality Modeling Language, or
VRML [75]) may popularize this type of models. Nevertheless, reconstruction models
have several drawbacks:

• they incorporate a large amount of raw data, and consequently are represented
by relatively large data files.

• they represent features of a single plant specimen and cannot be manipulated to
obtain other representatives of the same species,

• they have no predictive value (although they may assist in data analysis leading
to predictions).

3.2 Curve fitting
Statistical methods of data analysis (regression analysis in particular) make it possi-
ble to overcome these drawbacks by fitting empirical curves to the measured data.
For example, this approach was applied by Remphrey and Powell to create statisti-
cal reconstruction models of Larix laricina saplings [144, 145, 146]. Further exam-
ples of statistical plant analysis at the structural level are presented by Davidson and
Remphrey [30, 31, 142]. As categorized by Remphrey and Prusinkiewicz [147], a
spatial model constructed by curve fitting may be deterministic (representing the best
fit, and ignoring the variance of parameters) or stochastic (allowing for the variation
of the parameters values consistent with their distribution obtained through statisti-
cal analysis). For early examples of the construction of stochastic models see deR-
effye1981,Nishida1980.

3.3 Paracladial relationships
An interesting aspect of empirical model construction is the unraveling of similarities
between an entire branch and its parts. To capture these similarities at the topological
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Figure 5: Definition of the overhanging part x of mother branch A with respect to the
daughter branch B (a), and schematic branching structures with paracladial formulas
y = x (b) and y = 1

2
x (c). Based on [53, 103].

level, Frijters and Lindenmayer used the notion of a paracladium [53]. This notion was
originally introduced by Troll [171], who described an inflorescence as “a system con-
sisting of the main florescence and of paracladia. Paracladia are branches which repeat
the florescence of the main axis and which on their turn can give rise to paracladia on
their own” (quoted from [53, 103]). For example, the arrangement of the second-order
branches along the axis of a first-order branch of a lilac inflorescence (Syringa vul-
garis) approximately repeats the arrangement of the first-order branches on the main
axis of the same inflorscence. Thus, each branch can be considered a small version —
a paracladium — of the entire structure. The presence of paracladia is closely related
to the process of plant development. “The ‘program’ which is responsible for the de-
velopment of the main axis (the mother branch) is followed repeatedly in each of the
paracladia. Furthermore, since the main axis can produce paracladia we must assume
that paracladia of first order can in turn give rise to paracladia of second order and so
forth” [103].

Studying compound structures corresponding to this description, Frijters and Lin-
denmayer observed that the number of internodes in the daughter branch (y) and in the
overhanging part of the mother branch (x, see Figure 5a) are often related by a linear
function, which they called a uniform paracladial relationship. For example, in fig-
ure Figure 5b the number of internodes in each lateral branch is equal to the number
of internodes in the entire overhanging part of the main axis (y = x). On the other
hand, in figure Figure 5b each (even-numbered) branch has one half the number of
internodes found in the overhanging part of the main axis 9y = 1

2
x). A structure that

exhibits a linear paracladial relationship can be modeled in a particularly concise man-
ner, because the topology of each branch is determined by its position on the mother
branch. Non-linear paracladial relationships are also possible, but have not yet been
investigated.
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3.4 Self-similarity
The repetitive hierarchical organization may be reflected not only in the topology of a
branching structure, but also in its geometry. Specifically, we say that a geometric ob-
ject (such as a branching structure) is self-similar if its parts are geometrically similar
to the whole. Self-similarity is the distinctive feature of fractals [43, 110]. A key theo-
rem characterizing self-similar objects has been obtained by Hutchinson [83]. It states
that if an object can be decomposed into a finite number of reduced copies of itself, it
is completely described by the set of transformations that map the whole object onto its
parts. This set of transformations is called an Iterated Function System or IFS [6] and
can be used to reconstruct the original object using a number of computational meth-
ods (for example, see [74, 76]). Barnsley and Demko extended Hutchinson’s result to
objects that are only approximately self-similar, and gave it the name of collage theo-
rem [6]. The collage theorem was applied to construct extremely compact IFS models
of highly self-similar structures, in particular fern fronds [5, 6]. Subsequent recurrent
extension of Iterated Function Systems [7] made it possible to characterize structures
satisfying a relaxed condition of self-similarity (parts of the structure may result from
the transformations of other parts, rather than the transformations of the entire struc-
ture). Examples of branching structures modeled using recurrent IFS and their relation
to L-systems were presented by Prusinkiewicz and Hammel [127, 128]. To date, ap-
plications of iterated function systems to the modeling of plants have been investigated
mainly from the computer graphics perspective. Their relevance to biology is yet to be
determined.

4 Simulation of plant development: empirical models
Developmental models introduce two new elements, compared to models of static
structures: the emergence of new modules during development, and the growth of in-
dividual modules over time. These processes can be conveniently characterized within
the framework of L-systems [101, 102]. L-systems can be used to express both empir-
ical and mechanistic models. In this section we focus on empirical models, leaving the
discussion of mechanistic models to Section 5.

L-systems are typically described using the terminology of formal language the-
ory [77, 157]. We give instead their intuitive description, which emphasizes the bio-
logical interpretation of all terms.

4.1 L-systems
The essence of development at the modular level can be regarded as a sequence of
events, in which predecessor or parent modules are replaced by configurations of suc-
cessor or child modules. The rules of replacement are called productions. It is assumed
that the number of different module types is finite, and all modules of the same type
behave in the same manner. Consequently, the development of a large structure (con-
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Figure 6: Developmental model of a compound leaf, modeled as a configuration of
apices (thin lines) and internodes (thick lines). The inset represents production rules
that govern this development. From [130].

figuration of modules) can be characterized by a finite set of rules. An L-system is
simply a specification of the set of all module types that can be found in a given organ-
ism, the set of productions that apply to these modules, and the initial configuration of
modules (the axiom), from which the development begins.

For example, Figure 6 shows the development of a stylized compound leaf includ-
ing two types of modules, the apices and the internodes. An apex yields a structure
that consists of two internodes, two lateral apices, and a replica of the main apex. An
internode elongates by a constant scaling factor. The developmental sequence begins
with a single apex, and yields an intricate branching structure in spite of the simplicity
of this L-system.

This description leaves open the questions of what notation to use to specify the
productions, and what data structures to choose to represent a growing plant in a simu-
lation program based on L-systems. Lindenmayer addressed these questions by intro-
ducing the bracketed string notation [101], which was described above in the context
of plant mapping (Figure 4). A branching structure is represented by a string of sym-
bols corresponding to plant modules, with the branches enclosed in square brackets.
Originally, the bracketed strings were intended to capture only the topology of the de-
scribed structures. Nevertheless, subsequent extensions made it possible to describe
plant geometry as well (turtle interpretation [122, 123]). Measurable quantities, such
as the length and width of internodes, and the magnitude of the branching angles, are
characterized as numerical parameters associated with the individual modules (para-
metric L-systems [68, 133, 136]). Productions are specified using the standard notation
of formal language theory, with a reserved symbol (an arrow) separating the predeces-
sor from the successor [102]. For example, an L-system model of the compound leaf
in Figure 6 is written as follows:
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ω : A(1)
p1 : A(s) → I(s)[−(45)A(s)][+(45)A(s)]I(s)A(s)
p2 : I(s) → I(2 ∗ s)

(1)

The growing structure consists of two module types, apices A and internodes I . The
parameter s determines the size (length) of any of the modules. The initial structure
ω is an apex A of unit length. Production p1 specifies that an apex yields a structure
consisting of two internodes I , two lateral apices A, and a replica of the main apex
A. The symbols + and − do not represent components of the growing structure, but
indicate that the lateral apices are positioned at an angle of +45◦ and−45◦ with respect
to their supporting mother branch. A list of commonly used L-system symbols with
a predefined geometric interpretation is given in [136]. Production p2 states that an
internode elongates by a factor of two in each simulation step.

A central observation underlying L-system simulations is that the application of
productions, that is the replacement of predecessor modules by their successors, can be
carried out at the level of their bracketed string representation. For example, the first
steps of a simulation using L-system (1) yield the following sequence of structures:

Initial structure : A(1)
Step 1 : I(1)[−(45)A(1)][+(45)A(1)]I(1)A(1)
Step 2 : I(2)[−(45)I(1)[−(45)A(1)][+(45)A(1)]I(1)A(1)]

[+(45)I(1)[−(45)A(1)][+(45)A(1)]I(1)A(1)]I(2)
I(1)[−(45)A(1)][+(45)A(1)]I(1)A(1)

...

(2)

The bracketed strings are easily manipulated by a computer program, and form
the key data structure on which most simulation programs using L-systems are based
(see [132, Appendix A] for the listing of a program using non-parametric L-systems,
and [68] for details concerning their parametric extension). The conversion of strings to
three-dimensional graphical objects has been extensively documented [122, 130, 136,
137]; for recent extensions see [91, 138]. Other data structures may also be used in
conjunction with L-systems. For example, Hammel describes an implementation in
which structures are represented as linked lists with tree topology [67].

The inherent capability of L-systems to describe the development of plants, rather
than just their static structure, is illustrated by a number of developmental plant mod-
els. Models with mainly empirical characteristics have been proposed for various
racemose and cymose inflorescences [51, 136, 137], green ash shoots [139], young
green ash trees [147], Norway spruce trees [92], cotton plants [153], bean plants [69],
maize shoots [50], maize root systems [159], and seaweed [27, 158]. A novel use of
L-systems has been recently proposed by Battjes and Bachmann [9], who related L-
system parameter values to genetic variation between modeled plants (four species of
Microseris, a herbaceous plant in the aster family).

The L-systems outlined above belong to the simplest, context-free class. This term
means that a production can be applied to a module irrespective of its adjacent modules
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Figure 7: A racemose inflorescence (a), the state transition diagram illustrating the
progression of apical states (b), and a sample Markov chain corresponding to this pro-
gression (c).

(neighbors in the tree structure). In causal models it is often convenient to use context-
sensitive L-systems, in which the applicability or outcome of a production depends
not only on the module being replaced, but also on its neighbors. Such L-systems are
discussed in Section 5.

4.2 The process view of development
We can emphasize the dynamic aspect of plant modeling using the concept of a process,
defined as a sequence of events ordered in time [90]. At any moment, a process is
characterized by a number of parameters, called its state. Over time, the process may
change its state, create new processes, become inactive, be reactivated, or cease to
exist. These notions, with a very practical meaning in computer science [167], can
also be applied to characterize plant modules, in particular the apices [3, 32]. For
instance, an active apex may grow and repetitively create internodes, leaves, and buds.
Production of a bud may initiate a new sequence of events, and therefore be regarded
as a creation of a new active process. On the other hand, a bud may be dormant and
remain inactive until it is activated by another process. Finally, an apex may die and
cease to exist. Examples of paths of development involving elaborate state changes
have been presented by Bell [12].

As an example of the process point of view, let us consider the changes in apical
activity taking place during the development of a closed racemose inflorescence. Fig-
ure 7a indicates that the apex first produces a sequence of internodes with leaves, then
switches to the production of lateral flowers, and eventually creates a terminal flower.
We can describe this progression of activities using a state transition graph (a finite au-
tomaton or finite state machine in the automata theory) in which nodes represent states,
the short arrow distinguishes the initial state, and arcs (directed edges) represent state
transitions and the activities associated with them (Figure 7b). For instance, the two
arcs originating at node A indicate that an apex in state A may produce an internode

13



and a leaf and remain in state A, or produce an internode and a lateral flower and switch
to state B. As there is no edge from node B to node A, the apex cannot revert to the
production of leaves once the production of flowers has begun.

In causal models, the switch from the vegetative to the flowering condition may be
triggered by some external event, such as an environmental influence or the arrival of
a signal propagating through the plant body [136]. In contrast, empirical models often
assume a stochastic mechanism, in which transitions are selected according to some
probabilities. A state diagram with associated probabilities is called a discrete Markov
process, a Markov chain, or a probabilistic automaton [108]. For example, the Markov
chain shown in Figure 7c indicates that, after producing a leaf, the apex will remain in
state A with probability 0.9, and switch to state B with probability 0.1.

A key issue in the use of Markov chains for modeling is the inference of the set
of states, transitions, and probabilities from empirical data. Godin et al. [58] describe
a software package which makes it possible to define and manipulate Markov chains
(and their variations) interactively, until their behavior matches the observed proba-
bility distributions. For further discussion and examples of the application of Markov
processes to plant modeling see [3, 29, 28, 63, 109, 177].

A model based on a Markov chain can be expressed using a stochastic L-system [40,
178] (see also [123, 136]). A probabilistic L-system includes several productions with
the same predecessor. A particular successor is selected according to the probabilities
associated with the productions. For example, the following probabilistic L-system
generated the sample racemose structure shown in Figure 7a according to the Markov
chain in Figure 7c.

ω : A

p1 : A
0.9
−→ I [L]A

p2 : A
0.1
−→ I [F (1)]B

p3 : B
0.8
−→ I [F (1)]B

p4 : B
0.2
−→ IF (1)

p5 : F (s) −→ F (s ∗ 1.1)

(3)

This example shows that the formalisms of Markov processes and L-systems can
be used jointly, with a Markov process providing a stochastic description of the fates
of the individual apices, and the L-system integrating the development of these apices
and other plant components into a comprehensive model of the entire developing plant.

4.3 Discrete-time simulation of development
According to the original definition of L-systems, productions are applied in parallel,
with all modules being replaced simultaneously in every simulation step [101, 107]).
The parallel operation of L-systems reflects the fact that all parts of a plant develop at
the same time, and that the time separating consecutive simulation steps can often be
conveniently interpreted as a plastochron, which has a well defined biological meaning
(the time separating production of consecutive nodes [41]). Nevertheless, Hogeweg
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Figure 8: Fragment of the lineage tree of a hypothetical modular structure. From [131].

pointed out [78, 79] that the assumption of synchronous replacement of all modules by
their successors at precisely the same time is too strong, and does not have a biological
justification. Consequently, she proposed to simulate development within the frame-
work of discrete-event simulation, in which individual events may occur at arbitrary
points in time [90]. An ordered sequence of events to be simulated is then organized
into a data structure called the event queue, managed by a simulator component called
the scheduler. The scheduler advances time to the next event and initiates actions as-
sociated with it; these actions may, in particular, insert new events into the queue. An
application of this principle to the simulation of plant development was described in
detail by Blaise [14].

4.4 Continuous-time simulation of development
Neither synchronous nor discrete-event simulation capture the continuous develop-
mental processes that take place between the events. To overcome this limitation,
Prusinkiewicz, Hammel and, Mjolsness introduced a continuous-time extension of L-
systems called differential L-systems [67, 131], which is based on the paradigm of
combined discrete-continuous simulation [42, 90]. A module is created and ceases to
exist in discrete events, as in the case of discrete-event simulation. Between the events,
parameters of a module change in a continuous manner. An event is triggered if a
function of these parameters reaches a threshold value.

The combined discrete-continuous view of development is illustrated in Figure 8.
Module M2 is created at time tα as one of two descendants of the initial module M1.
It develops in the interval [tα, tβ), and ceases to exist at time tβ , giving rise to two new
modules M4 and M5. These modules will develop over some time, create new modules
at the end of their existence, and so on.

Parameters involved in module development may represent features inherent in a
module, such as the length of an internode, the size of a bud, or the magnitude of a
branching angle, or external factors, such as time, temperature, temperature sum, day
length, or light sum. For examples of the application of differential L-systems to the
animation of plant development see [131].
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by constant function x = xmax for t > T . From [131].

4.5 Growth functions
Gradual changes of parameter values may be specified using differential or algebraic
functions of time called growth functions [84, 140, 151]. In empirical models, growth
functions are found by fitting mathematical functions to data using statistical meth-
ods (for a general methodological discussion see [82]). A wide range of functions
with different degrees of biological justification have been proposed in the literature;
see [150, 165, 179] for reviews. Specifically, parameters representing geometric fea-
tures of a module, such as internode length, leaf size, and branching angles, often
increase according to sigmoidal functions, which means that they initially increase
in value slowly, then accelerate, and eventually level off near or at the maximum
value [169]).

A popular example of a sigmoidal function is Velhurst’s logistic function (c.f. [39,
page 212]), defined by the equation:

dx

dt
= r

(

1 −

x

xmax

)

x (4)

with a properly chosen initial value x0 (Figure 9a). Another example is the cubic
function:

x(t) = −2
∆x

T 3
t3 + 3

∆x

T 2
t2 + xmin, (5)

which increases sigmoidally from xmin to xmax when t changes from from 0 to T

(Figure 9b). Both functions were employed in a developmental model of Fraxinus
pennsylvanica shoots and leaves described in [139] (Figure 10). Logistic functions,
presumed to have a more sound biological justification, were chosen to approximate
growth functions on the basis of measured data (the expansion of rachis segments and
leaflets). The coefficients were estimated using regression analysis. In contrast, the
cubic function was applied where detailed data were not available (specifically, to sim-
ulate the gradual increase of branching angles over time). In this case, function pa-
rameters were manipulated interactively to match the developmental patterns observed
in the field and recorded on photographs of developing shoots. The straightforward
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Figure 10: Simulation of the expansion of a Fraxinus pennsylvanica shoot over the
course of 35 days. Adapted from [139].

interpretation of function parameters and their link with interactive computer graphics
techniques for curve specification [47, Chapter 11.2] facilitated this manipulation.

The logistic function does not have enough parameters to allow for flexible fitting to
empirical data. Several other growth curves, such as the monomolecular function and
the Gompertz function, are limited in the same way [149]. To overcome this limitation,
Richards [149] proposed a family of growth functions

x(t) = (A1−m
− βe−kt)

1

1−m (6)

with four parameters A, m, β, and k. Although polynomial functions of the third or
higher degree may provide comparable or better approximations [172], the Richards
function has been widely used in modeling practice. For example, Berghage and Heins
applied it to model the elongation of internodes in poinsettia [13], Lieth and Carpenter
to model stem elongation and leaf unfolding in Easter lily [98], and Larsen and Lieth
to model shoot elongation in chrysanthemum [95].

5 Simulation of plant development: causal models

5.1 Information flow in growing plants
Communication between modules plays a crucial role in the control of developmental
processes in plants. Lindenmayer distinguished two forms of communication: lin-
eage (also called cellular descent), which represents information transfer from a parent
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module to its children, and interaction, which represents information transfer between
coexisting modules [101, 104]. In the latter case, the information exchange may be
endogenous (between adjacent modules of the structure, as defined by its topology), or
exogenous (through the space embedding the structure) [11, 124]. The flow of water,
hormones, or nutrients through the vascular system of a plant are examples of endoge-
nous information transfer, whereas the shading of lower branches by upper ones is a
form of exogenous transfer. We will use this classification to organize our discussion
of causal models.

5.2 Development controlled by lineage
By definition, development is controlled by lineage if the fate of each module is de-
termined by its own history [100]. Within the formalism of L-systems, development
controlled by lineage is expressed using the formalism of context-free L-systems (OL-
systems) [102] and their parametric and differential extension, which were outlined in
Section 4. It is difficult to formulate a clear dividing line between empirical models
and causal models controlled by lineage; the key criterion appears to be the degree to
which the model can be justified in terms of fundamental mechanisms of development.
For example, we may regard the leaf model given in Equation 1 as a causal model con-
trolled by lineage, if we view production p1 as a manifestation of the cyclic nature of
the activities of the apex.

Progress of time is the force that drives models controlled by lineage; consequently,
time-related variables, such as delays and and rates of growth, play an important role.
For example, in the model of Lychnis coronaria shown in Figure 3 one lateral branch
always develops ahead of the other branch supported at the same branching point [137,
136], which explains the asymmetry observed in the plant structure [152].

A key question that has to be asked when constructing a causal model is whether
the postulated control mechanism is powerful enough to simulate an observed devel-
opmental sequence. The theory of L-systems offers many results that characterize
different classes of control mechanisms [77, 106]. Although most results are rather
abstract, some do apply to practical model construction. For example, Frijters and Lin-
denmayer observed that acrotonic structures are difficult to obtain in models controlled
by lineage [53] (see also [135]). A similar difficulty occurs when modeling basipetal
flowering sequences [87, 105]. Simple models of these phenomena can be obtained,
however, assuming endogenous control mechanisms.

5.3 Development controlled by endogenous mechanisms
Endogenous control mechanisms rely on the flow of control information through the
structure of the growing plant. The information exchanged between the modules may
represent discrete signals (for example, the presence of a hormone triggering the trans-
formation of a bud to a flower), or quantifiable values (for example, the concentration
of photosynthates produced by leaves). Endogenous information flow can be conve-
niently captured using the formalism of context-sensitive L-systems. In the context-
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Figure 11: Development of an inflorescence controlled by an acropetal signal. The
insert shows the context-sensitive production that propagates the signal acropetally.
Adapted from [132].

sensitive case, a production can be applied to a particular module only if this module
has some specific neighbors. For example, Figure 11 shows a hypothetical model of a
growing inflorescence, in which flowering is induced by an upward-moving (acropetal)
signal. The context-sensitive production describing signal propagation states that if a
module I is not yet reached by a signal, and it is situated immediately above a module
J already reached by a signal, then I will be transformed into J in the next simulation
step. Another context-sensitive production transforms an apex reached by a signal into
a flowering bud, leading to a flower. As shown and analyzed by Janssen and Linden-
mayer [87, 105] (see also [132, 136]), the flowering sequence in this model depends
on the relationship between the plastochron of the main axis, plastochron of the lat-
eral branches, and the respective propagation rates of the flower-inducing signal. In
particular, the model is capable of generating basipetal flowering sequences.

In the above example, discrete information was transferred between the modules
of a developing structure. In nature, however, developmental processes are often con-
trolled in a more modulated way, by the quantity of substances (resources) exchanged
between the modules. An early developmental model of branching structures making
use of quantitative information flow was proposed by Borchert and Honda [16]. Be-
low we outline an extension of this model, which captures the partitioning of resources
between the shoot and the root [129, 130].

Borchert and Honda postulated that the development of a branching structure is
controlled by a flow or flux of substances, which propagate from the base of the struc-
ture towards the apices and supply them with materials needed for growth. When the
flux reaching an apex exceeds a predefined threshold value, the apex bifurcates and
initiates a lateral branch; otherwise it remains inactive. At branching points the flux is
distributed according to the types of the supported internodes (straight or lateral) and
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Figure 12: Application of Borchert and Honda’s model to the simulation of a complete
plant. The development of an undamaged plant (top row) is compared with the devel-
opment of a plant with a damaged shoot (bottom row). The numbers of live apices in
the shoot and root are indicated above and below the ground level. The numbers at the
base of the figure indicate the number of completed developmental cycles. Adapted
from [130].

the numbers of apices in the corresponding branches.
In the case shown in Figure 12, two structures representing the shoot and the root of

a plant are generated simultaneously. The flux penetrating the root at the beginning of a
developmental cycle is assumed to be proportional to the number of apices in the shoot;
reciprocally, the flux penetrating the shoot is proportional to the number of apices in
the root. These assumptions form a crude approximation of plant physiology, whereby
the photosynthates produced by the shoot fuel the development of the root, and water
and mineral compounds gathered by the root are required for the development of the
shoot. The model also captures an increase of internode width over time, and a gradual
assumption of the position of a straight segment by its sister lateral segment, after the
straight segment has been lost. The developmental sequence shown in the top row of
Figure 12 represents the development of an undamaged plant. The shoot and the root
develop in concert. The bottom row illustrates development affected by damage to the
shoot. The removal of a shoot branch slows down the development of the root; on the
other hand, the large size of the root, compared to the remaining shoot, fuels a fast
re-growth of the shoot. Eventually, the plant is able to redress the balance between the
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size of the shoot and the root.
Applications of context-sensitive L-systems are not limited to the simulation of

endogenous information flow in plants. For example, the same formalism has been
used to simulate movements of an insect foraging on a plant [129, 130].

5.4 Development of plants interacting with their environment
The incorporation of interactions between a plant and its environment is one of the
most important issues in the domain of plant modeling [44, 155, 156]. Its solution is
needed to construct predictive models suitable for applications ranging from computer-
assisted landscape and garden design to the determination of crop and lumber yields in
agriculture and forestry.

Using characteristics of the information flow between a plant and its environment as
the classification key, we can distinguish three forms of interaction and the associated
models of plant-environment systems:

1. The plant is affected by global properties of the environment, such as day length
controlling the initiation of flowering [52] and daily minimum and maximum
temperatures modulating the growth rate [69].

2. The plant is affected by local properties of the environment, such as the presence
of obstacles controlling the spread of grass [1] and directing the growth of tree
roots [62], geometry of support for climbing plants [1, 61, 130], soil resistance
and temperature in various soil layers [35], and predefined geometry of surfaces
to which plant branches are pruned [134].

3. The plant interacts with the environment in an information feedback loop, where
the environment affects the plant and the plant reciprocally affects the environ-
ment. Specific models capture:

• competition for space (including collision detection and access to light) be-
tween segments of essentially two-dimensional schematic branching struc-
tures [11, 25, 48, 49, 81, 88, 91];

• competition between root tips for nutrients and water transported in soil [23,
97] (this mechanism is related to competition between growing branches of
corals and sponges for nutrients diffusing in water [88]);

• competition for light between shoots of herbaceous plants [61] and branches
of trees [20, 21, 22, 33, 81, 89, 166].

Although some phenomena belong quite naturally to one of these groups, the classifi-
cation of others may depend on the level of abstraction. For example, an approximate
model may consider temperature as a global property of the environment, a more de-
tailed one may express temperature locally as a function of distance from the ground,
and a yet more detailed model may take into account the changes of temperature de-
termined by the distribution of radiative energy between plant parts. Thus, the above
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Figure 13: Conceptual model of plant and environment treated as communicating con-
current processes. From [115].

classification is useful primarily from the modeling perspective, since different tech-
niques are required to capture phenomena in each class.

The first comprehensive approach, introducing a methodology for modeling plants
interacting with the environment, was developed by Blaise [14]. Another approach,
based on the notion of L-systems, has been proposed by Měch, Prusinkiewicz, and
James [115, 134]. Below we summarize this second approach.

As described by Hart [73], every environmentally controlled phenomenon can be
considered as a chain of causally linked events. After a stimulus is perceived by the
plant, information in some form is transported through the plant body (unless the site of
stimulus perception coincides with the site of response), and the plant reacts. This re-
action reciprocally affects the environment, causing its modification that in turn affects
the plant. For example, roots growing in the soil can absorb or extract water (depending
on the water concentration in their vicinity). This initiates a flow of water in the soil
towards the depleted areas, which in turn affects further growth of the roots [23, 55].

According to this description, the interaction of a plant with the environment can
be conceptualized as two concurrent processes that communicate with each other, thus
forming a feedback loop of information flow (Figure 13). The plant process performs
the following functions:

• reception of information about the environment in the form of scalar or vector
values representing the stimuli perceived by specific organs;

• transport and processing of information inside the plant;

• generation of response in the form of growth changes (e.g. development of new
branches) and direct output of information to the environment (e.g. uptake and
excretion of substances by a root tip).

Similarly, the environmental process includes mechanisms for the:

• perception of the plant’s actions;

• simulation of internal processes in the environment (e.g. the diffusion of sub-
stances or propagation of light);
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Figure 14: A two-dimensional model of a root interacting with water in soil. Back-
ground colors represent concentrations of water diffusing in soil. From [115].

• presentation of the modified environment in a form perceivable by the plant.

For the purposes of simulation the environment is represented as a scalar or vector
field. Modules of a growing plant can test values of this field at points of interest,
and send values that affect the field at specific locations. Sample models constructed
according to this scheme are shown below. For their full description see [115].

Figure 14 shows a two-dimensional model of a root seeking water in the soil during
its development. The initial water distribution formed an S-shaped zone of high water
concentration. The growing tips of the main root and rootlets absorb water that diffuses
in the soil. The decreased water concentration is indicated by dark areas surrounding
the root system. In the areas with insufficient water concentration the rootlets cease to
grow before they have reached their potential length.

Figure 15 shows a three-dimensional extension of this model based on the work of
Clausnitzer and Hopmans [23]. Water concentration is visualized by a semi-transparent
iso-surface surrounding the roots. As a result of competition for water, the main roots
grow away from each other. This behavior is an emergent property of the model.

Figure 16 shows a model of a horse chestnut tree inspired primarily by the work of
Takenaka [166]. The branches compete for light from the sky hemisphere. Clusters of
leaves cast shadows on branches further down. An apex in shade does not produce new
branches. Products of photosynthesis are transported from the leaves towards the base
of the tree. If the amount of photosynthates reaching the base of a branch is below a
threshold value, the branch is considered a liability and is shed from the tree. Thus, the
distribution of branches in the crown is controlled by their competition for light.

Figure 17 further illustrates the impact of competition for light on tree growth. The
simulation reveals essential differences between the shape of the crown in the middle
of a stand, at the edge, and at the corner. In particular, the tree in the middle retains
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Figure 15: A three-dimensional extension of the root model. Water concentration is
visualized by semi-transparent iso-surfaces [176] surrounding the roots. As a result of
competition for water, the roots grow away from each other. The divergence between
their main axes depends on the spread of the rootlets, which grow faster on the left then
on the right. From [115].

only the upper part of its crown. Simulations of this type may assist in choosing an
optimum distance for planting trees, where self-pruning is maximized (reducing knots
in the wood and the amount of cleaning that trees require before transport), yet space
between the trees is sufficient to allow for unimpeded growth of trunks in height and
diameter.

The next example illustrates a plant’s reaction to the quality, rather than quantity,
of the incoming light. The simulation reproduces an experiment with the recumbent
plant Portulaca oleracea described by Novoplansky, Cohen, and Sachs [116]. A plant
was surrounded with a plastic rim, one half of which was gray, and the other green.
The green half changed the red / far red ratio in the spectral composition of transmitted
and reflected light in a manner similar to real plants. The plant surrounded by the rim
avoided growing in the direction of the green half. A simulated Portulaca seedling,
which developed in a manner consistent with this observation, is shown in Figure 18.
The distribution of the radiative energy was calculated using a Monte Carlo method [19,
60], extended to account for the energy of specific wave lengths in the light spectrum.

The general framework for simulating interactions between plants and their envi-
ronment depicted in Figure 13 may also be applied in cases where the development
of a plant is affected by the environment, but the reciprocal flow of information from
the plant to the environment can be neglected. A simple example of such a situation is
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Figure 16: A tree model with branches competing for access to light, shown without
the leaves. From [115].

illustrated in Figure 19, which shows the growth of roots around mechanical obstacles
(rocks) in the soil. The root model used in this simulation is based on the work of
Diggle [35, 36].

The response of trees to pruning is another important phenomenon in which the
development of a plant is affected by external factors [134]. As described, for example,
by Hallé et al. [66, Chapter 4] and Bell [10, page 298], during the normal development
of a tree many buds remain dormant and do not produce new branches. These buds
may be subsequently activated by the removal of leading buds from the branch system,
which results in an environmentally-adjusted tree architecture. The model depicted
schematically in Figure 20 represents the extreme case of this process, where buds are
activated only as a result of pruning. The developing structure is confined to a square,
and the apices test whether they are within or outside this area. During the initial phase
of development the apex of the main axis creates a sequence of internodes and dormant
buds. After crossing the bounding square the apex is pruned and a basipetal signal is
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Figure 17: Relationship between tree form and its position in a stand. From [115].

Figure 18: A model of Portulaca sensitive to the red / far red ratio. The left half of the
rim is green, the right one is gray.
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Figure 19: A model of roots growing around the obstacles.

sent to activate the nearest dormant bud. The activated bud initiates a lateral branch,
which grows in the same manner as the initial structure (traumatic reiteration). After
crossing the bounding square, the apex of the reiterated branch is also pruned, and the
bud-activating signal is generated again. The final structure results from the repetition
of this process.

A three-dimensional extension of the above model is shown in Figure 21. In this
case, some of the newly created buds initiate new branches spontaneously, yielding a
tree structure. Pruning constrains the outline of the growing tree to a bounding box and
activates dormant buds, which increases the density of branches and leaves near the
box boundaries.

Figure 22 applies the same modeling principle to simulate the effect of pruning
a tree to a more elaborate, spiral form. This form can be found in the Levens Hall
garden in England, laid out at the beginning of the 18th century, and considered the
most famous topiary garden in the world [24, pages 52–57]. Figure 23 combines trees
pruned to a variety of shapes into a synthetic image of a larger part of the Levens Hall
garden. For other models of topiary trees see [134].

The scope of this survey does not allow for a detailed description of individual
models, and a complete account of phenomena that have been captured, at various
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Figure 20: A simple model of a tree’s response to pruning. Top row: simulation steps
6,7,8, and 10; middle row: steps 12, 13, 14, and 17; bottom row: steps 20, 40, 75, and
94. Small black dots indicate dormant buds, the circles indicate the position of signal
S. From [134].

levels of accuracy, by causal models developed to date. It is important to realize, how-
ever, that the technology for creating complex mechanistic models already exists and
can be applied to capture a variety of phenomena of relevance to botany, agriculture,
horticulture, and forestry.

6 Applications of architectural plant models
The modeling of plant architecture is an active research area. In horticulture, some
empirical models have already achieved the predictive value needed in practical appli-
cations. Examples include:

• A model of flowering rose shoot development as a function of air tempera-
ture [117], intended to predict the timing of harvest in commercial greenhouse
rose production.

• Models of stem elongation, leaf unfolding [98] and flower bud elongation [46]
in Easter lily; these models are intended to precisely control the flowering date
by manipulating greenhouse air temperature.

• Models of stem elongation in poinsettia as a function of temperature [13] and
photoperiod treatments (manipulation of the short-day date) [45]; these models
are intended to use various treatments as a means for controling plant height.
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Figure 21: Simulation of tree response to pruning. From [134].
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Figure 22: Trees pruned to a spiral shape. From [134].

• Models of shoot elongation retardation in chrysanthemum caused by the appli-
cation of daminozide [95, 99]; these models are intended to predict the final
shoot length reduction resulting from single or multiple daminozide application
at various dates.

The above models capture selected topological and geometrical features of the modeled
plants. They have not been accompanied by realistic visualization of the modeled
plants, which would require collection of more comprehensive data.

The architectural modeling of entire plants is at the point where the methodology
of model construction is relatively well understood, well calibrated empirical models
of selected plants are being developed, and mechanistic models are subject of active
research. In this context, Room et al. listed the following prospective application areas
of the architectural plant models (cited with minor modifications from [154]):

Horticulture: Identification of horticultural treatments (pruning and pinching, tem-
perature and day length manipulation, application of chemicals, etc.) aimed at
the optimization of plant size, shape, quality, and timing of flower production.

Agronomy: Exploration of competition for space and resources at the level of single
shoots, roots, and individual plants, both intraspecific and interspecific (relevant
to intercropping, sowing rates, and control of weeds).

Forestry: Identification of optimal strategies for pruning and spacing trees.

Landscape architecture: Simulations of interactions between trees and structures;
pruning strategies to minimize tree contact with power lines; interplanting for
continuous flower displays.
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Figure 23: A model of the topiary garden at Levens Hall, England. From [130].

31



Management of pathogens: Improved understanding of disease dynamics through sim-
ulation of pathogen deposition and growth in the microclimates produced by de-
veloping plants.

Biological control of weeds: Identification of combinations of weed architecture and
types of damage caused by herbivores or pathogens which interact particularly
effectively to limit weed populations.

Management of pests: Improved definition of action thresholds through simulation
of interactions between plant architecture, pesticide deposition, insect movement
and feeding, and compensatory growth of plants.

Grazing: Identification of optimal strategies for the timing and intensity of grazing to
maximize compensatory growth of pasture plants.

Plant breeding and genetic engineering Specification of target “designer plants” by
identification of architectures optimal for interception of light, harvestability,
damage compensation, aesthetic appeal, etc.

Remote sensing: Improved interpretation of images through exploration of effects of
architecture and leaf arrangement on reflectance.

Developmental biology: Exploration of hypotheses relating physiology of plant de-
velopment and information in genes to integrated 3D structures.

Paleobotany: Realistic modeling of extinct plants for research and educational pur-
poses

Entomology: Improved understanding of insect behavior through simulation of insect
movement and feeding on growing plants.

Education: Use of plant models to illustrate and explore developmental processes in
plants and the relationships between plants and their environment.

Entertainment: Use of plant models as components of games and films.

Art: Exploration of the aesthetics of growth forms, realistic and imaginary.

While the computer science techniques involved in the specification and visualiza-
tion of the models seem to be relatively mature, the development of well calibrated
empirical models of specific plants remains a labor-intensive task, and construction of
faithful mechanistic models is a current research problem. Fortunately, the value of ar-
chitectural models is not limited to support of decision making processes, and extends
to the process of model construction itself. This point of view was clearly stated by
Bell [11]:
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The very process of constructing computer simulations to reproduce a
particular branching structure can be a useful experience in its own right,
even without proceeding to the use of such a simulation to test an hypoth-
esis. Either the morphology of the organism must be recorded in consid-
erable detail or the underlying features of its developmental architecture
fully appreciated ... Shortcomings of the model will soon become appar-
ent as ‘mistakes’ which are readily identifiable qualitatively but are not
always easy to quantify.

7 Concluding remarks
In contrast to crop models, which describe plants in global terms such as biomass, yield,
and number of flowers and fruits, architectural plant models attempt to capture spatial
arrangement of plant components and their development over time. Recent progress in
the methodology of model construction forms the base on which well calibrated models
of specific plants have begun to be built. Their availability will allow for the realization
of the anticipated practical applications of architectural models.

This survey has been focused on the modeling of branching architecture of plants.
Quantitative characteristics of plant organs can be described using growth functions in
a manner similar to plant architecture (Section 4.5). Examples include leaf area [113,
114] and fruit size [54]. These characteristics, however, do not suffice to reproduce
details of organ shape and development. Consequently, visual representations of plant
organs have been created with standard (interactive) modeling techniques used in com-
puter graphics [34, 131, 136, 139]). A biologically better motivated approach, based on
the distribution of growth rates in the growing surface or volume is a topic of current
research [37].

On the conceptual plane, the relationship between L-systems and process-based
models deserves a more detailed study than has been possible within the limits of this
survey (Section 4.2). In particular, the incorporation of complex state transitions de-
scribed by Bell [12] into developmental plant models may offer a framework that will
facilitate construction of causal models.
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Bill Remphrey, and Peter Room. The support by research, equipment, and infrastruc-
ture grants from the Natural Sciences and Engineering Research Council of Canada,

33



and by a Killam Resident Fellowship is gratefully acknowledged.

References
[1] J. Arvo and D. Kirk. Modeling plants with environment-sensitive automata. In

Proceedings of Ausgraph’88, pages 27 – 33, 1988.

[2] C. Atger and C. Edelin. Un case de ramification sympodiale à déterminisme
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[65] F. Hallé. Modular growth in seed plants. Philos. Trans. Royal Society London,
Ser. B, 313:77–87, 1986.
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[165] I. Sztencel and W. Żelawski. The most commonly used mathematical mod-
els in the analysis of the growth of living organisms. Wiadomości Botaniczne,
28(3):211–226, 1984. In Polish.

[166] A. Takenaka. A simulation model of tree architecture development based on
growth response to local light environment. Journal of Plant Research, 107:321–
330, 1994.

[167] A. Tanenbaum. Operating systems: Design and implementation. Prentice-Hall,
Englewood Cliffs, 1987.

[168] C. E. Taylor. “Fleshing out” Artificial Life II. In C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, editors, Artificial Life II, pages 25–38. Addison-
Wesley, Redwood City, 1992.

[169] d’Arcy Thompson. On growth and form. University Press, Cambridge, 1952.

[170] J. H. M. Thornley and I. R. Johnson. Plant and crop modeling: A mathematical
approach to plant and crop physiology. Oxford University Press, New York,
1990.

[171] W. Troll. Die Infloreszenzen, volume I. Gustav Fischer Verlag, Stuttgart, 1964.

[172] J. C. Venus and D. R. Causton. Plant growth analysis: The use of the Richards
function as an alternative to polynomial exponentials. Annals of Botany, 43:623–
632, 1979.

[173] D. M. Waller and D. A. Steingraeber. Branching and modular growth: The-
oretical models and empirical patterns. In J. B. C. Jackson and L. W. Buss,
editors, Population biology and evolution of clonal organisms, pages 225–257.
Yale University Press, New Haven, 1985.

[174] J. Weber and J. Penn. Creation and rendering of realistic trees. Proceedings
of SIGGRAPH ’95 (Los Angeles, California, August 6–11, 1995). ACM SIG-
GRAPH, New York, 1995, pp. 119–128.

47



[175] F. D. Whisler, B. Acock, D. N. Baker, R. E. Fye, H. F. Hodges, J. R. Lambert,
H. E. Lemmon, J. M. McKinion, and V. R. Reddy. Crop simulation models in
agronomic systems. Advances in Agronomy, 40:141–208, 1986.

[176] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The
Visual Computer, 2(4):227–234, February 1986.

[177] K. Yoda and M. Suzuki. Quantitative analysis of major axis development in
Viburnum dilatatum and V. wrightii (Caprifoliaceae). Journal of Plant Research,
106:187–194, 1993.

[178] T. Yokomori. Stochastic characterizations of EOL languages. Information and
Control, 45:26–33, 1980.
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