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Abstract

Showy inflorescences - clusters of flowers - are a common feature of many plants, greatly con-

tributing to their beauty. The large numbers of individual flowers (florets), systematically arranged

in space, make inflorescences a natural target for procedural modeling. This thesis presents a

suite of biologically motivated algorithms for modeling and animating the development of inflo-

rescences, each sharing the following characteristics: (i) the ensemble of florets create a relatively

smooth, tightly packed, often approximately planar surface; (ii) there are numerous collisions be-

tween petals of florets; and (iii) the developmental stages and types of florets each depends upon

their positions within the inflorescence. A single framework drives the floral canopy’s develop-

ment and resolves the collisions. Flat-topped branched inflorescences (corymbs and umbels) are

modeled using a florets-first algorithm, wherein the branching structure self-organizes to support

florets in predetermined positions. This suite of techniques is illustrated with models from several

plant families.
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Preface

The majority of my Masters thesis comes from the paper: Andrew Owens, Mikolaj Cieslak, Jeremy

Hart, Regine Classen-Bockhoff and Przemyslaw Prusinkiewicz, Modeling Dense Inflorescences1,

ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH 2016, volume 35, Issue 4 [1].

The publisher and the authors of this publication have given their permission for its inclusion in

my thesis. The permissions to use this material from all co-authors and the copyright holder,

Association for Computing Machinery (ACM), are gratefully acknowledged.

Chapter 1 describes the biological context and motivation of the method, as well as an overview

of the method. My supervisor, Dr. Przemyslaw Prusinkiewicz identified the biological foundations

of inflorescence development. On this basis, Dr. Prusinkiewicz and I equally shared the responsi-

bility for conceiving, designing and outlining the method and illustrative figures.

Chapter 2 describes the Floret Editor. Jeremy Hart implemented the Floret Editor, with an

input on design from Przemyslaw Prusinkiewicz, Mikolaj Cieslak and myself. In particular, I was

responsible for designing and implementing the mesh triangulation technique within the Floret

Editor, which provided a consistent and user configurable triangle mesh topology throughout the

floret animations. As well, I was responsible for designing the format of the animation outputs,

and for incorporating the Floret Editor into the method and my thesis.

In Chapter 3, I describe the technique of Position Based Dynamics [2], and its extension, which

I introduced to model growth of flexible and colliding surfaces. I was responsible for designing

this extension, as well as implementing and incorporating constraint-based growth into the overall

pipeline.

Chapter 4 describes the techniques used for collision handling. I was responsible for imple-

menting each technique, and designing a cohesive collision handling system from these techniques.

As well, I was responsible for incorporating this collision handling system into the other compo-

nents of the method and my thesis. On this basis, I describe the collision handling system, with

1doi:10.1145/2897824.2925982
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some part imported from our SIGGRAPH paper.

Chapter 5 describes the phyllotaxic patterning generation algorithm. My supervisor designed

and implemented this model in consultation with Dr. Regine Classen-Bockhoff, which I used as

the basis for designing specific inflorescence models. I was responsible for designing and im-

plementing the format of the animation output to be incorporated into the model. Przemyslaw

Prusinkiewicz, Mikolaj Cieslak and I share equal responsibility in describing the model and pro-

ducing the illustrative figures.

Chapter 6 describes the algorithm for floret type determination, which my supervisor designed

and implemented in consultation with Dr. Regine Classen-Bockhoff. I designed the specific in-

florescence models, as produced in Chapter 5, to use this algorithm. Przemyslaw Prusinkiewicz,

Mikolaj Cieslak and I share equal responsibility in describing the model and producing the illus-

trative figures.

Chapter 7 describes the technique for producing branching structures. My supervisor motivated

the technique with the biological foundation and inspired its initial design, while I was responsible

for the final design, implementation, and incorporation of the output into the technique and my

thesis. Przemyslaw Prusinkiewicz, Mikolaj Cieslak and I share equal responsibility in describing

the model and producing the illustrative figures.

Chapter 8 details more of the implementation considerations of the framework of the method.

I was responsible for designing and implementing the framework, with my supervisor consulting

in certain design choices.

Chapter 9 discusses and illustrates the final results of the method. I designed, simulated, mod-

eled and rendered the final results of this paper.

Chapter 10 summarizes the thesis and enumerates future work based on the thesis. I am re-

sponsible for writing this part of the thesis, with some parts inspired from our SIGGRAPH paper.

In the appendices, I present a range of supplementary ideas and technical notions from the

thesis.
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Chapter 1

Introduction

In many plant species, flowers are grouped into multi-flower assemblies called inflorescences.

Such floral arrangements have selective value: by being more visible, inflorescences can attract

pollinators from a larger distance than individual flowers; furthermore, by supporting walking be-

tween adjacent florets, inflorescences may facilitate their pollination by insects. From an aesthetic

perspective, showy inflorescences are a visually appealing attribute of many plants occurring in

natural and artificial settings. The common occurrence and beauty of inflorescences has made

them an attractive modeling subject in computer graphics [3; 4; 5; 6; 7; 8; 9; 10]. In this paper we

extend the class of inflorescences that can be modeled and animated for image synthesis purposes.

1.1 Biological context

An insight into the form of plants is offered by the first available space theory of plant organ ini-

tiation, formulated in the XIX century by Wilhelm Hofmeister (see [11] for a recent description).

According to this theory, incipient organs, such as leaf or floret primordia, are positioned on the

growing surface of the (shoot or reproductive) meristem when and where there is enough room

for them. Depending on the parameters of this process, different regular arrangements (phyllotac-

tic patterns) of primordia emerge [12; 13]. In some cases, reproductive meristems develop into

next-order meristems rather than florets, leading to hierarchically or recursively compounded in-

florescences [14]. The type, form and developmental stage of florets may depend on their position

within an inflorescence (floral dimorphism [15]). In general, florets close to the inflorescence mar-

gin develop enlarged petals, making the inflorescence more visible to pollinators, while florets in

more central positions have comparatively reduced petals allowing for denser packing and thus a

larger number of reproductive organs within the inflorescence [16] (English version [17]). Striking
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Figure 1.1: A photograph of an Orlaya grandiflora inflorescence. Photograph by Holger Cassel-
mann licensed under CC BY SA 3.0.

examples of floral dimorphism abound in the Aster family. For example, in the sunflower, petals

of the showy florets on the margin (ray florets) are orders of magnitude larger than those of flo-

rets in the interior of the inflorescence (disk florets). The differences between florets may also be

gradual, as illustrated by the photograph of Orlaya grandiflora in Figure 1.1, and may occur at dif-

ferent organization levels in compound inflorescences. The developmental mechanisms defining

the spatial distribution of florets of different type and size are not yet well understood, but obser-

vations of compound heads [16] and wounding experiments on sunflower heads [18] suggest that

the inhibition of showy florets by the proximity of other florets is the determining factor at least

in some cases. In the context of a regular arrangement of florets into spiral phyllotactic patterns,

such inhibition leads to the prevalence of specific numbers of enlarged florets on the inflorescence
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Figure 1.2: A photograph of a Gaillardia inflorescence, exhibiting the fleshy receptacle that sup-
ports the inflorescence’s florets. Photograph courtesy of Przemyslaw Prusinkiewicz.

margin (numerical canalization [19]). For example, in the most common spiral phyllotactic pattern

with the golden divergence angle (approx. 137.5◦), the prevalent numbers of ray florets belong

to the Fibonacci sequence. The availability of space when new primordia are initiated does not

guarantee that the florets will not collide during subsequent development. In dense inflorescences

such collisions are frequent.

Florets in an inflorescence are supported either by a fleshy voluminous body (the recepta-

cle) or a free-standing branching structure [15]. The former case is exemplified by flower heads

(capitula, see Figure 1.2), and is relatively simple from a modeling perspective, as the recep-

tacle can be approximated by a surface of revolution (e.g. [5]). In the latter case, the ar-
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Figure 1.3: A photograph of a yarrow inflorescence, exhibiting the nearly planar arrangement of
florets, typical of corymb type inflorescences. Photograph courtesy of Przemyslaw Prusinkiewicz.

rangement of florets in space has traditionally been viewed as a consequence of the underlying

branching pattern. This branching-first perspective is useful in modeling practice (e.g. [4; 9;

20]; Figure 4.10), but does not provide an adequate model for inflorescences in which the en-

semble of florets forms a smooth canopy. A quintessential example is that of corymbs, an in-

florescence type in which florets are arranged into an almost planar surface (Figure 1.3). How

plants create branching structures satisfying this planarity constraint is an open question, as the

problem is nontrivial from a trigonometric perspective. We propose a solution inspired by the cur-

rent biological understanding of inflorescence development [21; 22]. According to it, a growing

meristem (Figure 1.4a) supports emergent primordia (b), which initiate vascular strands (c). These

strands gradually extend toward the base of the meristem and merge, forming a branching structure

(d). The vascular strand formation is driven by the flow of the plant hormone auxin (auxin canal-
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ization1 [23]) and is analogous to the formation of a branching river network, where tributaries

start at different sources and gradually join each other. In heads, the vascular structure remains

embedded in the surrounding tissue, which becomes the receptacle as the inflorescence develops

to maturity. In branched inflorescences, the vascular strands and the immediately adjacent tissues

elongate while tissues further removed from the vasculature do not grow or grow more slowly. A

free-standing branching structure thus emerges (e,f). We note that, if the growth of this structure

is (approximately) isometric or allometric – in general, if the length of mature segments is propor-

tional to their length in the meristem, and the branching angles do not change or change in concert

– the arrangement of florets in the mature inflorescence will reflect their original distribution on the

surface of the meristem. For instance, in corymbs, the floret distribution formed on a flat meristem

surface will result in a planar canopy. In summary, we assume that the distribution of florets in a

predetermined phyllotactic pattern drives the formation of the supporting branching structure, and

not vice versa. This florets-first perspective provides a possible explanation for the development

of smooth floral canopies. It is also justified from an ecological/evolutionary point of view, as it

reflects the importance of flower distribution, rather than the branching structure, to the pollinators.

The branching structure is merely a scaffold that supports the flowers in their target positions [24].

Following this description, we propose a method for modeling and animating the development

of inflorescences that integrates the following elements: (i) the modeling of individual florets and

the animation of their opening (anthesis); (ii) the generation of dynamic phyllotactic patterns that

defines the distribution of florets within floral canopy over time; (iii) determination of the type,

size and developmental stage of each floret according to its position in the inflorescence and time,

(iv) detection and resolution of collisions between petals, and (v) simulation of the development

of the branching inflorescence structure that supports the florets in space. These elements can be

used jointly or selectively, depending on the inflorescence type.

1Confusingly, the terms numerical canalization and auxin canalization function concurrently, although they are
not closely related.
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Figure 1.4: Postulated mechanism of branching inflorescence development. Dots represent florets,
yellow lines indicate the vasculature. Vascular strands develop within a growing meristem (a-d)
and define the axes of the emerging branching structure (e,f).

1.2 Overview of the method

The elements of our method can be grouped into three processes: the modeling of individual

florets, the generation of their spatial distribution and attributes such as the type and developmental

stage, and — when present — the generation of the branching structure that supports the florets.

Components of the system and the information flow between them are shown in Figure 1.5, further

description of the file communication between the components is found in Chapter 8.

Florets are modeled as B-spline surfaces (Chapter 2). The poses representing key developmen-

tal stages for each floret type are specified interactively. This is effected using a specialized graph-

ical editor (Figure 1.5a), which supports radial and bilateral symmetry as well as partially fused

petals found in many florets. The key poses are interpolated to generate sequences representing

the development and opening of florets (Figure 1.5b). The models are then carefully polygonized

so that the polygon count in each floret is small and degenerate triangles are avoided (Figure 1.5c).

Low polygon count in individual florets is important to the efficient detection and resolution of

collisions in inflorescences with multiple florets. The resulting floret models are instantiated when
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Figure 1.5: Key components and file usage of the modeling method, and the associated information
flow via transferred files.
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placed within an inflorescence and may be deformed by collisions between petals.

Collisions may arise in each step of simulated inflorescence development. We resolve them

by applying the kinematic description of floret development and opening (the interpolation of

key poses) to drive a physically-based model of petal expansion and collision (Figure 1.5f and

Chapter 4). A related approach, with a kinematic growth model driving a physically-based model,

was proposed to animate flower opening by Ijiri et al. [25]. Given that a floral canopy may include

many flowers, we use position-based dynamics [2] as a faster alternative to the energy minimization

method used by Ijiri et al.

To generate the layout of florets in dense canopies, we extend the algorithm for generating

phyllotactic patterns on arbitrary surfaces of revolution proposed by Ridley [26] and introduced

to computer graphics by Prusinkiewicz et al. [8] (Figure 1.5d and Chapter 5). Our extensions

capture the dynamics of pattern development and provide information on the developmental stage

of each floret within the inflorescence; furthermore, they enable simulation of hierarchically and

recursively compound phyllotactic patterns. If the inflorescence is dimorphic, the neighborhood of

each floret is inspected and the floret type is determined on this basis (Figure 1.5e and Chapter 6).

If florets are supported by a receptacle, distributing florets of the appropriate type according

to the phyllotactic pattern and resolving collisions terminates the modeling process. The recep-

tacle, usually obscured by the florets, does not need to be represented explicitly. In contrast, in

branched inflorescences, the branching structure supporting the floral canopy must be visualized.

We generate it using the spatial layout and age of the florets as input (Figure 1.5g and Chapter 7.1).

Our algorithm is inspired by that introduced by Rodkaew et al. [27] to model leaf vein patterns

and trees – both algorithms create branching structures from the outside in – extending it in sev-

eral directions as needed to model inflorescences. The floral canopy and the supporting branching

structure are rendered together to produce the final image or movie animation (Figure 1.5h).
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Chapter 2

Interactive modeling of flowers

2.1 Previous work

There is a long history of modeling flower petals as interactively defined bicubic surfaces (e.g. [4;

5]) or generalized cylinders [7; 8], and assembling them into flowers using procedural models of

phyllotaxis. Ijiri et al. [9] advanced the concept of interactive flower modeling by introducing a

specialized editor to distribute flower parts in space. They also pioneered sketch-based modeling

of plant organs such as leaves and petals [9; 10]; further work in this direction was pursued by

Anastacio et al. [28].

At any point in time, an inflorescence may incorporate a progression of flowers at different de-

velopmental stages, a phenomenon termed the phase effect by d’Arcy Thompson [29] (see also [3;

4]). Simulation of flower growth and opening is thus needed not only to animate flower or inflores-

cence development, but also to construct static models of inflorescences with the phase effect. To

simulate the opening of flowers modeled as bicubic surfaces, Prusinkiewicz et al. [6] constructed

a branching structure that supported the set of control points defining the surface and gradually

modified this structure over time. This method amounted to a forward simulation of growth, mak-

ing the final form of fully open flowers difficult to control. With petals represented as generalized

cylinders, Prusinkiewicz et al. [8] modeled flower growth by interpolating intrinsically-defined

carrier curves that represented petal axes (midribs) in closed and open flowers. As well, the plant

modeling program LPFG [30] animates the opening of flowers by interpolating the positions of

individual control points in Bezier and B-spline surfaces. Our method is related to this concept.

A different, physically-based approach was proposed by Ijiri et al. [25] and improved by Li et

al. [31]. They represented petals as elastic surfaces subject to non-uniform expansion. This ex-

pansion affected both the size and shape of the petals. Related methods have also been used in
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biologically-motivated simulations [32; 33], in the latter case addressing the particularly complex

shape of snapdragon flowers. Physically-based techniques are appealing because of their sound

biological basis and possible emergence of secondary features, such as wrinkles on the margin of

the petals, which are otherwise difficult to model [31]. On the negative side, both the dynamics of

flower opening and the final shape are difficult to specify.

The complexity of inflorescences results from the arrangement of florets, rather than the in-

dividual floret forms. Consequently, we devised a specialized interactive editor to quickly model

simple flowers in their key poses (stages of development) and a blending technique to interpolate

between these poses.

2.2 Floret Editor

We focus on the modeling of corolla (the set of petals), which is the most visible part of florets. A

snapshot of the editor is shown in Figure 2.1. Petals are represented as clamped B-spline surfaces.

To facilitate the modeling process, bilateral symmetry can be imposed on the individual petals, and

petals can be multiplied by assuming n-fold radial symmetry. One new element is the modeling of

partially fused petals, which are found in many florets. We implemented it for florets with dihedral

(i.e., both rotational and bilateral) symmetry, by constraining a user-defined number of control

points defining the petal boundary (starting at the flower base) to the symmetry plane between the

adjacent petals.

2.3 Simulation of floret development.

We assume that the key floret poses are represented by B-spline surfaces defined by control meshes

with the same topology (i.e. the same number of control points in the u and v directions). Such sur-

faces can easily be blended by linearly interpolating positions of the corresponding control points,

but linear interpolation is not the best choice for simulating the opening of flowers because petals

may undergo large rotations. Addressing this problem, we interpolate floret poses by extending the
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Figure 2.1: Snapshot of the Floret Editor. The user defines the shape of the petal by moving control
points in the standard front, top and side view. The bottom right view shows the corolla with the
petals replicated by rotational symmetry and partially fused.
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Figure 2.2: Example of control mesh interpolation. In each pose, control polylines in the v direction
are represented by boxes, the colored faces of which are aligned with a rotation-minimizing moving
frame. White lines indicate control polylines in the u direction, spanning the vertices of the v
polylines.

method of blending intrinsically defined polygons [34] to 3D. To this end, we calculate a rotation-

minimizing frame [35] for each (open) control polyline running in the v direction, from the petal

base to its tip (Figure 2.2). At each vertex between consecutive line segments, this frame is rotated

around the axis perpendicular to both segments so that the next segment lines up with the previous

one (for collinear segments this rotation is 0). We then blend corresponding control polygons in

the initial and final poses by linearly interpolating the lengths of the corresponding segments, and

spherically interpolating the rotations between them. This technique makes it possible to simulate

the development and opening of flowers using a minimal number of key poses, usually only two

or three (Figure 2.3).
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Figure 2.3: Simulation of floret opening by intrinsic interpolation between the first and the last
pose.
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Figure 2.4: Example of petal polygonization. (a) Default polygonization using a family of isopara-
metric lines u = const and v = const, equidistant in the parameter space. (b) A sample result of
repolygonization. (c,d) Graphically-defined functions used to create the repolygonization in panel
b. Note that the axis representing the independent variable v runs vertically.

2.4 Polygonization

An inflorescence may comprise many florets. To make the subsequent collision detection and reso-

lution efficient it is thus critical to polygonize them well, into a small number of non-degenerate tri-

angles. The simplest polygonization of tensor product surfaces, producing an array of quadrangles

by stepping through the u and v parameters, is inadequate for this purpose, because the shape of the

resulting polygons varies greatly between narrow and wide petal regions (Figure 2.4a). Therefore,

this simple stepping approach in the parameter space produces petal regions that are both overly
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polygonized (i.e. the base of the petal does not require the same number of quadrangles as the

rim). Consequently, we repolygonize the surfaces using a semi-interactive method, in which the

modeler can fine-tune the polygonization with two graphically-defined functions (Figure 2.4c,d).

The first function, λ (v), defines the spacing between a sequence of vertices v0,v1, . . . ,vn along the

v axis. The distances between these vertices are calculated by solving the equation

∫ vi+1

vi

dv
λ (v)

= 1, i = 0,1, . . . ,n−1, (2.1)

which distributes points along the axis according to average values of function λ (v) in each interval

[vi,vi+1] and guarantees that this distribution is robust (not sensitive to small perturbations of λ )

[8]. The second function, η(v), defines the number dη(v)e of vertices, equidistant in the parameter

space, along each isoparametric line v = vi. This number is assumed to be odd to guarantee that no

triangle straddles the petal symmetry line. This assumption improves the appearance of petals ap-

proximated using small numbers of triangles. The final polygon mesh is obtained as the Delaunay

triangulation of the resulting set of points (u,v) (Figure 2.4b). This triangulation is performed in

parameter space, so that the mesh topology does not change as the floret develops. The invariance

of topology over the floret development is imperative to mapping our constraint based growth to

the sequence of meshes in the development.
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Chapter 3

Constraint Based Growth

Once the floret forms and developmental animations are designed (see Chapter 2), we obtain a

sequence of polygon meshes encoding the development. These mesh animations are defined by

changes of the mesh vertices in global coordinate space R3. However, this description alone is

insufficient for animating deformable florets, exhibiting elastic soft body behaviour as observed

in nature. This is because vertex positions are defined in a global coordinate space, while spatial

interactions are, in general, local; and as we wish to model florets as soft bodies, these local

interactions should be capable of reproducing local deformations in the floret, such as bending

and compression. This requires us to re-encode the shape of the florets from a global definition

to many local definitions of floret regions; meaning each vertex position is encoded relative to its

local neighbourhood and not relative to every other vertex position. This redefinition of the floret

forms to local constraints on vertex positions allows for local deformations to occur within the

regions where vertices interact with the environment and the floret itself.

3.1 Position-based dynamics

We obtain the desired soft body animations by adapting position-based dynamics (PBD) [2; 36]

to the simulation of growth. In doing so, PBD affords us a means for resolving collisions (see

Chapter 4) in a unified framework (incidentally, we note that the related problem of resolving

collisions between leaves in a set of plants was used to illustrate the power of PBD in the original

paper [2]). As well, PBD has many avenues of potential extensions (i.e. fluid simulation, rigid

body dynamics, parallelization of system solvers) that have been the focus of recent research [37].

To elucidate the discussion of our approach, we briefly review the concept of PBD.

Consistent with the PBD method, we map mesh M0 representing the initial (collision-free)

15



floral canopy into a network (system) of constraints. Constraints are kinematic restrictions on

relative motions of mesh elements. They are in the form of equations and inequalities, called

bilateral and unilateral constraints, respectively. Position based dynamics, as the name suggests,

enforces constraints on the positions of elements within a scene, and their relative motions. Thus

constraints are functions on positions, with bilateral constraints are defined as the equality

C
(

pppi1, pppi2, . . . , pppin

)
= 0 (3.1)

with the positions pppi satisfying the constraint when evaluated to 0, and unilateral constraints are

defined as an inequality

C
(

pppi1, pppi2, . . . , pppin

)
≥ 0 (3.2)

with the positions where pppi satisfying the constraint when evaluated to or greater than 0. Here

{i1, i2, . . . , in} is the set of indices for which positions pppi are to be constrained by the function.

Such constraints that are solely functions of positions are called holonomic [38].

The mesh vertices define the positions pppi. The objective of PBD is to change positions pppi such

that all the constraints are satisfied and, most importantly, that linear and angular momentum are

conserved as vertices are repositioned. Let ∆pppi be the displacement of vertex i. Linear momentum

is conserved if

∑
i

mi∆pppi = 000 (3.3)

and angular momentum is conserved if

∑
i

rrri×mi∆pppi = 000 (3.4)

where mi is a mass value associated with vertex i, and rrri is the vector between pppi and some arbi-

trary rotation center common to all vertices. If the repositioned vertices produced by PBD violate

these conservations of momenta, so called ghost forces will be evident in the mesh unnaturally

drifting or rotating as if acted upon by some external force. For a given constraint C, with input

vertex positions ppp1, ppp2, . . . , pppn, let ppp be the vector concatenation
[
pppT

1 , pppT
2 , . . . , pppT

n
]T . For internal

constraints, C should be independent of rigid body motions, i.e translation and rotation. Therefore,
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the gradient of C with respect to ppp (∇pppC) is orthogonal to the rigid body modes as it is the direction

of maximal change. If the displacement ∆ppp is chosen to be along ∇pppC, both linear and angular

momenta will be conserved. Thus, given a configuration of vertex positions ppp, PBD attempts to

find a displacement ∆ppp such that C (ppp+∆ppp) = 0 (or C (ppp+∆ppp) ≥ 0 for unilateral constraints).

As many constraints yield non-linear equations (or inequalities), solving for ∆ppp can be non-trivial.

However, this equation can be approximated by Taylor series expansion:

C (ppp+∆ppp)≈C (ppp)+∇pppC (ppp) ·∆ppp = 0. (3.5)

In restricting ∆ppp to be in the direction of ∇pppC, it follows that for some scalar (a Lagrange multi-

plier) λ ∈ R,

∆ppp = λ∇pppC (ppp) . (3.6)

Substituting Equation 3.6 into Equation 3.5, and solving for λ , and substituting back into Equa-

tion 3.6 yields the following formula for ∆ppp:

∆ppp =− C (ppp)
‖∇pppC (ppp)‖2 ∇pppC (ppp) , (3.7)

which is recognized as a Newton-Raphson step for the iterative solution of the non-linear equation

given by constraint C. The displacement for a single vertex position pppi can then be written as

∆pppi =−s∇pppiC (ppp1, ppp2, . . . , pppn) (3.8)

where s is a scaling factor

s =
C (ppp1, ppp2, . . . , pppn)

∑ j ‖∇ppp jC (ppp1, ppp2, . . . , pppn)‖2 . (3.9)

If the vertices have individual masses mi ∈ R>0 (indicating their resistance to being repositioned),

then PDB defines the inverse mass wi =
1
mi

. This conveniently allows for vertices to carry infinite

mass wi = 0, effectively fixing them in space. Equations 3.9 and 3.8 may now be formulated as

∆pppi =−
wiC (ppp1, ppp2, . . . , pppn)

∑ j w j‖∇pppiC (ppp1, ppp2, . . . , pppn)‖2 ∇pppiC (ppp1, ppp2, . . . , pppn) . (3.10)

To solve this system of constraints over the entire mesh, with possibly overlapping subsets of
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a b

Figure 3.1: Internal constraints on geometric configurations. (a) Distance constraint on vertices ppp1
and ppp2 of an edge, repositioning them to maintain a length d. (b) Dihedral angle constraint on the
adjacent triangles, repositioning them to maintain an angle φ between the normals nnn1 and nnn2.

vertices, PBD uses a non-linear Gauss-Seidel-like method. It is similar in that the constraints are

solved independently, and one after another, using the updated positions in subsequent constraint

solves (i.e. the solution to constraint Ci uses any positions already updated by constraints C j that

were solved prior to Ci, where 0≤ j < i).

Distance constraints correspond to the edges of the mesh and represent the desired length d

between the vertices of the edge ppp1 and ppp2 (Figure 3.1a)

Cdist (ppp1, ppp2) = ‖ppp1− ppp2‖−d (3.11)

PBD repositions ppp1 and ppp2, moving them along the gradient of the constraint by ∆ppp1 and ∆ppp2

respectively, such that the constraint is satisfied: Cdist (ppp1 +∆ppp1, ppp2 +∆ppp2) = 0.

Angular (bending) constraints correspond to neighbouring triangles and represents the desired

signed dihedral angle φ between the pair of adjacent triangles (ppp1, ppp2, ppp3) and (ppp1, ppp4, ppp2) sharing

an edge (ppp1, ppp2) (Figure 3.1b)

Cbend (ppp1, ppp2, ppp3, ppp4) = arccos(nnn1 ·nnn2)−φ

= arccos
(

(ppp3− ppp1)× (ppp2− ppp1)

‖(ppp3− ppp1)× (ppp2− ppp1)‖
· (ppp2− ppp1)× (ppp4− ppp1)

‖(ppp2− ppp1)× (ppp4− ppp1)‖

)
−φ

(3.12)
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b

Figure 3.2: Side view of two possible

adjacent triangle configurations (over-

lapped with one another) yielding (a)

the same angle measurement, or (b)

distinguishable signed angle measure-

ments.

The bending constraint of Muller et al. [2], seen

in Equation 3.12, measures the difference of the angle

found between the triangle normals (nnn1 and nnn2) and

the desired dihedral angle φ . Unfortunately, as this

measurement is effected by a dot product of vector

normals, there are mirror configurations of adjacent

triangles that represent the same dihedral angle (see

Figure 3.2a). Therefore, if vertex ppp4 is repositioned to

the opposite side of the plane defined by ppp1, ppp2 and

ppp3, PBD will inadvertently push the triangles into the

mirror configuration. This duality of resting poses is

unsuitable for maintaining the integrity of the floret

forms designed in Chapter 2 as they are deformed by,

for example, collisions or growth. To disambiguate

the mirrored configurations, we choose a canonical

orientation for the shared edge between the adjacent

triangles: eee = ppp2− ppp1 (see Figures 3.1b, 3.2b). As

the cross product nnn1× nnn2 is the reverse direction of

nnn1× nnn3, this allows us to measure alignment to the

canonical edge, giving a sign to the dihedral angle

φ = sgn(eee · [nnn1×nnn2])arccos(nnn1 ·nnn2) (3.13)

and disambiguate the mirrored configurations. As well, the signed dihedral angle defines a con-

tinuous range of angles from [−180,180) (see Figure 3.2b) for the bending constraint to rotate

the adjacent triangles through, as required in our constraint based growth. Appendix A details the

linearization and position update of the signed dihedral angle bending constraint.
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Figure 3.3: A sequence of polygonized meshes M0,M1,M2,M3, . . . , (each defined in terms of their
vertex positions in R3), representing select poses of a meshes development. We extract a sequence
of edge lengths di and dihedral angles φi from this mesh sequence. Mapping edge length constraints
and dihedral angle constraints to the mesh M0, and sequentially changing the constraint rest values
to those extracted, the mesh is developed similarly to the sequence of polygonized meshes.

3.2 Growth

PBD provides the means by which to encode a desired shape of a mesh via constraints on local

configurations of vertices. I have modified PBD to recreate the floret growth designed in Chapter 2.

To simulate the growth of the inflorescence and the opening of the flower, I iteratively progress

through the sequence of polygonized meshes M0,M1, . . . ,Mn representing consecutive stages of

the inflorescence canopy development. In each step t, we use the edge lengths, signed dihedral

angles and attachment positions in mesh Mi to define the corresponding constraint set Ct (see

Figure 3.3). Attachment constraints (vertex positions with infinite masses, wi = 0) define positions

and orientations of individual florets in the canopy (see Chapter 5). If one or more collisions

Figure 3.4: Floret mesh development driven by constraint based growth.

20



occur, we add constraints preventing triangle intersection to the set Ct before resolving it. Once a

collision-free steady state is found (see Chapter 4), we advance developmental time and progress

to the next simulation step, t + 1. Our simulation is thus similar to the typical application of

PBD to simulate cloth or thin shells, except that not only collision constraints, but also all other

constraints, may change from one simulation step to the next as the inflorescence grows. Figure 3.4

exhibits constrained growth, with a system of constraints mapped to the vertices of mesh M0, and

sequentially changing the constraint rest values (edge lengths and signed dihedral angles) to those

extracted from a developmental sequence designed by our Floret Editor (see Chapter 2).
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Chapter 4

Collision Handling

4.1 Previous work

In early models of flowers and inflorescences (e.g. [4; 5; 8]) the modeler minimized the visual

impact of intersections between petals by carefully crafting their shapes. More recently, Ijiri et

al. [25] outlined a specialized algorithm for handling collisions between petals or sepals, which

exploited their spatial ordering as determined by the flower structure. In inflorescences a similar

assumption of spatial ordering cannot be made; moreover, an inflorescence may include hundreds

or thousands of florets, making the number of polygons representing the inflorescence as a whole

correspondingly higher. Consequently, we have adapted to inflorescences a more general method

of collision detection and resolution originally developed for cloth, but also applied to leaves [2]. In

contrast to cloth, the set of polygons representing an inflorescence can be divided into subsets that

represent individual organs [39]. We take advantage of this observation by considering different

florets of the same type as instances — modified by collisions — of a common dynamic geometric

template (Chapter 2).

4.2 Collision detection

Polygon meshes representing an inflorescence canopy may be represented by tens, if not hun-

dreds, of thousands of triangles, even with a careful polygonization (Chapter 2.4). Efficient

detection of colliding triangles is thus of key importance to the overall efficiency of the inflo-

rescence modeling. We assume that the initial configuration of florets in a young inflorescence

is collision-free, then detect and resolve collisions as they arise during the simulated develop-

ment. This approach is consistent with the physical nature of development and has the additional

advantage of being conducive to animation. Potentially, when only a static model of an inflo-
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rescence is needed, intersections in the polygon mesh representing the final structure could be

untangled using a history-free method [40]. With this approach, however, selecting the correct

solution (plausible from the developmental perspective) from many possible untangled config-

urations is difficult. Instead, I follow the continuous collision detection (CCD) paradigm (cf.

[41]). With petals represented as triangle meshes growing over time, we thus need to find in-

tersections between triangular prisms representing the development-driven motion of triangles.

Figure 4.1: The two fundamental types

of intersections between a pair of tri-

angles. Left: A triangle vertex pass-

ing through the face of another triangle.

Right: The edge of a triangle passing

through the edge of another triangle.

We consider vertex-triangle and edge-edge intersec-

tions separately1 (Figure 4.1), applying a broad and

narrow phase for vertex-triangle pairs, and then a

broad and narrow phase for edge-edge pairs. Con-

sidering each intersection separately guarantees that

unique pairs are only tested for intersection once, as

opposed to considering triangle-triangle pairs where

the 6 vertex-triangle and 9 edge-edge pairs between

two triangles may have been computed in a previous

triangle pair (e.g. the edge shared by two triangles will

have been tested twice as many times as necessary if

all triangle-triangle pairs are tested).

4.2.1 Broad phase collision detection

The broad phase is accelerated by partitioning space into a regular grid (Figure 4.2). For vertex-

triangle intersections, each voxel stores the IDs of all triangles that may intersect this voxel over

a given time step. This is done by constructing axis-aligned bounding boxes (AABB) containing

the space-time prisms of the triangles as they move through space, and intersecting them with the

voxels. The boxes are enlarged by a small amount to address potential numerical inaccuracies

when detecting intersections [42]. The information in each voxel is time-stamped so that out-

1Vertex-edge intersections are considered special cases of either edge-edge and vertex-triangle intersections.
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ba

Figure 4.2: Broad phase collision detection: Spatial domain is divided into voxels for efficiently
detecting potential collisions between pairs of mesh elements. a) The axis-aligned bounding box
(AABB) of a moving triangle (red) and moving vertex (blue) overlap in four shared voxels (out-
lined), therefore the vertex-triangle pair must be tested for intersection using narrow phase collision
detection techniques. b) The AABB of moving triangle edges (red and blue) overlap in three shared
voxels (outlined), and even though (upon visual inspection) it is not possible for the edges to inter-
sect over the time step, narrow phase collision detection techniques must be used to verify whether
an intersection took place or not.

of-date informations can be cleared efficiently, only if the voxel is visited in a subsequent time

step [43]. To detect whether a moving vertex may intersect a triangle, an AABB is created around

the line segment representing the vertex motion. All triangles in the voxels that intersect with this

AABB are considered in the narrow phase. Broad-phase detection of potential edge-edge collisions

is carried out in a similar manner, except that, in this case, voxels contain information about the

edges which intersect them during their motion through space, rather than the entire triangles.

Another approach for testing all vertex-triangle and edge-edge pairs was introduced by Wong

et al. [44], which uses a randomized marking scheme on a subset of the mesh triangles to create

unique feature (edge-edge, vertex-triangle) pairs. Although the number of feature pair intersection

tests are the same as considering vertex-triangle and edge-edge pairs separately, and there is a cost

to precomputing the marking scheme, there is a potential speed increase in only one round of broad

phase collision detection, on a fewer elements (for most practical applications, meshes have a ratio
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of vertices to triangles to edges of 1:2:3 [45]).

4.2.2 Narrow phase collision detection

Narrow-phase collision detection is performed using the method of Provot [46]. In a given time

interval of the simulation, each vertex position ppp changes from its initial position ppp000 ∈ R3 at the

beginning of the time step to another position ppp111 ∈ R3 at the end of the time step. We can then

define a linear function for its movement over the time step,

ppp(t) = ppp000 + t(ppp111− ppp000) for t ∈ [0,1]. (4.1)

With the assumption that the current triangle configuration is collision-free, we simply need to

solve for the values of t where the four vertices representing a moving point and a triangle, or the

endpoints of two edges, become co-planar in their linear motions (Figure 4.3). If this is the case,

a test is performed to determine whether the moving point is within the triangle, or whether the

intersection point is within both segments, respectively.

ba

Figure 4.3: Narrow phase collision detection: finding moments t, over a simulation time step
t ∈ [0,1], when four vertices are coplanar (depicted here within the orange plane). (a) Detection of
moment t at which vertex ppp and triangle (aaabbbccc) are coplanar. (b) Detection of moment t at which
the vertex positions of edges (aaabbb) and (cccddd) are coplanar.
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4.2.2.1 Vertex-triangle collision detection

Figure 4.4: Vectors constructed from

vertex ppp, and triangle aaabbbccc, used in

Equation 4.2.

Let ppp(t) be a moving vertex, and aaa(t), bbb(t) and ccc(t)

be the vertices of a moving triangle. The moving tri-

angle is collectively defined as aaabbbccc(t) at time t. To

solve for the time t where ppp(t) and aaabbbccc(t) are copla-

nar, and thus potentially colliding, it suffices to find

a vector from aaa(t) to ppp(t) that is coplanar to the vec-

tors from aaa(t) to bbb(t), and aaa(t) to ccc(t). Denoting these

vectors as pppaaa(t) = ppp(t)−aaa(t), bbbaaa(t) = bbb(t)−aaa(t) and

cccaaa(t) = ccc(t)− aaa(t), respectively, this is equivalent to

finding the vector pppaaa(t) that is orthogonal to the vector

bbbaaa(t)× cccaaa(t) that defines the plane spanned by bbbaaa(t)

and cccaaa(t) (see Figure 4.4). Therefore, ppp(t) and aaabbbccc(t) are coplanar at time t if and only if

[bbbaaa(t)× cccaaa(t)] · pppaaa(t) = 0. (4.2)

To solve for t we expand bbbaaa(t)× cccaaa(t) as a quadratic equation of vector coefficients QQQ, RRR and SSS

∈ R3 (see Appendix B.1),

bbbaaa(t)× cccaaa(t) = QQQt2 +RRRt +SSS. (4.3)

then we expand Equation 4.2 to a cubic equation with real coefficients A, B, C and D ∈ R:

[bbbaaa(t)× cccaaa(t)] · pppaaa(t) =
[
QQQt2 +RRRt +SSS

]
· pppaaa(t)

= At3 +Bt2 +Ct +D.

(4.4)

After the roots t ∈ [0,1] are found, if any (see Chapter 4.2.2.3), each is tested to verify that vertex

ppp(t) and triangle aaabbbccc(t) are actually intersecting at time t, and are not just coplanar (See Ap-

pendix B.2).
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4.2.2.2 Edege-edge collision detection

Let aaabbb(t) and cccddd(t) be two moving edges composed of vertices aaa(t) and bbb(t), and ccc(t) and ddd(t),

respectively. To solve for time t where aaabbb(t) and cccddd(t) are coplanar, and thus potentially colliding,

it suffices to find a vector from ccc(t) to aaa(t) that is coplanar to the vectors from ddd(t) to aaa(t) and bbb(t)

to aaa(t). This is equivalent to finding the vector cccaaa(t) that is orthogonal to the vector dddaaa(t)×bbbaaa(t)

that defines the plane spanned by dddaaa(t) and bbbaaa(t). Therefore, aaabbb(t) and cccddd(t) are coplanar at time

t if and only if

[dddaaa(t)×bbbaaa(t)] · cccaaa(t) = 0 (4.5)

where, as in Equation 4.3, t is a (real) root of a cubic equation. After the roots t ∈ [0,1] are found,

if any (see Chapter 4.2.2.3), each must be tested to verify whether the edges aaabbb(t) and cccddd(t) are

intersecting at time t, and are not just coplanar. Although this can be tested in R2, as both edges

are coplanar at time t, it is more numerically stable to calculate the minimum distance between two

line segments (triangle edges) in R3 (See Appendix B.3). If this minimum distance is less than a

threshold, the edges are considered to be intersecting in R3.

4.2.2.3 Root Finding

The cubic equations derived from Equations 4.2, 4.5, for finding the moments t ∈ [0,1] over the

simulation time step at which four vertices are coplanar, can be solved in a number of ways. In

1545 Gerolamo Cardano published a formula (following the methods of Tartaglia of the same time)

of an analytical solution to cubic polynomials [47]. However, as with the quadratic and quartic

formulas, care must be taken when implementing the cubic formula for computer calculations,

which have finite precision in storage and arithmetic. These formulas for polynomial roots of

degrees less than five require manipulations of the polynomial coefficients with finite precision

operations (i.e. cube root, arccosine, cosine, exponentiation), therefore it becomes imperative to

minimize round off error as even tiny perturbations in the coefficients of some polynomials may

dramatically move its roots in the complex plane [48]. This lack of computational stability lends

to the adoption of iterative root finding algorithms over analytical formulas [48]. However, care
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must also be taken in choosing from among the many iterative polynomial root finding algorithms.

Some methods sacrifice robustness (i.e. Newton-Raphson’s Method vs. bisection Method) in lieu

of speed (i.e. quadratic vs. linear convergence), or require complex (C) arithmetic (i.e. Laguerre’s

Method). Fortunately, to solve our collision problem we require only unique, real roots t ∈ [0,1]⊂

R, therefore we use a Hybrid Method for bracketed, real solutions [48; 49]. This Hybrid Method

takes an interval for which a solution is known to exist (by the intermediate value theorem), and

utilizes both the bisection and Newton-Raphson method to converge on its value. If a Newton-

Raphson step proposes a solution outside of the interval, then a bisection step is used instead.

We can efficiently evaluate and bracket (i.e. calculate critical points) the cubic equation using

Horner’s method of polynomial evaluation. Although it is necessary to verify the occurrence a

collision for each root t ∈ [0,1], the number of verified collisions are of import. Each verified

collision signifies a moment the pair of mesh elements (vertex-triangle, edge-edge) pass through

one another. If an even number of collisions occur over the time step, the pair of mesh elements

will be free of intersections. As this leaves the mesh elements in a collision free and physically

plausible configuration, we ignore resolving the intersection from the first collision (smallest root

t ∈ [0,1] verified resulting in a collision).

Additionally, coefficient culling techniques exist [50] to predetermine if a given cubic equation

of the form a3t3 + a2t2 + a1t + a0 = 0, with ai ∈ R, has no real root in the interval [0,1]. For

instance, if all ai have the same sign, no root within the interval can possibly exist. Other criteria are

used to efficiently cull cubic root computations in our root finding routine. If any of the following

hold: 1) a0,a1 > 0 and a0 +a1 > |a2|+ |a3|, 2) a0,a1 < 0 and a0 +a1 <−|a2|− |a3|, or 3) |a0|>

|a1|+ |a2|+ |a3|, then no root may exist within the interval [0,1].

4.3 Collision resolution

We resolve collisions by adapting position-based dynamics (PBD) [2; 36] (see Chapter 3 for a brief

review) to the simulation of growth (incidentally, we note that the related problem of resolving
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collisions between leaves in a set of plants was used to illustrate the power of PBD in the original

paper [2]). Consistent with the PBD method, we map mesh M0 representing the initial (collision-

free) floral canopy into a network of constraints. Distance constraints correspond to the edges of

this mesh and represent their length. Angular constraints correspond to the signed dihedral angles

between all pairs of adjacent triangles in the mesh. Attachment constraints define positions and

orientations of individual florets in the canopy (see Chapter 5). We denote the resulting set of

constraints as C0. We then simulate the growth of the inflorescence and the opening of flowers.

To this end, we iteratively progress through the sequence of polygonized meshes M0,M1, . . . ,Mn

representing consecutive stages of the inflorescence canopy development. In each step i, we use

the edge lengths, dihedral angles and attachment positions in mesh Mi to define the corresponding

constraint set Ci. If one or more collisions are detected, we add a collision constraint to the set Ci for

each group of vertices corresponding to a vertex-triangle collision or edge-edge collision. Collision

constraints are unilateral constraints on the four vertex positions responsible for the mesh elements

intersection. The collision constraints are initiated such that the value of the current configuration

is negative, i.e. Ci (aaa,bbb,ccc,ddd) < 0, and the intersection is resolved with any vertex configuration

where the constraint is greater than or equal to 0, i.e. Ci (aaa,bbb,ccc,ddd) ≥ 0. PBD then linearises the

constraint set Ci, and repositions the vertices of the mesh. Once a collision-free configuration is

found, we advance developmental time and progress to the next simulation step, i+1.

4.3.1 Vertex-triangle collision constraint

In the case that a collision between vertex qqq and triangle (aaabbbccc) (comprised of vertices aaa, bbb, ccc) is

detected over a simulation step i, a vertex-triangle collision constraint Cvt is added to the set Ci.

The constraint restricts qqq to maintain a distance of h from the plane defined by the triangle (aaabbbccc)

(see Figure 4.5). This constraint takes the form

Cvt (qqq,aaa,bbb,ccc) = (qqq−aaa) ·nnn−h ≥ 0

= (qqq−aaa) ·
(

(bbb−aaa)× (ccc−aaa)
‖(bbb−aaa)× (ccc−aaa)‖

)
−h ≥ 0

(4.6)
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ba c

Figure 4.5: Principle of vertex-triangle constraint. (a) Vertex qqq is a certain distance away from
plane of the triangle (aaabbbccc), suppose it has passed through the triangle from the side opposite to the
normal nnn. (b) Side view of the configuration. Vertex qqq should be repositioned back to the opposite
side of the triangle, resolving any intersections arising from triangles that contain qqq (not visualized
here). (c) Vertex qqq is repositioned back to the side of the triangle it entered through, separated by
a distance of h.

With this formulation, qqq is constrained to one side of the triangle plane, the side oriented with the

triangle normal nnn. Thus, if qqq enters the triangle from below, the normal nnn direction is reversed, so

that PDB will reposition qqq to the correct side.

4.3.2 Edge-edge collision constraint

a b c

Figure 4.6: Principle of edge-edge collision constraint. (a) Colliding edges (aaa,bbb) and (ccc,ddd) have
produced an intersection between the edge (aaa,bbb) (red) and mesh triangle (blue). A pseudo-triangle
(bbbcccddd) (grey) is displayed here as well. (b) Side view and geometric configuration of intersection
between edge (aaa,bbb) (red) and mesh triangle (blue). The pseudo-triangle (grey) defines the plane
that aaa needs to move through to resolve the collision. (c) The vertex aaa is repositioned above the
plane defined by the pseudo-triangle, separated by a distance of h, resolving the intersection.

In the case that a collision between edges (aaabbb) and (cccddd) (comprised of vertices aaa and bbb, ccc and

ddd respectively) is detected over a simulation step i, an edge-edge collision constraint Cee is added
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to the set Ci. Bender et al. [51] describes an extension to Position-based dynamics that resolves

collisions between edges. However, prior to learning about their work, I designed the exact same

edge-edge collision constraint. Edge collisions have a similar geometric configuration to vertex-

triangle collisions: a pseudo-triangle may be constructed from vertices bbb, ccc and ddd, with vertex aaa

remaining free (see Figure 4.6a). The vertices of each edge are repositioned such that vertex aaa is a

distance h above the pseudo-triangle (bbbcccddd) (see Figure 4.6b). This constraint Cee is formulated as

follows

Cee (aaa,bbb,ccc,ddd) = (aaa−bbb) ·
(

(ccc−bbb)× (ddd−bbb)
‖(ccc−bbb)× (ddd−bbb)‖

)
−h ≥ 0 (4.7)

4.4 Subdivision smoothing

a b c

Figure 4.7: Subdivision smoothing of a mesh M. (a) A single triangle within M. (b) Quadrisection
of the triangles within M, generating a new mesh Ms. (c) The vertices of Ms are repositioned,
generating a smoother mesh M f .

The coarse polygonization that afforded efficient collision handling, can also produce unnatural

depictions of the florets when rendered. As a low polygon count is desirable for efficient collision

handling and simulation, conversely, a smoother, higher resolution floral canopy is required for the

final models to be appropriately rendered. Thus, to render our floral canopy realistically, its coarse

representation must be post-processed into a smoother form, while preserving the collision-free

configuration. Similar to the post processing technique by Bridson [42], I employ the Loop mesh

subdivision technique [52] to smooth the coarse triangulations, and resolve collision after each

smoothing iteration. To this end, we quadrisect each triangle face of a mesh M that is assumed to be
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initially collision-free. Introducing new vertices at the edge mid-points (see Figure 4.7a,b), a mesh

Ms is created that has a finer resolution than M. Subdividing each triangle in its plane guarantees

that the subdivided mesh Ms will also be collision-free. Then, to produce a smoother mesh M f ,

the vertices of Ms are repositioned (Figure 4.7c). However, in repositioning the vertices of Ms,

new triangle collisions may be introduced within M f (Figure 4.8b). We handle these collisions as

described in Sections 4.2 and 4.3, using Ms as the initial collision-free triangle configuration, and

M f as the desired triangle configuration. As new collisions are rarely introduced when subdividing

the coarse mesh, due to the convex-hull property of the subdivision scheme, the number of collision

constraints to be solved are few.
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Figure 4.8: Collision handling in post processing subdivision smoothing. (a) Collision-free ar-
rangement of coarse interlocking petals. (b) Two iterations of Loop subdivision of the coarse mesh
with no collision handling, causing new intersections. (c) Two iterations of Loop subdivision with
collision handling following each iteration.
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Figure 4.9: A zoom into the lilac inflorescence from Figure 4.10 modeled with collision resolution
turned off and on. Two flowers have been false-colored to facilitate comparisons.

4.5 Model

Figure 4.10 shows a sample inflorescence model with collisions between petals eliminated. We

have used a previously published model of lilac inflorescence architecture [8] to support florets

in space. A magnified view of a portion of this inflorescence (Figure 4.9) highlights intersections

that would occur if collisions were not addressed, and shows how the algorithm resolves them

by displacing individual florets and deforming their petals. Although neglecting collisions does

not significantly affect the overall shape of the inflorescence, collision detection and resolution is

essential to properly represent details in close-up views.
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Figure 4.10: A model of a lilac inflorescence with collisions resolved.

4.6 Solving constraints with GPU vs. CPU

My implementation optionally utilizes GPU parallelization (using Nvidia’s application program

interface CUDA [53]) to solve the bending and distance constraints of inflorescence models. Al-

though the bending and distance constraint systems are identical for both the GPU and CPU im-
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plementations, the organization and method of solving have fundamental differences. The CPU

version proceeds in a Gauss-Seidel manner, sequentially solving linearized constraints, thus is in-

herently unparallelizable. The GPU version solves the PBD constraint system in a Jacobi manner,

i.e. linearizing and solving constraints independently of one another, and is thus parallelizable.

However, solving each constraint in parallel is difficult, as many constraints share vertices (e.g.

the vertex of a triangle fan is repositioned by multiple distance constraints, one for every every

connected edge). To address this issue, constraint systems can be organized in a number of ways

to avoid these constraint overlaps [36; 37]. My implementation of PBD on the GPU uses atomic

operators, available in CUDA, for concurrent, thread safe data operations (e.g. integer addition

and subtraction of variables accessed concurrently across multiple threads). Table 4.1 lists specific

inflorescence models, their approximate triangle number and the amount of time to simulate their

growth (with collisions) using either the CPU or GPU implementation to solve their bending and

distance constraints.

Table 4.1: Simulation Timing

Model Approx. # of triangles Approx. Time (min.)
Yarrow (CPU) 350,000 60
Dahlia (CPU) 30,000 20
Sunflower (CPU/CUDA) 130,000 10
Gaillardia (CUDA) 25,000 10
Orlaya (CPU) 120,000 45
Lilac (CPU) 200,000 120
Dyssodia (CUDA) 100,000 10
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Chapter 5

Phyllotactic pattern generation

5.1 Phyllotactic pattern generation

In the remainder of this thesis we focus on plants of the aster and carrot families (Asteraceae and

Apiaceae), in which florets are arranged into spiral phyllotactic patterns. We recreate these pat-

terns by extending a previous model [8] to simulate the dynamics of pattern formation. Dynamic

simulation opens the door to animating the development of inflorescences, and improves the real-

ism of static models by capturing the age and size differences between the florets. In addition, we

consider the formation of hierarchical and recursive phyllotactic patterns.

5.2 Previous work

For nearly two centuries, researchers have been fascinated with phyllotactic patterns for their con-

spicuous regularity and intriguing mathematical properties, such as the emergent occurrence of

Fibonacci numbers and the golden ratio. The beauty of inflorescences exhibiting diverse phyl-

lotactic patterns has also made them an attractive modeling subject in computer graphics. The

first models [4; 54] were based on analytic descriptions of spiral organ packing on the surface of

a cylinder [55] or disk [56]. Using ideas similar to Vogel’s [56], Lintermann and Deussen [7] de-

veloped an analytic description of spiral phyllotactic patterns on the surface of a sphere. Fowler et

al. [5] and Prusinkiewicz et al. [8] extended the range of modeled patterns to primordia of varying

size distributed on an arbitrary surface of revolution. The latter approach, based on an extension of

Vogel’s model by Ridley [26], is well suited for computer graphics applications due to its flexibility

and robustness.
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Figure 5.1: Geometric elements of the

extended Ridley phyllotaxis model.

Ridley assumed that the supporting surface is de-

fined by rotating a planar generating curve C around

the surface axis (Figure 5.1). The position of pri-

mordium i is expressed by two parameters: angle αi

with respect to a reference direction, and position si

along the generating curve. In contrast to the mod-

els that simulate local interactions between individual

primordia (e.g. [5]), Ridley adopted a more global

perspective and proposed to calculate the displace-

ment si+1− si of primordium i+1 with respect to pri-

mordium i by equating primordium area Ai with the

area of a circular band circumscribing the supporting

surface at the elevation of these primordia. This leads

to the equation [8]:∫ si+1

si

2πr(s)ds = Ai or
∫ si+1

si

2πr(s)
Ai

ds = 1, (5.1)

where r(s) is the distance of point s on the generating curve C from the axis of the supporting

surface. Given the initial position s0 and a sequence of primordium areas {Ai}, Equation 5.1 (left

or right) can be solved iteratively for s1,s2, . . . , yielding the sequence of primordium positions

{si} along the generative curve C. In modeling practice it is usually more convenient to define the

primordium areas as a function A(s) of their positions s rather than index i, which results in∫ si+1

si

2πr(s)
A(s)

ds = 1. (5.2)

With consecutive primordia positioned along the generative curve according to Equation 5.2, and

the divergence angle αi+1 − αi between consecutive primordia equal to the golden angle ϕ ≈

137.5◦, the primordia are packed in a dense spiral phyllotactic pattern [26]. We define function A(s)

interactively to make the distribution of floret sizes in the generated pattern match that observed in

real inflorescences used for reference.
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Figure 5.2: Earlier and later stages of phyllotactic pattern formation. (a) Centripetal fractionation.
(b) Divergent fractionation. (c) Segregation. Colors indicate the age of primordia (green: younger;
red: older).

5.3 Modeling the dynamics of phyllotaxis

We extend Ridley’s model to capture not only the static distribution of primordia, but also the

dynamics of their production and distribution over time. From the dynamic perspective, a plant

may produce florets in two distinct modes, termed fractionation and segregation [14]. In the case

of fractionation, the meristem is initially bare or “naked”, and becomes gradually covered by the

emerging primordia. In the case of segregation, new primordia originate near the tip of a continu-

ously growing meristem when and where room is created for them.

We simulate two distinct cases of fractionation, as well as segregation, using a unified model.

The reproductive meristem is divided into three regions: the naked inner and outer regions, and the

primordium-carrying intermediate region (Figure 5.1). In centripetal fractionation (Figure 5.2a),

commonly observed in developing heads, the outer region is absent, and the inner region initially

occupies the entire meristem. Beginning at its rim, consecutive primordia are produced at fixed

time intervals at positions determined by Equation 5.2, building up the primordium-carrying region
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at the expense of the inner region from the outside in. This process terminates when the area of

the inner region falls below that of a single primordium. In divergent fractionation [57] (Figure

5.2b), both the inner and outer regions are initially present. Primordium formation begins at the

boundary between these regions and proceeds simultaneously inward and outward. Finally, in

the case of segregation (Figure 5.2c), the initial conditions are similar to those in the centripetal

fractionation, but the meristem is small, commensurate with a primordium. A new primordium is

produced when the area of the growing inner region exceeds a threshold value. The inner region’s

area is then reduced by the area of the primordium, falling below the threshold until further growth

increases it again. A sequence of primordia is thus produced, with the period dependent on the

growth rate of the inner region.

In general, both the meristem and the primordia may grow over time. The growth rates of the

inner and outer regions are specified as functions of the meristem age. Likewise, the growth of

each primordium is a function of its age. This creates a progression of sizes and developmental

stages of individual florets, which plays an important role both in the animation of inflorescence

development and the reproduction of specific developmental stages alike. The modeler defines all

functions using a graphical function editor. The same function is used for all primordia of the same

type.

The last element of the phyllotaxis model is the growth of the supporting surface – the surface

of a meristem or a receptacle – as a whole. To model changes in its size and shape, we interpolate

between graphically-defined generating curves C that describe the profile of the supporting surface

at select points in time. Furthermore, to coordinate the size of the supporting surface with the size

of its regions, we sum up the current areas of all regions present (the primordium-carrying area is

calculated by adding up the areas of all primordia) and scale the supporting surface to match that

sum. The growth and changes in the shape of the supporting surface are featured in the simulations

in Figure 5.2.

As described in Chapter 4, we detect and resolve collisions while simulating the development
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Figure 5.3: Development of a recursive, self-similar phyllotactic pattern on a uniformly growing
flat meristem.

of an inflorescence. If the modeling objective is a static inflorescence form, this simulation need

not be particularly accurate, as long as the final flower shapes and their spatial distribution are

correct. However, if the objective is the animation of development, the spatio-temporal sequence

of floret opening and changes in their position over time must reproduce biological reality.

5.4 Modeling hierarchical and recursive patterns

When modeling compound inflorescences, we assume that a pattern element created at level n may

become a meristem and start producing next-level elements (meristems or primordia) upon reach-

ing a threshold size. For example, Figure 5.3 shows a pattern generated by recursive segregation in

a flat exponentially growing space. This figure also illustrates the relative orientation of pattern el-
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ements at different levels: consistent with the Hofmeister rule the first element at level n+1 within

the parent meristem at level n is positioned as far as possible from the centre of the “grand-parent”

meristem at level n−1 (cf. [11]).

Figure 5.4: Two-level hierarchical phyl-

lotaxis with conical meristems.

With m > 1 hierarchy levels, we assume that

elements of phyllotactic pattern created at lev-

els n = 1, . . . ,m are next-level meristems, and

only last-level meristems produce floret primor-

dia. For example, Figure 5.4 shows a two-level

pattern (m = 2).
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Chapter 6

Determining floret type

6.1 Previous work

As discussed in Chapter 1, inflorescences may comprise florets of different types, thus exhibiting

floral dimorphism. In computer graphics practice to date, dimorphism has been modeled in the

context of heads: a user-specified number of florets at the rim of the head was assigned the fate

of petal-like ray florets, and the remaining florets were modeled as disk florets [4; 5]. Inspired by

Hirmer [58], Battjes and Prusinkiewicz [59] proposed a mathematical model of ray floret differ-

entiation based on the packing of primordia on the rim of a head. They demonstrated that for the

divergence angle ϕ ≈ 137.5◦ the numbers of ray florets are numerically canalized to the Fibonacci

series, as often observed in real heads. Neither model suffices, however, to capture dimorphism in

compound inflorescences, in which the fate of each floret may depend on its position within the

inflorescence in a relatively complex manner. Addressing this limitation, we propose an algorithm

that applies to both simple and compound inflorescences. The algorithm is based on the biological

hypothesis that the fate of florets depends on available space [16].

6.2 The model

Our algorithm operates under the assumption that the floral canopy is approximately planar. Each

floret P in the set S of all florets is associated with a coneK(P) originating at P (Figure 6.1a). This

cone is oriented away from the centre O of the highest-level head or umbellet to which P belongs.

In the simplest case, the fate of floret P is determined by the presence or absence of another floret

in the cone K(P) (Figure 6.1b,c). In general, this fate may also depend on the minimum distance

dmin(P) between P and a floret Q ∈ K(P). In order to find this distance, we first calculate the
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Figure 6.1: Principle of evaluating floret fate in dimorphic inflorescences. (a) Definition of cone
K(P) associated with floret P in a head or umbellet with centre O. The cone has opening angle α .
(b) The fate of a floret depends on other florets that may be within its cone. (c) The simplest case
of floret differentiation: a floret becomes a ray floret if no other floret is within its cone.

distances d(P,Q) between P and all florets Q ∈ S using the formula:

d(P,Q) =

 ‖Q−P‖ if P̂Q · ÔP < cosα

∞ otherwise
(6.1)

Here ÂB denotes the normalized vector from A to B, and α is the opening angle of cone K(P).

The distance d(P,Q) is thus set formally to infinity if floret Q lies outside this cone. The minimum

distance dmin(P) is then calculated as

dmin(P) = min
Q∈S

d(P,Q). (6.2)

Application of this formula to simple flower heads is illustrated in Figures 6.2 and 6.3. All patterns

were generated assuming divergence angle ϕ = 137.5◦ and primordia of fixed size. In both figures,

a floret P becomes a disk floret upon dmin(P)< ∞. Figure 6.2 shows the dependence of the number

of ray florets N on the total number of florets n, assuming a constant opening angle. We observe that

the numbers of ray florets which emerge on heads of different sizes tend to be Fibonacci numbers.

This result is consistent with the experimental data and mathematical analysis of a related (simpler)

model [59].
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Figure 6.2: Dependence of the number of ray florets N on the total number of florets n for a
constant cone opening angle α = 75◦.
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Figure 6.3: Dependence of the number of ray florets N on the cone opening angle α for a constant
total number of florets n = 82.

A similar bias towards Fibonacci numbers occurs if the number of florets n is fixed and the

cone opening angle α is changed instead (Figure 6.3). Fibonacci numbers occur for large ranges

of α values, thus capturing the numerical canalization of ray florets.

Figure 6.4: Differentiation of florets in hierarchically organized inflorescences. Ray florets emerge:

(a) at the level of second-order heads, (b) at the level of the entire inflorescence, and (c) at both

levels of inflorescence organization. In all cases α = 53◦.

Examples of floret fate determination in a hierarchically compound inflorescence are shown

in Figure 6.4. In all cases, the fate of florets is controlled by distance thresholds. In Figure 6.4a,

threshold T ha is larger than the distance between florets within a second-order head, but smaller

than the distance between these heads. A floret P becomes a ray floret if and only if dmin(P)> T ha.
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In this case, ray florets differentiate independently in each second-order head. In Figure 6.4b, floret

P becomes a ray floret if and only if dmin(P)> T hb, where T hb is larger than the distance between

second-order heads. In this case, the differentiation of ray florets is dominated by their position

within the entire inflorescence. The model in Figure 6.4c combines both mechanisms. Large ray

florets emerge when dmin(P) > T hb, and smaller ones when T ha < dmin(P) ≤ T hb. In the latter

case, the size of the enlarged petals is proportional to the amount of available space, dmin(P),

resulting in a continuum of florets sizes.
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Chapter 7

Branching structure

7.1 Previous work

In inflorescences in which florets are supported by a branching structure (as opposed to a recepta-

cle), this structure is an inherent component of the model. Computational modeling of branching

inflorescence structures was an early biological [20] and computer graphics [3; 4] application of

L-systems. The use of positional information [8] facilitated specification of inflorescences by

providing the modeler with direct control over the extent and density of branches. Sketch-based

methods [9; 10; 28] facilitated modeling further by introducing a more intuitive user interface.

With all these approaches, the distribution of flowers in space was determined by the underlying

branching structure. Such branching-first models work well for many inflorescences (e.g., the lilac

in Figure 4.10), but do not easily capture inflorescences with florets arranged into a smooth, pla-

nar canopy. To model these inflorescences, we employ the florets-first paradigm (Chapter 1 and

Figure 1.4), in which a spatio-temporal floret distribution is generated first and provides input for

synthesizing the branching structure.

Our method is inspired by the algorithm for generating vascular patterns in leaves and modeling

trees proposed by Rodkaew et al. [27] (see also [60]). Rodkaew’s algorithm operates centripetally,

i.e., from the outside in. For example, in the case of trees, it begins by distributing leaves at

the periphery of the tree canopy, initiates branches at these locations, and gradually extends them

towards the trunk. Rodkaew et al. described this process in terms of particles that trace branches

by moving through space while being attracted to the base of the tree and to their nearest neighbor.

Particles that approach each other merge, forming branching points. The choice of Rodkaew’s

algorithm as a basis for modeling the architecture of flat-topped branching inflorescences was

motivated by two factors:
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i) At the macroscopic level, Rodkaew’s algorithm is a stepping stone for generating three-

dimensional branching structures that support florets in predefined positions. In research preced-

ing this thesis, I used Rodkaew’s algorithm to generate a multitude of branching structures from

predefined positions of the branch tips, down to the base (see Figure 7.1a).

ii) At the microscopic level it can be viewed as a geometric analog of auxin canalization, which

defines the vascular system of young inflorescences. It is plausible that this vasculature defines the

branching structure of inflorescences in reality (Chapter 1).

Further motivating this supposition, I extended Rodkaew’s algorithm to produce various branch-

ing structures (see Figure 7.1b) otherwise unattainable by Rodkaew’s algorithm. As well, I further

extended Rodkaew’s algorithm to model the vascular structures in various plants, e.g. geometri-

cally modeling the vascular development of the grass, Brachypodium, and the shoot in Arabidopsis

(see Figure 7.1c,d) [22; 61]. These extensions were motivated by observations that differentia-

tion of new primordia and vascular strands may not take place at one time. Rodkaew’s algorithm

does not account for this possibility, i.e. particles introduced at different times cannot merge with

already established branches. This further necessitated a series of extensions to Rodkaew’s algo-

rithm, which allows for emergent vascular strands to merge with already established veins.

7.2 Extended Rodkaew algorithm

To model inflorescences, we extended Rodkaew’s algorithm in several directions.

Attraction to branches. According to the original formulation of the algorithm, particles inter-

act with each other: they do not interact with the emerging branching structure. Consequently, a

moving particle may run unnaturally close to a branch formed earlier and/or cross it. To avoid this

artifact, we consider not only the moving particles, but also the entire structure developed so far

(i.e., past positions of all particles) as candidate attracting points (Figure 7.2a). A moving particle

is thus attracted to its closest neighbour irrespective of whether it is another moving particle or a

point in the existing branching structure. Furthermore, we consider the previous direction of par-
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Figure 7.1: Generating branching patterns from the branch tips down. (a) A branching structure
generated from Rodkeaw’s algorithm. The initial positions for the particles (purple tips of the
tree) come from the positions of tips in a H-tree. (b) Rodkaew’s algorithm, with the extension of
a function weighting the attraction between particles, applied to positions distributed on the cir-
cumference of a circle. (c) Model of vascular development in the grass, Brachypodium (see [22]),
modeled using my extensions of Rodkaew’s algorithm, allowing for new primorida (yellow) to be
introduced over time, and new vascular strands to merge with previously established veins (white).
(d) Model of vascular development in shoot of the plant, Arabidopsis (see [61]), modeled using
same extensions to Rodkaew’s algorithm. A spiral phyllotaxis introduces new primordia (white)
sequentially upward, on the surface of a cylinder; and the vascular strands emerging from the
primorida connect to previously established veins.
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Figure 7.2: Elements of the extended Rodkaew algorithm. (a) Particle P extends a branch segment
in direction HHH ′, which is a weighted average of the previous segment direction HHH, vector AAA pointing
toward the inflorescence base A, and vector BBB pointing towards the nearest branch or particle. (b)
The umbellets of a compound umbel are generated separately from the main umbel. Both the
positions of the florets (empty circles) and the umbellet and umbel centers (small blue circles) are
determined by a phyllotaxis model.

ticle motion HHH as a factor influencing the next direction HHH ′. Assuming that all vectors defined in

Figure 7.2a have unit length, direction HHH ′ is calculated in each simulation step as

HHH ′ =
1

wa +wb +wh
(waAAA+wbBBB+whHHH). (7.1)

where all vectors are defined as in Figure 7.2a and have unit length.

Weights wa, wb and wh provide a degree of control over generated forms. With wa > 0 and

wb = 0, all particles converge directly on the inflorescence base, creating an umbel (Figure 7.3a).

Increasing wb results in branching structures (Figure 7.3c,e). Making wb a function of the distance

d to the closest neighbor provides a means for controlling the shape of branches near the branching

points, producing smaller or larger branching angles (Figure 7.4). Increasing weight wh > 0 pre-

vents biologically improbable [62] highly non-planar branch arrangements at the branching points.

It also reduces the curvature of branches, making them more smooth.

To accelerate spatial, nearest neighbour queries, a similar implementation to that described by

Teschner et. al [43] is used. Each tree branching structure in the scene is paired with a particle at

its root, and is extended as the particle moves (Figure 7.2). Each particle-branch pair are assigned
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Figure 7.3: Examples of branching structures generated using the extended Rodkaew algorithm.
(a) All particles are attracted to the inflorescence base. (b) Early and (c) final stages of pattern
formation with primordia produced slowly. (d) Early and (e) final stages of pattern formation with
primordia produced quickly. Colors of primordia indicate their age, as in Figure 5.2.

a unique ID number, IDbranch. As well, each tree node in the branching structure is assigned a

unique ID among all the tree nodes in the scene, IDnode. The spatial domain is divided into voxels,

each storing a list of unique ID numbers pairs, (IDnode,IDbranch), from those particles, tree nodes

and branches confined within or passing through the voxel. When calculating the direction to the

nearest particle or branch from a given particle, the list of ID pairs within the voxel containing the

particle are iterated over. A pair with the same IDbranch as the particle is ignored, as the tree node

associated with it already belongs to the same branching structure as the particle. For all other

pairs, the vector displacements between the particle and the tree nodes associated with each IDnode

is computed. The voxels radially nearest to voxel containing the particle are also searched. The
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Figure 7.4: The dependence of branching point configuration on function wb(d).

IDnode with the minimal vector displacement is the nearest neighbour to the particle. This allows

for quick nearest neighbour querying regardless of the various tree topologies in the forest of trees,

which is liable to change as particles merge with other established branches. Due to the emergent

behaviour of the algorithm, particles may move in close proximity to tree nodes associated with

its own tree, i.e. they share the same IDbranch. These nodes are ignored in querying the nearest

neighbour and merging processes. Otherwise a particle would be attracted to and merge with tree

nodes of its own branching structure, causing undesirable loops in the branching structure (see

Figure 7.5a). Therefore, when branches merge, i.e. when a particle encroaches close enough to

an established branch, and ”grafts” its tree onto the branch, the unique ID of the branch, IDbranch,

must be propagated up the particle’s tree (see Figure 7.5b,c).

Particle initialization. In the original formulation, the initial positions of the particles are ran-

dom, and all particles begin their motion simultaneously. To model inflorescences, we assume that

initial particle positions and the times of their creation are determined by the dynamic phyllotactic

model (Chapter 5). The timing of floret emergence has a significant impact on the resulting branch-

ing structure. With primordia created at large time intervals, during which particles can travel rel-

atively long distances compared to the distances between primordia, the emerging branches have

a monopodial architecture characterized by clearly delineated axes (Figure 7.3b,c). In contrast, if

primordia are created quickly, branches have a sympodial architecture characterized by sequences

of short segments positioned laterally with respect to their parents (Figure 7.3d,e).
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Figure 7.5: A younger branch (red) merging with an established branch (blue). (a) The growing tip
of the red branch (indicated by the arrow) searches its neighbouring voxels, and tree nodes therein
(via their ID pairs (IDnode,IDbranch)), for the nearest potential neighbour to move towards, and
possibly merge. Tree nodes belonging to the red branch (IDbranch ≡ 1) are ignored, avoiding loops.
(b) The growing tip’s new position is within the merging distance of the nearest neighbouring
branch (blue), so it is grafted onto the blue branch. The red branch is now a constituent of the
blue branch, thus the blue IDbranch ≡ 2 must be propagated up through the tree. (c) With the blue
IDbranch propagated throughout its branches, the (potentially) growing tip of the blue branch may
never merge with itself.

Growth. We model growth of the branching inflorescence structure as a gradual free-form

deformation [63] of the space including branches and moving particles. This deformation is coor-

dinated with the dynamic phyllotactic patterning of floral primordia and the canopy they produce.

In the models implemented so far, we assumed uniform or allometric expansion of this space. In

the allometric case, this space expands at different, size-dependent rates along different axes of

the coordinate system, resulting in changes to the branching angles and overall proportions of the

inflorescence over time. These deformations do not affect branch width, which is determined in-

dependently. An example of the development of a branching structure supporting primordia in a

recursive phyllotactic pattern is shown in Figure 7.6.

Distinct hierarchy levels. Some inflorescences (e.g. corymbs of heads and compound umbels)

are organized into distinct hierarchical levels. We generate branching patterns of these inflores-

cences by considering each level of the hierarchy separately (Figure 7.2b).
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Branch width. We assume that terminal branch segments have the same diameter and determine

the diameter of interior segments using the formula dp = dp
1 + . . .+ dp

m. Here d is the diameter

of the branch below the branching point (closer to the inflorescence base), and d1 . . .dm are the

diameters of the branches supported at this point. Power p controls the rate at which branch widths

accumulate towards the inflorescence base. Variants and extensions of this formula have been used

in different contexts [4; 64; 65]; a special case, with p = 2, was proposed by Leonardo da Vinci to

capture the relation between branch diameters in trees. In the modeling of inflorescences, smaller

changes in diameter obtained for p > 2 usually lead to more realistic results.
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Figure 7.6: A growing branching structure generated using the extended Rodkaew algorithm. Flo-
rets (white spheres) are formed in a recursive phyllotactic pattern and emerge at different points in
time according to the model in Figure 5.3. The emergent branching structure supports all florets in
the same plane, as needed for modeling corymbs.
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Chapter 8

Implementation

The presented algorithms are implemented as a suite of programs that communicate via shared

files. The flow of information is shown in Figure 8.1, and the implementation and file specifications

are as follows.

The modeling software of a) through e) were devised within the Virtual Laboratory (VLab)

[30], which provides an environment for exploratory programming and experimentation with sim-

ulation models, including graphical editors of functions and contours, and viewers for displaying

intermediate results.

a) Interactive flower editing. The Floret Editor (Chapter 2) is developed as a single vlab object,

taking advantage of graphical and interactive capabilities of the lpfg simulator (see Figure 2.1).

The output of this editor is a floret text file specifying the vertices of the control mesh, readable by

the floret animator.

b) Posture interpolation. The floret animator reads a sequence of key poses from floret files

(often, no more than two), and interpolates between them, displaying the development for visual

inspection. The progress of time is regulated by a graphically-specified growth function, giving

different developmental characteristics, e.g. linear vs. sinusoidal interpolation.

c) Polygonization. Within the floret animator, the sequence of interpolated B-spline florets can

be previewed as polygonized triangle meshes. The polygonization of the B-spline parameter space

is controlled by two graphically-controlled functions (see Figure 2.4). These functions specify

where vertices are positioned within the B-spline uv-parameter space. A Delauny triangulation is

then computed over the vertices, providing a consistent mesh topology throughout the floret devel-

opment. The developmental sequence is output as a sequence of OBJ files, encoding a sampling

of the floret’s development, to be used as an exemplar of a developing floret instantiated within an

inflorescence.
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FLORET
Floret B-spline 
control mesh file

OBJ
OBJ mesh file

SCN
Scene file

RBA Rigid body 
animation file

CONT Graphically 
specified contour 
file

MOV
/IMG

Rendered 
animated movie 
or image 

FUNC Graphically 
specified function 
file 

PARAM Parameter file of 
the Floral Canopy 
Composer

L-SYS
L-system file

OBJ

SCN

FUNC

OBJOBJOBJ

FUNC
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x2
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RBARBARBA
SCN

OBJOBJOBJ

CONT

x2
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SCN
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FLORET
FLORET
FLORET

L-SYS

Figure 8.1: Key components and file usage of the modeling method, and the associated information
flow via transferred files.
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d) Flower distribution generation and e) Floret type determination. The dynamic phyllotaxis,

defining the type, placement, orientation, and growth of the florets within the inflorescence over its

development, is procedurally generated within VLab. Modeling phyllotaxis within VLab affords

a multitude of possible (spiral) phyllotactic patterns, e.g. simple, hierarchical, static, dynamic.

Static phyllotaxis models require one graphically-controlled countour file, and one function file

to specify the shape of the receptacle and sizes of the florets, respectively. Dynamic phyllotaxis

models were procedurally generated with at most three graphically-specified functions that define

the growth of the floret primordia and the inner and outer regions of the supporting surface (Chap-

ter 5). In addition, some models (e.g. Figures 9.4, 9.2, 9.3) require two profile curves to specify

the initial and final shape of the supporting surface. Although viewed as two separated programs,

the models for flower distribution generation and the floret type determination are typically written

as a single L-system, requiring a small number (about 5 per program) of numerical parameters

to generate a phyllotactic pattern with dimorphism. The amount of input increases in hierarchi-

cal structures, where phyllotactic patterns at different levels of the hierarchy may require separate

definition. The output of phyllotactic generation depends on the inflorescence to be modeled. If

the phyllotactic pattern of the inflorescence model is static (i.e. for the purposes of a single final

image rendering, or an animation movie of opening florets with an unchanging phyllotaxis), then

only the final positions, scales and orientations of the floret mesh/animation types (as produced in

step c) are required. This is described in a scene (SCN) file (see Appendix C.2), enumerating the

type, position, scale, and orientation of each floret mesh/animation exemplars to be instantiated in

the scene. However, if the phyllotatic pattern of the inflorescence model is dynamic (i.e. for the

purpose of a fully developmental inflorescence animation), then each floret’s position, scale and

orientation over the development of the supporting surface must be saved. To this end, a sequence

of rigid body aninmation (RBA) files (see Appendix C.3) are output, each listing unique floret IDs

and their current rigid body positions, scales1 and orientations at a given moment. The sequence

1Scaling is not a rigid body mode by definition, but I have found utility in controlling the scale of florets over an
animation.
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together describes the changes of each floret over the inflorescences development. The type of

florets to be instantiated are read from a SCN file accompanying the sequence of RBA files. The

order of floret placements in the SCN file provides the unique identification carried forth in the

RBA files (see Figure 8.2). This reasoning for this design choice is twofold: 1) for conciseness

of the RBA files, which do gain nothing from storing the type of each floret across the multiple

files, and 2) allows for hierarchical relations of dynamic configurations, i.e. a SCN file instanti-

ates a rigid body animation of an inflorescence described in another SCN file. Recursive relations

between scene files and rigid body animations are possible in this framework, thus care must be

taken by the modeler to ensure this not happen.

0   0 1 0 ...
1   0 2 0 ...
2   0 3 0 ...

RBA

0   0 1 0 ...
1   0 2 0 ...
2   0 3 0 ...

RBA

0   0 1 0 ...
1   0 2 0 ...
2   0 3 0 ...

RBA

ca: 3 ...
ca: 1 ...
ca: 1 ...

SCN

...the ID numbers of floret
 transformations in the RBA files.   

The order of floret entries in
 the SCN file correspond to... 

0
1
2

Figure 8.2: Connection between scene (SCN) files and rigid body animation (RBA) files. The first
(or zeroeth) entry of the SCN file is a floret of type 3. The positions, scales, and orientations of this
floret throughout the development of the inflorescence are defined by the entries in the RBA files
with ID 0.

f) Collision handling. Models are assembled by a C++ program, entitled Floral Canopy Com-

poser (FCComposer), that instantiates florets of the type defined by the dimorphism model at the

locations and orientations defined by the phyllotaxis model, simulates inflorescence development

while resolving collisions using Position Based Dynamics (PBD) (Chapter 3, Chapter 4), and pro-

duces a temporal sequence of meshes that represents the developing floral canopy. It provides a

graphical environment for simulating the development of inflorescences with collisions resolution

between the floret’s triangle geometry. The FFComposer is configured by a single parameter file
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Algorithm 1: Floral Canopy Composer
1 Loop
2 forall the active animations ai do
3 applyAnimation(ai) ; /* updating internal constraints */

4 end
5 for solverIterations do
6 forall the internal constraints ci do
7 solveInternalConstraints(ci); /* reposition vertices */

8 end
9 end

10 forall the vertices vi do
11 generateVertexTriangleCollisionConstraint(vi)
12 end
13 forall the edges ei do
14 generateEdgeEdgeCollisionConstraint(ei)
15 end
16 for collisionSolverIterations do
17 forall the collision constraints ci do
18 solveCollisionConstraints(ci); /* reposition vertices */

19 end
20 end
21 forall the vertices vi do update to new positions;
22 incrementFrameCounter()
23 EndLoop

(see Appendix C). Floret design files (single OBJ or animation of development as a sequence of

OBJs) to be used in the inflorescence are listed, each assigned a unique ID number. Multiple

phyllotactic pattern files (Scene files with optional Rigid body animation files) may be listed. The

FCComposer will compose all elements of the scene (e.g. florets, rigid body animations) together

into a single simulation. This allows for the separation of floret and phyllotaxis design in mod-

eling of inflorescences, provided the floret placement IDs listed in SCN files match those listed

in the FCComposer parameter file. This separation decouples the geometric descriptions of the

phyllotaxis from the triangle geometry of the florets, meaning floret designs may be easily refined,

or swapped out all together, for a precomputed phyllotaxis model. Internally, FCComposer reads

in these various files, and processes them into appropriate data structures so that they may be in-

stanced in the scene. For example, as described in Chapter 3, the sequence of OBJs in a floret
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animation must be processed to extract a sequence of constraint system rest values from the ver-

tex positions and triangle topology. Then when a scene requires an instantiation of the floret, the

FCComposer adds the triangle mesh of the floret’s first pose and adds constraints regulating the

vertices of the triangle mesh (e.g. distance and bending constraints) to the set of global constraints.

As the simulation runs, the rest values of the constraints regulating the florets triangles are read

from a data structure in memory storing these developing values, and updates the constraints rest

values to match.

The collision detection system has many components, as described in Chapter 4, requiring

a spatial data structure and cubic root finding routine for accelerated collision detection. Algo-

rithm 1 shows the (high-level) collision-handling process in the FCComposer. The outputs of the

FCComposer are OBJ files (single or animation sequence), each encoding the triangle mesh of the

inflorescence’s floral components as they develop over a number of simulation steps (read in via

the parameter file).

g) Branching structure. The branching structure generator program was developed in C++ and

adjusted to become a VLab object thereafter. The essence of the model by Rodkaew et al. [27]

was a generalized particle system, with each particle leaving a trail as they moved through the

domain space, and the trails composing an emergent branching structure. The branching structure

generator program is designed similarly, with the notable exception: particles do not leave individ-

ual trails, and instead function as the root of an emergent tree structure. In doing so, the program

maintains a forest of spatial tree data structures (n-ary tree data structure with tree node positions

in R3) associated with the moving particles. The reason for maintaining a tree for each particle is

that initially each particle is attracted to, and capable of merging with branches belong to any other

particle’s tree. This is in sharp contrast to model of Rodkaew et al. [27], where particles could only

be attracted to, and merge with other moving particles. The particle positions are extracted from an

input SCN file, listing the floret positions and orientations. The tip positions (leaves) of the emer-

gent branching structure coincide with the floret placements, as the floral canopy and branching
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structure are generated separately, and composed together only thereafter. A graphically-specified

function is required to provide the weighting function for nearest-neighbour attraction (see Fig-

ure 7.4). The output of this step is a static branching structure in the form of an OBJ file to be

used in composing the final inflorescence. Animated inflorescences with developing branching

structures are not currently obtainable with this model.

h) Assembly and rendering. I have assembled and rendered the final models using Blender2.

To improve rendering, Blender’s modeling tools were employed to further subdivide petals and

slightly extrude them to allow for subsurface light scattering. As well, scanned textures and en-

vironment maps from the sIBL Archive3 have been incorporated to enhance realism. Each in-

florescence scene was rendered with Blender’s path tracing engine, Cycles, using its graphical

node-based material editor to combine textures maps (e.g. specular, normal, displacement) and ar-

tistically design surface and subsurface material characteristics. Rendering was distributed among

25 workstations using Blenders network rendering interface. To increase rendering time efficiency,

multiple workstations were assigned the same frame to render, but with a different seed value for

the path-tracing integrator noise patterns 4. Then, these multiple low quality renderings were com-

bined together to get a single frame that approximates a higher quality path-traced image, i.e.10

renders of a single frame at 100 samples per-pixel, each with a different noise pattern seed, can

approximate an image with 1000 sample per-pixel when blended together into a single image.

Blending many low quality frames into a final frame allowed me to progressively render anima-

tions with higher quality. Low quality test animations could be quickly rendered and inspected,

and if they were acceptable, further render passes would be computed for incrementally higher

quality. The blending functionality was automated by custom python scripts that I wrote to invoke

the command-line tool convert from ImageMagick5. I have found a Blender plug-in6 providing

the same functionality, and is similar in its implementation to my own scripts.

2https://www.blender.org/
3http://www.hdrlabs.com/
4https://www.blender.org/manual/render/cycles/settings/integrator.html
5http://www.imagemagick.org/script/index.php
6http://adaptivesamples.com/2013/07/22/progressive-animation-render-addon-and-image-stacking/
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Chapter 9

Results

Figure 9.1: Variant of dahlia model with florets that are tightly packed.

Collision detection is the central feature of the dahlia model in Figure 9.2. This particular

variety has a ball-shaped inflorescence populated almost exclusively by incurved, almost tubular

ray florets that touch each other and accommodate their shape to the presence of their neighbors.

The distribution of florets in the model was generated using a phyllotaxis model operating on an

approximately spherical surface. Figure 9.1 shows a variant of the Dahlia model with enlarged

petals, showcasing the dense packed configurations producible by the method.
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Figure 9.2: Photograph and model of dahlia ‘Jomanda’. Photograph courtesy of the Victoria Dahlia
Society, adapted under fair use.
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Figure 9.3: Photograph and model of Gaillardia x grandiflora cultivar ‘Oranges and Lemons’.
Photograph licensed under CC BY SA 3.0.
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Figure 9.4: Selected frames from an animation of Gaillardia growth, especially noting the dra-
matic, yet stable change in size due to the dynamic phyllotaxis.

Gaillardia (Figure 9.3) is an example of an inflorescence with strongly dimorphic florets. In

the variety shown, ray florets are tubular. The emergent number of ray florets in the model (21)

is consistent with their numerical canalization in real Gaillardia heads, where Fibonacci numbers

commonly occur. The phyllotactic patterning of floret primordia was modeled using the fraction-

ation scheme (Figure 5.2a). In addition to disk and ray florets, this model incorporates involucral

bracts: specialized leaves that surround the head and protect it in its early development. Hairs on

all surfaces have been modeled using a built-in Blender function. Figure 9.4 shows a simulation

of head development, with the receptacle changing size and shape. All three organs types were

animated using intrinsic interpolation and were subject to collisions.

67



Figure 9.5: Photograph and model of a sunflower. Photograph courtesy of http://www.pixabay.
com under CC0 Public Domain License.

68

http://www.pixabay.com
http://www.pixabay.com


Figure 9.6: The model of a sunflower from another perspective.

The sunflower (Figure 9.5, top) is another example of an inflorescence with strongly dimorphic

florets. As in the case of gaillardia, the emergent number of ray florets in the model (34) is a

Fibonacci number. Ray florets are bilaterally symmetric. Three large fused petals point outward,

giving the appearance of a single large petal. The remaining two petals are highly reduced. We

have only included the conspicuous large petals in the model. Densely packed disk florets have

five-fold dihedral symmetry, with petals fused into a tubular corolla almost up to the petal tips.

As the flowers open, sexual organs - stamens, then pistils - raise above the level of the petals

[66]. We modeled these organs summarily as cylinders growing along the central axis of the

florets. The florets open in a centripetal sequence, so that outer florets are more advanced in their

development than those in more central positions. This phase effect has also been captured in the

model (Figures 9.5, bottom and 9.6)
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Figure 9.7: Photograph and model of Dyssodia decipiens. Photograph courtesy of Regine Classen-
Bockhoff.
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Figure 9.8: A magnified view of Dyssodia’s florets.

The next three models illustrate different cases of floral dimorphism. The inflorescence of

Dyssodia (Figure 9.7) consists of a central head surrounded by 5 other heads. Florets with en-

larged petals emerge at the level of the entire inflorescence as in Figure 6.4b [16]. Incidentally,

the modification of disk floret shapes due to collisions is particularly conspicuous in this model

(Figure 9.8).
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Figure 9.9: Photograph and model of a yarrow. Photograph courtesy of Frank L. Hoffman, http:
//www.all-creatures.org.
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Figure 9.10: Model of a yarrow viewed from the top. Note that the phyllotaxis present in the
yarrow model was procedurally generated from the model seen in Figure 5.3.

Yarrow (Figures 9.9, 9.10, 9.13, top and 9.14) is a typical example of a corymb inflorescence.

The branching structure supports small heads with disk and ray florets. Their dimorphism has been

captured using the model in Figure 6.4a. The seemingly irregular shape of the yarrow inflorescence

was accurately captured by the recursive phyllotaxis algorithm shown in Figure 5.3. The branching

structure (Figure 9.13, top and 9.14), supporting the florets in a single plane, was modeled using the

extended Rodkaew algorithm: as illustrated in Figure 7.6, but with parameters promoting a more

elongated structure. Leaves were generated using the positional-information method described

in [8].
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Figure 9.11: A photograph and a model of an Orlaya grandiflora inflorescence. These images
illustrate some of the key elements of our work: the organization of florets into a planar canopy,
hierarchical phyllotaxis, the dependency of floret type and petal size on their position in the inflo-
rescence, and the deformation of some petals due to collisions. Photograph by Holger Casselmann
licensed under CC BY SA 3.0.
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Figure 9.12: Orlaya model as viewed from the side.

The model of orlaya (Figures 9.11, 9.12 and 9.13, bottom) integrates most elements discussed

in this thesis. The inflorescence is a compound umbel. Both the umbellets within the main umbel

and the individual florets within the umbellets exhibit spiral phyllotaxis. The florets in inward posi-

tions within the umbellets are small and have five-fold symmetry. Select outer florets have enlarged

petals, with the size depending on the available space. Finally, select florets on the periphery of the

whole inflorescence have very large petals. The dimorphism model in Figure 6.4c accurately cap-

tures this multiplicity of forms. The florets are supported in a single plane by a branching structure

organized into two levels of whorls. We reproduced this branching system by modeling each level

separately (Figure 7.2b).
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Figure 9.13: Branching structures subtending the floral canopies of yarrow (corymb of heads) and
orlaya (compound umbel) modeled using the extended Rodkaew algorithm.
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Figure 9.14: Branching structure of yarrow (corymb of heads) modeled using the extended Rod-
kaew algorithm.
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Chapter 10

Discussion and future work

The work described in this thesis, and the paper related to it [1], have advanced previous methods

for modeling inflorescences by introducing methods for: (i) modeling and animating florets with

(partially) fused petals; (ii) detecting and resolving collisions that may occur in densely packed

inflorescences using position-based dynamics extended to growing surfaces; (iii) extending Rid-

ley’s phyllotaxis model to simulate and animate the dynamics of phyllotaxis in simple, hierarchi-

cal, and recursive patterns; (iv) algorithmically determining floret type, size, and developmental

stage in dimorphic inflorescences; and (v) modeling branching inflorescence structures as a self-

organizing process driven by the distribution of florets. This process is particularly useful when

modeling inflorescences with a smooth floral canopy, such as corymbs. Visual evaluations of the

models suggest that this suite of modeling techniques can capture the form and animate the devel-

opment of diverse inflorescences. This makes the entire method applicable to computer imagery

and supports the biological hypotheses from which the methods are founded upon. From a broader

perspective, the results of the method demonstrate the usefulness of the geometric approach to

morphogenesis, where the emergence of patterns and forms is described in geometric rather than

chemical terms. Upon formalizing geometric abstractions of biological phenomena observed in

inflorescences, some amount of complexity is reduced or redistributed, making it faster and more

flexible to explore the breadth of forms produced. This quest for geometric abstraction of biolog-

ical phenomena has driven much of my research, as it provides a means to procedurally generate

physically plausible inflorescence forms. This method, a comprised suite of biologically founded,

geometrical modeling techniques, procedurally generates models of inflorescences preserving key

characteristics and resemblances to those observed in nature. The component techniques of the

method compose a user configurable pipeline for modeling many varieties of inflorescences.

This work has exposed many open problems deserving further research. The Floret Editor
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should be expanded to more detailed modeling of florets, such as the internal organs and supporting

structures. Internal organs are important to characterizing the form of many inflorescences (see

Figure 10.1). The current implementation of the Floret Editor can only model one partially fused

Figure 10.1: Photograph examples of inflorescences where the internal organs are necessary fea-
tures in characterizing the inflorescences. Photographs courtesy of Przemyslaw Prusinkiewicz.

corolla with radial symmetry at a time, while other features must be designed separately (e.g. the

involucral bracts in Figure 9.3 were modeled within Blender instead of the Floret Editor). This is

especially cumbersome in developing florets, as currently the developing internal organs need to

be coordinated within Scene file to compose together with the floret. Florets exhibiting bilateral

symmetry are also not currently producible within the Floret Editor, however an extension to the

modeling environment could easily be included.

In the current implementation, the branching structure is unaffected by the collisions of devel-

oping floral canopy. In conceiving the method, I purposely ignored this interaction between the

branching structure and the floral canopy, as it was assumed that inflorescences would have fully

developed, and relatively sturdy branching structures, thus the effect of colliding florets on the

branching structure would be negligible. However, this is not always so, and a holistic approach to

developing both the branching structure and floral canopy together remains to be devised (although

methods for computing stress responses on developing tree models do exist, e.g. Pirk et al. [67]).

View-dependent modeling techniques could be used to optimize viewing the inflorescence by
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adjusting the level of detail to the scale at which the models are presented, and suppressing the

generation/visualization of elements that lie outside the field of view or are obscured. This opens

avenues of inquiry of perceptive modeling in reducing floret complexity (e.g. texture synthesis,

mesh element granularity, collision resolution) to the levels of complexity perceivable to the ob-

server. The inclusion of view-dependent modeling techniques to the current pipeline could address

certain complexity issues that are evident in modeling scenes of large, dense arrangements of many

flowers (e.g. gardens).

The method for simulating flower opening by blending key poses works well in practice, but

does not conserve petal area, and could potentially be improved by using current methods for

shape-preserving mesh transformation, e.g. [68]. Furthermore, the current collision-detection

method is satisfactory when the initial configuration is collision-free, but in some cases this as-

sumption is difficult to satisfy. Problems occur, for example, when florets are packed in a bud. A

possible solution may be to place all elements of the initial inflorescence in an artificial yet easy-

to-specify collision-free configuration, then procedurally assemble all elements into the desired

structure while detecting and resolving collisions. From a broader perspective, a similar tech-

nique could lead to the solution of another challenging problem in computer graphics: modeling

bouquets of flowers.

Recently, the collision-handling method of this thesis has been re-implemented in the Virtual

Laboratory [30] environment as a stand alone model; a proof of concept for the eventual full

incorporation into VLab. However, there are still many technical considerations yet to be ad-

dressed. Once incorporated into VLab, a wealth of previously designed inflorescences models will

be simulated again, using the collision-handling technique to procedurally generate dense floral

arrangements in a collision free manner.
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Figure 10.2: Animation of dense flower arrangement sampled from text.
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Appendix A

Constraint Linearization

A.1 Signed dihedral angle bending constraints

Given positions pppi ∈ R3, angular bending constraints of Position Based Dynamics (PBD) [2] cor-

respond to neighbouring triangles and represents the desired dihedral angle φ ∈ [0◦,180◦) between

the pair of adjacent triangles (ppp1, ppp2, ppp3) and (ppp1, ppp4, ppp2) sharing an edge (ppp1, ppp2) (Figure 3.1b)

Cbend (ppp1, ppp2, ppp3, ppp4) = arccos
(

(ppp3− ppp1)× (ppp2− ppp1)

‖(ppp3− ppp1)× (ppp2− ppp1)‖
· (ppp2− ppp1)× (ppp4− ppp1)

‖(ppp2− ppp1)× (ppp4− ppp1)‖

)
−φ

= arccos(nnn1 ·nnn2)−φ

(A.1)

As detailed in Chapter 3, this formulation produces mirrored triangle configurations, and as a

proposed solution was a signed dihedral angle measurement to disambiguate the mirrored config-

urations

φcurr = sgn(eee · [nnn1×nnn2])arccos(nnn1 ·nnn2) (A.2)

where we choose a canonical orientation for the shared edge between the adjacent triangles: eee =

ppp2− ppp1 (see Figure 3.1b). Luckily, this reformulation requires only slight modification in the

interpretation of the gradient ∇pppiCbend for the purposes of updating the positions constrained to a

signed dihedral angle.

If sgn(φcurr) = sgn(φ), then the current triangle configuration need not to be pushed through

an intermediate planar position (0◦), and PBD can proceed in updating as described by Muller [2],

with the required angle correction abs(φcurr)− abs(φ). However, if sgn(φcurr) 6= sgn(φ), then the

configuration must be pushed to the correct side. But this is accomplished by moving the positions

in the opposite direction of the gradient until signs of the current signed angle and rest angle agree.

The required angle correction to push the signs into agreement is abs(φcurr−φ).
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Appendix B

Narrow Phase Collision Detection

B.1 Cross product expanded as a quadratic polynomial

Let the vectors bbb and ccc ∈ R3 be parametrized as linear functions of t

bbb = pppb + tvvvb

ccc = pppc + tvvvc

(B.1)

where pppb, pppc, vvvb, vvvc ∈ R3, and t ∈ R. We wish to expand the cross product expression bbb(t)× ccc(t)

into a quadratic equation of t. Then,

bbb(t)× ccc(t) = (pppb + tvvvb)× (pppc + tvvvc)

= t2 (vvvb× vvvc)+ t (vvvb× pppc + pppb× vvvc)+ pppb× pppc

= QQQt2 +RRRt +SSS

(B.2)

Where QQQ, RRR and SSS ∈ R3, with coordinates as follows

QQQ =


yvvvbzvvvc− zvvvbyvvvc

zvvvbxvvvc− xvvvbzvvvc

xvvvbyvvvc− yvvvbxvvvc

RRR =


ypppbzvvvc + yvvvbzpppc− zpppbyvvvc− zvvvbypppc

zpppbxvvvc + zvvvbxpppc− xpppbzvvvc− xvvvbzpppc

xpppbyvvvc + xvvvbypppc− ypppbxvvvc− yvvvbxpppc

SSS =


ypppbzpppc− zpppbypppc

zpppbxpppc− xpppbzpppc

xpppbypppc− ypppbxpppc

 (B.3)

B.2 Test if point is in a triangle

Let a triangle be defined by three points aaa, bbb and ccc ∈ R3. We wish to test if a point ppp ∈ R3 (that

is coplanar to aaa, bbb and ccc) is inside the triangle. To this end, we define ppp in terms of the triangle

points aaa, bbb and ccc (a new basis and origin) with unknowns r,s ∈ R:

ppp = aaa+(bbb−aaa)r+(ccc−aaa)s. (B.4)
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We then rearrange and relabel this equation:

ppp−aaa = (bbb−aaa)r+(ccc−aaa)s

www = uuur+ vvvs
(B.5)

by letting www = ppp−aaa, uuu = bbb−aaa and vvv = ccc−aaa.

As we have two unknowns, to solve for them we need two independent (scalar) equations. We

form them by multiplying Equation B.5 by uuu and vvv separately:

www ·uuu = (uuu ·uuu)r+(vvv ·uuu)s

www · vvv = (uuu · vvv)r+(vvv · vvv)s.
(B.6)

This provides a linear system of 2 equations with 2 unknowns, which can be easily solved,

giving the following

r =
(vvv · vvv)(www ·uuu)− (vvv ·uuu)(www · vvv)
(uuu ·uuu)(vvv · vvv)− (vvv ·uuu)(uuu · vvv)

s =
(uuu ·uuu)(www · vvv)− (uuu · vvv)(www ·uuu)
(uuu ·uuu)(vvv · vvv)− (vvv ·uuu)(uuu · vvv)

.

(B.7)

If r ≥ 0, s≥ 0 and r+ s≤ 1, the point ppp lies inside the triangle with the vertices of aaa, bbb and ccc.

B.3 Compute minimum distance between edges

Let edges e0 and e1 be defined by line segments e0 = [ppp0, ppp1] and e1 = [qqq0,qqq1], where pppi, qqqi ∈ R3.

We describe points along each edge as linear functions of r,s ∈ [0 . . .1]:

ppp(r) = ppp0 + r (ppp1− ppp0)

qqq(s) = qqq0 + s(qqq1−qqq0) .

(B.8)

Then, by defining www(r,s) = ppp(r)− qqq(s), and finding the minimum distance between e0 and e1 is

equivalent to

argmin
(r,s)∈[0,1]×[0,1]

[www ·www]
1
2 ≡ argmin

(r,s)∈[0,1]×[0,1]
www ·www. (B.9)
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If the global minimum (r,s) to the quadratic function www(r,s) ·www(r,s) is outside [0,1]× [0,1], then

one or both of the points ppp(r) and qqq(s) are not valid points along the edges e0 and e1. In this case,

we find the minimum (r,s) on the boundary of [0,1]× [0,1]. This leads to a small number of cases

to find the minimum (s, t) constrained to [0,1]× [0,1]. We use calculus to compute the minimum

along each edge of the boundary (r = 0, s = 0, r = 1 and s = 1). For example, let r = 0, then:

www(0,s) ·www(0,s) = (ppp0−qqq0− s(qqq1−qqq0)) · (ppp0−qqq0− s(qqq1−qqq0))

= (www0− svvv) · (www0− svvv)
(B.10)

where www0 = ppp0−qqq0 and vvv = qqq1−qqq0. Taking the derivative of Equation B.10 with respect to s and

setting to 0:

0 =
d
ds

www(0,s) ·www(0,s)

=−2vvv · (www0− svvv)
(B.11)

and solving for s, we find the minimum along the edge of the boundary at (0,s), where s = vvv·www0
vvv·vvv .

If 0 ≤ s ≤ 1, then this is the minimum along the boundary; however, if s is outside of this range,

then an endpoint of the edge (s = 0 or s = 1) is the minimum along r = 0. Eberly1 provides

further exposition on this solution; as well, proposes an alternative constrained conjugate gradient

algorithm that is more robust, and could potentially replace the method currently implemented in

this thesis.

1https://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf
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Appendix C

Floral Canopy Composer Usage

C.1 Floral Canopy Composer parameter file specifications

solver iterations: (int)iterations

Number of PBD internal constraints solver iterations per simulation step.

collision solver iterations: (int)iterations

Number of PBD collision constraints solver iterations per simulation step.

kStretch: (float)stiffness

Stiffness∈ [0,1] of edge constraints.

kBend: (float)stiffness

Stiffness∈ [0,1] of bending constraints.

kCollision: (float)stiffness

Stiffness∈ [0,1] of collision constraints.

spacing: (float)spacing

Minimum distance used in collision constraints.

scene scale factor: (float)x, (float)y, (float)z

Scale loaded geometry independently in x, y, z directions.

updates per frame: (int)num

Number of simulations steps per rendered frame.

run for number of frames: (int)num

Run simulation for num frames without rendering.

sanity check per frames: (int)num
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Run (slower) intersection check every num frames.

output animation frames number: (int)num

Output OBJ file of canopy every num frames.

output animation obj per frames: (int)num

When outputting an animation, skip num frames between writing OBJ files.

lattice size multiply: (float)x, (float)y, (float)z

Independently scale collision bounding box in x, y, z directions.

lattice make cube: (bool)make-cube

Force collision bounding box to be cube shaped, using the maximum dimension for

the width, height and depth.

origin: (int)x, (int)y, (int)z

The x, y, z coordinates of the origin for the bounding box.

divisions: (int)x, (int)y, (int)z

Collision lattice divisions in x, y, z directions.

dimensions: (float)x, (float)y, (float)z

Collision lattice dimensions in x, y, z directions.

lattice auto bounds: (bool)auto-fit

Automatically compute and fit collision bounding box from geometry. If false, the

bounding box is set by the dimensions entry.

color map file location: (string)file-path

Color map file path.

material map file location: (string)file-path

Material map file path.

scene file path: (string)file-path
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File path to scene description file that specifies instanced florets positions and ani-

mations.

animation: (int)id (float)x (float)y (float)z (string)folderpath

Associate animation (sequence of OBJ files) stored in folderpath with unique num-

ber id so it may be referenced in scene files. Initially scaled by x, y, z values.

obj: (int)id (float)x (float)y (float)z (string)folderpath

Associate OBJ stored in folderpath with unique number id so it may be referenced

in scene files. Initially scaled by x, y, z. Initially scaled by x, y, z values.

rigid body animation: (int)id (float)x (float)y (float)z (string)folderpath (string)sceneFolderpath

Associate rigid body animation files read from folderpath. The instanced geome-

try/animations are read from scence file atsceneFolderpath. Initially scaled by x, y,

z values.

weight: (int)id (string)filepath

Text file of vertex IDs which lists those vertices of obj/animation id which should

remain fixed while resolving collisions or growth.

bending stiffness: (int)id (float)stiffness

Provides alternative bending constraint stiffness coefficient to obj/animation id to

that of the global kBend.

distance stiffness: (int)id (float)stiffness

Provides alternative distance constraint stiffness coefficient to obj/animation id to

that of the global kStretch.

animation output folder location: string

Folder path to output OBJ files produced in animation.

animation output folder location: (string)folder-path

Folder path to output OBJ files produced in animation.
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obj output file path: (string)file-name

File name of output OBJ file for current frame.

camera position: (float)x, (float)y, (float)z

Initial x, y, z coordinates of camera position.

camera up: (float)x, (float)y, (float)z

Iinitial x, y, z coordinates of camera up vector.

camera lookat: (float)x, (float)y, (float)z

Initial x, y, z coordinates of camera look at position.

camera pan speed: (float)speed

Initial camera pan speed.

camera zoom speed: (float)speed

Initial camera zoom speed.

camera rotate speed: (float)speed

Initial camera rotate speed.

near plane: (float)distance

Camera near distance.

far plane: (float)distance

Camera far distance.

camera fov: (float)fov Camera angle field of view.

light position: (float)x, (float)y, (float)z

The x, y, z coordinates of the light.

shadow frustrum: (float)left, (float)right, (float)top, (float)bottom, (float)back, (float)front

Description of frustum used in shadow map computations.
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Example parameter file for the Floral Canopy Composer program

# C o n s t r a i n t s p a r a m e t e r s

s o l v e r i t e r a t i o n s : 50

c o l l i s i o n i t e r a t i o n s : 10

max c o l l i s i o n r e t r i e s : 20

k S t r e t c h : 0 . 9 9 f

kBend : 0 . 9 9 f

k C o l l i s i o n : 1 . f

s p a c i n g : 0 .005

# S i m u l a t i o n p a r a m e t e r s

u p d a t e s p e r f rame : 1

run f o r number o f f r a me s : 1

s a n i t y check p e r f r am e s : 50

# Scene

# each s c e n e f i l e e n t r y ’ s ID c o r r e s p o n d s t o one of t h e a n i m a t i o n s o r OBJs l i s t e d below

s c e n e f i l e p a t h : . / Scenes / s1 . s c e

a n i m a t i o n : 0 1 1 1 . / l i l y A n i m a t i o n /

a n i m a t i o n : 1 2 2 2 . / d a i s y A n i m a t i o n /

o b j : 2 0 . 5 1 0 . 5 . / s i n g l e R o s e . o b j

# C o l l i s i o n L a t t i c e S t u f f

l a t t i c e a u t o bounds : t r u e

l a t t i c e make cube : f a l s e

l a t t i c e s i z e m u l t i p l y : 1 . 5 1 . 5 1 . 5

o r i g i n : −5, −5, −5

d i m e n s i o n s : 10 , 10 , 10

d i v i s i o n s : 100

# F i l e p a t h s

c o l o r map f i l e l o c a t i o n : . / Co lo r / co lormap . map

m a t e r i a l map f i l e l o c a t i o n : . / M a t e r i a l / m a t e r i a l . mat

# L i g h t and Camera

l i g h t p o s i t i o n : −10, 10 , 10

shadow f r u s t r u m : −1, 1 , −1, 1 , −10, 20

camera p o s i t i o n : 0 , 0 , −1

camera up : 0 , 1 , 0

camera l o o k a t : 0 , 0 , 0
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C.2 Scene file specifications

All scene placement entries in the Scene file have the same fundamental form:

type: id posx posy posz scalex scaley scalez upx upy upz rightx righty rightz

where id matches an obj/animation entry in the parameter file, and signals the instantiation of

geometry/animation in the scene at the position, scale and orientation from the other vector values.

The list below enumerates the scene placement types. The ID, position, scale and orientation

values are collected and labelled as 〈preamble〉 for conciseness.

o: 〈preamble〉

place OBJ

ca: 〈preamble〉 (int)frameStart (int)frameEnd

place constraint based animation

i: 〈preamble〉 (float)interploationValue

interpolated instance of animation geometry

sa: 〈preamble〉 (int)frameStart (int)frameEnd (float)scale

scale geometry animation

ta: 〈preamble〉 (int)frameStart (int)frameEnd (float)x (float)y (float)z

translate geometry animation

ra: 〈preamble〉 (int)frameStart (int)frameEnd (float)x (float)y (float)z (float)angle

rotate geometry around axis by an angle animation

rba: 〈preamble〉 (int)frameStart (int)frameEnd

rigid body animation

A material rendering model, defined within the material map file, is assigned to scene place-

ments by writing:
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mtl: matID

immediately after the scene file entry. matID is an unique ID corresponding to 256 material defi-

nitions in the material map. Text line comments may be added if prepended with #.

Example scene file

# C o n s t r a i n t a n i m a t i o n wi th ID 0 , c o r r e s p o n d i n g t o

# an a n i m a t i o n l i s t e d i n t h e FCComposer p a r a m e t e r f i l e .

# ca : ID P o s i t i o n S c a l e Up L e f t F r a m e S t a r t FrameEnd

ca : 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1000

# M a t e r i a l 3 a p p l i e d t o t h e f o l l o w i n g s c e n e p l a c e m e n t s

mt l : 3

ca : 0 5 0 0 1 1 1 0 1 0 1 0 0 0 1000

o : 2 0 10 0 5 5 5 1 0 0 0 0 1

C.3 Rigid body animation file specifications

Rigid body animation file entries are as follows

id posx posy posz scalex scaley scalez upx upy upz rightx righty rightz

where id corresponds to the scene placement of the same numbering in the adjoining scene file,

with the geometry/animation in of the placement at the position, scale and orientation from the

other vector values.
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C.4 Floral Canopy Composer controls usage

Command Action

MOUSE Left Mouse Click (LMC) Right Mouse Click (RMC)

LMC + Move mouse orbit camera around cursor position

RMC move cursor to vertex

Alt+RMC move cursor and camera to vertex

KEYBOARD

A move camera left

D move camera right

W move camera forward

S move camera back

Q move camera down

E move camera up

Arrow Up rotate camera up

Arrow Down rotate camera down

Arrow Left rotate camera left

Arrow Right rotate camera right

MESH EDIT MODE

Ctrl+E toggle mesh edit mode

LMC select nearest vertex in screen space

LMC+Ctrl select all vertices of triangle selected

LMC+Shift+Ctrl select all vertices of object selected

Arrow Up screen space move selected vertices up

Arrow Down screen space move selected vertices down
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Arrow Left screen space move selected vertices left

Arrow Right screen space move selected vertices right

, move selected vertices into the screen

. move selected verices out of screen

MODIFIERS

[ half the movement speed

[+Alt half edit movement speed

[+Shift half the rotation speed

] double the movement speed

]+Alt double edit movement speed

]+Shift double the rotation speed

FUNCTIONS

Ctrl+U write animation files (series of OBJs to folder)

Ctrl+V reset view to param camera

Alt+V reset view to cursor

Shift+V print current camera position (so as to copy into param file)

Ctrl+T run sanity check for intersections

Ctrl+O reload param file (without reloading geometry)

Ctrl+P reload param file (reloading geometry)

Ctrl+I reload param file and camera (reloading geometry)

Ctrl+R run simulation

Ctrl+F step simulation once

space OR Ctrl+S pause simulation

Ctrl+M toggle perspective/orthographic view

Ctrl+N widen orthographic projection
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Ctrl+B narrow orthographic projection

Ctrl+J loop subdivision with collision resolution (post process)

Ctrl+C reload color and material map

Ctrl+Y print current frame, AABB, and geometry count

Ctrl+L write OBJ of current frame

Ctrl+X print bounding box of simulation

RENDER TOGGLE

0 cursor

1 smooth shading

2 wireframe overlay

3 normals

4 bounding box

5 bending constraints

6 distance constraints

7 test vertex indices (for testing purposes)

8 test points (for testing purposes)

9 fixed points

Ctrl+- render from (shadow) light POV

- shadows

Table C.1: Floral Canopy Composer controls usage
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