

Przemyslaw Prusinkiewicz
James Hanan

Lindenmayer Systems,
Fractals, and Plants

with contributions by
Aristid Lindenmayer
F. David Fracchia
Kamala Krithivasan

Lindenmayer Systems, Fractals, and Plants originated as notes for the SIG-
GRAPH 1988 course Fractals: Introduction, basics, and applications. They
were published, with minor editorial changes, as a book by Springer-Verlag,
New York, in 1989, and reprinted in 1992. This electronic version has been
produced from the LATEX files for the SIGGRAPH course, retrofitted with
the editorial changes made for the book. Most figures were recreated using
the original L-system files.

This electronic version was prepared by
Samuel Kahessay
Przemyslaw Prusinkiewicz

Copyright c© 2016, 1988 by Przemyslaw Prusinkiewicz.

i

Preface

L-systems are a mathematical formalism which was proposed by Aristid
Lindenmayer in 1968 as a foundation for an axiomatic theory of develop-
ment. The notion promptly attracted the attention of computer scientists,
who investigated L-systems from the viewpoint of formal language theory.
This theoretical line of research was pursued very actively in the seventies,
resulting in over one thousand publications. A different research direction
was taken in 1984 by Alvy Ray Smith, who proposed L-systems as a tool
for synthesizing realistic images of plants and pointed out the relationship
between L-systems and the concept of fractals introduced by Benoit Mandel-
brot. The work by Smith inspired our studies of the application of L-systems
to computer graphics. Originally, we were interested in two problems:

• Can L-systems be used as a realistic model of plant species found in
nature?

• Can L-systems be applied to generate images of a wide class of fractals?

It turned out that both questions had affirmative answers. Subsequently we
found that L-systems could be applied to other areas, such as the generation
of tilings, reproduction of a geometric art form from East India, and synthesis
of musical scores based on an interpretation of fractals.

This book collects our results related to the graphical applications of L-
systems. It is a corrected version of the notes which we prepared for the
ACM SIGGRAPH ’88 course on fractals.

We would like to thank Aristid Lindenmayer for many stimulating dis-
cussions and guidance in the fascinating world of L-systems. Benoit Mandel-
brot’s appreciation of the relationship between L-systems and fractals gave us
the motivation for surveying the results obtained so far. Kamala Krithivasan
guided us through the intricate world of kolam patterns. Dave Fracchia
implemented a program for modelling cell layers using map L-systems; an
earlier implementation was kindly made available to us by Mark de Does.

ii

The map L-system data files used to produce images included in this book
were prepared by Martin de Boer. Lynn Mercer wrote utilities for printing
IRIS raster files on the laser printer. Also, we would like to thank Heinz-Otto
Peitgen, Dietmar Saupe and Gerhard Rossbach, whose interest in our work
made the original notes and this publication possible.

The support of our research by the Department of Computer Science,
University of Regina, and the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged.

Przemyslaw Prusinkiewicz
James Hanan

Regina, March 1989

Sources

This book collects results from and includes edited parts of the following
papers:

• P. Prusinkiewicz. Graphical Applications of L-systems. In Proceed-
ings of Graphics Interface ’86 — Vision Interface ’86, pages 247–253,
Vancouver, B.C., May 1986. [Included in Chapter 2 and Section 3.1]

• P. Prusinkiewicz. Applications of L-systems to computer imagery. In
H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph
grammars and their application to computer science; Third Interna-
tional Workshop, pages 534–548, Springer-Verlag, Berlin, 1987. Lec-
ture Notes in Computer Science 291. [Chapter 2. Section 3.1 and
Section 3.6]

• P. Prusinkiewicz, A. Lindenmayer and J. Hanan. Developmental mod-
els of herbaceous plants for computer imagery purposes. Proceedings
of SIGGRAPH ’88, Atlanta, GA, August 1988. In Computer Graph-
ics, 22:141–150, 1988. Used with the permission of the Association for
Computing Machinery. [Sections 3.2, 3.3, 3.5. and Chapter 4]

• A. Lindenmayer and P. Prusinkiewicz. Developmental models of mul-
ticellular organisms: A computer graphics perspective. In C. Langton,
editor, Artificial life, pages 221–249, Addison-Wesley, Redwood City,
1989. [Sections 1.2, 3.2, 3.3. 3.5, Chapter 4 and Chapter 5]

• P. Prusinkiewicz and K. Krithivasan. Algorithmic generation of South
Indian folk art patterns. In Proceedings of the International Confer-
ence on Computer Graphics ICONG’88, Singapore, September 1988.
[Section 6.2]

• P. Prusinkiewicz. Score generation with L-systems. In Proceedings of
the International Computer Music Conference ’86, pages 455-457, the
Hague, the Netherlands, October 1986. [Section 6.3]

• A. Lindenmayer and P. Prusinkiewicz. An annotated bibliography on
plant modelling and growth simulation. In C. Langton, editor, Artificial
life, pages 625–643, Addison-Wesley, Redwood City, 1989. [Chapter 7]

Contents

1 Introduction 3

1.1 Rewriting systems . 3

1.2 DOL-systems . 6

2 Fractals 11

3 Models of plant architecture 23

3.1 Bracketed L-systems . 23

3.2 Developmental plant modelling 28

3.2.1 Introduction . 28

3.2.2 Graph-theoretical vs. botanical trees 31

3.3 Development without interactions 32

3.3.1 Racemes, or the phase beauty of sequential growth . . 33

3.3.2 Cymose inflorescences, or the use of delays 35

3.3.3 Racemes with leaves, or modelling qualitative changes
of the developmental process 37

3.3.4 Composition of interactionless inflorescences 39

3.4 Context-sensitive L-systems 41

3.5 Development with interactions 45

3.5.1 Signals in plants . 45

3.5.2 Developmental model with one acropetal signal 47

3.5.3 Developmental model with several signals. 48

3.6 Adding variation to models 51

4 Models of plant organs 55

4.1 Bicubic surfaces . 55

4.2 Developmental surface models 57

5 Models of cell layers 63

1

2 CONTENTS

6 Other applications of L-systems 69
6.1 Patterns and tilings . 69
6.2 Kolam patterns . 69

6.2.1 What is a kolam? . 69
6.2.2 Kolams and L-systems 71
6.2.3 Kolams with exponential growth 71
6.2.4 Kolams with polynomial growth 75

6.3 Fractal music . 79

7 A guide to the references 81
7.1 General . 81
7.2 Surveys . 81
7.3 Theory of L-systems . 82
7.4 Geometrical interpretation of L-systems 82
7.5 Biological applications of L-systems 83
7.6 Synthesis of realistic plant images 83

7.6.1 Methods based on L-systems 83
7.6.2 Other synthesis methods 84

7.7 Map L-systems . 84

A Program listing 101
A.1 generate.h . 102
A.2 generate.c . 103
A.3 interpret.h . 112
A.4 interpret.c . 113

Chapter 1

Introduction

Lindenmayer systems — or L-systems for short — find an increasing number
of applications in computer graphics. Two principal areas include generation
of fractals and realistic modelling of plants. More exotic applications, ranging
from the reproduction of a traditional East Indian art form to graphically
motivated algorithms for music composition, are also known. These notes
survey various graphical applications of L-systems. A listing of a program
which allows for the replication of most illustrations and for further experi-
mentation with L-systems is included.

1.1 Rewriting systems

Before we proceed with technical details, let us focus on the concept of rewrit-
ing which is central to the notion of L-systems. The basic idea is to define
complex objects by successively replacing parts of a simple initial object using
a set of rewriting rules or productions. Usually the rewriting can be carried
out recursively. The classic example of a graphical object defined in terms
of rewriting rules is the “snowflake” curve (Figure 1.1), proposed in 1905
by von Koch [107]. Mandelbrot [72, page 39] restates this construction as Koch

constructionfollows:

One begins with two shapes, an initiator and a generator. The
latter is an oriented broken line made up of N equal sides of length
r. Thus each stage of the construction begins with a broken line
and consists in replacing each straight interval with a copy of
the generator, reduced and displaced so as to have the same end
points as those of the interval being displaced.

3

4 CHAPTER 1. INTRODUCTION

initiator generator

Figure 1.1: Construction of the “snowflake” curve.

While the Koch construction recursively replaces open polygons, rewriting
systems operating on other objects have also been investigated. For exam-
ple, Wolfram [108, 109] studied patterns generated by rewriting elements of
rectangular arrays. A similar array-rewriting mechanism is the cornerstone
of the popular game of life. An important body of research was devoted to
various graph-rewriting systems [11, 20, 19].

The most extensively studied and the best understood rewriting systemsGrammars
operate on character strings. The first formal definition of such a system
was given at the beginning of this century by Thue (see [89]), but a wide
interest in string rewriting was spawned in late 1950’s by Chomsky’s work
on formal grammars [10]. The concept of rewriting was applied there to
describe syntactic features of natural languages. A few years later Backus and
Naur introduced a rewriting-based notation in order to formally describe the
programming language ALGOL-60 [4, 77]. The equivalence of the Backus-
Naur form (BNF) and the context-free class of Chomsky grammars was soon
recognized [32] and a period of fascination with syntax, grammars and their
application to computer science began. At the center of attention were sets
of strings — called formal languages — and the methods for generating,
recognizing and transforming them.

The advances of formal languages theory brought up the idea of usingLanguages
and images character strings to describe pictures. The initial goal was to recognize ob-

jects such as handwritten letters [76] or chromosomes [45, 46], by coding

1.1. REWRITING SYSTEMS 5

Figure 1.2: Relations between Chomsky classes of languages and language
classes generated by L-systems. The symbol OL and IL denote language
classes generated by context-free and context-sensitive L-systems, respec-
tively.

their images, then analyzing the resulting strings. Among the variety of im-
age representations considered, the chain coding proposed by Freeman [26]
had a geometrically precise definition. Consequently, it was suitable for in-
vestigating the relationship between images and language classes in a formal
way. Such a study was undertaken by Feder [23] (see also [31]), but the
results were disappointing. They revealed that the languages correspond-
ing to intuitively simple classes of images, such as straight lines of arbitrary
slope, circles of arbitrary radius, and even rectangles in a square grid, were
all context-sensitive. In contrast, most practically useful results of the for-
mal language theory referred to context-free languages. Thus, a discrepancy
developed between the capabilities of the well understood class of languages
and the requirements created by graphical applications.

In 1968 a biologist, Aristid Lindenmayer, introduced a new type of string- L-systems
rewriting mechanisms, subsequently termed L-systems [49]. The essential
difference between Chomsky grammars and L-systems lies in the method of
applying productions. In Chomsky grammars productions are applied se-
quentially, one at a time, whereas in L-systems they are applied in parallel
and simultaneously replace all letters in a given word. This difference has an
essential impact on the properties of L-systems. For example, there are lan-

6 CHAPTER 1. INTRODUCTION

guages which can be generated by context-free L-systems (called 0L-systems)
but can not be generated by context-free Chomsky grammars (Figure 1.2).

The introduction of L-systems revived the interest in the representationPlant models
of images using string characters. L-systems were conceived as a formal
model of plant development, so initial effort concentrated on the automatic
generation of plant images. The first plots were published in 1974 by Fri-
jters and Lindenmayer [29], and Hogeweg and Hosper [38]. In both cases,
L-systems were used primarily to determine the branching topology of the
modelled plants. The geometric aspects, such as the lengths of line segments
and the branching angles, were added in a post-processing phase. The results
of Hogeweg and Hosper were subsequently extended by Smith [94, 96], who
demonstrated the potential of L-systems in realistic image synthesis.

A different approach to L-system interpretation was proposed in 1979Fractals
by Szilard and Quinton [101]. They concentrated on image representations
with rigorously defined geometry (such as the chain coding) and showed that
strikingly simple context-free L-systems could generate intriguing, convoluted
curves known today as fractals. The results of Szilard and Quinton were
subsequently extended in several directions. Siromoney and Subramanian
specified L-systems which generated classic space-filling curves [93]. Dekking
investigated the limit properties of curves generated by L-systems [18], and
concentrated on the problem of determining the fractal (or Hausdorff) dimen-
sion of the limit set [17]. Prusinkiewicz presented more examples of fractals
and plant-like structures modelled using L-systems; they were obtained using
an interpretation based on a LOGO-like turtle [81] and its three-dimensional
counterpart [82].

Why are L-systems so successful in image generation applications? TheL-systems
and graphics answer seems to be directly related to the parallel operation of L-systems.

On one hand, the parallelism links L-systems to the Koch construction of
fractals. On the other hand, living organisms also develop in a parallel man-
ner, so parallelism is an important factor in the simulation and modelling of
plants. In the following chapters we survey several classes of graphical objects
generated using L-systems. We hope that the mathematical beauty of the
notion of L-systems, the simplicity of L-system-based algorithms for image
generation and the intriguing images which can be obtained will encourage
the reader to experiment further and extend the methods discussed.

1.2 DOL-systems

In this section we introduce the simplest class of L-systems, called DOL-
systems. We start from an example which is intended to provide an intuitive

1.2. DOL-SYSTEMS 7

Figure 1.3: Example of a derivation in a DOL-system.

understanding of the main idea.

Let us consider strings built of two letters a and b (they may occur many Example
times in a string). For each letter we specify a rewriting rule. The rule a→ ab
means that the letter a is to be replaced by the string ab, and the rule b→ a
means that the letter b is to be replaced by a. The rewriting process starts
from a distinguished string called the axiom. Let us assume that it consists
of a single letter b. In the first derivation step (the first step of rewriting)
the axiom b is replaced by a using production b→ a. In the second step a is
replaced by ab using production a→ ab. The word ab consists of two letters
both of which are simultaneously replaced in the next derivation step. Thus,
a is replaced by ab, b is replaced by a. and the string aba results. In a similar
way (by the simultaneous replacement of all letters), the string aba yields
abaab which in turn yields abaababa, abaababaabaab, and so on. (Figure 1.3).

Below we present formal definitions describing DOL-systems and their
operation. For more details see [37, 87].

Let V denote an alphabet, V ∗ the set of all words over V , and V + the L-system
set of all nonempty words over V . A string OL-system is an ordered triplet
G = 〈V, ω, P 〉 where V is the alphabet of the system, ω ∈ V + is a nonempty
word called the axiom and P ⊂ V × V ∗ is a finite set of productions. If a
pair (a, χ) is a production, we write a→ χ. The letter a and the word χ are
called the predecessor and the successor of this production, respectively. It

8 CHAPTER 1. INTRODUCTION

is assumed that for any letter a ∈ V , there is at least one word χ ∈ V ∗ such
that a → χ. If no production is explicitly specified for a given predecessor
a ∈ V , we assume that the identity production a → a belongs to the set
of productions P . A OL-system is deterministic (noted DOL-system) if and
only if for each a ∈ V there is exactly one χ ∈ V ∗ such that a→ χ.

Let µ = a1 . . . am be an arbitrary word over V . We will say that the wordDerivation
ν = χ1 . . . χm ∈ V ∗ is directly derived from (or generated by) µ and write
µ⇒ ν if and only if ai → χi for all i = 1, . . . ,m. A word ν is generated by G
in a derivation of length n if there exists a developmental sequence of words
µ0, µ1, . . . , µn such that µ0 = ω, µn = ν and µ0 ⇒ µ1 ⇒ . . .⇒ µn.

We will illustrate the operation of DOL-systems by one more example.Anabaena
The formalism is used here to simulate the development of a multicellular
filament such as that found in blue-green bacteria Anabaena catenula and
various algae [74, 55]. The symbols a and b represent cytological states of
the cells (these states have to do with their size and readiness to divide).
The subscripts l and r indicate cell polarity specifying the positions in which
daughter cells of type a and b will be produced. The development is governed
by the following rules:

p1 : ar → albr
p2 : al → blar
p3 : br → ar
p4 : bl → al

Starting from a single cell ar (the axiom), the above L-system generates
the following sequence of words:

ar
albr
blarar
alalbralbr
blarblararblarar
· · ·

Under a microscope, the cells appear as cylinders of various lengths. The
a-type cells are longer than the b-type cells. The corresponding schematic
image of filament development is shown in Figure 1.4. Note that due to the
discrete nature of L-systems the continuous growth of cells in length between
subdivisions is not reflected in this model.

1.2. DOL-SYSTEMS 9

Figure 1.4: Development of a filament (Anabaena catenula) simulated using
a DOL-system. Arrows indicate cell polarities.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Fractals

The geometric interpretation of strings used in the previous chapter to gen-
erate schematic images of Anabaena catenula was a very straightforward one.
Letters of the L-system alphabet were represented graphically as shorter or
longer rectangles with rounded corners. The generated structures were essen-
tially one-dimensional chains of rectangles reflecting the sequence of symbols
in the corresponding strings.

Many fractals (or at least their finite approximations) can also be thought
of as sequences of primitive elements — line segments. However, the lengths
of segments and the angles between them play a crucial role. To produce
fractals, strings generated by L-systems must contain the necessary informa-
tion about figure geometry. We describe here a graphical interpretation of
strings based on the notion of a LOGO-style turtle [1]. This interpretation
was originally proposed by Szilard and Quinton [101].

A state of the turtle is defined as a triplet (x, y, α), where the Carte- Turtle
sian coordinates (x, y) represent the turtle’s position, and angle α, called the
turtle’s heading, is interpreted as the direction in which the turtle is facing.
Given the step size d and the angle increment δ, the turtle can respond to
commands represented by the following symbols (Figure 2.1a):

F Move forward a step of length d. The state of the turtle changes to
(x′, y′, α), where x′ = x + d cosα and y′ = y + d sinα. A line segment
between points (x, y) and (x′, y′) is drawn.

f Move forward a step of length d without drawing a line.

+ Turn right by angle δ. The next state of the turtle is (x, y, α + δ). It
is assumed here that the positive orientation of angles is clockwise. (In

11

12 CHAPTER 2. FRACTALS

Figure 2.1: (a) Turtle interpretation of string symbols F , +, −. (b) Interpre-
tation of a string. The angle increment δ is equal to 90◦. Initially the turtle
faces up.

some examples included in these notes the interpretation of the symbols
+ and − is inverted.)

− Turn left by angle δ. The next state of the turtle is (x, y, α− δ).

All other symbols are ignored by the turtle (the turtle preserves its current
state).

Let ν be a string, (x0, y0, α0) the initial state of the turtle, and d, δ fixedInterpretation
parameters. The picture (set of lines) drawn by the turtle responding to the
string ν is called the turtle interpretation of ν (Figure 2.1).

Having a rigorous method for mapping strings into pictures, we may ap-
ply it to interpret strings which are generated by L-systems. For example,
Figure 2.2 presents four approximations of the “quadratic Koch island” taken
from [72, page 51]. These figures were obtained by interpreting strings gen-
erated by the following L-system:

ω : F + F + F + F
p : F → F + F − F − FF + F + F − F

The images correspond to the strings obtained in derivations of length 0–
3. The angle increment δ is equal to 90◦. The step length d is decreased
four times between subsequent images. This makes the distance between the
endpoints of the polygon represented by the production successor equal to
the length of the line represented by the predecessor.

13

n = 0 n = 1

n = 2 n = 3

a b

c d

Figure 2.2: Generating a quadratic Koch island.

14 CHAPTER 2. FRACTALS

n = 2, δ = 90°
F+F+F+F
F → F−FF+FF+F+F−F−FF+F+F−F−FF−FF+F

a b
n = 4, δ = 90°
+F
F → F−F+F+F−F

Figure 2.3: Examples of L-systems generating Koch curves. (a) Quadratic
Koch island [Mandelbrot 1982, p. 52]. (b) A quadratic modification of the
snowflake curve [Mandelbrot 1982, p. 139].

The above example reveals a close correspondence between Koch con-L-systems vs.
Koch
constructions

structions (with a single generator) and L-systems. The initiator corresponds
to the axiom, while the generator is represented by the successor of a single
production; its predecessor is equal to F . L-systems specified this way can
be perceived as codings of Koch constructions. Figure 2.3 presents further
examples of Koch curves generated using L-systems. A slight complication
occurs if the fractal is not connected; the second production (with the prede-
cessor f) is then required to keep components the proper distances from each
other (Figure 2.4). The ease of modifying L-systems makes them suitable
for developing new Koch curves; for example, one can start from a particu-
lar L-system and observe the results of inserting, deleting or replacing some
symbols. Some fractals obtained this way are shown in Figure 2.5.

According to the original description of the Koch construction, the gen-L-system
transformations erator can be translated, rotated and scaled to match the original position of

the replaced segment. More curves can be constructed if reflection is allowed
as well. For example, the dragon curve shown in Figure 2.6 [72, 15] can be
generated by repetitively substituting line segments by pairs of lines forming
either a left or a right turn. This is described by the following L-system:

ω : Fl
p1 : Fl → Fl + Fr+
p2 : Fr → −Fl − Fr

15

n = 2, δ = 90°
F−F−F−F
F → F−f+FF−F−FF−Ff−FF+f−
 FF+F+FF+Ff+FFF
f → ffffff

Figure 2.4: Combination of islands and lakes [Mandelbrot 1982, p. 121].

Two different symbols, Fl and Fr, are interpreted by the turtle as the “move
forward” command. This is inconsistent with the original specification of the
turtle interpretation. Fortunately, the use of many symbols with the same
interpretation can be avoided by transforming the L-system under consider-
ation. First, let us temporarily assume that the predecessor of a production
can contain more than one letter; thus an entire subword can be replaced by
the successor of a single production. The dragon-generating L-system can be
then rewritten as:

ω : Fl
p1 : Fl→ Fl + rF+
p2 : rF → −Fl − rF

where the symbols l and r are not interpreted by the turtle. Then, notice that
the production Fl → Fl + rF+ replaces the letter l by the string l + rF+
while the leading letter F is left intact. In a similar way, the production
rF → −Fl − rF replaces the letter r by string −Fl − r and leaves the
trailing F intact. Thus, the L-system can be transformed into the final form:

ω : Fl
p1 : l→ l + rF+
p2 : r → −Fl − r

Now both productions have single-letter predecessors and the unnecessary use
of several symbols with the same graphical interpretation has been avoided.

Figure 2.7 presents more examples of fractal curves constructed from Space-filling
curves“left” and “right” elements. The underlying L-systems have a similar struc-

ture to that of the dragon curve.

16 CHAPTER 2. FRACTALS

a b

c d

e f

n = 4, δ = 90°
F+F+F+F
F → FF+F+F+F+F+F−F

n = 4, δ = 90°
F+F+F+F
F → FF+F+F+F+FF

n = 3, δ = 90°
F+F+F+F
F → FF+F−F+F+FF

n = 4, δ = 90°
F+F+F+F
F → FF+F++F+F

n = 5, δ = 90°
F+F+F+F
F → F+FF++F+F

n = 4, δ = 90°
F+F+F+F
F → F+F−F+F+F

−

Figure 2.5: A sequence of Koch curves obtained by successively modifying
the production successor.

17

n = 14, δ = 90°
Fl
l → l+rF+
r → −Fl−r

Figure 2.6: The dragon curve [Davis and Knuth 1970].

In the examples discussed so far the symbols + and − were interpreted as
a right and a left turn of 90◦, respectively. Other values of angle increment
δ can also lead to interesting images. For example, Figure 2.8 presents two
fractal curves obtained using δ = 60◦.

The turtle interpretation of strings can be extended in many directions.
Some extensions are presented below. Those pertinent to the modelling of
plants are introduced in the next chapter.

In its motion, a turtle may trace a closed non-self-intersecting curve (Jor- Polygon
fillingdan curve). Such a curve can be considered as the boundary of a polygon.

We introduce two additional symbols, the opening brace { and the closing
brace }, to delimit the substring which determines the boundary of a filled
polygon. An example of a fractal with a filled polygon is shown in Figure 2.9.

Consecutive positions may be considered as control points specifying a Spline
interpolationsmooth interpolating curve; for example a B-spline curve [24] (Figure 2.10).

Such a modification yields pleasant visual effects and reveals the internal
structure of the fractal better than the usual straight-line interpretation (Fig-
ure 2.11).

The concept of turtle geometry can be extended to three dimensions [1]. Turtle in 3D
Accordingly, we may introduce a three-dimensional turtle interpretation of
strings. The key concept is to represent the current orientation of the turtle in
space by three vectors ~H, ~L, ~U , indicating the turtle’s heading, the direction to
the left, and direction up. These vectors have unit length, are perpendicular
to each other, and satisfy the equation ~H × ~L = ~U . Rotations of the turtle
can then be expressed by the equation:[

~H ′ ~L′ ~U ′
]

=
[
~H ~L ~U

]
R

where R is a 3 × 3 rotation matrix [24]. Specifically, rotations by angle α

18 CHAPTER 2. FRACTALS

n = 3, δ = 90°
X
X → XFYFX+F+YFXFY−F−XFYFX
Y → YFXFY−F−XFYFX+F+YFXFY

a b

c d

n = 5, δ = 90°
X
X → −YF+XFX+FY−
Y → +XF−YFY−FX+

n = 4, δ = 90°
F+XF+F+XF
X → XF−F+F−XF+F+XF−F+F−X

n = 2, δ = 90°
−YF
X → XFX−YF−YF+FX+FX−YF−YFFX
 +YF+FXFXYF−FX+YF+FXFX+
 YF−FXYF−YF−FX+FX+YFYF−
Y → +FXFX−YF−YF+FX+FXYF+FX
 −YFYF−FX−YF+FXYFYF−FX−
 YFFX+FX+YF−YF−FX+FX+YFY

Figure 2.7: “Classic” space-filling curves and the corresponding L-systems.
(a) Peano [1890] curve, (b) Hilbert [1891] curve, (c) A square-grid approxi-
mation of the Sierpiński [1912] curve, (d) Quadratic Gosper curve [Dekking
1982].

19

a n = 6, δ = 60°
YF
X → YF+XF+Y
Y → XF−YF−X

b n = 4, δ = 60°
XF
X → X+YF++YF−FX−−FXFX−YF+
Y → −FX+YFYF++YF+FX−−FX−Y

Figure 2.8: Examples of curves obtained using angle increment δ = 60◦. (a)
Sierpiński arrowhead [Mandelbrot 1982, p. 142], (b) Hexagonal Gosper curve
[Mandelbrot 1982, p. 70].

n = 3, δ = 60°
{XF+F+XF+F+XF+F}
X → XF+F+XF−F−F−XF−F+F+F−F+F+F−X

Figure 2.9: A fractal with a filled polygon [Szillard and Quinton 1979].

20 CHAPTER 2. FRACTALS

Start↑
FF+F-F+FF+F-F+F+F-F+F+F-F-F+F

Figure 2.10: Turtle interpretation of a string with B-spline interpolation.

a b

n = 5, δ = 120◦

F+F+F
F → F-F+F

Figure 2.11: A comparison of fractals obtained using (a) straight-line turtle
interpretation [Dekking 1982] and (b) B-spline interpolation. The interpo-
lated curve does not self-intersect and therefore represents the path of the
turtle in a more clear way.

21

about vectors ~H, ~L and ~U , are represented by the matrices:

RU(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1



RL(α) =

 cosα 0 − sinα
0 1 0

sinα 0 cosα



RH(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα


The following symbols control turtle orientation in space (Figure 2.12):

+ Turn left by angle δ. The rotation matrix equal to RU(δ).

− Turn right by angle δ. The rotation matrix is equal to RU(−δ).

& Pitch down by angle δ. The rotation matrix is equal to RL(δ).

∧ Pitch up by angle δ. The rotation matrix is equal to RL(−δ).

\ Roll left by angle δ. The rotation matrix is equal to RH(δ).

/ Roll right by angle δ. The rotation matrix is equal to RH(−δ).

| Turn around. The rotation matrix is equal to RU(180◦).

An example of a three-dimensional object created using an L-system is shown
in Figure 2.13.

22 CHAPTER 2. FRACTALS

Figure 2.12: Controlling the turtle in three dimensions.

n = 2, δ = 90◦

&-XS-XS-XS-XS
X → XS+XS-XS-XSXS+XS+XS-X
S → F ∧ F ∧ F ∧ F ∧ F

Figure 2.13: A “paper-tape” version of the quadratic Koch curve.

Chapter 3

Models of plant architecture

3.1 Bracketed L-systems

According to the rules introduced in the previous chapter the turtle interprets
a character string as a sequence of line segments, connected “head to tail”
with each other. Depending on the segment lengths and the angles between
them, the resulting line self-intersecting or not, can be more or less convo-
luted, with some segments drawn many times and others made invisible, but
it always remains just a single line.

In his 1968 paper [49], Lindenmayer introduced a notation for represent-
ing graph-theoretic trees using strings with brackets. The motivation was to
formally describe branching structures found in many plants, from algae to
trees, using the general framework of L-systems. Subsequently, geometric in-
terpretations of L-systems operating on strings with brackets were introduced
for the purpose of presenting modelled structures in the form of computer-
generated plots [38, 29] and realistic images [96]. An extension of turtle
interpretation to bracketed strings and L-systems [81, 82] is described below.

We introduce two new symbols interpreted by the turtle:

[Push the current state of the turtle onto a pushdown stack. The infor- Stack
operationsmation saved on the stack contains the turtle’s position and orientation,

as well as attributes such as the color and width of lines being drawn.

] Pop a state from the stack and make it the current state of the turtle.
No line is drawn, although in general the position of the turtle changes.

An example of a bracketed string and its turtle interpretation are shown in
Figure 3.1.

23

24 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Figure 3.1: Turtle interpretation of a bracketed string.

Derivations in bracketed OL-systems proceed as in OL-systems without
brackets, the brackets being rewritten into themselves. Examples of two-
dimensional branching structures generated by bracketed OL-systems are
shown in Figure 3.2.

Figure 3.3 is an example of a three-dimensional bush-like structure gen-Bush
erated by a bracketed L-system. In order to make this L-system easier to
analyze, identifiers are used instead of single-letter, non-interpreted symbols.

ω : apex
p1 : apex → [branch //////’ branch ///////’ branch]
p2 : branch → [& stem leaf ! apex]
p3 : stem → F leaf
p4 : F → F ///// stem
p5 : leaf → [’ ’ ’ ∧ ∧ {−f + f + f − | − f + f + f}]

The angle increment δ is equal to 22.5◦. The system operates as follows.
Production p1 creates three new branches from an apex of the old branch.
Production p2 describes a branch as consisting of an internode, a leaf and an
apex (which will subsequently create three new branches). Productions p3
and p4 specify internode growth. In subsequent derivation steps the internode
gets longer and acquires new leaves. This violates a biological rule of subapical
growth (discussed later), but produces an acceptable visual effect in a still
picture. Production p5 specifies the leaf as a filled polygon with six edges.
The symbols ! and ’ are used to decrement the diameter of segments and
increment the current index to the color table, respectively.

The growth of an internode requires an additional comment. Basically,
productions p3 and p4 have the structure of the simple L-system:

ω : a
p1 : a→ b
p2 : b→ ba

3.1. BRACKETED L-SYSTEMS 25

a b c

d e

n = 5, δ = 25.7°
F
F → F[+F]F[−F]F

n = 5, δ = 22.5°
X
X → F−[[X]+X]+F[+FX]−X
F → FF

n = 6, δ = 25.7°
Y
Y → YFX[+Y][−Y]
X→ X[−FFF][+FFF]FX

n = 4, δ = 22.5°
F
F → FF+[+F−F−F]−[−F+F+F]

n = 7, δ = 20°
X
X → F[+X]F[−X]+X
F → FF

Figure 3.2: Examples of plant-like structures generated by bracketed OL-
systems.

26 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Figure 3.3: A three-dimensional Fibonacci bush

It is known that this L-system generates strings of lengths coinciding
with consecutive terms of the Fibonacci series (1, 1, 2, 3, 5, 8, ...) [89]. Conse-
quently, the lengths of internodes in the bush shown in Figure 3.3 conform
to the same series.

Although various manifestations of the Fibonacci series occur frequently
in nature [99], the particular growth rate characterizing the bush shown in
Figure 3.3 was chosen purely for aesthetic reasons. The generated branching
structure was supposed to look like a bush, but no attempt was made to
model any existing species.

Another example of a three-dimensional plant generated by an 0L-systemPlant
with flowers is shown in Figure 3.4. The corresponding L-system is given below:

3.1. BRACKETED L-SYSTEMS 27

Figure 3.4: A plant generated by an L-system.

28 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

ω : plant
p1 : plant → stem + [plant + flower] −− //

[−− leaf] internode [+ + leaf] −
[plant flower] + + plant flower

p2 : internode → F seg [// & & leaf] [// ∧∧ leaf] F seg
p3 : seg → seg F seg
p4 : leaf → [’ { +f − ff − f+ | +f − ff − f }]
p5 : flower → [& & & pedicel ‘ / wedge //// wedge ////

wedge //// wedge //// wedge]
p6 : pedicel → FF
p7 : wedge → [‘ ∧ F] [{ & & & & −f + f | −f + f }]

The angle increment δ is equal to 18◦. This L-system can be described and
analyzed in a way similar to the previous one. The exponential growth of the
internodes (specified by production p3) resulted in the “best-looking” plant
in this case.

A characteristic feature of turtle interpretation is that directions are spec-Tropism
ified relative to the current orientation. However, absolute directions play an
important role in the development of plants. For example, branches may
bend up towards the source of light or down due to gravity. These effects can
be simulated by slightly rotating the turtle in the direction of a predefined
tropism vector ~T after drawing each segment. In the two-dimensional case
the orientation adjustment α is calculated from the formula α = e ~F × ~T ,
where e is a parameter capturing axis susceptibility to bending. This heuris-
tic formula has a physical motivation; if ~T is interpreted as a force applied to
the endpoint of segment ~F and ~F can rotate around its starting point, the
torque is equal to ~F × ~T . The effect of tropism on a branching structure is
illustrated in Figure 3.5.

3.2 Developmental plant modelling

3.2.1 Introduction

The examples presented in the previous section show the potential of usingProblem
statement L-systems for plant modelling. They also illustrate one of the most striking

features of the generative approach to modelling, called data base amplifi-
cation [96]. This term refers to the generation of complex-looking objects
from very concise descriptions — in our case, L-systems comprising a small
number of productions. Although the L-systems under consideration are so
concise, their construction is not a trivial task. While some L-systems which

3.2. DEVELOPMENTAL PLANT MODELLING 29

a b c

Figure 3.5: Modelling tropism. The tropism vector ~T points up. The coeffi-
cients e used to generate structures a–c satisfy the relation eb > ea > 0 > ac.

generate interesting plant-like structures can be obtained by trial-and-error,
it is advantageous to have a more systematic approach to the modelling of
plants. The methodology presented in subsequent sections is based on the
simulation of the development of real plants. Thus, in order to model a par-
ticular form, we attempt to capture the essence of the developmental process
which leads to this form.

The view that growth and form are interrelated has a long tradition in Growth
and formbiology. D’Arcy Thompson [102] traces its origins to the late seventeenth

century, and comments:

The rate of growth deserves to be studied as a necessary pre-
liminary to the theoretical study of form, and organic form itself
is found, mathematically speaking, to be a function of time... We
might call the form of an organism an event in space-time, and
not merely a configuration in space.

This concept is echoed in a sentence by Hallé, Oldeman and Tomlinson [35]:

The idea of the form implicitly contains also the history of
such a form.

Accordingly, the developmental approach to plant modelling has the following
distinctive features:

30 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

• Emphasis on the space-time relation between plant parts. In
many plants, various developmental stages can be observed at the same
time. For example, some flowers may still be in the bud stage, others
may be fully developed, and still others may have been transformed
into fruits. If the developmental technique is consistently used down
to the level of individual organs, such phase effects are reproduced in a
natural way.

• Inherent capability of growth simulation. Since the entire de-
velopmental process is captured by the mathematical model, it can be
used to generate biologically correct images of plants of different ages
and to provide animated growth sequences.

The formalism of L-systems is particularly suitable to the modelling andHerbaceous
plants simulating the development of herbaceous or non-woody plants.

• Genetic factors play a predominant role in the development of herba-
ceous plants. In contrast, the form of woody plants is determined to
a large extent by the environment, competition between trees and tree
branches, and accidents [113]. These effects are unrelated to the control
mechanisms considered in these notes.

• The development of woody plants is more complex than that of herba-
ceous plants because of secondary growth, which is responsible for the
gradual increase of branch diameter with time.

• It is difficult to collect enough data to construct adequate developmen-
tal models of trees because of their long life cycle.

In order to faithfully reenact plant development, we simulate natural con-Control
mechanisms
in plants

trol mechanisms. In biology, they are divided into two classes, called lineage
and interactive mechanisms. The term lineage (or cellular descent) refers to
the transfer of genetic information from an ancestor cell to its descendants.
In contrast, interaction is a mechanism in which information is exchanged
between coexisting neighbouring cells (for example, in the form of nutrients
or hormones). Within the formalism of L-systems, lineage mechanisms are
represented by context-free productions found in 0L-systems, while the sim-
ulation of interaction requires the use of context-sensitive L-systems, known
as bracketed 1L-systems and 2L-systems. We will first discuss developmental
effects which can be modelled without interactions, then define the notion of
context in bracketed L-systems and apply it to simulate development with
interactions.

3.2. DEVELOPMENTAL PLANT MODELLING 31

Figure 3.6: An axial tree.

3.2.2 Graph-theoretical vs. botanical trees

In the context of plant modelling, a branching structure or “tree” must be
carefully defined to avoid ambiguity. To this end, we introduce the notion of
an axial tree (Figure 3.6) which complements the graph-theoretic notion of
a rooted tree [80] with the botanically motivated notion of branch axis.

A rooted tree has edges which are labelled and directed. The edge se-
quences form paths from a distinguished node called the root or the base to
the terminal nodes. In the biological context, these edges are referred to as
branch segments. A segment followed by at least one more segment in some
path is called an internode. A terminal segment (with no succeeding edges)
is called an apex.

An axial tree is a special type of rooted tree. At each of its nodes we
distinguish at most one outgoing straight segment. All remaining edges are
called lateral or side segments. A sequence of segments is called an axis if:

• the first segment in the sequence originates at the root of the tree or
as a lateral segment at some node,

• each subsequent segment is a straight segment, and

• the last segment is not followed by any straight segment in the tree.

32 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Together with all its descendants, an axis constitutes a branch. A branch is
itself an axial (sub)tree.

Axes and branches are ordered. The axis originating at the root of the
entire plant has order zero. An axis originating as a lateral segment of an
n-order parent axis has order n + 1. The order of a branch is equal to the
order of its lowest-order or main axis.

Axial trees are purely topological objects. The geometric connotation of
such terms as straight segment, lateral segment and axis should be viewed
at this point as an intuitive link between the graph-theoretic formalism and
real plant structures.

3.3 Development without interactions

When discussing various types of plants, we will focus on the topologicalSchemata
of L-systems description of their structure and the temporal aspects of their development.

Thus, the L-systems considered in the following sections should no longer be
considered as “ready-to-use” data files. This departure from detailed listings
is motivated by three factors:

• Abstraction from geometric details makes it easier to focus on the es-
sential features inherent to a given type of development;

• The discussion of development becomes clearer if the symbols in the
L-systems refer to the role particular segments play in the plant (e.g.
an internode, an apex, a leaf) rather than to the details of turtle inter-
pretation;

• Detailed L-systems corresponding to particular plant species tend to
be much longer (and less legible) than their abstract “schemata”.

Given an L-system scheme, a “detailed” L-system can be specified by includ-
ing the symbols which describe the growth rates of internodes, the branching
angles, and the structure of organs. Details on organ modelling are discussed
in Chapter 4.

We put particular emphasis on the modelling of compound floweringTerminology
structures or inflorescences. As there is no commonly accepted terminol-
ogy referring to inflorescence types, we chose to follow the terminology of
Müller-Doblies [75] which in turn is based on extensive work by Troll [103].
Our presentation is organized by the control mechanisms which govern inflo-
rescence development.

3.3. DEVELOPMENT WITHOUT INTERACTIONS 33

3.3.1 Racemes, or the phase beauty of sequential growth

The simplest possible flowering structures with multiple flowers are those
with a single stem on which an indefinite number of flowers are produced se-
quentially. Inflorescences of this type are called racemes. Their development
can be described by the following OL-system:

ω : A
p1 : A→ I[IF0]A
p2 : Fi → Fi+1 i ≥ 0

The edge symbol A denotes the apex of the main (zero-order) axis, I is an
internode, and symbols Fi refer to subsequent stages of flower development.
The indexed notation Fi → Fi+1 stands for a (potentially infinite) set of
productions F0 → F1, F1 → F2, F2 → F3, The developmental sequence
begins as follows:

A
I[IF0]A
I[IF1]I[IF0]A
I[IF2]I[IF1]I[IF0]A
I[IF3]I[IF2]I[IF1]I[IF0]A · · ·

It can be seen that at each developmental stage the inflorescence contains
a sequence of flowers of different ages. The flowers newly created by the Lily-of-the-

valleyapex are delayed in their development with respect to the older ones situated
at the stem base. Graphically, this effect is illustrated by a model of lily-
of-the-valley shown in Figure 3.7. Its inflorescence was generated by the
above L-system complemented with attribute symbols to control geometry
of internodes, branching angles, and organ structure. The following quotation
from d’Arcy Thompson [102] applies:

A flowering spray of lily-of-the-valley exemplifies a growth-
gradient, after a simple fashion of its own. Along the stalk the
growth-rate falls away; the florets are of descending age, from
flower to bud; their graded differences of age lead to an exquisite
gradation of size and form; the time-interval between one and
another, or the “space-time relation” between them all, gives a
peculiar quality — we may call it phase-beauty — to the whole.

This “phase-beauty” can also be observed in other structures. For example, Fern
consider the fern-like plant shown in Figure 3.8. In this case, nine zero-order
branches grow subapically and produce new first-order branches, which also

34 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Figure 3.7: Lily-of-the-valley.

Figure 3.8: Fern.

3.3. DEVELOPMENT WITHOUT INTERACTIONS 35

grow subapically and produce leaves. The number of leaves carried on first-
order branches, the length of internodes and the leaf size increase with time.
These processes are described by the following L-system:

ω : [A][A][A][A][A][A][A][A][A]
p1 : A→ I0[B]A
p2 : B → I0[L0][L0]B
p3 : Ii → Ii+1 i ≥ 0
p4 : Li → Li+1 i ≥ 0

A and B denote apices of zero-order and first-order axes, I0, I1, I2, . . . de-
note the internodes, and L0, L1, L2, . . . denote the subsequent stages of leaf
development.

3.3.2 Cymose inflorescences, or the use of delays

In racemes the apex of the main axis produces lateral branches and continues
to grow. In contrast, the apex of the main axis in cymes turns into a flower
shortly after a few lateral branches have been initiated. Their apices turn
into flowers as well, and second-order branches take over. In time, branches of
higher and higher order are produced. Thus, the basic structure of a cymose
inflorescence is captured in the production:

A→ I[A][A]IF

A denotes an apex, I an internode, and F a flower. Note that according
to this description, the two branches are identical and grow in concert. In
reality, this need not be the case, as one lateral branch may start growing
before the other. This effect can be modelled by assuming that apices un-
dergo a sequence of state changes which delay their further growth until a
particular state is reached. For example, consider the following L-system
which describes the development of the rose campion (Lychnis coronaria) as Lychnis
analyzed by Robinson [84]:

ω : A7

p1 : A7 → I[A0][A4]IF0

p2 : Ai → Ai+1 0 ≤ i < 7
p3 : Fi → Fi+1 i ≥ 0

Production p1 shows that at their creation time, the lateral apices have differ-
ent states A0 and A4. Consequently, the first apex requires eight derivation
steps to produce a flower and new branches, while the second requires only

36 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

The inflorescence is composed of a central and two lateral sub-inflorescences.
Every third derivation step is shown. Stages of flower development: F0, F1, F2:
bud (circle), F3, F4: open flower, F5 − F9: young fruit (diamond), F10, F11, . . .:

old fruit (triangle).

Figure 3.9: Development of Lychnis coronaria.

3.3. DEVELOPMENT WITHOUT INTERACTIONS 37

Flower

Fruit
→
→

Every fourth derivation step is shown. Stages of flower development: F0 − F4:
open flower, F5, F6, . . .: fruit.

Figure 3.10: Development of Capsella bursa-pastoris.

four steps. Concurrently, each flower undergoes a sequence of changes, pro-
gressing from the bud stage to an open flower to a fruit. This developmental
sequence is illustrated in Figure 3.9. From the biological perspective it is in-
teresting to notice that at different developmental stages there are a number
of open flowers which have relatively uniformly distribution over the entire
plant structure. This is advantageous to the plant as it increases the time
span over which seeds will be produced.

3.3.3 Racemes with leaves, or modelling qualitative
changes of the developmental process

The developmental sequences considered so far are homogeneous in the sense
that the same structure is produced repeatedly at fixed time intervals. How-
ever, in many cases a qualitative change in the nature of development can
be observed at some point in time. For example, consider shepherd’s purse
(Capsella bursa-pastoris) shown in Figure 3.10. In principle, its developmen- Capsella

38 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

tal pattern can be described as follows:

ω : A
p1 : A→ I[L0]A
p2 : A→ I[L0]B
p3 : B → I[IF0]B
p4 : Li → Li+1 i ≥ 0
p5 : Fi → Fi+1 i ≥ 0

The initial vegetative growth, represented by production p1 describes the
creation of successive internodes and leaves by apex A. At some point in
time, production p2 changes the apex from the vegetative state A to the
flowering state B. From then on, flowers are produced instead of leaves,
forming a raceme structure as discussed in Section 3.3.1. The moment in
which this change (or developmental switch) occurs is not specified: the L-
system is a nondeterministic one. Thus, for modelling purposes it must be
complemented with an additional control mechanism which will determine
the switch time. Below we outline three possible mechanisms. Each of them
is biologically motivated, and corresponds to a different class of L-systems.

Delay mechanism

As in the case of cymose inflorescences (Section 3.3.2), the apex undergoes
a series of state changes which delay the switch until a particular state is
reached. This mechanism is outlined below:

ω : A0

p1 : Ai → I[L0]Ai+1 0 ≤ i < n
p2 : An → I[L0]B
p3 − p5 : as before

According to this model, the apex counts the leaves it produces. While it may
seem strange that a plant counts, it is known that some plant species produce
a fixed number of leaves before they start flowering. Counting is achieved
by the monotonic increase or decrease of the concentration of certain cell
components.

Stochastic mechanism

Another method for implementing the change is to use a stochastic mecha-
nism. In this case the vegetative apex has a probability π1 of staying in the

3.3. DEVELOPMENT WITHOUT INTERACTIONS 39

vegetative state, and π2 of transforming itself into a flowering apex:

ω : A

p1 : A
π1−→ I[L0]A

p2 : A
π2−→ I[L0]B

p3 − p5 : as before

For a formal definition of stochastic L-systems see [21, 112].

Environmental change

Many plants change from the vegetative to the flowering state in response to
an environmental factor (such as the number of daylight hours or tempera-
ture). We can model this by using one set of productions (called a table) for
some number of derivation steps before replacing it by another table:

Table 1
ω : A
p1 : A→ I[L0]A
p2 : Li → Li+1 i ≥ 0

Table 2
p1 : A→ I[L0]B
p2 : B → I[IF0]B
p3 : Li → Li+1 i ≥ 0
p4 : Fi → Fi+1 i ≥ 0

The concept of table L-systems (TOL-systems) is formalized in [37, 87].

The developmental switch from the vegetative to the flowering state is not
the only qualitative change which can occur in a plant. Another possibility
is the transformation of an apex from producing lateral flowers to producing
a terminal flower which stops the axis development. This switch can also be
produced using the methods described above.

3.3.4 Composition of interactionless inflorescences

In Section 3.3.1 we considered simple racemes (also called monobotryoid in-
florescences). They are characterized by a single axis, on which flowers are
borne. In many plants compound racemes also occur. In the dibotryoid case
the main axis carries entire racemes on the first order axes. This compo-
sition can be recursively extended to higher orders (tribotryoids, etc.). In
general, the L-system for a compound raceme of order n has the following
productions:

p1 : Ai → I[Ai+1]Ai 0 ≤ i ≤ n− 1
p2 : An → I[IF]An

40 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

The above L-system does not produce flowers on axes of order less then n.
However, some plants develop racemes at the end of each axis. This can be
modelled by introducing additional productions of the form:

p′1 : Ai → I[IF]An 0 ≤ i ≤ n− 1

The mechanism for switching from productions p1 to productions p′1 can be
the same as discussed in Section 3.3.3.

Similar rules for inflorescence composition apply to cymes. In fact, com-
position was used to produce two lower branches of Lychnis coronaria shown
in Figure 3.9.

3.4. CONTEXT-SENSITIVE L-SYSTEMS 41

3.4 Context-sensitive L-systems

Productions in OL-systems are context-free; i.e. applicable regardless of the
context in which the predecessor appears. This type of production is sufficient
to model cellular descent, that is, information transfer from the parent cell
to its descendants. However, a context-sensitive extension of L-systems is
necessary to model information exchange between neighbouring cells (cellular
interaction). Various possible extensions have been proposed and thoroughly
studied in the past [89, 37, 61]. Some of these are listed below. 2L-systems
use productions of the form al < a > ar → χ, where the letter a (called
the strict predecessor) can produce word χ if and only if a is preceded by
letter al and followed by ar. Thus, letters al and ar form the left and the
right context of a in this production. Productions in 1L-systems have one-
sided context only; consequently, they are either of the form al < a → χ or
a > ar → χ. OL-systems, 1L-systems and 2L-systems belong to a wider class
of IL-systems, also called (k,l)-systems. In a (k,l)-system, the left context is
a word of length k and the right context is a word of length l.

In order to keep specifications of L-systems short, we slightly modify
the usual notion of IL-systems by allowing productions with different con-
text lengths to coexist within a single system. Furthermore, we assume
that context-sensitive productions have precedence over context-free pro-
ductions with the same strict predecessor. Consequently, if a context-free
and a context-sensitive production both apply to a given letter, the context-
sensitive one should be selected. If no production applies, this letter is re-
placed by itself as previously assumed for OL-systems.

As an example of cellular interaction, consider the diffusion of a hormone Context
in stringsalong a filament. If a denotes a cell with hormone concentration below a

threshold level and b is a cell with concentration exceeding this level, the
diffusion process can be described by the following 1L-system:

ω : baaaaaaa
p : b < a→ b

The first few words generated by this L-system are given below:

baaaaaaaa
bbaaaaaaa
bbbaaaaaa
bbbbaaaaa
bbbbbaaaa
· · ·

42 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Thus, the hormone propagates throughout the filament, starting from its left
end.

Context-sensitive bracketed L-systems are comparatively more complexContext
in trees than L-systems without brackets, because symbols representing adjacent tree

segments can be separated by an arbitrarily large number of other symbols
in the bracketed string representation. Consequently, special rules for con-
text searching are needed. We will consider a restricted case where daughter
branches do not belong to the context of the mother branch. This approach
corresponds to the original definition of bracketed L-systems with interac-
tions [49]. For example, in the string:

ABCD[EF][G[HI[JKL]M]NOPQ]

D is the left context of G, and N is the right context of G.

In 1974 Hogeweg and Hesper published results of an exhaustive studyL-systems
of Hogeweg,
Hesper and
Smith

of 3584 patterns generated by a class of bracketed 2L-systems defined over
the alphabet {0,1} [38]. Some of these patterns had plant-like shapes. Sub-
sequently, Smith significantly improved the quality of the generated images
using state-of-the-art computer imagery techniques [94, 96]. Examples of
structures obtained using the L-systems of Hogeweg and Hesper are shown
in Figure 3.11. The only modification required was to incorporate the geo-
metric information needed to control the turtle. The geometric symbols are
ignored while context matching.

The complete data files used to produce the plant-like structures shown
in Figure 3.11 are listed below.

a derivation length: 30

angle factor: 16

scale factor: 100

axiom: F1F1F1

ignore: +-F

0 < 0 > 0 --> 0

0 < 0 > 1 --> 1[+F1F1]

0 < 1 > 0 --> 1

0 < 1 > 1 --> 1

1 < 0 > 0 --> 0

1 < 0 > 1 --> 1F1

1 < 1 > 0 --> 0

1 < 1 > 1 --> 0

* < + > * --> -

* < - > * --> +

b derivation length: 30

angle factor: 16

scale factor: 100

axiom: F1F1F1

ignore: +-F

0 < 0 > 0 --> 1

0 < 0 > 1 --> 1[-F1F1]

0 < 1 > 0 --> 1

0 < 1 > 1 --> 1

1 < 0 > 0 --> 0

1 < 0 > 1 --> 1F1

1 < 1 > 0 --> 1

1 < 1 > 1 --> 0

* < - > * --> +

* < + > * --> -

3.4. CONTEXT-SENSITIVE L-SYSTEMS 43

‘

ed

a b c

Figure 3.11: Examples of branching structures generated using L-systems
of Hogeweg and Hesper.

44 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

c derivation length: 26

angle factor: 14

scale factor: 100

axiom: F1F1F1

ignore: +-F

0 < 0 > 0 --> 0

0 < 0 > 1 --> 1

0 < 1 > 0 --> 0

0 < 1 > 1 --> 1[+F1F1]

1 < 0 > 0 --> 0

1 < 0 > 1 --> 1F1

1 < 1 > 0 --> 0

1 < 1 > 1 --> 0

* < - > * --> +

* < + > * --> -

d derivation length: 24

angle factor: 14

scale factor: 100

axiom: F0F1F1

ignore: +-F

0 < 0 > 0 --> 1

0 < 0 > 1 --> 0

0 < 1 > 0 --> 0

0 < 1 > 1 --> 1F1

1 < 0 > 0 --> 1

1 < 0 > 1 --> 1[+F1F1]

1 < 1 > 0 --> 1

1 < 1 > 1 --> 0

* < + > * --> -

* < - > * --> +

e derivation length: 30

angle factor: 16

scale factor: 100

axiom: F1F1F1

ignore: +-F

0 < 0 > 0 --> 0

0 < 0 > 1 --> 1[-F1F1]

0 < 1 > 0 --> 1

0 < 1 > 1 --> 1

1 < 0 > 0 --> 0

1 < 0 > 1 --> 1F1

1 < 1 > 0 --> 1

1 < 1 > 1 --> 0

* < + > * --> -

* < - > * --> +

The exhaustive search of a particular class of L-systems made it possi-
ble to find several which produce fairly realistic images, but did not offer a
methodology for constructing context-sensitive L-systems for modelling given
plant structures. In order to develop such a methodology, we must analyze
the role of interaction in plant development.

3.5. DEVELOPMENT WITH INTERACTIONS 45

3.5 Development with interactions

3.5.1 Signals in plants

Even in the presence of delays, the lineage mechanisms (corresponding to con- Need
for interactiontext free productions) reflect the sequential creation of branches, flowers and

leaves by the subapical growth process. Consequently, organs near the plant
roots develop earlier and more extensively than those situated near the axis
ends. Such development results in basitonic plant structures (heavily devel-
oped near the base) with acropetal flowering sequences (the zone of blooming
flowers progresses upwards along each branch.) However, nature also creates
acrotonic structures (heavily developed near the apex) and basipetal flower-
ing sequences (progressing downwards). These structures and developmental
patterns cannot be viewed as a simple consequence of subapical growth; for
example, basipetal flowering sequences progress in the direction which is pre-
cisely opposite to that of plant growth. An intuitively straightforward and
biologically well founded explanation of the described phenomena can be
given in terms of signals which propagate through the plant and control the
timing of developmental processes.

Within the formalism of bracketed L-systems, the left context can be Signal
propagationused to simulate control signals which propagate acropetally, i.e. from the

root or the basal leaves towards the apices of the modelled plant, while the
right context represents signals which propagate basipetally, i.e. from the
apices towards the root. For example, the following 1L-system simulates
propagation of an acropetal signal in a branching structure which does not
grow.

ω : J [I]I[I]I[I]I
p : J < I → J

Symbol J represents a segment already reached by the signal, while I repre-
sents a segment which has not been reached yet. Images representing con-
secutive stages of signal propagation (corresponding to consecutive words
generated by the L-system under consideration) are shown in Figure 3.12.

The propagation of a basipetal signal can be simulated in a similar way
(Figure 3.13):

ω : I[I]I[I]I[I]J
p : I > J → J

Below we consider two developmental models with signals. The first
model employs a single acropetal signal, while the second one uses both
acropetal and basipetal signals. In contrast to the previous examples we
assume that control signals propagate in a structure which is growing.

46 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

I I

I
I

II

I

I

I II

I

J

J
J J

J

J

J

J

J
J

J

JJ

J

JJ

Figure 3.12: Acropetal signal propagation.

I

I

I

I I

I
I

I

I
I

I

I

I

I

I

I

I

IJ

J

J

J

J

J

J

J J

J

Figure 3.13: Basipetal signal propagation.

3.5. DEVELOPMENT WITH INTERACTIONS 47

3.5.2 Developmental model with one acropetal signal

Let us assume that the switch from the vegetative to the flowering condition
is caused by a flower-inducing signal (representing the hormone florigen),
which is transported from the basal leaves towards branch apices. In this
case, the overall phase effect results from an interplay between growth and
control signal propagation [57, 39]. Assuming that only the first-order lateral
branches are present, the development can be described by the following 1L-
system:

ω : D0A0

p1 : Ai → Ai+1 0 ≤ i < m− 1
p2 : Am−1 → I[B0]A0

p3 : Bi → Bi+1 0 ≤ i < n− 1
p4 : Bn−1 → J [L]B0

p5 : Di → Di+1 0 ≤ i < d
p6 : Dd → S0

p7 : Si → Si+1 0 ≤ i < max{u, v} − 1
p8 : Sz → ε z = max{u, v} − 1
p9 : Su−1 < I → IS0
p10 : Sv−1 < J → JS0

p11 : S0 < Ai → F0 0 ≤ i ≤ m− 1
p12 : S0 < Bi → F0 0 ≤ i ≤ n− 1
p13 : Fi → Fi+1 i ≥ 0

This L-system operates as follows. The apex A produces segments I of
the main axis and creates the lateral apices (p1, p2). The time between the
production of two consecutive segments, called the plastochron of the main
axis, is equal to m units (derivation steps). In a similar way, the first-order
apices B produce segments J of the lateral axes and leaves L with plastochron
n (p3, p4). After a delay of d time units a signal S is sent from the tree base
towards the apices (p6). This signal is transported along the main axis with
a delay of u time units per internode I (p7, p9), and along the first-order axes
with a delay of v units per internode J (p7, p10). Production p8 removes the
signal from a node after it has been transported further along the structure
(ε stands for the empty string). When the signal reaches an apex (either
A or B), the apex is transformed into a terminal flower F (p11, p12) which
undergoes the usual sequence of states (p13).

In order to analyze the plant structure and flowering sequence resulting Model
analysisfrom the above development, let Tk denote the time at which the apex of the

k-th first-order axis is transformed into a flower, and lk denote the length of
this axis (expressed as the number of internodes) at the transformation time.

48 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Since it takes km time units to produce k internodes along the main axis and
lkn time units to produce lk internodes on the first-order axis, we obtain:

Tk = km+ lkn

On the other hand, the transformation occurs when the signal S reaches the
apex. The signal is sent d time units after the development starts, uses ku
time units to travel through k zero-order internodes and lkv time units to
travel through lk first-order internodes:

Tk = d+ ku+ lkv

Solving the above system of equations for lk and Tk (and ignoring for sim-
plicity some inaccuracy due to the fact that this system does not guarantee
integer solutions), we obtain:

Tk = k
un− vm
n− v

+ d
n

n− v

lk = −k
n

m− u
n− v

+
d

n− v
In order to analyze the above solutions let us first notice that the signal
transportation delay v must be less than the plastochron of the first-order
axes n. If this were not the case the signal would never reach the apices.
Under this assumption the sign of the expression ∆ = un − vm determines
the flowering sequence, which is acropetal for ∆ > 0 and basipetal for ∆ < 0
(Figure 3.14). If ∆ = 0 all flowers occur simultaneously. The sign of the
expression m− u determines whether the plant has a basitonic (m− u < 0)
or acrotonic (m− u > 0) structure.

3.5.3 Developmental model with several signals.

The development of some inflorescences is controlled by several signals, which
may propagate with different delays and trigger each other. The use of more
than one signal is instrumental in the modelling of a large class of inflo-
rescences (found, for instance, in the family Compositae) characterized by
terminal flowers on all apices, indefinite order of branching, and a basipetal
flowering sequence. Figure 3.15 illustrates this type of development with
a model of wall lettuce (Mycelis muralis). First, the main axis is formedMycelis
in a process of subapical growth which produces subsequent internodes and
lateral apices (a). At this stage further development of lateral branches is
suppressed by apical dominance, that is, the inhibiting effect of an active apex

3.5. DEVELOPMENT WITH INTERACTIONS 49

An acropetal sequence: m = 2, n = 3, u = v = 1,∆ = 0.5; derivation lengths:
15− 19− 21− 23− 26.

A basipetal sequence: m = 2, n = 5, u = 1, v = 3,∆ = −0.5; derivation
lengths: 10− 16− 23− 25− 28− 31.

Figure 3.14: Flowering sequences generated by the model with an acropetal
signal. Stages of flower development: F0: bud (small circle), F1, F2, F3: open
flower, F4, F5, . . .: fruit (large circle).

50 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

a b c d e

f g h

Figure 3.15: Developmental sequence of Mycelis muralis.

3.6. ADDING VARIATION TO MODELS 51

exercised on the lateral branches of the same axis. Physiologically, the apical
dominance is related to hormones called auxins present in the plant as long as
the apex is active and gradually neutralized after flower initiation. At some
moment, a flowering signal S1 is sent from the bottom of the inflorescence
along the main axis. When this signal reaches the apex, the terminal flower
is initiated (b,c) and a basipetal signal S2 lifting the apical dominance is sent
down the main axis. This enables successive first-order axes to grow, starting
from the topmost one (d). After a delay, a secondary basipetal signal S3 is
sent from the apex of the main axis. Its effect is to send the flowering signal
S1 along subsequent first-order axes as they are encountered on the way down
and, consequently, induce flowering at their apices (e). This entire process
repeats recursively for each axis: its apex is transformed into a flower, the
apical dominance is lifted enabling lateral axes of the next order to grow,
and the secondary basipetal signal is sent to induce the flowering signal S1

in these lateral axes (f,g,h). The resulting structures depend heavily on the
values of plastochrons, delays, and signal propagation times. In the example
under consideration, signal S2 travels faster than S3. Consequently, the time
interval between the arrival of signals S2 and S3 increases while moving down
the plant, potentially allowing the lower axes to grow longer than the upper
ones. On the other hand, the lower branches start developing later, so they
may not be fully developed at the time of observation. As a result of these
opposite tendencies, the plant is developed most extensively in its middle
parts. For a detailed biological analysis of the above process see [39].

3.6 Adding variation to models

All plants generated by the same deterministic L-system are identical. An
attempt to combine them in the same picture would produce a striking,
artificial regularity. In order to prevent this effect it is necessary to introduce
specimen-to-specimen variations which will preserve the general aspects of a
plant but will modify its details.

Variation can be achieved by randomizing the turtle interpretation, the
L-system, or both. Randomization of the interpretation alone has a limited
effect. While the geometric aspects of a plant — such as the stem lengths
and branching angles — are modified, the underlying topology remains un-
changed. In contrast, the stochastic application of productions mentioned in
Section 3.3.3 may affect both the topology and the geometry of the plant.
We will limit our discussion to the context free case.

A stochastic 0L-system is an ordered quadruplet Gπ = 〈V, ω, P, π〉. The

52 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

alphabet V , the axiom ω and the set of productions P are defined as inStochastic
L-system an 0L-system (Section 1.2). Function π : P → (0, 1], called the probability

distribution, maps the set of productions into the set of production probabil-
ities. It is assumed that for any letter a ∈ V , the sum of probabilities of all
productions with the predecessor a is equal to 1.

The above definition of a stochastic 0L-system is similar to that of Yoko-
mori [112], and Eichhorst and Savitch [21].

We will call the derivation µ⇒ ν a stochastic derivation in Gπ if for eachStochastic
derivation occurrence of the letter a in the word µ the probability of applying production

p with the predecessor a is equal to π(p).
According to the above definition, different productions with the same

predecessor can be applied to various occurrences of the same letter in one
derivation step.

A simple example of a stochastic L-system is given below.

ω : F

p1 : F
0.33−→ F [+F]F [−F]F

p2 : F
0.33−→ F [+F]F

p3 : F
0.34−→ F [−F]F

The production probabilities are listed above the derivation symbol −→.
Each production can be selected with approximately the same probability
of 1/3. Examples of branching structures generated by this L-system with
derivations of length 5 are shown in Figure 3.16. Note that these structures
look like different specimens of the same (albeit fictitious) plant species.

A more complex example is shown in Figure 3.17. The flower field con-Flower field
sists of four rows and four columns of plants. All plants are generated by
a stochastic modification of the L-system used to generate Figure 3.4. The
essence of this modification is to replace the original production p3 by the
following three productions:

p′3 : seg
0.33−→ seg [// & & leaf] [// ∧∧ leaf] F seg

p′′3 : seg
0.33−→ seg F seg

p′′′3 : seg
0.34−→ seg

Thus, in any step of the derivation, the stem segment seg may grow
and produce new leaves (production p′3), grow without producing new leaves
(production p′′3), or not grow at all (production p′3′′). All three events occur

3.6. ADDING VARIATION TO MODELS 53

Figure 3.16: Sample branching structures generated by a stochastic L-system.

Figure 3.17: A flower field.

54 CHAPTER 3. MODELS OF PLANT ARCHITECTURE

Figure 3.18: Shoots of the Japanese cypress.

with approximately the same probability. The resulting field appears to
consist of various specimens of the same plant species.

While the stochastic L-systems discussed above were not intended to rep-Japanese
cypress resent any existing plants, there are also stochastic L-systems developed by

biologists to model particular plant species. Specifically, Nishida [78] pro-
posed a stochastic L-system to model shoots of the Japanese cypress. The
examples shown in Figure 3.18 were obtained using a slightly modified version
of his model (productions with very small probabilities were eliminated).

Chapter 4

Models of plant organs

So far we have discussed the modelling of “skeletal” trees with branches
consisting of mathematical lines. In this section we extend the model to
include surfaces and volumes.

4.1 Bicubic surfaces

Conceptually, the simplest approach to organ modelling is to incorporate
predefined surfaces into a tree structure. The standard method for describ-
ing arbitrary surfaces is based on bicubic patches [24]. Surface shapes are
specified interactively, using a graphical patch editor. The alphabet of the
L-system is extended to include symbols representing different patch shapes.
When the turtle encounters a patch symbol during string interpretation, the
corresponding patch is incorporated into the model with its position and ori-
entation determined by the current state of the turtle. String symbols can
also be used to control other features of the incorporated surface, such as
its color or overall size. Thus, the L-system controls the appearance of the
surfaces and their distribution in space, while the surface shapes are defined
outside the conceptual framework of L-systems.

A simple example of a “generic plant” modelled using cubic surfaces
is shown in Figure 4.1. This plant structure is described by the following
L-system:

ω : apex
p1 : apex → internode [leaf] apex
p2 : apex → internode bud
p3 : bud → [petal1] [petal2] [petal1]

[petal2] [petal1] [petal2]

55

56 CHAPTER 4. MODELS OF PLANT ORGANS

Figure 4.1: Construction of a plant. (a) Patch representing a leaf.
(b,c) Patches representing petals. (d) The resulting plant.

4.2. DEVELOPMENTAL SURFACE MODELS 57

Identifiers leaf, petal1 and petal2 denote patches incorporated in the model.
The simplicity of the above example makes it suitable for use in explaining

the idea of incorporating predefined surfaces in a plant model. On the other
hand, a model that consists of a handful of patches can be easily defined
without any generative mechanism at all! However, patches can also be
incorporated in much more complicated structures. For example, Figure 4.2
explains the structure of a lilac twig. The final image is shown in Fig. 4.3.

The topology and geometry of the model are based on observations of
“real” lilac twigs. The process of inferring data from observations was not a
trivial one. While the overall topology and the branching angles are constant
within a given plant species, the lengths of internodes are known to vary
substantially from one specimen to another. It is therefore difficult to capture
the essential geometrical relationships characterizing a given structure from
data affected by the “noise” of apparently random perturbations.

4.2 Developmental surface models

Patches make it easy to manipulate and modify surface shapes interactively,
but are incompatible with the developmental approach to modelling since
they do not “grow”. Consequently, they are not suitable for use in the models
in which phase effects between organs play an important role.

In order to fully simulate plant development, it is necessary to provide
a mechanism for changing the size and shape of surfaces in time. We can
achieve this in a simple way by defining polygonal surface boundaries using
an L-system and filling the resulting polygons. An example is presented
below:

ω : L
p1 : L→ {−FX +X + FX − | − FX +X + FX}
p2 : X → FX

Production p1 defines a leaf as a closed planar polygon. The parentheses
{ and } indicate that the polygon should be filled. Production p2 linearly
increases the lengths of the polygon edges. Leaves generated by this L-system
were incorporated in the model of fern shown in Figure 3.8. Note the phase
effect due to the “growth” of polygons in time. A similar L-system was used
to generate leaves in Capsella bursa-pastoris (Figure 3.10).

In practice, the tracing of polygon boundaries leads to acceptable effects
only in the case of small, flat surfaces. In other cases it is more convenient
to define surfaces using an underlying tree structure as a frame. The en-
tire surface is then bounded by contour edges which connect endpoints of
the frame segments. The difference between the three leaf shapes shown in

58 CHAPTER 4. MODELS OF PLANT ORGANS

Figure 4.2: Construction of a lilac twig. (a) Geometric relationships in an
inflorescence. (b) Inflorescence “skeleton” generated by an L-system. (c)
Patches representing a flower. (d) Patches representing a leaf.

4.2. DEVELOPMENTAL SURFACE MODELS 59

Figure 4.3: A lilac twig.

60 CHAPTER 4. MODELS OF PLANT ORGANS

Figure 4.4: Developmental models of leaves.

Figure 4.4 results from modifying the branching angles and the growth rates
of axes. Specifically, the blade of the cordate leaf (the leftmost in Figure 4.4)
was generated by the following L-system:

ω : [A][B]
p1 : A→ [+A?]C#
p2 : B → [−B?]C#
p3 : C → IC

The axiom contains symbols A and B which generate the left-hand side and
the right-hand side of the blade. Each of the productions p1 and p2 creates
a sequence of axes starting at the leaf base and gradually diverging from
the midrib. Production p3 increases the axis lengths. The axes close to the
midrib are the longest since they were created first (thus, the leaf shape is
yet another manifestation of the phase effect). Pairs of symbols ? and #
indicate the endpoints of the inserted edges. The following string represents
the left-hand side of the leaf after four derivation steps:

[+[+[+[+A ?]C#︸ ︷︷ ︸ ?]IC#︸ ︷︷ ︸ ?]IIC#︸ ︷︷ ︸ ?]IIIC#︸ ︷︷ ︸
At this stage four edges are inserted between the vertices denoted by symbols
? and #, as indicated by braces. The first edge has zero length, the second is
collinear with an axis, and the remaining two complete triangles. An entire
developmental sequence of a cordate leaf is shown in Figure 4.5.

The frame-based approach can be extended to three-dimensional organs.
Figure 4.6 reveals construction of the flowers of the lily-of-the-valley from
Figure 3.7. The L-system generates a supporting framework composed of five
curved lines which spread radially from the flower base and are connected by a

4.2. DEVELOPMENTAL SURFACE MODELS 61

Figure 4.5: Development of a cordate leaf.

Figure 4.6: Structure of a lily-of-the-valley flower.

62 CHAPTER 4. MODELS OF PLANT ORGANS

web of inserted edges. The flower is represented as a polygon mesh consisting
of trapezoids bounded by two “regular” and two inserted edges.

Another developmental approach to leaf modelling was recently proposed
by Lienhardt and Françon [47, 48]. While they also use two types of edges
to specify leaf structures, the development is not described in terms of L-
systems.

Chapter 5

Models of cell layers

Although the developmental surface models discussed in the previous chapter
allow for specifying closed polygons, the basic supporting structure is still
limited to trees (in the graph-theoretic sense). An extension of L-systems to
maps [104] (planar graphs with cycles which partition the plane into regions)
is termed map L-systems [62, 90, 16, 59, 58]

In the context-free case (a map OL-system), the predecessor of each pro- Map
0L-systemduction represents a single directed edge. The successor is a bracketed string

which, in addition to letters denoting edge labels and brackets, may contain
symbols +,− and ~. The symbols + and − specify whether a branch should
be placed to the left or to the right of the main axis, but, in contrast to the
turtle interpretation, do not correspond to any particular value of the branch-
ing angle. The symbol ~ is used to indicate edge direction. The following
rules apply:

• An edge which belongs to the main axis of the production successor
has the same direction as the predecessor if it is not preceded by a tilde
(~); otherwise it has the opposite direction.

• A branch edge is directed away from the main axis if it is not preceded
by a ~; otherwise it is directed towards the main axis.

A derivation step in a map L-system consists of two phases: Derivation

• In the first phase, each edge in the map is replaced by its successor
according to the production set;

• In the second phase, pairs of matching branches are connected together.

The second step does not have a counterpart in the L-systems described
previously and requires further explanation. Two single-edge branches match
if they satisfy the following three conditions:

63

64 CHAPTER 5. MODELS OF CELL LAYERS

• they enter the same region,

• they have the same label, and

• one branch is oriented away from the main axis, while the other is
oriented towards the main axis.

A pair of matching branches is connected together to form a single edge. The
branches without a matching complement are discarded from the map prior
to the subsequent derivation step.

An example of a map L-system is given in Figure 5.1. It presents a pro-
duction set in bracketed string form, the equivalent graph representation of
these productions, the axiom (square abcd) and the results of four deriva-
tion steps. In the first step the two phases of edge rewriting and branch
connection are distinguished.

In order to generate images of maps, appropriate geometric interpreta-Interpretation
tion rules must be specified. The maps shown in Figure 3.1 were produced
according to the rules proposed by Siero, Rozenberg and Lindenmayer [90]:

• The edges are represented by straight lines.

• The starting map is represented by a regular polygon with the desired
number of edges.

• Each production subdivides an edge into segments of equal length; this
subdivision determines positions of new vertices which remain in the
same place in subsequent maps.

• The positions of edges resulting from branch connection are determined
by the vertices at its endpoint, as specified by the previous rule.

In the biological context, direct application of interpretation rules by Siero
et al. tends to produce maps which, although topologically correct, contain
“cells” with shapes seldom observed in nature (Figure 5.2a). A modification
of interpretation rules proposed by de Does and Lindenmayer [16], lends
itself to more realistic images. The essential idea is to place each interior
vertex of the map in the center of gravity of its neighbours (Figure 5.2b).
This adjustement of vertex positions has a sound biological justification: it
minimizes hypothetical forces acting along cell edges [16], thus bringing the
entire structure to a state of minimum energy. The vertices lying on the
outside perimeter of the map are repositioned using a separate algorithm to
prevent the entire structure from collapsing. A further step towards realism,

65

Figure 5.1: Example of a map L-system.

66 CHAPTER 5. MODELS OF CELL LAYERS

Figure 5.2: A cellular layer modelled using a map L-system. (a) Vertices not
moved. (b) Vertices placed near the gravity centers of the neighbors. (c)
Beta-spline approximation of the map (b). The line width in (a) and (b) is
proportional to the edge age.

67

Figure 5.3: A leaf of Phascum cuspidatum modelled using a map L-system.
(a) Vertices placed near the center of gravity of their neighbors, derivation
length n = 10. (b) Beta-spline approximation of the structure (a) after one
more derivation step. (c) The structure after two more derivation steps.

68 CHAPTER 5. MODELS OF CELL LAYERS

recently implemented by Dave Fracchia, consists of approximating each cell
by Beta-splines [6] which use map vertices as the control points (Figure 5.2c).

The second example of a cellular structure modelled using a map L-systemPhascum
is shown in Figure 5.3. The images represent young leaves of the moss Phas-
cum cuspidatum.

The map L-systems used to generate Figures 5.2 and 5.3 were developed
by Martin de Boer. Their listings are given below.

5.2 derivation length: 5

axiom: gca

a --> c[-∼a]x[+∼b]g
b --> v[-b]x[+∼b]v
c --> d

d --> e[-b]x[+b]e

e --> f

f --> c[-∼b]x[+∼b]c
g --> h[-a]i

h --> j

i --> x[+b]k

j --> l[-b]m

k --> n[-∼b]o
l --> p

m --> x[+∼b]p
n --> q[+∼b]x
o --> q

p --> r[-∼b]s
q --> t[-b]u

r --> j

s --> x[+b]j

t --> k

u --> x[+b]k

v --> ∼b
x --> x

5.3 derivation length: 8

axiom: c∼p∼j
a --> d[-j]c

c --> [+∼y]e
d --> d

e --> f

f --> d[-y]c

j --> d[+a]∼k
k --> m[+y]d

m --> n

n --> k[-∼y]d
p --> q[+∼a]r
q --> r[+∼j]p
r --> s

s --> t

t --> r[+u]r

u --> v

v --> w[-∼y][+y]d
w --> u

y --> d[+∼u]d

Chapter 6

Other applications of L-systems

Graphical applications of L-systems are not limited to fractals and plants. In
this chapter we outline some of the lesser known ones.

6.1 Patterns and tilings

Many geometric patterns and tilings can be generated using L-systems. For
example, Dekking applied L-systems to produce Penrose tilings [18, 17]. Two
other tilings created by L-systems are shown in Figure 6.1. The problem of
describing patterns and tilings using L-systems is still a largely unexplored
one. From this perspective, the example-filled book by Grünbaum and Shep-
hard [33] is a gold mine of open problems and puzzles.

6.2 Kolam patterns

6.2.1 What is a kolam?

In villages in the South of India, women decorate the courtyards in front of
their houses by drawing traditional designs called kolam. The art of kolam
is of ancient origin; it is estimated that it developed as early as 5,000 years
ago. Vivid descriptions of the beauty of kolams and techniques of working
them out can be found in Sanskrit works.

Many kolam designs are geometric patterns formed by means of interleav-
ing straight or curved lines. They can be of different sizes and complexities.
Designs as big as 3m x 3m, with total line length of hundreds of meters,
can be encountered. One method of covering a large area with drawings is
to repeat a small design many times. This is seldom done. A more elegant
approach is to connect small elements into sophisticated structures. In math-

69

70 CHAPTER 6. OTHER APPLICATIONS OF L-SYSTEMS

a

c

n = 10, δ = 60°
X
X → [-F+F[Y]+F][+F-F[X]-F]
Y → [-F+F[Y]+F][+F-F-F]

n = 5, δ = 15°
AAAA
A → X+X+X+X+X+X+
X → [F+F+F+F[---X-Y]+++++F++++++++F-F-F-F]
Y → [F+F+F+F[---Y]+++++F++++++++F-F-F-F]

b

β = π / 12 = 15°
8β

5β

β

Figure 6.1: Examples of tilings generated by L-systems. (a) A hexagonal
tiling. (c) A spiral tiling using the tile (b).

6.2. KOLAM PATTERNS 71

ematical terms, this amounts to exploring the recursive structure of a family
of increasingly complex patterns.

6.2.2 Kolams and L-systems

The first formal model for describing kolam patterns was proposed by Siro-
money, Siromoney and Krithivasan [92]. According to this model, kolam
patterns can be generated by a variant of array grammars. Recently, we
have noticed that L-systems with turtle interpretation offer a simpler and
more intuitively method for generating kolam patterns and describing their
families.

Generally, kolam patterns can be divided into three classes: non-recursive
designs, recursive designs with an exponential growth, and recursive designs
with a polynomial growth. The term “growth” refers to the increase in
the number of primitive elements (such as vectors or spline control points)
present in subsequent patterns belonging to the same family. A kolam family
is understood as the sequence of patterns produced by a given L-system in
derivations of length 0, 1, 2, 3,

Non-recursive kolams are the only members of one-element families. They
can be generated by trivial L-systems in which the axiom describes the entire
pattern. From the viewpoint of image generation techniques, non-recursive
kolams are of little interest.

6.2.3 Kolams with exponential growth

The L-systems which generate recursive kolam patterns with an exponential Snake
growth are remarkably simple. For example, consider a variant of the snake
kolam shown in Figure 6.2. It can be divided into two congruent parts by
a diagonal line passing through the opposite corners of the pattern. The
recursive structure of the bottom right part is analyzed in Figure 6.3. The
main component of the design is an open polygon a. The design starts with
two line segments meeting at the right angle b. These lines are disconnected
at the vertex marked with a dot to accommodate insertion of the polygon
a. The polygon c results. The subsequent shape d is obtained by properly
inserting polygon a in all marked vertices of c. Thus, the recursion consists
of concurrently inserting the predefined shape a in all marked vertices of the
polygon from the previous level. It is obvious that the number of polygon
edges grows exponentially with the recursion depth.

The L-system generating the family of the snake kolams can be obtained
in a straightforward way by coding the inserted polygon a and the initial

72 CHAPTER 6. OTHER APPLICATIONS OF L-SYSTEMS

Figure 6.2: The snake kolam.

Figure 6.3: The recursive structure of the snake kolam.

6.2. KOLAM PATTERNS 73

Figure 6.4: Anklets of Krishna.

angular shape b using turtle symbols:

ω : f +Xf + f +Xf
p : X → Xf − f − f +Xf + f +Xf − f − f +X

The angle increment δ is equal to 90◦. In order to render the curvatures of the
original design, the consecutive positions of the turtle are used as the control
points for the B-spline approximation (cf. Figure 2.10). The snake shown in
Figure 6.2 was obtained using a derivation of length 4. Note the similarity
between the snake kolam and the Sierpiński space-filling curve (Figure 2.7c)
It is fascinating to discover a fractal curve in folk art!

Another kolam pattern with exponential growth, called the anklets of
Krishna, is shown in Figure 6.4. Its structure is similar to that of the snake Anklets

of Krishnaand can be analyzed in a similar way. Figure 6.4 was generated using the
following L-system:

ω : −X −−X
p : X → XfX −−XfX

The derivation length n was equal to 5 and the angle increment δ was equal
to 45◦.

In a modification of the anklets of Krishna shown in Figure 6.5a, the Bag of candies
basic structural elements (bold squares) are separated from each other and

74 CHAPTER 6. OTHER APPLICATIONS OF L-SYSTEMS

a

b c

Figure 6.5: (a) The bag of candies kolam and (b, c) its decorative elements.

6.2. KOLAM PATTERNS 75

ornamented using decorative elements b and c. The pattern is described by
the following table L-systems

Table 1
ω : −X −−X
p1 : X → XfX −−XfX

Table 2
p2 : X → BfA−−BfA
p3 : A→ f + +ffff −−f −−ffff + +f + +ffff −−f
p4 : B → f −−ffff + +f + +ffff −−f −−ffff + +f

Table 1 (production p1) is applied in the first n− 2 derivation steps. Table 2
is then used to insert the decorative elements. To make the structure legible,
Figure 6.5a was generated with only 3 derivation steps. The angle increment
δ was equal to 45◦.

6.2.4 Kolams with polynomial growth

The mango leaves kolam shown in Figure 6.6a was generated by the following Mango leaves
L-system:

ω : A−−− A
p1 : A→ f − F + Z + F − fA
p2 : Z → F − FF − F −−[−− Z]F − FF − F −−F − FF − F −−

The derivation length n was equal to 7 and the angle increment δ was equal
to 60◦. The axiom defines the structure as consisting of two parts, origi-
nating from the letters A and symmetric with respect to the kolam center.
Production p1 describes the formation of a sequence of wedges b which form
the axis of the structure. Attached to each wedge is a branch c, generated
from the symbol Z by production p2. The number of branch elements in-
creases in each derivation step. Since the branches near the kolam base are
created first, they are longer than those situated in the higher portions of
the structure. The structure exhibits polynomial growth, with the number
of line segments proportional to the square of the derivation length.

Other examples of kolam patterns with polynomial growth functions are
shown in Figures 6.7 and 6.8.

It is interesting to notice the relationship between kolam patterns, fractals Kolam,
fractals
and plants.

and plants. On one hand, kolam patterns with exponential growth are closely
related to space-filling curves. On the other hand, the patterns with polyno-
mial growth exhibit phase effects common to many plants. As in the case of

76 CHAPTER 6. OTHER APPLICATIONS OF L-SYSTEMS

Figure 6.6: (a) The mango leaves kolam and (b, c) its structural components.

6.2. KOLAM PATTERNS 77

a

b

c

d

e

f

Figure 6.7: The mountain kolams. (a, c, e) The kolams obtained in 0, 2 and
4 derivation steps. (b, d, f) Exploded views revealing the structure of the
mountain family.

78 CHAPTER 6. OTHER APPLICATIONS OF L-SYSTEMS

a

b

Figure 6.8: Further examples of kolam patterns with polynomial growth
functions: (a) Kooja and (b) Scissors.

6.3. FRACTAL MUSIC 79

plants, it is easier to design an L-systems capturing the entire sequence of ko-
lam patterns forming a given family than attempt to characterize a particular
“developmental stage” without referring to the growth dynamics.

More results on the formal structure of kolam patterns were recently
published by G. and R. Siromoney [91].

6.3 Fractal music

In these notes we have concentrated on graphical applications of L-systems.
However, at least one other application also deserves attention: the automatic
generation of music. The relation to graphics is, in fact, very close: an L-
system is used to generate a fractal curve, which is subsequently interpreted
as a sequence of notes. We will present this concept by referring to an example
(Figure 6.9).

Suppose that the Hilbert curve (a) is traversed in the direction indicated
by the arrow and the consecutive horizontal line segments are interpreted
as notes. The pitch of each note corresponds to the y-coordinate of the
segment, and the note duration is proportional to the segment length. The
resulting sequence of notes forms a simple score shown in Figures 6.9b and
c. Naturally, any curve consisting of horizontal and vertical segments can be
interpreted in a similar way.

In the above example it is assumed that the notes belong to the C major
scale and the first note is C. In general it is convenient to use a lookup table
which allows for specifying an arbitrary mapping of y coordinates into note
pitches. For example, interesting scores can be obtained by interpreting the
Peano curve in the pentatonic scale, and by interpreting the dragon curve in
the blues scale.

The musical scores obtained using L-systems are relatively complex (in
spite of the simplicity of the underlying productions) but they also have a
legible internal structure (they do not give the impression of notes acciden-
tally put together). The principle of data base amplification turns out to be
as attractive in the domain of musical applications as it is in graphics.

Another approach to music generation using L-systems is described in
[44].

80 CHAPTER 6. OTHER APPLICATIONS OF L-SYSTEMS

Figure 6.9: Musical interpretation of a curve generated by an L-system.

Chapter 7

A guide to the references

This chapter presents bibliographical remarks which focus on plant modeling
and growth simulation for computer graphics purposes. An emphasis is put
on the applications of L-systems.

7.1 General

Stevens [99] presents various biological structures from the mathematical per-
spective. D’Arcy Thompson [102] and Jean [40] emphasize the relationship
between growth and form; this relationship is the cornerstone of the devel-
opmental approach to plant modeling. Lindenmayer [53] discusses the role
of mathematical theories in biology.

7.2 Surveys

In the SIGGRAPH tutorial notes [98], A. R. Smith discusses the role of
rewriting concepts in graphics, specifically as applied to the modeling of
plants. The role of L-systems is emphasized and details of Smith’s programs
Gene and mktree are given. An annotated graftal bibliography is included.

The survey by Fournier [25] is a general introduction to the field of natural
phenomena modeling, with an emphasis on fractals and on the modeling of
biological structures.

In [51, 54, 55] and [59] Lindenmayer surveys the development of ideas
related to L-systems in the biological context.

Macdonald [71] presents a good introduction to L-systems from a biolog-
ical perspective.

81

82 CHAPTER 7. A GUIDE TO THE REFERENCES

7.3 Theory of L-systems

A lucid introduction to the theory of L-systems is included in Salomaa’s
textbook on formal languages [89]. Herman and Rozenberg wrote the firstBooks
(and still very useful) book entirely devoted L-systems [37]. A more recent
monograph by Rozenberg [87] puts emphasis on 0L-systems. Many theo-
retical results are contained in the Vitányi’s Ph.D. thesis [105]. Collections
of papers [61] and [88] combine formal aspects of L-systems with biological
applications.

Two extensive bibliographies of L-systems were published in 1977 [86] and
1981 [85].

As the number of theoretical papers on L-systems is estimated at approxi-
mately one thousaned, we mention here only those directly applicable to plant
modelling. The original paper on L-systems by Lindenmayer [49] introduces
the notions of context-free, context-sensitive and bracketed L-systems. Eich-
horst and Savitch [21], and Yokomori [112] present a definition of stochastic
L-systems which is useful in the modeling of specimen-to-specimen varia-
tion [78, 82]. Jürgensen and Lindenmayer [42] analyze an inference problem
which consists of finding a DOL-system generating an observed sequence of
tree structures. Wood and Culik [110, 111, 13] introduce the concept of time-
delayed L-systems which may be applicable to the simulation of continuous
growth. Vitányi [106] attempts to obtain the sigmoidal growth curve (de-
scribing the growth pattern of most plants) using L-systems; however, the
concept of slowing down the progress of time at a certain age seems artifi-
cial. Jones and Skyum [41] review results on computation and complexity
of L-systems; these results can be applied to estimate complexity of control
mechanisms in plants.

7.4 Geometrical interpretation of L-systems

L-systems were conceived for the purpose of describing the development of
plants, but this description was originally confined to the topological level.
In order to present plant development using computer-generated images, it
is necessary to specify a geometrical interpretation of L-systems. The first
approaches — by Hogeweg and Hesper [38], and Frijters and Lindenmayer
[29] — used a constant branching angle throughout the entire structure. Szi-
lard and Quinton [101] introduced the idea of using symbols generated by
an L-system to specify directions and angles between line segments. Fur-
ther mathematical results related to this approach were obtained by Dekking
[17, 18]. Siromoney and Subramanian [93] applied chain coding [26] to gener-

7.5. BIOLOGICAL APPLICATIONS OF L-SYSTEMS 83

ate space-filling curves using L-systems. Maurer, Rozenberg and Welzl [73],
and Sudborough and Welzl [100] analyzed formal properties of pictures gen-
erated by Chomsky grammars under the chain interpretation; it would be
most interesting to extend these results to L-systems. Prusinkiewicz [81, 82]
explored turtle geometry (described in [1]) as the basis for interpreting strings
generated by L-systems. Smith [95] initiated a unified mathematical theory
of rewriting systems for graphics purposes.

7.5 Biological applications of L-systems

The first program for simulating plant development with L-systems, called
CELIA, was written by Baker, Herman and Liu [5, 36, 50]. The first computer-
generated plots of plant structures are included in the papers by Hogeweg and
Hesper [38], and Frijters and Lindenmayer [29]. In the pair of papers [27, 28]
Frijters discussed delays, sequences of stages and developmental switches as
a basis for the simulation of inflorescence development. Developmental mod-
els incorporating interactive control mechanisms were introduced by Linden-
mayer [57] and refined by Janssen and Lindenmayer [39]. Mycelis muralis
was used as an example.

In [30], Frijters and Lindenmayer introduce the notion of paracladial re-
lations to describe self-similarities in branching structures on the topological
level. An extension of this notion to leaf structures is presented by Linden-
mayer [52]. A simple L-system describing the topology of Delphinium ajacis
leaves is given, but the addition of geometric parameters is not a trivial
problem in this case. In contrast, stochastic L-systems applied by Nishida to
model development of shoots of Japanese cypress [78] lend themselves easily
to geometric interpretation. A notation related to L-systems is introduced
for the purpose of inflorescence description by Robinson [84].

7.6 Synthesis of realistic plant images

7.6.1 Methods based on L-systems

The first realistic images of computer-generated plants were produced by
Smith [94] using 2L-systems obtained by Hogeweg and Hesper [38]. In [96],
Smith presents his method in more detail and illustrates it using many re-
alistic plant images. There is also a video tape showing these plants in
development [97].

84 CHAPTER 7. A GUIDE TO THE REFERENCES

Prusinkiewicz applied L-systems with turtle interpretation to model two-
dimensional [81] and three-dimensional [82] plants. Stochastic L-systems are
used to achieve specimen-to-specimen variation within a species, and bicubic
patches are integrated with the L-system-based model. L-systems generating
several plant images are specified in detail.

Beyer and Friedell [7] claim to have invented a “new theory of scene
modelling” while ignoring most of the previous work in the field, including
the 1984 paper by Smith [96]. However, the extension of L-systems to graphs
with cycles seems to be a different from the map L-systems of Lindenmayer
and the double-wall L-systems of the Lücks (Section 7.7).

7.6.2 Other synthesis methods

An early approach to the algorithmic generation of branching structures for
computer graphics purposes was developed by Kawaguchi [43]. Aono and
Kunii [2, 3], define tree topology by recursive algorithms; variation between
species is achieved primarily by manipulating branching angles. Bloomenthal
[8] uses splines to model branches, carefully models the branching area, and
uses texture-mapping to render leaves and bark. In a subsequent paper [9],
he explores the branching area in more detail. A related approach to the
modelling of trees is presented by Oppenheimer [79]. Eyrolles [22] describes
realistic two-dimensional tree silhouettes generated using a stochastic tech-
nique based on Horton-Strahler analysis (a classic method for analysing river
systems). Reeves and Blau [83] apply particle systems to produce impression-
istic images of trees, forests and flower fields. Lienhardt and Françon [47, 48]
discuss developmental models of surfaces, with an emphasis on leaves.

7.7 Map L-systems

Graph-rewriting systems can be divided into two categories, those which
replace nodes and those which replace edges. So far, only the edge-rewriting
systems have found biological applications. The theoretical background of
edge rewriting is presented by Habel and Kreowski [34].

Two approaches to the rewriting of parallel graphs with cycles (used
to model cellular structures) are known as map L-systems and double-wall
L-systems. The concepts preceding that of map L-systems are described in
papers by Culik, Lindenmayer and Wood [12, 60, 14]. Lindenmayer and
Rozenberg are the authors of the original paper on map L-systems [62]. De-
tailed examples of the operation of map L-systems are given by Siero, Rozen-
berg and Lindenmayer [90], and de Does and Lindenmayer [16]. They also

7.7. MAP L-SYSTEMS 85

introduce several graphical interpretations of maps. An example of a three-
dimensional L-system, or cellwork, is presented by Lindenmayer [56]. His
paper also solves the geometric problem of calculating edge lengths after cell
subdivision. A recent survey of map L-systems is presented by [58]. A differ-
ent approach to the definition of cellular structures was developed by J. Lück
and H. B. Lück, and termed double-wall L-systems [65, 66, 67, 68, 69, 63, 70].
Their most recent paper is [64].

86 CHAPTER 7. A GUIDE TO THE REFERENCES

Bibliography

[1] H. Abelson and A. A. diSessa. Turtle geometry. M.I.T. Press, Cam-
bridge, 1982.

[2] M. Aono and T. L. Kunii. Botanical tree image generation. IEEE
Computer Graphics and Applications, 4(5):10–34, 1984.

[3] M. Aono and T. L. Kunii. Botanical tree image generation, Video tape,
IBM, Japan, Tokyo, 1985.

[4] J. W. Backus. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. In Proc.
Intl. Conf. on Information Processing, pages 125–132. UNESCO, 1959.

[5] R. Baker and G. T. Herman. Simulation of organisms using a devel-
opmental model, parts I and II. Int. J. of Bio-Medical Computing,
3:201–215 and 251–267, 1972.

[6] B. A. Barsky. The Beta-spline: A local representation based on shape
parameters and fundamental geometric measures. PhD thesis, Depart-
ment of Computer Science, University of Utah, 1981.

[7] T. Beyer and M. Friedell. Generative scene modelling. In Proceedings
of EUROGRAPHICS ’87, pages 151–158, 571, 1987.

[8] J. Bloomenthal. Modeling the mighty maple. Computer Graphics,
19(3):305–311, 1985.

[9] J. Bloomenthal. Polygonization of implicit surfaces. Report CSL-87-2,
Xerox Corporation, Palo Alto, CA, 1987.

[10] N. Chomsky. Three models for the description of language. IRE Trans.
on Information Theory, 2(3):113–124, 1956.

87

88 BIBLIOGRAPHY

[11] V. Claus, H. Ehrig, and G. Rozenberg, editors. Graph grammars and
their application to computer science; First International Workshop.
Lecture Notes in Computer Science 73. Springer-Verlag, Berlin, 1979.

[12] K. Culik II and A. Lindenmayer. Parallel graph generating and graph
recurrence systems for multicellular development. Int. J. General Sys-
tems, 3:53–66, 1976.

[13] K. Culik II and D. Wood. Speed-varying OL systems. Information
Sciences, 14:161–170, 1978.

[14] K. Culik II and D. Wood. A mathematical investigation of propagating
graph OL-systems. Information and Control, 43:50–82, 1979.

[15] C. Davis and D. E. Knuth. Number representations and dragon curves.
J. of Recreational Mathematics, 3:66–81, 133–149, 1970.

[16] M. de Does and A. Lindenmayer. Algorithms for the generation and
drawing of maps representing cell clones. In H. Ehrig, M. Nagl, and
G. Rozenberg, editors, Graph grammars and their application to com-
puter science; Second International Workshop, pages 39–57. Springer-
Verlag, Berlin, 1983. Lecture Notes in Computer Science 153.

[17] F. M. Dekking. Recurrent sets. Advances in Mathematics, 44(1):78–
104, 1982.

[18] F. M. Dekking. Recurrent sets: A fractal formalism. Report 82-32,
Delft University of Technology, 1982.

[19] H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors. Graph
grammars and their application to computer science; Third Interna-
tional Workshop. Lecture Notes in Computer Science 291. Springer-
Verlag, Berlin, 1987.

[20] H. Ehrig, M. Nagl, and G. Rozenberg, editors. Graph grammars and
their application to computer science; Second International Workshop.
Lecture Notes in Computer Science 153. Springer-Verlag, Berlin, 1983.

[21] P. Eichhorst and W. J. Savitch. Growth functions of stochastic Lin-
denmayer systems. Information and Control, 45:217–228, 1980.

[22] G. Eyrolles. Synthèse d’images figuratives d’arbres par des méthodes
combinatoires. PhD thesis, Université de Bordeaux I, 1986.

BIBLIOGRAPHY 89

[23] J. Feder. Languages of encoded line patterns. Information and Control,
13:230–244., 1968.

[24] James D. Foley and Andries Van Dam. Fundamentals of Interac-
tive Computer Graphics. The Systems Programming Series. Addison-
Wesley Publishing Company, Reading, Massachusetts - Menlo Park,
California - London - Amsterdam - Don Mills, Ontario - Sydney, 1982.

[25] A. Fournier. Prolegomenon. SIGGRAPH ’87 Course Notes on the
Modeling of Natural Phenomena, 1987.

[26] H. Freeman. On encoding arbitrary geometric configurations. IRE
Trans. Electron. Comput, 10:260–268, 1961.

[27] D. Frijters. Mechanisms of developmental integration of aster novae-
angliae L. and hieracium murorum L. Annals of Botany, 42:561–575,
1978.

[28] D. Frijters. Principles of simulation of inflorescence development. An-
nals of Botany, 42:549–560, 1978.

[29] D. Frijters and A. Lindenmayer. A model for the growth and flow-
ering of aster novae-angliae on the basis of table (1, 0) L-systems.
In G. Rozenberg and A. Salomaa, editors, L Systems, pages 24–52.
Springer-Verlag, Berlin, 1974. Lecture Notes in Computer Science 15.

[30] D. Frijters and A. Lindenmayer. Developmental descriptions of branch-
ing patterns with paracladial relationships. In A. Lindenmayer and
G. Rozenberg, editors, Automata, languages, development, pages 57–
73. North-Holland, Amsterdam, 1976.

[31] K. S. Fu. Syntactic (linguistic) pattern recognition. In K. S. Fu, edi-
tor, Digital pattern recognition, pages 95–134. Springer-Verlag, Berlin -
Heidelberg - New York, 1980.

[32] S. Ginsburg and H. G. Rice. Two families of languages related to
ALGOL. J. ACM, 9(3):350–371, 1962.

[33] B. Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Free-
man and Company, New York, 1987.

90 BIBLIOGRAPHY

[34] A. Habel and H.-J. Kreowski. On context-free graph languages gener-
ated by edge replacement. In H. Ehrig, M. Nagl, and G. Rozenberg, ed-
itors, Graph grammars and their application to computer science; Sec-
ond International Workshop, pages 143–158. Springer-Verlag, Berlin,
1983. Lecture Notes in Computer Science 153.

[35] F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson. Tropical trees and
forests: an architectural analysis. Springer-Verlag, Berlin, 1978.

[36] G. T. Herman and W. H. Liu. The daughter of CELIA, the French
flag, and the firing squad. Simulation, 21:33–41, 1973.

[37] G. T. Herman and G. Rozenberg. Developmental systems and lan-
guages. North-Holland, Amsterdam, 1975.

[38] P. Hogeweg and B. Hesper. A model study on biomorphological de-
scription. Pattern Recognition, 6:165–179, 1974.

[39] J. M. Janssen and A. Lindenmayer. Models for the control of branch
positions and flowering sequences of capitula in mycelis muralis (L.)
dumont (Compositae). New Phytologist, 105:191–220, 1987.

[40] R. V. Jean. Mathematical approach to pattern and form in plant growth.
John Wiley and Sons, New York, 1984.

[41] N. D. Jones and S. Skyum. Complexity of some problems concerning
L-systems. Mathematical Systems Theory, 13:29–43, 1979.

[42] H. Jürgensen and A. Lindenmayer. Inference algorithms for develop-
mental systems with cell lineages. Bulletin of Mathematical Biology,
49(1):93–123, 1987.

[43] Y. Kawagushi. A morphological study of the form of nature. Computer
Graphics, 16(3):223–232, 1982.

[44] Peter S. Langston. (201) 644-2332 or Eedie & Eddie on the wire — An
experiment in music generation. Bell Laboratories, New Jersey, 1986.

[45] R. S. Ledley. High-speed automatic analysis of biomedical pictures.
Science, 146(3641):216–223, 1964.

[46] R. S. Ledley et al. FIDAC: Film input to digital automatic computer
and associated syntax-directed pattern-recognition programming sys-
tem. In J. T. Tippet et al., editors, Optical and electro-optical infor-
mation processing, pages 591–613. M.I.T. Press, Cambridge, 1965.

BIBLIOGRAPHY 91

[47] P. Lienhardt. Modélisation et évolution de surfaces libres. PhD thesis,
Université Louis Pasteur, Strasbourg, 1987.

[48] P. Lienhardt and J. Francon. Synthèse d’images de feuilles végétales.
Technical Report R-87-1, Département d’informatique, Université
Louis Pasteur, Strasbourg, 1987.

[49] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

[50] A. Lindenmayer. Adding continuous components to L-systems. In
G. Rozenberg and A. Salomaa, editors, L Systems, pages 53–68.
Springer-Verlag, Berlin, 1974. Lecture Notes in Computer Science 15.

[51] A. Lindenmayer. Developmental algorithms for multicellular organ-
isms: A survey of L-systems. Journal of Theoretical Biology, 54:3–22,
1975.

[52] A. Lindenmayer. Paracladial relationships in leaves. Ber. Deutsch Bot.
Ges. Bd., 90:287–301, 1977.

[53] A. Lindenmayer. Theories and observations of developmental biology.
In R. E. Butts and J. Hintikka, editors, Foundational problems in spe-
cial sciences, pages 103–118. D. Reidel Publ. Co, Dordrecht-Holland,
1977.

[54] A. Lindenmayer. Algorithms for plant morphogenesis. In R. Sattler,
editor, Theoretical plant morphology, pages 37–81. Leiden University
Press, The Hague, 1978.

[55] A. Lindenmayer. Developmental algorithms: Lineage versus interactive
control mechanisms. In S. Subtelny and P. B. Green, editors, Develop-
mental order: Its origin and regulation, pages 219–245. Alan R. Liss,
Inc., New York, 1982.

[56] A. Lindenmayer. Models for plant tissue development with cell division
orientation regulated by preprophase bands of microtubules. Differen-
tiation, 26:1–10, 1984.

[57] A. Lindenmayer. Positional and temporal control mechanisms in in-
florescence development. In P. W. Barlow and D. J. Carr, editors,
Positional controls in plant development. University Press, Cambridge,
1984.

92 BIBLIOGRAPHY

[58] A. Lindenmayer. An introduction to parallel map generating systems.
In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph
grammars and their application to computer science; Third Interna-
tional Workshop, pages 27–40. Springer-Verlag, Berlin, 1987. Lecture
Notes in Computer Science 291.

[59] A. Lindenmayer. Models for multicellular development: characteri-
zation, inference and complexity of L-systems. In A. Kelmenová and
J. Kelmen, editors, Trends, techniques and problems in theoretical com-
puter science, pages 138–168. Springer-Verlag, Berlin, 1987. Lecture
Notes in Computer Science 281.

[60] A. Lindenmayer and K. Culik II. Growing cellular systems: Generation
of graphs by parallel rewriting. Int. J. General Systems, 5:45–55, 1979.

[61] A. Lindenmayer and G. Rozenberg, editors. Automata, languages, de-
velopment. North-Holland, Amsterdam, 1976.

[62] A. Lindenmayer and G. Rozenberg. Parallel generation of maps: Devel-
opmental systems for cell layers. In V. Claus, H. Ehrig, and G. Rozen-
berg, editors, Graph grammars and their application to computer sci-
ence; First International Workshop, pages 301–316. Springer-Verlag,
Berlin, 1979. Lecture Notes in Computer Science 73.

[63] H. B. Lück and J. Lück. Unconventional leaves (an application of map
OL-systems to biology). In G. Rozenberg and A. Salomaa, editors, The
book of L, pages 275–289. Springer-Verlag, Berlin - Heidelberg - New
York - Tokyo, 1986.

[64] J. Lück, A. Lindenmayer, and H. B. Lück. Models for cell tetrads and
clones in meristematic cell layers. Botanical Gazette, in press, 1988.

[65] J. Lück and H. B. Lück. Proposition d’une typologie de l’organisation
cellulaire des tissus végétaux. In Hervé Le Guardier and Thiebut
Moulin, editors, Actes du premier séminaire de l’Ecole de Biologie
Théorique du CNRS, pages 335–371, Paris, 1981. Ecole Nationale Su-
perieure de Techniques Avancées.

[66] J. Lück and H. B. Lück. Sur la structure de l’organisation tissulaire
et son incidence sur la morphogenèse. In Hervé Le Guardier, edi-
tor, Actes du deuxième séminaire de l’Ecole de Biologie Théorique du
CNRS, pages 385–397. Publications de l’Université de Rouen, Abbaye
de Solignac, 1982.

BIBLIOGRAPHY 93

[67] J. Lück and H. B. Lück. Generation of 3-dimensional plant bodies
by double wall map and stereomap systems. In H. Ehrig, M. Nagl,
and G. Rozenberg, editors, Graph-Grammars and Their Application
to Computer Science; Second International Workshop, pages 219–231.
Springer-Verlag, Berlin, 1983. Lecture Notes in Computer Science 153.

[68] J. Lück and H. B. Lück. Comparative plant morphogenesis founded on
map and stereomap generating systems. In J. Demongeot, E. Goles,
and M. Tchuente, editors, Dynamical systems and cellular automata,
pages 111–121. Academic Press, London, 1985.

[69] J. Lück and H. B. Lück. Un mécanisme générateur d’hélices phyl-
lotaxiques. In G. Benchetrit and J. Demongeot, editors, Actes du IVe
séminaire de l’Ecole de Biologie Théorique, pages 317–330. Editions du
CNRS, Paris, 1985.

[70] J. Lück and H. B. Lück. From OL and IL map systems to indeterminate
and determinate growth in plant morphogenesis. In H. Ehrig, M. Nagl,
A. Rosenfeld, and G. Rozenberg, editors, Graph grammars and their
application to computer science; Third International Workshop, pages
393–410. Springer-Verlag, Berlin, 1987. Lecture Notes in Computer
Science 291.

[71] N. Macdonald. Trees and networks in biological models. J. Wiley, New
York, 1983.

[72] B. B. Mandelbrot. The fractal geometry of nature. W. H. Freeman,
San Francisco, 1982.

[73] H. A. Maurer, G. Rozenberg, and E. Welzl. Using string languages
to describe picture languages. Information and Control, 54:155–185,
1982.

[74] G. J. Mitchison and M. Wilcox. Rules governing cell division in An-
abaena. Nature, 239:110–111, 1972.

[75] D. Müller-Doblies and U. Müller-Doblies. Cautious improvement of a
descriptive terminology of inflorescences. Monocot newsletter 4, Insti-
tut für Biologie, Technical University of Berlin (West), 1987. 13 pp.

[76] R. Narasimhan. A linguistic approach to pattern recognition. Re-
port 21, Digital Computer Laboratory, University of Illinois, Urbana,
1962.

94 BIBLIOGRAPHY

[77] P. Naur et al. Report on the algorithmic language ALGOL 60. Comm.
ACM, 3(5):299–314, 1960. revised in Comm. ACM 6 Nr, 1, pp. 1-17.

[78] T. Nishida. KOL-systems simulating almost but not exactly the same
development — the case of Japanese cypress. Memoirs Fac. Sci., Kyoto
University, Ser. Bio, 8:97–122, 1980.

[79] P. Oppenheimer. Real time design and animation of fractal plants and
trees. Computer Graphics, 20(4):55–64, 1986.

[80] F. P. Preparata and R. T. Yeh. Introduction to Discrete Structures.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1973.

[81] P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings
of Graphics Interface ’86 — Vision Interface ’86, pages 247–253, 1986.

[82] P. Prusinkiewicz. Applications of L-systems to computer imagery. In
H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph
grammars and their application to computer science; Third Interna-
tional Workshop, pages 534–548. Springer-Verlag, Berlin, 1987. Lecture
Notes in Computer Science 291.

[83] W. T. Reeves and R. Blau. Approximate and probabilistic algo-
rithms for shading and rendering structured particle systems. Com-
puter Graphics, 19(3):313–322, 1985.

[84] D. F. Robinson. A notation for the growth of inflorescences. New
Phytologist, 103:587–596, 1986.

[85] G. Rozenberg, J. Mäenpää, and A. Salomaa. Supplementary bibliog-
raphy of L systems. Bull. Europ. Assoc. Theor. Comp. Sci. (Leiden),
13:64–79, 1981.

[86] G. Rozenberg, M. Penttonen, and A. Salomaa. Bibliography of L sys-
tems. Theoretical Computer Science, 5:339–354, 1977.

[87] G. Rozenberg and A. Salomaa. The mathematical theory of L-systems.
Academic Press, New York, 1980.

[88] G. Rozenberg and A. Salomaa, editors. The Book of L. Springer-Verlag,
Berlin, 1986.

[89] A. Salomaa. Formal languages. Academic Press, New York, 1973.

BIBLIOGRAPHY 95

[90] P. L. J. Siero, G. Rozenberg, and A. Lindenmayer. Cell division pat-
terns: syntactical description and implementation. Computer Graphics
and Image Processing, 18:329–346, 1982.

[91] G. Siromoney and R. Siromoney. Rosenfeld’s cycle grammars and ko-
lam. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors,
Graph grammars and their application to computer science; Third In-
ternational Workshop, Lecture Notes in Computer Science 291, pages
564–579. Springer-Verlag, Berlin, 1987.

[92] G. Siromoney, R. Siromoney, and Kamala Krithivasan. Array gram-
mars and kolam. Computer Graphics and Image Processing, pages
63–82, 1974.

[93] R. Siromoney and K. G. Subramanian. Space-filling curves and infinite
graphs. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph gram-
mars and their application to computer science; Second International
Workshop, pages 380–391. Springer-Verlag, Berlin, 1983. Lecture Notes
in Computer Science 153.

[94] A. R. Smith. About the cover: Reconfigurable machines. Computer,
11(7):3–4, 1978.

[95] A. R. Smith. Graftal formalism notes. Technical Memo 114, Lucasfilm
Computer Division, San Rafael, CA, 1984.

[96] A. R. Smith. Plants, fractals, and formal languages. Computer Graph-
ics, 18(3):1–10, 1984.

[97] A. R. Smith. Grammars for generating the complexity of reality. Video
tape, Lucasfilm/PIXAR, 1985.

[98] A. R. Smith. Formal geometric languages for natural phenomena. SIG-
GRAPH ’87 Course Notes on the Modeling of Natural Phenomena,
1987.

[99] P. S. Stevens. Patterns in nature. Little, Brown and Co., Boston, 1974.

[100] I. H. Sudborough and E. Welzl. Complexity and decidability for chain
code picture languages. Theoretical Computer Science, 36:173–202,
1985.

[101] A. L. Szilard and R. E. Quinton. An interpretation for DOL systems
by computer graphics. The Science Terrapin, 4:8–13, 1979.

96 BIBLIOGRAPHY

[102] d’Arcy Thompson. On growth and form. At the University Press,
Cambridge, 1952.

[103] W. Troll. Die Infloreszenzen, volume I. Gustav Fischer Verlag,
Stuttgart, 1964.

[104] W. T. Tutte. Graph theory. Addison-Wesley, Reading, Massachusetts,
1982.

[105] P. M. B. Vitányi. Lindenmayer systems: Structure, languages and
growth functions. Mathematical Centre, Amsterdam, 1980.

[106] P. M. B. Vitányi. Development, growth and time. In G. Rozenberg and
A. Salomaa, editors, The Book of L, pages 431–444. Springer-Verlag,
Berlin, 1986.

[107] H. von Koch. Une méthode géométrique élémentaire pour l’étude de
certaines questions de la théorie des courbes planes. Acta Mathematica,
30:145–174, 1905.

[108] S. Wolfram. Computer software in science and mathematics. Scientific
American, 251(3):188–203, 1984.

[109] S. Wolfram. Some recent results and questions about cellular automata.
In J. Demongeot, E. Goles, and M. Tchuente, editors, Dynamical Sys-
tems and Cellular Automata, pages 153–167. Academic Press, London,
1985.

[110] D. Wood. Time-delayed OL languages and sequences. Information
Sciences, 8:271–281, 1975.

[111] D. Wood. Generalized time-delayed OL languages. Information Sci-
ences, 12:151–155, 1977.

[112] T. Yokomori. Stochastic characterizations of EOL languages. Informa-
tion and Control, 45:26–33, 1980.

[113] M. H. Zimmerman and C. L. Brown. Trees — structure and function.
Springer-Verlag, Berlin, 1971.

List of Figures

1.1 Construction of the “snowflake” curve. 4

1.2 Relations between Chomsky classes of languages and language
classes generated by L-systems. The symbol OL and IL de-
note language classes generated by context-free and context-
sensitive L-systems, respectively. 5

1.3 Example of a derivation in a DOL-system. 7

1.4 Development of a filament (Anabaena catenula) simulated us-
ing a DOL-system. Arrows indicate cell polarities. 9

2.1 (a) Turtle interpretation of string symbols F , +, −. (b) Inter-
pretation of a string. The angle increment δ is equal to 90◦.
Initially the turtle faces up. 12

2.2 Generating a quadratic Koch island. 13

2.3 Examples of L-systems generating Koch curves. (a) Quadratic
Koch island [Mandelbrot 1982, p. 52]. (b) A quadratic modi-
fication of the snowflake curve [Mandelbrot 1982, p. 139]. . . . 14

2.4 Combination of islands and lakes [Mandelbrot 1982, p. 121]. . 15

2.5 A sequence of Koch curves obtained by successively modifying
the production successor. 16

2.6 The dragon curve [Davis and Knuth 1970]. 17

2.7 “Classic” space-filling curves and the corresponding L-systems.
(a) Peano [1890] curve, (b) Hilbert [1891] curve, (c) A square-
grid approximation of the Sierpiński [1912] curve, (d) Quadratic
Gosper curve [Dekking 1982]. 18

2.8 Examples of curves obtained using angle increment δ = 60◦.
(a) Sierpiński arrowhead [Mandelbrot 1982, p. 142], (b) Hexag-
onal Gosper curve [Mandelbrot 1982, p. 70]. 19

2.9 A fractal with a filled polygon [Szillard and Quinton 1979]. . . 19

2.10 Turtle interpretation of a string with B-spline interpolation. . 20

97

98 LIST OF FIGURES

2.11 A comparison of fractals obtained using (a) straight-line turtle
interpretation [Dekking 1982] and (b) B-spline interpolation.
The interpolated curve does not self-intersect and therefore
represents the path of the turtle in a more clear way. 20

2.12 Controlling the turtle in three dimensions. 22
2.13 A “paper-tape” version of the quadratic Koch curve. 22

3.1 Turtle interpretation of a bracketed string. 24
3.2 Examples of plant-like structures generated by bracketed OL-

systems. 25
3.3 A three-dimensional Fibonacci bush 26
3.4 A plant generated by an L-system. 27
3.5 Modelling tropism. The tropism vector ~T points up. The co-

efficients e used to generate structures a–c satisfy the relation
eb > ea > 0 > ac. 29

3.6 An axial tree. 31
3.7 Lily-of-the-valley. 34
3.8 Fern. 34
3.9 Development of Lychnis coronaria. 36
3.10 Development of Capsella bursa-pastoris. 37
3.11 Examples of branching structures generated using L-systems

of Hogeweg and Hesper. 43
3.12 Acropetal signal propagation. 46
3.13 Basipetal signal propagation. 46
3.14 Flowering sequences generated by the model with an acropetal

signal. Stages of flower development: F0: bud (small circle),
F1, F2, F3: open flower, F4, F5, . . .: fruit (large circle). 49

3.15 Developmental sequence of Mycelis muralis. 50
3.16 Sample branching structures generated by a stochastic L-system. 53
3.17 A flower field. 53
3.18 Shoots of the Japanese cypress. 54

4.1 Construction of a plant. (a) Patch representing a leaf. (b,c) Patches
representing petals. (d) The resulting plant. 56

4.2 Construction of a lilac twig. (a) Geometric relationships in
an inflorescence. (b) Inflorescence “skeleton” generated by an
L-system. (c) Patches representing a flower. (d) Patches rep-
resenting a leaf. 58

4.3 A lilac twig. 59
4.4 Developmental models of leaves. 60
4.5 Development of a cordate leaf. 61

LIST OF FIGURES 99

4.6 Structure of a lily-of-the-valley flower. 61

5.1 Example of a map L-system. 65
5.2 A cellular layer modelled using a map L-system. (a) Vertices

not moved. (b) Vertices placed near the gravity centers of the
neighbors. (c) Beta-spline approximation of the map (b). The
line width in (a) and (b) is proportional to the edge age. . . . 66

5.3 A leaf of Phascum cuspidatum modelled using a map L-system.
(a) Vertices placed near the center of gravity of their neighbors,
derivation length n = 10. (b) Beta-spline approximation of the
structure (a) after one more derivation step. (c) The structure
after two more derivation steps. 67

6.1 Examples of tilings generated by L-systems. (a) A hexagonal
tiling. (c) A spiral tiling using the tile (b). 70

6.2 The snake kolam. 72
6.3 The recursive structure of the snake kolam. 72
6.4 Anklets of Krishna. 73
6.5 (a) The bag of candies kolam and (b, c) its decorative elements. 74
6.6 (a) The mango leaves kolam and (b, c) its structural components. 76
6.7 The mountain kolams. (a, c, e) The kolams obtained in 0, 2

and 4 derivation steps. (b, d, f) Exploded views revealing the
structure of the mountain family. 77

6.8 Further examples of kolam patterns with polynomial growth
functions: (a) Kooja and (b) Scissors. 78

6.9 Musical interpretation of a curve generated by an L-system. . 80

100 LIST OF FIGURES

Appendix A

Program listing

Listed below is the Macintosh version of the pfg program (plant and fractal
generator). It can be used to reproduce most of the two-dimensional figures
included in these notes. The program consists of two modules: generate.c
and interpret.c. The first module generates a string according to an L-system
specified in an input file. Context-sensitive productions and bracketed strings
are supported. The second module interprets the resulting string as a two-
dimensional black-and-white figure, according to the turtle interpretation
rules. Extensions supporting modification of line width (useful for seeing
signals), tropisms, filled polygons and spline approximation of polygons are
not included in this version but can be added easily.

The complete implementation of pfg is designed for IRIS 3130 worksta-
tions and operates in three dimensions. Models may incorporate an arbi-
trary number of surfaces defined using bicubic patches. The IRIS version
also makes it possible to animate plant development.

101

102 APPENDIX A. PROGRAM LISTING

A.1 generate.h

#define MAXCHARS 256 /* the number of ASCII characters */

#define MAXIGNORE 50 /* maximum number of ignored symbols */

#define MAXPROD 50 /* maximum number of productions */

#define MAXAXIOM 100 /* maximum length of the axiom */

#define MAXSTR 30000 /* maximum length of the derived string */

/**/

/* Structure "Parameter" collects various input parameters */

/**/

struct Parameter {

char *filename; /* input file name */

int n; /* derivation length */

int angle; /* the angle factor */

int scale; /* the scaling factor */

};

typedef struct Parameter Parameter;

/**/

/* "Production" is a structure which contains pointers to the first */

/* characters and the lengthes of: the left context, the strict */

/* predecessor, the right context and the production successor. */

/* The actual strings are stored linearly in the array inpStr. */

/* (They are separated by the ’\0’ character). */

/**/

struct Production {

char *lCon; /* the the left context */

int lConLen; /* the length of the left context */

char *pred; /* the strict predecessor */

int predLen; /* the length of the strict predecessor */

char *rCon; /* the right context */

int rConLen; /* the length of the right context */

char *succ; /* the successor */

int succLen; /* the length of the successor */

};

typedef struct Production Production;

A.2. GENERATE.C 103

A.2 generate.c

/**/

/* Plant and Fractal Generator (pfg) */

/* Author: Przemyslaw Prusinkiewicz */

/* Copyright (C) 1988: Przemyslaw Prusinkiewicz */

/* */

/* This program is made available free of charge for educational */

/* purposes only. The program cannot be sold, included entirely */

/* or in part in commercial programs, or used for any commercial */

/* purposes without a writtenpermission from the author. */

/* from the author. */

/**/

/**/

/* Pfg was developed and tested on Macintosh 512K using Aztec C */

/* compiler Version 1.06. The compiling procedure is: */

/* cc generate.c */

/* cc interpret.c */

/* ln -o pfg generate.c interpret.c -lm -lc */

/**/

/**/

/* Pfg produces images of two-dimensional structures specified by */

/* L-systems with turtle interpretation. The program supports */

/* bracketed L-systems with no context, one-sided context and */

/* two-sided context. */

/**/

/**/

/* An example data file is given below: */

/* */

/* Derivation length: 30 */

/* angle factor: 16 */

/* scale factor: 100 */

/* axiom: F1F1F1 */

/* ignore: +-F */

/* 0 < 0 > 0 --> 0 */

/* 0 < 0 > 1 --> 1[-F1F1] */

/* 0 < 1 > 0 --> 1 */

/* 0 < 1 > 1 --> 1 */

/* 1 < 0 > 0 --> 0 */

/* 1 < 0 > 1 --> 1F1 */

/* 1 < 1 > 0 --> 1 */

/* 1 < 1 > 1 --> F0 */

/* * < + > * --> - */

/* * < - > * --> + */

/* */

104 APPENDIX A. PROGRAM LISTING

/* The *angle factor* determines the angle increment: */

/* delta = 360 degrees / (angle factor). */

/* */

/* The *scale factor* determines the size of the resulting */

/* image. In principle, 100 denotes a full-screen image, */

/* 0 denotes an image reduced to a single pixel. */

/* However, in order to reduce distortion, the image */

/* is always scaled in such a way that the turtle step */

/* is equal to an integer number of pixels. */

/* */

/* Characters listed after the *ignore* keyword */

/* are considered as nonexistant while context matching. */

/* Usually these characters represent geometric information */

/* which is irrelevent from the viewpoint of interaction */

/* between the components of the modelled structure. */

/* */

/* The separators < and > must be present in each production. */

/* The empty strings are denoted by symbol *. All components of a */

/* production (including the strict predecessor) may contain */

/* several letters. For example, AB < CDE > FG --> A[B]A */

/* is a valid production which replaces substring CDE by A[B]A. */

/* The context lengths may vary from one production to another */

/* within a particular production set. */

/* Brackets can appear only in the production successor. */

/**/

#include <stdio.h>

#include "generate.h"

/**/

/* "main" organizes computation */

/**/

main(argc, argv)

int argc;

char *argv[];

{

char *title, *ctop();

char *string, *Derive();

char axiom[MAXAXIOM];

static char ignore[MAXCHARS]; /* ... when context matching */

Production prodSet[MAXPROD];

Parameter p;

if (argc != 2) {

printf("Usage: %s filename\n", argv[0]);

exit(1);

}

A.2. GENERATE.C 105

p.filename = argv[1];

input(axiom, ignore, prodSet, &p); /* read the input file */

string = Derive(axiom, ignore, prodSet, p.n); /* generate */

interpret(string, &p); /* interpret */

}

/**/

/* Function "input" reads the input file. */

/**/

input(axiom, ignore, prodSet, pPtr)

char axiom[];

char ignore[];

Production prodSet[];

Parameter *pPtr;

{

FILE *fp, *fopen();

char lcontext[MAXAXIOM], rcontext[MAXAXIOM], predecessor[MAXAXIOM];

char successor[MAXAXIOM];

char ignore_buf[MAXCHARS];

char *inpStr; /* It will contain the contexts, the strict

predecessors and the successors of all

productions, separated by the null characters */

char *malloc();

int i;

if ((fp = fopen(pPtr->filename, "r")) == NULL) {

printf("Can’t open %s\n", pPtr->filename);

exit(1);

}

if ((inpStr = malloc(MAXSTR)) == NULL) {

printf("Can’t allocate inpStr\n");

exit(1);

}

inpStr++ = ’\0’; / Start inpStr with the null character -

needed to terminate search for the left context */

fscanf(fp, "derivation length: %d\n", &pPtr->n);

fscanf(fp, "angle factor: %d\n", &pPtr->angle);

fscanf(fp, "scale factor: %d\n", &pPtr->scale);

fscanf(fp, "axiom: %s\n", axiom);

fscanf(fp, "ignore: %s", ignore_buf);

/* Set flags corresponding to the ignored characters to 1. */

for (i=0; i<MAXCHARS; i++)

ignore[i] = 0;

106 APPENDIX A. PROGRAM LISTING

for (i=0; ignore_buf[i] !=0; i++) {

ignore[ignore_buf[i]] = 1;

}

/* Read productions and enter them to the "prodSet" structures */

for (i=0; 1; i++, prodSet++) {

prodSet->pred = inpStr; /* to mark last production */

if (fscanf(fp, "%s < %s > %s --> %s",

lcontext, predecessor, rcontext, successor) == EOF)

break;

enter(lcontext, &prodSet->lConLen, &prodSet->lCon, &inpStr);

enter(predecessor, &prodSet->predLen, &prodSet->pred, &inpStr);

enter(rcontext, &prodSet->rConLen, &prodSet->rCon, &inpStr);

enter(successor, &prodSet->succLen, &prodSet->succ, &inpStr);

};

prodSet->predLen = 0;

printf("%d productions read\n", i);

}

/**/

/* Function "enter" is used to copy "string" to "inpStr" and fill */

/* fields in a "prodSet" structure". */

/**/

enter(string, lenPtr, prodStrHandle, inpStrHandle)

char *string;

int *lenPtr;

char **prodStrHandle, **inpStrHandle;

{

if (*string == ’*’) {

*lenPtr = 0;

**inpStrHandle = ’\0’;

}

else {

*lenPtr = strlen(string);

strcpy(*inpStrHandle, string);

}

*prodStrHandle = *inpStrHandle;

*inpStrHandle += *lenPtr + 1;

}

/**/

/* Given an axiom, a set of productions and a derivation length, */

/* find the generated string and return a pointer to it. */

/* The parallel operation of an L-system is simulated as follows. */

/* First, string1 (containing the axiom) is scanned from the */

A.2. GENERATE.C 107

/* left to the right. Its consecutive substrings are matched with */

/* the predecessors of productions. The appropriate successors are */

/* appended to the end of string2. After the entire string1 is */

/* scanned, string2 becomes string 1. The process is repeated until */

/* the desired derivation length is achieved. */

/**/

char *Derive(axiom, ignore, prodSet, n)

char axiom[];

char ignore[];

Production prodSet[];

int n;

{

char *curPtr, *nextPtr, *tempPtr, *limPtr;

char *string1, *string2;

int i;

Production *FindProd();

if ((string1 = malloc(MAXSTR)) == NULL) {

printf("pfg: can’t allocate string1\n");

exit(1);

}

if ((string2 = malloc(MAXSTR)) == NULL) {

printf("pfg: can’t allocate string2\n");

exit(1);

}

for (i=0; i < MAXSTR; i++)

*(string1+i) = *(string2+i) = ’\0’;

++string1;

++string2; /* start with \0 for proper context handling */

strcpy(string1, axiom);

limPtr = string2 + MAXSTR - MAXAXIOM;

for (i=1; i<=n; i++) {

printf("Computing derivation step %d\n", i);

curPtr = string1;

nextPtr = string2;

while (*curPtr != ’\0’) {

ApplyProd(&curPtr, &nextPtr,

FindProd(curPtr, prodSet, ignore));

if(nextPtr > limPtr) {

printf("String too long");

exit(1);

}

*nextPtr = ’\0’;

}

tempPtr = string1;

string1 = string2;

108 APPENDIX A. PROGRAM LISTING

string2 = tempPtr;

}

return(string1);

}

/**/

/* Copy the successor of production *prodPtr starting at location */

/* *nextHandle. Update curHandle and nextHandle. */

/**/

ApplyProd(curHandle, nextHandle, prodPtr)

char **curHandle, **nextHandle;

Production *prodPtr;

{

if (prodPtr != NULL) {

strcpy(*nextHandle, prodPtr->succ);

*curHandle += prodPtr->predLen;

*nextHandle += prodPtr->succLen;

}

else {

**nextHandle = **curHandle;

++(*nextHandle);

++(*curHandle);

}

}

/**/

/* Given a pointer to a string and a set of productions, return the */

/* pointer to the first applicable production or NULL if no */

/* matching production can be found. The set of productions is */

/* scanned in the same order in which productions are listed in */

/* the input file. */

/***/

Production *FindProd(curPtr, prodSet, ignore)

char *curPtr;

Production prodSet[];

char ignore[];

{

while (prodSet->predLen != 0) {

if (prefix(prodSet->pred, curPtr) ||

rcondiff(prodSet->rCon, curPtr + prodSet->predLen, ignore) ||

lcondiff(prodSet->lCon + prodSet->lConLen - 1,

curPtr - 1, ignore))

++prodSet;

else

return(prodSet);

}

A.2. GENERATE.C 109

/* Predecessor not found */

return(NULL);

}

/***/

/* Check, whether string s1 is a prefix of the string s2. */

/***/

prefix(s1, s2)

char *s1, *s2;

{

while (*s1 != ’\0’)

if (*s2++ != *s1++)

return(1);

return(0);

}

/**/

/* Check, whether string s1 matches s2 as the right context. */

/* Ignore specified symbols and skip branches. */

/**/

rcondiff(s1, s2, ignore)

char *s1, *s2;

char ignore[];

{

char *skipright();

while(1) {

if (*s1 == ’\0’)

return(0);

if(ignore[*s2])

s2++;

else if (*s2 == ’[’)

s2 = skipright(s2+1) +1;

else if (*s1++ != *s2++)

return(1);

}

}

/**/

/* Skip a branch while searching for the right context. The branch */

/* may contain subbranches. */

/**/

char *skipright(s)

char *s;

{

110 APPENDIX A. PROGRAM LISTING

int level = 0;

while (*s != ’\0’) {

switch (*s) {

case ’[’:

++level;

break;

case ’]’:

if(level == 0)

return(s);

else

--level;

break;

default:

break;

}

s++;

}

return(s);

}

/**/

/* Check, whether string s1 matches s2 as the left context. */

/* Ignore specified symbols and skip branches. The parent branch */

/* belongs to the left context of a child branch. */

/**/

lcondiff(s1, s2, ignore)

char *s1, *s2;

char ignore[];

{

char *skipleft();

while(1) {

if(*s1 == ’\0’)

return(0);

if(ignore[*s2] || (*s2 == ’[’))

s2--;

else if (*s2 == ’]’)

s2 = skipleft(s2);

else {

if (*s1-- != *s2--)

return(1);

}

}

}

/**/

A.2. GENERATE.C 111

/* Skip a branch while searching for the left context. The branch */

/* may contain subbranches. */

/**/

char *skipleft(s)

char *s;

{

int level = 0;

s--;

while(*s != ’\0’) {

switch(*s) {

case ’]’:

++level;

break;

case ’[’:

if(level == 0)

return(--s);

else

--level;

break;

default:

break;

}

s--;

}

return(s);

}

112 APPENDIX A. PROGRAM LISTING

A.3 interpret.h

#define MAXANGLE 40 /* maximum value of the angle factor */

#define MAXSCALE 100 /* maximum value of the scale factor */

#define TWO_PI 6.2831853

#define STACK_SIZE 40 /* maximum depth of branches */

#define LEFT 2 /* window parameters */

#define TOP 42

#define RIGHT 510

#define BOTTOM 340

struct TURTLE { /* turtle position and orientation */

double x;

double y;

short int dir;

};

typedef struct TURTLE TURTLE;

struct PIXEL { /* turtle position in screen */

short int h, v; /* coordinates */

};

typedef struct PIXEL PIXEL;

struct BOX { /* the bounding box of the fractal */

double xmin, xmax;

double ymin, ymax;

};

typedef struct BOX BOX;

A.4. INTERPRET.C 113

A.4 interpret.c

#include <quickdraw.h>

#include <font.h>

#include <window.h>

#include <math.h>

#include "generate.h"

#include "interpret.h"

/**/

/* Create the graphics environment in which the curve will be */

/* drawn. Find the bounding box of the curve , center it and draw */

/* using the specified parameters. */

/**/

interpret(string, pPtr)

char *string;

Parameter *pPtr;

{

Rect boundsRect; /* Needed to open a window on the Mac... */

WindowRecord wRecord;

WindowPtr picture;

short int inc; /* The step size */

PIXEL start; /* Starting position of the turtle. */

BOX boundBox; /* Bounding box of the curve */

/* Check the value of the angle factor */

if (pPtr->angle > MAXANGLE) {

printf("Angle factor too big (%d > %d)\n",

pPtr->angle, MAXANGLE);

exit(1);

}

/* Compute the bounding rectangle of the curve, assuming */

/* that the mouse starts at the point (0,0) and the step */

/* size is equal to 1. */

start.h = start.v = 0;

inc = 1;

draw(string, &start, inc, pPtr->angle, 0, &boundBox);

/* Given the bounding rectangle and the size factor, */

/* center figure in the window. */

SetDrawParam(&start, &inc, &boundBox, pPtr->scale);

/* Initialize drawing environment. */

114 APPENDIX A. PROGRAM LISTING

InitGraf(&thePort);

InitFonts();

InitWindows();

SetRect(&boundsRect, LEFT, TOP, RIGHT, BOTTOM);

picture = NewWindow(&wRecord, &boundsRect, ctop(pPtr->filename),

257, documentProc, (WindowPtr) 0, 257, 0L);

OpenPort (thePort);

SelectWindow (picture);

SetPort(picture);

HideCursor();

/* Draw curve. */

draw(string, &start, inc, pPtr->angle, 1, &boundBox);

ClosePort(thePort);

}

/**/

/* Draw figure by according to the "string". The parameters have */

/* the following meaning: */

/* */

/* string the string being interpreted */

/* startPtr initial position of the turtle */

/* inc step size */

/* angFac the angle factor */

/* flag 0 - make all lines invisible, 1 - draw. The value */

/* of 0 is used when calculating the bounding */

/* rectangle. */

/* boxPtr Pointer to the structure returning the coordinates */

/* of the bounding rectangle. */

/* */

/* The following string symbols are interpreted by the turtle: */

/* + - | [] F f */

/**/

draw(string, startPtr, inc, angFac, flag, boxPtr)

char *string;

PIXEL *startPtr;

short int inc, angFac, flag;

BOX *boxPtr;

{

double SI[MAXANGLE], CO[MAXANGLE];

TURTLE tu, stack[STACK_SIZE], *stackPtr, *bottom, *top;

char c;

int i, halfangFac;

double ang = -TWO_PI/4;

A.4. INTERPRET.C 115

char *str;

str = string;

/* Set stack limits. */

stackPtr = bottom = stack;

top = stack + STACK_SIZE - 1;

/* Precalculate coordinates of turtle steps in all possible */

/* directions. */

for(i=0; i<angFac; i++) {

SI[i] = inc * sin(ang);

CO[i] = inc * cos(ang);

ang += TWO_PI/angFac;

};

halfangFac = angFac/2; /* needed to interpret the symbol | */

angFac--; /* more convenient in comparisons */

/* Initialize the bounding rectangle and the starting position */

/* of the turtle for the purpose of bounding rectangle */

/* calculation. */

boxPtr->xmin = boxPtr->xmax = tu.x = (double) (startPtr->h) + 0.5;

boxPtr->ymin = boxPtr->ymax = tu.y = (double) (startPtr->v) + 0.5;

tu.dir=0;

/* Move the turtle to an appropriate starting position in */

/* order to center the final drawing. */

if (flag)

MoveTo(startPtr->h, startPtr->v);

/* Scan the string and interpret its consecutive symbols. */

while ((c = *str++) != ’\0’) {

switch (c) {

case ’+’: /* Turn right */

if(tu.dir<angFac)

++tu.dir;

else

tu.dir=0;

break;

case ’-’: /* Turn left */

if(tu.dir>0)

116 APPENDIX A. PROGRAM LISTING

--tu.dir;

else

tu.dir=angFac;

break;

case ’|’: /* Turn over */

if(tu.dir>=halfangFac)

tu.dir-=halfangFac;

else

tu.dir+=halfangFac;

break;

case ’[’: /* Push curent state on stack */

if(stackPtr >= top) {

printf("Too many [\n");

exit(1);

}

TurtleCopy(stackPtr, &tu);

stackPtr++;

break;

case ’]’: /* Pop state from the stack */

if(stackPtr <= bottom) {

printf("Too many]\n");

exit(1);

}

--stackPtr;

TurtleCopy(&tu, stackPtr);

if (flag)

MoveTo((short)(tu.x), (short)(tu.y));

break;

case ’F’: /* Move forward and draw a line */

tu.x += CO[tu.dir];

tu.y += SI[tu.dir];

if (flag)

LineTo((short)(tu.x), (short)(tu.y));

else

BoxUpdate(&tu, boxPtr);

break;

case ’f’: /* Move forward without drawing */

tu.x += CO[tu.dir];

tu.y += SI[tu.dir];

if (flag)

MoveTo((short)(tu.x), (short)(tu.y));

else

BoxUpdate(&tu, boxPtr);

break;

default: /* Room for extensions */

break;

}

}

A.4. INTERPRET.C 117

}

/**/

/* Copy TURTLE structure "fromPtr" to "toPtr". */

/**/

TurtleCopy(toPtr, fromPtr)

TURTLE *toPtr, *fromPtr;

{

toPtr->x = fromPtr->x;

toPtr->y = fromPtr->y;

toPtr->dir = fromPtr->dir;

}

/**/

/* Check whether the turle moves outside the current box. If it */

/* does, adjust box boundary. */

/**/

BoxUpdate(tuPtr, boxPtr)

TURTLE *tuPtr;

BOX *boxPtr;

{

if (tuPtr->x < boxPtr->xmin)

boxPtr->xmin = tuPtr->x;

if (tuPtr->x > boxPtr->xmax)

boxPtr->xmax = tuPtr->x;

if (tuPtr->y < boxPtr->ymin)

boxPtr->ymin = tuPtr->y;

if (tuPtr->y > boxPtr->ymax)

boxPtr->ymax = tuPtr->y;

}

/**/

/* Set the starting point and the step increment given the bounding */

/* box and the scale factor. */

/**/

SetDrawParam(startPtr, incPtr, boxPtr, scale)

PIXEL *startPtr;

short int *incPtr;

BOX *boxPtr;

int scale;

{

double xscale, yscale, sc;

xscale = (RIGHT - LEFT)/(boxPtr->xmax - boxPtr->xmin);

yscale = (BOTTOM - TOP)/(boxPtr->ymax - boxPtr->ymin);

118 APPENDIX A. PROGRAM LISTING

if(xscale>yscale)

sc = yscale;

else

sc = xscale;

*incPtr = (int) floor ((double) ((sc * scale)/MAXSCALE));

startPtr->h = (short)

(RIGHT - LEFT - *incPtr * (boxPtr->xmin + boxPtr->xmax - 1.0))/2;

startPtr->v = (short)

(BOTTOM - TOP - *incPtr * (boxPtr->ymin + boxPtr->ymax - 1.0))/2;

}

