
THE UNIVERSITY OF CALGARY

Interactive Procedural Modelling of Trees and Landscapes

by

Steven Longay

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF Ph.D. IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2014

c© Steven Longay 2014

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “Interactive Procedural Modelling of Trees and

Landscapes” submitted by Steven Longay in partial fulfillment of the requirements for the

degree of Ph.D. in Computer Science

Supervisor
Dr. Przemyslaw Prusinkiewicz
Department of Computer Science

Dr. Faramarz Samavati
Department of Computer Science

Dr. Anthony Tang
Department of Computer Science

Dr. Richard Levy
Faculty of Environmental Design

Dr. Pierre Poulin
University of Montreal

Date

ii

Abstract

Virtual trees are an essential component of many computer generated outdoor scenes.

Creation of digital tree models is a difficult and time consuming process requiring specially

trained artists and therefore trees are often selected from a library of models. These pre-

generated models are expensive, of limited quality and do not suffice when a particular

artistic design is required. Moreover, when multiple tree models are combined into scenes,

they lack important characteristics of trees that were grown together. My thesis focuses

on the development of algorithms and modelling software capable of generating diverse

tree forms that are botanically plausible yet easily controlled to meet artistic requirements.

I propose a new model of tree growth which enhances the directability and diversity of

previous algorithms. A novel multi-touch tablet interface is presented which allows for

the free form creation of trees through brushing, pruning and bending of branches into the

desired form. Furthermore, I present an algorithm and interface for interactively designing

an entire landscape of trees. Neighboring trees exhibit characteristics of being grown

together yet they are simulated independently, taking advantage of parallel computing

techniques. This ability to easily generate realistic trees and landscapes has applications

in the fields of computer graphics and animation, digital landscape design in architectural

visualization and computer games.

iii

Acknowledgments

I would like to thank my supervisor Dr. Przemyslaw Prusinkiewicz for introducing me

to the field of procedural modelling and providing me freedom in pursuing this project.

Above all I am grateful for your enthusiasm and always striving for excellence. Thank-you

to all the members of the lab, especially Adam Runions, for your extensive comments and

testing of TreeSketch. Last but not least, I am grateful for the financial support from the

Graphics, Animation and New Media Network of Centers of Excellence (GRAND).

iv

Table of Contents

Approval Page ii

Abstract iii

Acknowledgments iv

Table of Contents v

List of Figures viii

1 Introduction 1

1.1 Methodology . 2
1.2 Contributions . 4
1.3 Organization . 5

2 Tree Morphology 7

2.1 Key Discriminates of Form . 7
2.2 Developmental Paradigms . 11

3 Previous Work 14

3.1 Procedural Tree Modelling . 14
3.1.1 Recursive and Hierarchical Models 15
3.1.2 Self-Organizing Trees . 18

3.2 Procedural Modelling of Landscapes . 20

4 Generative Algorithms 22

4.1 Tree Architecture . 22
4.2 Previous Generative Algorithms . 25

4.2.1 Space Colonization . 25
4.2.2 Competition for Light . 28

4.3 Unified Generative Algorithm . 32
4.3.1 Competition for Space . 34
4.3.2 Shoot Growth . 34
4.3.3 Parameter Space Exploration . 36

4.4 Diversifying Form . 39
4.4.1 Branch Straightness . 39
4.4.2 Gravitropism . 41
4.4.3 Gravimorphism . 45

v

4.4.4 Deflection Angle . 47
4.5 Discussion . 48

5 TreeSketch 49

5.1 Interface . 50
5.1.1 Manipulating Growth Parameters 53
5.1.2 Side Bar . 58

5.2 Artistically Driven Tree Growth . 60
5.2.1 Brushing and Sketching . 60
5.2.2 Lasso . 62
5.2.3 Sketch-based Tropisms . 63
5.2.4 Selective Growth . 65

5.3 Manipulating Tree Form . 66
5.3.1 Branch Bending . 66
5.3.2 Width Constraints . 69
5.3.3 Pruning . 72

5.4 An Augmented Reality Interface . 72
5.4.1 Scene Tracking . 73
5.4.2 Interface . 74
5.4.3 Interaction with the Environment 74
5.4.4 Discussion and Limitations . 76

5.5 Model Visualization . 76
5.6 Results . 78
5.7 Discussion . 81

6 Trees To Forests 84

6.1 Algorithm Overview . 86
6.2 Species Definition . 86
6.3 Terrain Specification . 87
6.4 Tree Distribution . 88

6.4.1 The Deformation-Kernel Method 90
6.4.2 Interface . 96

6.5 The Neighborhood Effect . 99
6.5.1 Space Constraints . 101
6.5.2 Neighbourhood Asymmmetry 105

6.6 Tree Growth . 108
6.7 Editing Trees . 111
6.8 Analysis . 111
6.9 Results . 115

6.9.1 Speed of Simulation . 119

vi

7 Conclusion 120

7.1 Future Work . 122

Bibliography 125

A Bending Branches 135

B Depth Constraints 139

C Details of Tree Appearance 141

C.1 Leaves . 141
C.1.1 Placement . 141
C.1.2 Orientation . 142

C.2 Fruit . 145
C.3 Branches . 147

D Modelling a Tree with TreeSketch 150

E Interface Panels of TreeSketch 153

vii

List of Figures

2.1 Tree composition . 8
2.2 Graviropism examples in real trees . 9
2.3 Strong gravimorphism in real trees . 10
2.4 The neighbourhood effect in a stand of trees 11
2.5 A well balanced tree . 12

4.1 Internode reference frames . 23
4.2 Branch architecture . 24
4.3 A space colonization tree . 26
4.4 Competition for space . 27
4.5 The Space Colonization Algorithm . 28
4.6 A branch casting a pyramidal shadow into the 3D voxel space 29
4.7 Accumulation of light and allocation of vigor 29
4.8 Graph of the equations for controlling resource allocation 30
4.9 A winter scene by trees competing for light 32
4.10 A conceptual model of tree development with the unified growth model . 33
4.11 Changing the density of the branching structure 37
4.12 The effects of non-linear response to light exposure on tree form 37
4.13 The effects of apical dominance on tree form 38
4.14 Effect of branch straightness on a branch 38
4.15 Effect of branch straightness on trees . 40
4.16 Gravitropism and growth direction . 40
4.17 The effect of plagiotropism on tree form 42
4.18 The effects of shoot length on tree form 43
4.19 A conifer tree created using by setting the tropism of the main axis upwards 44
4.20 Specification of the gravimorphic response 44
4.21 Graph of gravimorphism strength . 45
4.22 Effects of gravitropism and gravimorphism 46
4.23 The deflection angle . 47
4.24 The effect of the deflection angle on tree form 48

5.1 Examples of trees created with TreeSketch 49
5.2 Designing a bonsai-inspired tree . 51
5.3 Overview of the TreeSketch interface 52
5.4 The TreeSketch architectural panel . 53
5.5 Tropism direction widget . 55
5.6 Gravimorphism widget . 56

viii

5.7 Branching angles widget . 56
5.8 Branch direction widget . 57
5.9 Expanding side bar . 59
5.10 Brushing and sketching . 61
5.11 Single stroke trees . 62
5.12 Trees created with the lasso tool . 63
5.13 Paintings exhibiting brush strokes . 64
5.14 Example trees created with sketch-based tropism 65
5.15 Comparison of non-selective and selective growth 66
5.16 Comparison of deformation methods . 67
5.17 Bending a branch with a three-touch gesture 68
5.18 Novel tree forms created with branch bending 69
5.19 Width constraints divide a tree into subtrees 71
5.20 The effect of width constraints on tree form 72
5.21 An augmented reality interface . 75
5.22 Complex tree structures modeled and rendered with TreeSketch 77
5.23 Diverse trees modeled using TreeSketch 79
5.24 A cliff tree generated using TreeSketch 80
5.25 Two scenes with trees generated using TreeSketch 81

6.1 Example representative crown shapes 87
6.2 Example of brushing the terrain . 88
6.3 Distribution of plants created using a self-thinning model 89
6.4 Visualization of the probability field as a height map 90
6.5 Generating a random row from the probability field 93
6.6 A random distribution . 94
6.7 A clustered distribution . 95
6.8 Clustering with inhibition between species 95
6.9 Distribution with three species . 96
6.10 The species bar . 97
6.11 A distribution of trees including hero trees 98
6.12 A stand of trees tilting away from their neighbors 100
6.13 A Voronoi diagram constructed from positions of trees 101
6.14 Stages of the boundary propagation algorithm 102
6.15 Frames of the boundary propagation algorithm 103
6.16 Comparison of a Voronoi diagram and a boundary propagation diagram . 104
6.17 Slices of the constraint volume . 105
6.18 Computing the neighborhood asymmetry vector 106
6.19 Neighborhood asymmetry vectors . 108
6.20 Trees tilted away from their neighbors 110

ix

6.21 Larger trees have a greater effect on neighborhood asymmetry 110
6.22 Editing trees after growth . 111
6.23 Tree crowns offset by growth towards free space 112
6.24 Uniformity of tree crown distribution compared to base 114
6.25 Trees over-hang a path through a city park 115
6.26 Looking up through the canopy . 116
6.27 The riverbank effect . 117
6.28 Large tree growing over-top of its neighbors 118

A.1 Prisms and elastic joints . 136

B.1 Paintings of trees with non crossing branches 139
B.2 Examples of trees grown with a constrained depth 140

C.1 Effects of leaf density on tree form . 142
C.2 A framed leaf petiole . 143
C.3 Leaf orientation . 145
C.4 Comparison of flower placement methods 147
C.5 Dynamic contour sides . 148
C.6 Crooked branching . 149
C.7 Cracks in branch geometry . 149

D.1 Photograph of a real birch tree . 150
D.2 Creating a birch tree . 151
D.3 Creating a birch tree . 152

E.1 TreeSketch architectural panel . 153
E.2 TreeSketch leaf rendering panel . 154
E.3 TreeSketch architectural panel . 155
E.4 TreeSketch branches panel . 156
E.5 TreeSketch fruit and buds panel . 157
E.6 TreeSketch background selection panel 158
E.7 TreeSketch environment panel . 159
E.8 TreeSketch tree library . 160

x

Chapter 1

Introduction

Due to the complexity of tree structures, the creation of trees for computer imagery requires

specialized modelling methods. Procedural modelling generates content by means of a

procedure or program [Ebert et al., 2003] and is commonly used as a tool that manages

the complexity of generating digital trees. In practice, tree models often have strict artistic

requirements and are required to mimic characteristics existing real-world trees or concept

sketches. Previous attempts at integrating user control with procedural tree models have

failed to capture a wide diversity of realistic tree models and often require specialized

programming or biological knowledge. The crux of the problem is the inherent tension

between procedural model generation and user control. The goal of a procedural model is

to generate complex content automatically. Yet, control over every aspect of the resulting

structure is desired.

The ability to easily generate complex tree forms is important for scene dressing of

computer generated imagery, but also has prospective applications in education, horticulture

and landscape design. The models in this thesis have a sound biological foundation and they

can therefore be used to develop further understanding of tree development and enhance

appreciation of nature.

My hypothesis is that procedural models can be developed for the creation of trees and

landscapes which biologically motivated and can be controlled at interactive rates without

requiring the modeller to have a computer science or biological background. Such models

1

2

should provide the user with high level controls that mimic functionality they are already

familiar with, such as painting, bending of branches and pruning.

In his acceptance speech for the 2009 Steven Coons Award, Rob Cook repeatedly

stressed the importance of interactive techniques to the future of computer graphics. Specif-

ically, he advocated intuitive 3D editing, concluding that “our tools need to feel more like

brushes" and “programs should have an understanding of what you are drawing and use

this to give a higher level control" of the content. My work aims to address these objectives

in the field of tree modelling.

1.1 Methodology

Current methods for generating tree structures follow two main paradigms: procedural

tree generation and reconstruction of tree geometry from photographs or laser scans. The

reconstruction methods can potentially provide faithful three-dimensional geometry of

real trees with little modeller intervention. However, finding an actual tree that meets

the artistic requirements of a specific scene while being sufficiently isolated to obtain

good photographs or scans is difficult. This problem is accentuated for trees that only

grow in forests, and compounded by the limited geographic range in which some trees

grow. Procedural models potentially do not suffer from these limitations. Nevertheless, the

development of methods capable of generating widely diverse trees, botanically plausible

yet easily controlled to meet artistic requirements, has remained a challenge. Thus, creators

of procedural tree models strive to integrate user control into their methods.

One approach to integrate user control into procedural models is by solving the inverse

problem: the modeller specifies the approximate final structure (e.g. sketch or photograph)

3

and the system solves for the best-matching parameters of a procedural model to generate

the structure [Talton et al., 2011]. This concept, inverse procedural modeling, has been used

to create tree models similar to an exemplar but adapted to fit environmental constraints

[Št’ava et al., 2014]. While these systems have the potential to produce high quality results,

they do not run at interactive rates and the computation of a single tree can take hours.

Sketch based interfaces have been proposed as a technique to introduce artistic control

while expediting the process of procedural tree modelling [Wither et al., 2009, Chen et al.,

2008, Okabe et al., 2005]. Due to the complexity of tree architectures, artistic sketches

are not detailed enough to produce visually realistic models directly. Consequently, tree

modelling systems rely on recursive algorithms or a database of sample trees to generate the

finer levels of detail. This can result in trees which look repetitive and unnatural. Procedural

models based on competition for space [Runions et al., 2007] or light [Pałubicki et al.,

2009, Pałubicki, 2012] generate more realistic trees that do not suffer from these artifacts.

These methods, however, do not focus on the interactive control of generated models.

The radius associated with a brush provides an inherent advantage over sketches because

the modeller is specifying their input over a larger area. This provides more freedom to

the procedural model giving it the ability to produce a superior result. As the radius of the

brush tends to zero, the interface becomes sketch based, thus there is no loss of control.

Simulating tree growth of an entire landscape is computationally expensive. Moreover,

since the trees are grown together, changes to an individual tree may require re-computing

the entire landscape. Therefore, simulation of landscapes is usually partitioned into multiple

levels making it more manageable [Deussen et al., 1998]. Lane and Prusinkiewicz [2002]

propose a system in which the distribution of tree bases is first computed by simulating

interactions between tree species resulting in clustering and inhibition. Using this distribu-

4

tion, tree models representative of each species are instanced at the location of each tree.

Independently rotating and adjusting the size of each model helps to provide the illusion

of diversity when viewed from a distance, but is not sufficient when the viewer is close.

The main problem is the lack of variability in crown shapes. Real tree crowns are highly

adaptive and dependent on neighboring trees.

This thesis describes methods for interactive procedural modeling of trees and land-

scapes. A core component is an algorithm for simulating tree growth which affords

directable control over the generated tree form. This growth algorithm is implemented in

TreeSketch, a multi-touch tablet application that presents an intuitive brush based inter-

face while allowing for intuitive editing of the tree structure such as pruning and bending

branches. Scaling from trees to forests, I present a multi-level technique for the interactive

specification of entire landscapes. Resulting trees have the natural appearance of those that

have been grown together, yet they can be simulated independently in parallel. The pre-

sented methods are capable of generating a wide range of diverse forms that are botanically

plausible yet easily controlled to meet requirements.

1.2 Contributions

Interactive procedural modeling of trees and landscapes is an interdisciplinary subject area

spanning the fields of computer graphics, biology, human-computer interaction and art.

Existing methods and systems do not support the diversity, realism, artistic control and

free-form modeling experience that my research aims to achieve. This section describes

main scientific advancements and contributions I have made towards these goals. They can

be split into three categories:

5

• Growth Simulation: Directability, realism and diversity. I present an algorithm for

tree growth which adds directability to previous models. This allows for a diverse set

of realistic and artistic tree forms to be created. The ability to create realistic trees

that naturally grow into various shapes is essential to the algorithm for generating

landscapes.

• TreeSketch: Interface, widgets and algorithmic support of interaction. I developed a

multi-touch brush-based interface for free-form interactive design of trees. A set of

interactive widgets provides intuitive control over correlated parameters. Algorithms

for bending of branches and defining branch widths have been devised for the purpose

of interactive tree modeling. An augmented-reality interface enables creation and

visualization of trees within real world environments while allowing them to adapt to

their surroundings.

• Landscapes: Multi-level specification, biologically motivated, scalable. I have devel-

oped an algorithm for generating spatial constraints on the shape of tree crowns from

a distribution of tree bases. These constraints capture important effects resulting from

the competition between neighboring trees. Each tree can be simulated independently,

enabling the use of parallel processing techniques that greatly enhance the speed of

generation.

1.3 Organization

Throughout this thesis I aim to present the biological concepts and observations first,

followed by an exploration of the corresponding simulation techniques and finally interfaces

that allow for artistic guidance and manipulation of the tree structures. I start by introducing

6

the form of trees from a visual and biological perspective (Chapter 2). After a review

of previous work on tree modelling (Chapter 3), I present the model of tree growth that

is used in the remainder of this thesis (Chapter 4). Chapter 5 presents TreeSketch, the

interactive multi-touch application for modelling trees. Algorithms for the interactive

design of landscapes are presented in Chapter 6. Finally, Chapter 7 contains a discussion of

future work and concluding remarks.

The text from [Longay et al., 2012] has been incorporated throughout this thesis and

adjusted where necessary to account for new results. Figures used from this work directly

are cited in the captions. Section C.1.2 is based on the poster [Longay et al., 2010].

Chapter 2

Tree Morphology

Considering that trees have no central brain to orchestrate their development, it is wondrous

to see the complex yet harmonious forms they are able to achieve. The potential of a tree

is determined through its genetic information even before it becomes a seedling. Yet, the

variability in form present between trees of the same species can be staggering. Much

research has gone into determining how the branching structure of trees emerge.

When creating a procedural model to simulate tree development, it is important to

identify which aspects are most important in determining the form of the tree. By pa-

rameterizing all aspects of tree form, the model would become as complicated as reality

itself and no longer be of use [Prusinkiewicz, 1998]. The following section discusses

characteristics of tree development which directly correspond to visual differences in tree

form.

2.1 Key Discriminates of Form

A tree develops through the production of metamers by active apical (terminal) buds. A

metamer consists of a branch segment called an internode, associated with one or more

lateral buds subtended by a leaf (Figure 2.1). The sequence of internodes produced by a

bud forms an axis. Lateral buds may give rise to new axes, which leads to the development

of branches. The branch system of a tree, supported by the trunk, constitutes the tree crown.

7

8

Terminal Bud

Internode

Lateral Bud

Leaf

Metamer

Figure 2.1: Tree composition

Traditional botanists have distinguished a number of features they found useful in

describing tree forms [Ward, 1909]. The overall silhouette of a tree is usually characterized

using descriptive terms such as columnar, pyramidal, or broad. Whether or not a tree

has a well defined trunk has a dramatic impact on its visual form. In biology, such forms

are termed excurrent and decurrent respectively. The presence of a trunk is thought to

be caused by the phenomenon of apical dominance, where the terminal bud of a branch

suppresses growth of its lateral branches.

Lateral branches are issued at a particular angle from their supporting axis, the branching

angle. The path of a branch curves and changes throughout its development, yet many

branches have a tendency to maintain a preferred orientation with respect to gravity,

gravitropism. Traditionally, this tendency was characterized qualitatively, using terms such

as negative gravitropism (the tendency of branches to grow upwards), plagiotropism (the

tendency to maintain a slanted or horizontal orientation) and positive gravitropism (the

tendency to grow downward). Digby and Firn [1995] quantified and unified these notions

by introducing the gravitropic set-point angle (GSA): the angle θ to the direction of gravity

that the branch axes tend to maintain (Figure 2.2).

9

Figure 2.2: Examples of graviropism in real trees. Left, a birch tree where the angle of tropism

changes over time. Right, the gravitropic set-point angle. Images courtesy of Wojtek Pałubicki.

The related phenomenon of gravimorphism has been recognized by biologists as also

having an important impact on tree form [Barthélémy and Caraglio, 2007]. Gravimorphism

refers to the differential growth potential of buds that depends on the orientation of the

bud with respect to its parent axis. In the case of epitony, buds on the upper side of their

supporting axes are favoured. In contrast, hypotony refers to the favouring of buds on

the underside of branches while amphitony favours buds that lie in horizontal positions

(Figure 2.3).

10

Figure 2.3: Image from [Barthélémy and Caraglio, 2007] showing examples of real trees with strong

gravimorphism effects. M refers to mesotony, the privileged development of lateral branches on

their parent axis P. A) hypotony, B) amphitony and C) epitony.

Harper [1977] identifies the neighborhood effect as one of the fundamental character-

istics controlling tree form, relating the adaptive shape of tree crowns to the presence of

neighbors. Also known as crown plasticity or the river-bank effect [Hallé et al., 1978], this

can be seen most predominantly at the edge of the forest or on the bank of a river, where

trees can be found leaning into open space and away from their neighbors (Figure 2.4). By

displacing its crown away from its neighbors, the tree is able to reduce competition and

obtain more resources [Longuetaud et al., 2008, 2013].

11

Figure 2.4: The neighborhood effect in a stand of trees. The tree on the right grows away from its

neighbors and has a tilted trunk. Image from https://flic.kr/p/8J8jfW.

2.2 Developmental Paradigms

Hallé et al. [1978] proposed the architectural models of tree development. They identify

twenty-three developmental templates (patterns) that capture the form of tropical trees

through the process of reiteration. From this perspective, the genetic makeup of the tree

species defines its developmental pattern and is the main controlling factor of tree form. The

structure of the tree emerges by repetition of this predefined pattern, and the environment

12

of the tree is seen as having only a disrupting effect on this pattern. As noted by [Hallé

et al., 1978], when looking at trees in nature, it can be difficult to discern the particular

developmental pattern due to the plasticity of its expression. Consider the tree in Figure 2.5,

no repetitive developmental pattern is evident and thus it is unclear what developmental

pattern could be used to recreate it.

Figure 2.5: Image of a real tree. The overall form is well balanced but it is difficult to discern what

the repetitive developmental pattern would be. Photograph courtesy of Przemyslaw Prusinkiewicz.

The architectural models of tree development apply to the form of trees in tropical

climates where the environment is favorable to growth. However, trees that grow in

temperate climate must be more adaptable and competitive in order to survive the harsher

13

environment [Hallé et al., 1978]. Plant development can also be viewed from a different

perspective, where a plant is considered as a modular collection of semi-autonomous units

[White, 1979, Harper, 1985]. This idea was refined by Sachs and his collaborators [Sachs

et al., 1993, Sachs and Novoplansky, 1995, Sachs, 2004, 2006] who propose:

“The form of a tree of a given species is generated by self-organization in

which alternative branches inhibit or compete with one another, following no

strict plan or pre-pattern" [Sachs, 2004] p. 200.

From this perspective, competition for space and resources between individual units

of a plant is the key factor determining tree form. The genetic makeup of the tree may

determine its capabilities, but the overall form emerges through competition. Considering

the tree in Figure 2.5, the overall well-balanced form can be viewed as the emergent result

of competition while more specific characteristics of the tree can be described qualitatively

at a higher level. For example, this tree can be described as having a broad crown composed

of branches tending in the horizontal direction (plagiotropism). New shoots are oriented

upwards (negative gravitropism) and have a clear preference to grow from the upper side of

their supporting axis (epitony).

In this thesis, I view the development of trees from the latter perspective, generating

tree form by means of self-organization. While many of the discussed features are defined

in fuzzy terms such as “tendencies” and “preferences”, they correspond well to specific

parameters of self-organizing tree models, as shown in subsequent chapters. It is worth

noting that while these two perspectives are not mutually exclusive, the latter represents a

paradigm shift from architecture to environment being the key determinant of form [Sachs

and Novoplansky, 1995].

Chapter 3

Previous Work

Procedural modelling is widely used as a tool to manage the complexity of creating virtual

objects. While trees have become the ‘poster child’ of procedural modelling, it has been

used to generate a wide variety of objects such as terrain [Musgrave et al., 1989], buildings

[Mueller et al., 2006], city layouts [Lipp et al., 2011] and even art [Talton et al., 2011].

Attractive attributes such as data amplification, compression and generation speed [Smith,

1984] are promised by procedural modelling. In practice, however, procedural models

are notoriously hard to control and often small changes in parameters result in large,

unintuitive changes in the resulting model. The goal of interactive procedural modelling is

to improve this situation by providing the user with a more intuitive, higher level control

over the resulting structure. This chapter reviews previous research in the field of interactive

procedural modelling of trees and landscapes.

3.1 Procedural Tree Modelling

Algorithms for procedural tree modelling form a continuum spanning two extremes: those

generating trees as recursive or hierarchical branching patterns, and those in which branch-

ing patterns emerge from the competition of candidate limbs for space or light. The middle

ground is occupied by algorithms that combine both aspects in various proportions. This

section reviews the spectrum of procedural models by focusing on their capability to

generate trees with a realistic appearance and capacity for interactive control of tree form.

14

15

3.1.1 Recursive and Hierarchical Models

A natural extension from the study of tree architecture is procedural tree models based on a

recursive or hierarchical branching pattern. The structure of the tree emerges by repetition

of this predefined pattern. Most older algorithms [Honda, 1971, Aono and Kunii, 1984,

Bloomenthal, 1985, Oppenheimer, 1986, Prusinkiewicz and Lindenmayer, 1990] operate in

a bottom-up fashion, i.e., by repeating a locally defined ramified geometry over consecutive

orders of the branching hierarchy. Recursive and hierarchical algorithms can yield a wide

range of tree forms [de Reffye et al., 1988], but the modeller’s ability to control them

is impeded by the need to understand the intricacies of the generative process and their

software implementation. These difficulties have been partially circumvented by limiting

the modeller to manipulate a set of exposed parameters using standard control panels

[Oppenheimer, 1986, Prusinkiewicz and Lindenmayer, 1990] or specialized graphical

editors [Ijiri et al., 2005, 2006]. Additional techniques include confining modifications of

the algorithm to the choice between predefined options [de Reffye et al., 1988], introducing

dedicated modelling languages to specify the generative algorithms [Prusinkiewicz and

Lindenmayer, 1990, Karwowski and Prusinkiewicz, 2003], and introducing graphical

interfaces for composing the algorithm from predefined components [Lintermann and

Deussen, 1999]. In most cases, however, global attributes of the generated structures –

the overall silhouette of the tree, the shape of key limbs, and the density of branches –

emerge from the execution of the bottom-up algorithms, and are not directly controlled.

One exception is the method for modelling topiary trees [Prusinkiewicz et al., 1994], in

which branches that grow outside a predefined shape are repetitively pruned. The resulting

trees, however, have the artificial appearance of topiary trees, rather than that of natural

16

trees that happened to grow into particular forms. Another exception is the method for

inferring structures matching a high-level specification (e.g., a sketch) from a range of

possibilities afforded by the underlying generative algorithm (a grammar) [Talton et al.,

2011].

Control of silhouette

The above shortcomings were addressed in top-down algorithms, which operate by decom-

posing plant axes into smaller segments (internodes), as opposed to composing them from

the internodes [Prusinkiewicz et al., 2001]. The key observation was that the silhouette

of a tree with a well defined trunk is largely determined by the reach of its first-order

branches, which therefore can be inferred from the silhouette of the tree [Reeves and Blau,

1985]. Methods proposed to define silhouettes include specialized surfaces controlled by

a small number of parameters [Reeves and Blau, 1985, Weber and Penn, 1995, Boudon

et al., 2003] and arbitrary surfaces of revolution with a graphically defined profile [Deussen

and Lintermann, 1997, Prusinkiewicz et al., 2001]. Boudon et al. [2003] extended the

top-down approach by introducing a hierarchy of envelopes to define both the silhouette of

the whole tree and the silhouettes of individual branches. More recently, Wither et al. [2009]

used a sketch-based interface to define 2D silhouettes of branches that were subsequently

rearranged in 3D. Xu and Mould [2012] defined the global form of the tree by combining

geometric primitives filled with randomly weighted volumetric graphs. Branches are then

defined by least-cost paths through these graphs.

Control of limb shape

The top-down systems by Deussen and Lintermann [1997], Prusinkiewicz et al. [2001] and

Boudon et al. [2003] allowed the modeller to specify the shape of selected axes using a

17

parametric curve editor. A more intuitive method was introduced by Okabe et al. [2005] and

Ijiri et al. [2006] who defined the axes of two-dimensional branches strutted by sketching.

Diverse methods were proposed to infer the three-dimensional shape of plant axes from 2D

strokes. They employed the assumption of constant stem curvature in 3D [Ijiri et al., 2005],

projections of sketches onto billboards arranged in 3D, and multiple projections [Ijiri et al.,

2006]. Onishi et al. [2006] bypassed the problem of inferring 3D axes from 2D sketches by

using a 3D input stylus. Complementing these techniques, Power et al. [1999] introduced

interactive pruning and bending of branches using inverse kinematics.

Control of branch distribution and proliferation

The problem of inferring 3D form from 2D sketches extends from the control of limb shape

to the layout of branches. The 3D arrangement of branches has been inferred from 2D

sketches by rearranging branches to maximize their mutual distances [Okabe et al., 2005]

or imposing a phyllotactic pattern of branch arrangement [Wither et al., 2009] (phyllotaxis

is explained in detail in Chapter 4). In the technique introduced by Chen et al. [2008], a

sketch representing main branches and, optionally, the desired silhouette of the tree, is

compared with a database of reference trees. The best matching tree provides parameters

for a recursive generative algorithm. Related techniques have been proposed to distribute

and proliferate small branches while reconstructing trees from photographs or laser scan

data. For example, Tan et al. [2007] inferred parameters used for branch proliferation from

the layout of visible branches. Livny et al. [2011] proliferated branches by rearranging

templates generated with L-Systems to fill given envelopes.

18

3.1.2 Self-Organizing Trees

The main limitation of recursive and hierarchical models is that the harmonious distribution

of branch densities throughout the tree crown is not achieved automatically and must be

monitored carefully by the modeller. This problem is much reduced in self-organizing mod-

els, which emphasize competition between branches as a fundamental process controlling

branch proliferation in nature (as proposed from a biological perspective by [White, 1979,

Harper, 1985, Sachs and Novoplansky, 1995, Sachs, 2004]).

Generative Algorithms

Computational models built on the principle of self-organization have their roots in early

models of branching structures proposed by Ulam [1962] and Cohen [1967], and within

computer graphics in methods that captured the role of light [Greene, 1989, Chiba et al.,

1994] and space [Rodkaew et al., 2003, Runions et al., 2007] in shaping the tree. In

the model proposed by Takenaka [1994] and brought to computer graphics by Měch

and Prusinkiewicz [1996], control of branch density is not limited to local action, but is

integrated globally through internal signaling. The signals integrate the amount of light

reaching entire branches to decide whether they were profitable to the plant and should be

kept, or whether they were a liability and should be shed. More recently, Pałubicki et al.

[2009] extended this idea with a model in which the internal flow of signals also biases the

outcome of competition between buds for light. Key parameters of the model controlling

the competitive bias and shedding capture tree characteristics that are recognized as visually

important by arbourists, such as the presence or absence of a well-defined trunk.

19

Control of Tree Form

Explicit representation of space in self-organizing models makes it possible to control the

form of plants by manipulating their environment. An early example was given by Měch

and Prusinkiewicz [1996], who used a paint program to define the distribution of water in

the soil that guided the development of a branching root structure. Rodkaew et al. [2003]

and Runions et al. [2007] observed that in self-organizing trees, tree silhouettes can easily

be specified by constraining the space within which the trees grow. Neubert et al. [2007]

extended Rodkaew’s algorithm to incorporate branches that approximate a given input

obtained from photographs. Likewise, Côté et al. [2009] adapted the space colonization

algorithm of Runions et al. [2007] to proliferate branches around main limbs obtained from

LIDAR data. Beneš et al. [2011] divided the environment into a set of regions guiding the

form of individual, possibly distinct components of the tree, such as naked branches and

leaf clusters.

In the context of interactive systems, the environment may be regarded as a two-

or three-dimensional canvas, in which the modeller paints properties with a brush. For

example, Maya PaintEffects provides a brush that makes it possible to indicate the region

and direction of growth of a population of simple flowers. Zakaria and Shukri [2007] and

Pałubicki et al. [2009] proposed a procedural brush to indicate regions in which the tree

grows. Due to the fast response of the underlying tree-generating algorithms, the modeller

has the impression of interactively guiding tree growth.

20

3.2 Procedural Modelling of Landscapes

While much research has addressed the rendering of large-scale landscapes [Deussen et al.,

2002, Dietrich et al., 2005], relatively little research has been devoted to the modelling of

landscapes since the seminal work of Deussen et al. [1998]. In their system, competition

between plants for resources is simulated in two-dimensions to generate a distribution of

plant positions. Each plant is associated with a circle defining its neighborhood of influence.

As plants grow, if two circles intersect, one plant is eliminated through the application of

biologically motivated rules. This process of competition was extended by Alsweis and

Deussen [2005] and Alsweis [2007] who allowed for growth of trees to be suppressed by

larger neighbors instead of simply eliminating them. The distribution of plant positions

is used to control the placement of pre-generated models at render time [Smelik et al.,

2011, Beneš et al., 2011]. However, since the plants are generated independently, they

lack important characteristics of real world landscapes where plants grow together. The

system proposed by Pirk et al. [2012b] addresses this issue by adapting static tree geometry,

through pruning and bending intersecting branches, such that neighboring trees fit together.

The resulting trees, however, have the appearance of being pruned and bent instead of

having been grown together. Moreover, their system only adapts existing trees and therefore

a large library of tree models is required.

Instead of generating plant models independently, and later combining them into a

scene, growth of a population of plants can be simulated simultaneously. Growth models

based on competition are particularity well suited for this as plants can compete for shared

resources. Simulation from this perspective dates back to the seminal work of Greene

[1989] and Takenaka [1994] and has also been utilized in the more recent work of Měch

21

and Prusinkiewicz [1996], Rodkaew et al. [2003], Beneš et al. [2009] and Pałubicki et al.

[2009]. In these models, neighboring plants compete with each other for space or light,

resulting in non-uniform and adaptive tree shapes. However, simulating growth of an entire

landscape simultaneously is computationally expensive and, since the trees are grown

together, changes to an individual tree requires re-computing the entire landscape.

Multi-level techniques have proven useful in generating large complex landscapes

[Deussen et al., 1998]. Lane and Prusinkiewicz [2002] propose a system in which a

distribution of tree bases is computed by simulating interactions between tree species such

as clustering or inhibition. This distribution defines the placement of predefined crown

shapes which are substituted for tree geometry when the tree is rendered. These systems,

however, do not simulate the adaptive crown shape of trees growing in the presence of

neighbors.

Chapter 4

Generative Algorithms

A generative algorithm, or growth model, simulates the growth of a tree by advancing

its developmental stage. Generative algorithms determine three key factors: which buds

will grow and when (bud fate), the direction of growth, and how long each shoot will

be. Interactive procedural modelling of trees requires a generative algorithm that is fast,

controllable, and produces a wide diversity of realistic or artistically inspired tree structures.

To achieve these objectives, the algorithm must also respect the biological constraints of

tree growth. Branch density is one such constraint that many recursive or hierarchical

approaches struggle to maintain. Algorithms based on the concept of self-organization

inherently handle branch density and have been shown to produce a wide range of realistic

tree structures [Pałubicki et al., 2009]. Thus, the generative algorithm presented in this

chapter builds on previous self-organizing models. After a brief overview of tree architec-

ture, I will review these previous models in detail and present a new unified model that

makes it possible to interactively create a diverse set of natural and artistically expressive

trees.

4.1 Tree Architecture

Trees in this thesis are represented as a hierarchy of metamers. Branches are composed of

fixed-length linear elements, internodes, characterized by their length, diameter, orientation

and position at the proximal end. The orientations are specified using two moving reference

22

23

frames (Figure 4.1). The HLU frame is the parallel transport frame [Hanson, 1998], which

is closely related to turtle geometry [Prusinkiewicz et al., 2001]. The heading vector H

indicates the direction of the internode while the left L and up U = H×L vectors are used to

orient cross sections of the branch geometry. The second reference frame, HV P, is defined

by the heading vector H; vector V that is perpendicular to H and lies in the same vertical

plane, and vector P =V ×H, which lies in a horizontal plane (mnemonically, “parallel to

the ground”). This frame is used when calculating tropic and gravimorphic responses of

the tree to gravity.

H

U

L

H

U

L Y

P

V
H

Figure 4.1: Reference frames associated with internodes. From left to right: The Heading – Left –

Up frame and Heading – most V ertical – P arallel to the ground frame. The Y axis represents the

global up direction.

A terminal bud is located at the tip of each branch. Lateral buds are positioned at

the base of each internode, arraigned in a phyllotactic pattern around their supporting

24

axis and tilted away from this axis by the branching angle ψ (Figure 4.2). The pattern

of lateral bud arrangement, phyllotaxis, can play an important role in the local structure

of branching points. A single bud is commonly created at the base of each internode as

shown in Figure 4.2. In this case, the buds either form a distichous pattern, alternating

on either side of their supporting axis, or a spiral pattern where a phyllotactic angle, φ ,

defines the rotation between consecutive buds around the axis. Placing multiple lateral

buds can increase the diversity of results. In the case of a decussate pattern, buds appear in

pairs of two on opposite sides of the axis. Whorls of buds are also possible where three or

more buds are present. When a lateral bud grows it creates a new branch and becomes the

terminal bud for this branch. New internodes are created in the path of a growing bud. A

shoot refers to internodes created by a growing bud during a single season.

H

φ
ψ

ψ l

Figure 4.2: Distribution of buds and lateral branches is defined by the internode length l, phyllotactic

angle φ and branching angle ψ . Figure from [Longay et al., 2012].

25

4.2 Previous Generative Algorithms

Algorithms based on self-organization generate tree forms by simulating competition

between buds for resources. Two classes of self-organizing models have been presented

in Pałubicki et al. [2009]. While both models are based on the same core principles, one

simulates competition for space while the other for light. The model based on competition

for space produces a narrow range of plausible tree structures but allows for interactive

guidance of tree development. In contrast, the model based on competition for light has

been shown to generate a wider diversity of natural tree forms, but is not directly conducive

to interactive control. The unified growth algorithm I present in Section 4.3 builds on these

algorithms, therefore I review them both in detail.

4.2.1 Space Colonization

The Space Colonization Algorithm was first proposed as a method for generating leaf

venation patterns [Runions et al., 2005] and later extended to create tree structures [Runions

et al., 2007]. These initial algorithms lacked architectural constraints such as phyllotaxis

and branching angles. These constraints were incorporated by Pałubicki et al. [2009] with

the introduction of buds, being the only place on a branch from which a new shoot can

grow. The underlying assumption of space colonization is that free space only exists in

the vicinity of modeller defined attraction points, markers of free space. All other space is

assumed to be occupied. Therefore, placement of attraction points determines where the

tree is able to grow, thus controlling the shape of the resulting tree (Figure 4.3).

26

Figure 4.3: Space colonization produces plausible tree forms (generated using the model with buds

as presented by [Pałubicki et al., 2009]). A) The desired silhouette is defined. B) Attraction points

are scattered within the volume. C) Tree grows towards attraction points (50 iterations). D) All

visible points are consumed, points remaining are not visible by any buds (100 iterations).

The iterative operation of the Space Colonization Algorithm is illustrated in Figure 4.5.

Each bud is surrounded by a sphere of radius r, representing the zone occupied by the bud.

Extending beyond this zone is the bud’s volume of perception: a truncated cone (with a

spherical base) characterized by the angle of perception ζ and radius of perception r+d

(Figure 4.4). At the start of each iteration, attraction points that are within the occupancy

zone of one or more buds are removed (e.g., point 1 in Figure 4.4). If any points remain,

the buds compete for them according to the following rules:

• An attraction point within the perception volume of a single bud selects this bud

(points 2 and 3 in Figure 4.4);

• An attraction point within the intersecting volume of two or more buds selects the

closest of these buds (point 4 in Figure 4.4);

• Attraction points outside of the volume of perception of any bud are not visible and

remain unassociated in a given simulation step (point 5 in Figure 4.4).

27

Buds are enabled for growth if they have at-least one selecting point, all other buds

remain dormant. Enabled buds produce a single internode of unit length oriented in the

average direction of all selecting attraction points (E, Figure 4.4).

d

5

3
4

2

E
E

1
r

Figure 4.4: Competition of buds for space. Circles of radius r represent the spherical zones occupied

by buds. The colored areas represent each bud’s volume of perception, characterized by radius

r+d and angle ζ . Dots represent attraction points, for which buds compete. The average direction

towards the points associated with a bud defines its preferred growth direction E. Figure from

[Longay et al., 2012]

Attraction points can be added or removed between iterations providing a convenient

handle for interaction. Pałubicki et al. [2009] explored this direction by adding attraction

points between iterations within a spherical brush controlled by the position of the mouse.

This allowed the modeller to guide tree growth into artistic forms, however, the diversity

of results was limited. Space Colonization controls the growth of the tree strictly through

exogenous environmental signals and its model for bud growth is binary: either a bud

grows, or it remains dormant. There is no method to determine which buds should grow

more than others. The next section presents an algorithm based on competition for light

which incorporates endogenous control resulting in more diverse forms.

28

A B C D E F

Figure 4.5: Simulating two growth iterations with the Space Colonization Algorithm. A) Initial

state, a bud (green) with attraction points (blue). B) Angle of perception and view distance of the

bud (yellow). C) The bud creates a new internode, and a new lateral bud is created at the base of this

internode. Points within the occupation zones (red) of any bud are removed. D) Two buds compete

for space. E) Buds grow in the average direction of their selecting points. F) Final structure.

4.2.2 Competition for Light

Generating tree form by simulating competition between buds for light dates back to

the seminal work of Greene [1989]. The growth rate and direction of each bud can be

determined by its local light environment. This information can be propagated within

the tree to determine whether or not a branch should be shed [Takenaka, 1994, Měch and

Prusinkiewicz, 1996]. Borchert and Honda [1984] presented a model of apical control

by biasing the flux of resources, flowing from the roots, between main and lateral axes.

Pałubicki et al. [2009] incorporated this biasing of resources with competition for light,

allowing for the control of forms on the scale from excurrent to decurrent (i.e., with and

without a conspicuous trunk).

29

Figure 4.6: In the Shadow Propagation Algorithm, branches cast a pyramidal shadow into a 3D

voxel space. Image from [Pałubicki et al., 2009]

Qm

Ql

Q = Qm +Ql v

vm

vl

Figure 4.7: Left) Information about the light exposure of each bud is accumulated and stored at each

internode as it flows down the tree. For buds Q = L. Right) Vigor is then redistributed up from the

root as per Equation 4.1. This figure is recreated from Figure 8 of [Pałubicki et al., 2009]

Pałubicki et al. [2009] proposes the Shadow Propagation Algorithm to compute the

local light exposure of each bud, L. A voxel space is used to store the light exposure for

each point in the scene. Each branch casts a pyramidal shadow into the voxels below it

(Figure 4.6). Information about light exposure is sensed at each bud and propagated down

30

the tree (Figure 4.7). This information is used to determine the allocation of an upwards

flowing resource, vigor, which controls how much each bud will grow. Apical dominance

is simulated by biasing the flow of vigor at branching points towards the lateral or main

axes according to the equation:

vm = v∗
λQm

λQm +(1−λ)Ql
, vl = v∗

(1−λ)Ql

λQm +(1−λ)Ql
(4.1)

Qm =
2

3

Ql =
1

3

λ
0 1

1

3

2

3

1/2

1

v

Figure 4.8: Graph of Equation 4.1. With λ = 1
2 the vigor of both lateral and main branches is

proportional to their light exposure, Q. Increasing λ allocates more vigor to the main branch at the

expense of the lateral. Decreasing λ provides more vigor to the lateral branch at the expense of the

main branch.

This equation is illustrated in Figure 4.8. Branches that do not receive sufficient light

exposure are deemed a liability for the tree and are shed. The direction of shoot growth

is computed using the gradient of light in the shadow voxel space, directing new shoots

towards the most illuminated regions. In contrast to space colonization, buds can create

31

more than one internode per season and buds which receive more resources will generate

proportionally longer shoots.

While this algorithm produces a wide diversity of realistic tree forms (Figure 4.9), it is

not well suited for interactive control. The growth of the tree could be constrained within

the region of a brush, however, brushing downwards from existing branches would not

be possible as their shadow would inhibit the activation of new buds. Moreover, branch

shedding is used to control the density of branches within the crown. Branch shedding is

unintuitive in an interactive setting, as branches that are explicitly created by the modeller

can be shed in further stages of development.

32

Figure 4.9: A winter scene created by trees competing for light using the algorithm presented in

[Pałubicki et al., 2009]. Diversity of trees was obtained by editing the source code and parameters

of the growth model. Creating even slightly different trees was difficult due to the lack of interactive

control.

4.3 Unified Generative Algorithm

This section presents a growth model introduced by Longay et al. [2012] in which de-

velopment depends simultaneously on the availability of light and space. This model

combines the potential for high realism with interactive control of tree form. This algo-

rithm is illustrated in Figure 4.10. Beginning with a seedling, branches develop from buds

distributed along their supporting axes. Whether a bud will develop into a shoot, and how

33

long this shoot will be, depends on the vigor of the bud and the availability of space. Model

parameters may bias vigor distribution towards buds exposed to a higher amount of light vs.

those in less light and terminal vs. lateral buds yielding different tree architectures.

Attraction

Points

Brush

Light

Space

Light

Exposure

Resources

Shading

1

2

3

5

4

Figure 4.10: A conceptual model of tree development implemented in TreeSketch. 1) Higher-

positioned branches cast shadows on lower ones (here shadows are shown only for buds). 2) Infor-

mation about the light exposure of each bud propagates down towards the tree base (blue arrows).

3) This guides the distribution of a growth-inducing vigor signal flowing back to the buds (red

arrows). 4) A bud that has sufficient vigor and wins the competition for attraction points (yellow

dots) produces a new shoot. 5) Buds without sufficient vigor remain dormant even if they have

space to grow. Figure from Longay et al. [2012]

34

4.3.1 Competition for Space

Competition of buds for space is modelled as in Section 4.2.1. For directed growth, the

set of attraction points can be interactively augmented with new points placed by the

modeller. Chapter 5 discusses a brush and sketch-based interface for specifying new points.

Autonomous growth (without modeller’s guidance) is effected by generating new points

within the perception volume of each bud at the beginning of each iteration. All buds

produce at least one new attraction point while vigorous buds produce proportionately

more, ensuring they will receive space to grow. When a tree grows autonomously, the set

of attraction points is cleared at the end of each iteration. This reduces the accumulation of

unused points and increases the speed of the algorithm.

4.3.2 Shoot Growth

Superimposed on the competition for space is a process evaluating the vigor of buds.

This process determines which of the enabled buds will actually produce new shoots, and

how long these shoots will be. This process is modelled using the resource allocation

method described in Section 4.2.2, with the following modifications to branch shedding

and resource scaling.

Branch Shedding

In nature, different tree species rely on branch shedding to various extents. In an interactive

setting, shedding may dispose of a branch that is important to the designer. Therefore, it is

preferable to avoid creating superfluous branches rather than shedding them.

Most buds, especially those on the periphery of the tree crown, reside in relatively

similar light conditions. Predicting beforehand which of these buds will produce viable

35

branches is difficult. Therefore, the Shadow Propagation Algorithm activates a surplus

amount of buds in each growth phase. Then, to control the density of the tree crown, the

algorithm relies heavily on shedding the resulting unproductive branches. A branch is shed

if the ratio of its vigor to the size of the branch (measured in number of internodes) falls

below a modeller-defined threshold T h [Takenaka, 1994, Měch and Prusinkiewicz, 1996,

Pałubicki et al., 2009]. Since this threshold must be set relatively high, it is common to see

large branches shed by the tree.

Instead of growing surplus shoots and relying on branch shedding, the unified algorithm

activates significantly fewer buds. For a bud to grow it must not only have sufficient

resources, but it must also win the competition for available space (Figure 4.10). This

considerably reduces the set of potential buds as density is inherently controlled by the

competition for space. To decide which of the potential buds to activate, I amplify differ-

ences between them, introducing a non-linear response to light exposure. Instead of using

the light exposure L of buds directly as the input Q as shown in Figure 4.7, the following

relation is used:

Q = Lκ κ ≥ 0 (4.2)

Parameter κ , set by the modeller, controls the sensitivity of buds to light. When κ = 0,

the growth depends entirely on competition for space. With κ > 1, fewer buds are activated

and the shedding threshold T h can be set considerably lower resulting in a much smaller

number of branches being shed. Great results can even be generated without any branch

shedding.

36

Relative Resource Scaling

Branches cast shadows in a downward direction which can inhibit the activation of buds

when the modeller attempts to grow downwards from an existing branch. Pałubicki et al.

[2009] relies on a constant global scaling factor applied to the value of vigor at the base

of the tree to ensure that the tree has sufficient vigor to grow. If this value is not properly

set, the tree will either have excessively long shoots, shed too many branches or not grow

at all. As presented by Pałubicki et al. [2009], the amount of resource v reaching a bud

determines its shoot length n, according to the formula n = &v'. I propose a more robust

and controllable model by computing a vigor scale factor in each step to obtain a desired

shoot length.

n = &
v

vmax
nmax' (4.3)

Here vmax is the highest vigor of any enabled bud and nmax is a parameter, set by the

modeller, that determines the maximum shoot length. Increased values of parameter nmax

result in wispy branches, such as those often found in pendulous trees (i.e. birch). When

using the brush based interface introduced in Chapter 5, it is possible that only a small set

of buds are enabled, all of which may be in shadow. This formula scales the vigor of buds

to ensure reliable growth under all conditions.

4.3.3 Parameter Space Exploration

The following figures show results of changing parameters of this unified growth model.

All trees presented in this section are grown using the model of autonomous growth. The

trees shown in this section are not the most visually appealing but they represent the results

of the algorithm in its raw state. In the next section, I introduce modifications that improve

37

the visual quality and further diversify tree form. The effects of shoot length (parameter

nmax from Equation 4.3) is best shown in conjunction with a downwards tropism to create

long pendulous branches, therefore, it is presented in the next section.

Figure 4.11: The density of the branching structure is changed by modifying the radius r from

Figure 4.4. Left to right, r = 1,15,30. Units are measured in internode lengths (Figure 4.2)

Figure 4.12: The effects of non-linear response to light exposure on tree form (parameter κ from

Equation 4.2). Left) κ = 0.5, surplus buds are activated, all buds grow into roughly uniform length

shoots. Right) κ = 2.5, only buds in good light conditions are provided resources to grow resulting

in a similar but less dense structure. In both cases no branch shedding is used. All other parameters

remain constant.

38

Figure 4.13: The effects of apical dominance on tree form. Parameter λ from Equation 4.1 is

changed from left to right (0.46,0.48,0.5,0.52,0.54). Trees are grown to roughly the same density

with autonomous growth. All other parameters remain constant.

Figure 4.14: In each case, a dense set of attraction points was created along the path of the green

arrow. The parameter controlling branch straightness α changes from left to right (0, 0.3, 0.7, 1.0).

All other parameters remain constant (except for γ , which is adjusted appropriately). Increasing

straightness reduces interpolation of the points and in the extreme case, changing direction relies on

branching.

39

4.4 Diversifying Form

This section presents additional features which extend the diversity of tree forms while

broadening the biological foundation of the algorithm.

4.4.1 Branch Straightness

In the basic growth model, terminal buds grow in a direction controlled by the environment.

This leads to branches that suddenly change course and can look unnatural. As in [Pałubicki

et al., 2009], the growth direction, H ′, is computed by blending the direction from the

environment E (Figure 4.4), with the current heading of the bud H , as described by the in

equation:

H ′ = αH+ γE, α + γ = 1 (4.4)

The parameter α has the effect of increasing the straightness of branches. Figure 4.14

shows examples of this parameter on a single branch, and Figure 4.15 shows the result

across a whole tree.

40

Figure 4.15: The parameter controlling branch straightness α changes from left to right, (0, 0.5,

1.0). All other parameters remain constant (except for γ , which is adjusted appropriately). With

high branch straightness the branching angle of the tree greatly influences its form. Trees generated

by autonomous growth.

H’

Y

H

T

E
H

T

E

A B

θ

Figure 4.16: A) New growth direction H ′ is a weighted sum of the current bud direction H , the

gravitropism vector T , and the preferred growth direction E (Figure 4.4). B) Visualization of

weights α,β ,γ as a point in the triangle HTE (black dot), and as vectors from the gravity center

of this triangle to its vertices (arrows). Figure from Longay et al. [2012]

41

4.4.2 Gravitropism

Chapter 2 discussed the importance of gravitropism on tree form. Pałubicki et al. [2009]

modeled gravitropism by adding a weighted vector in the desired direction to the growth

direction of each bud. However, this does not allow for the radially symmetric tropisms

such as plagiotropism (the tendency to maintain a slanted or horizontal orientation). To

incorporate gravitropism into the growth model, the direction of tropism is defined by a

modeller-specified angle θ . Specifically, for each bud a local tropism vector T is calculated

by rotating the global up vector Y by θ in the vertical plane which includes the current

direction of the bud H . If H is almost vertical, symmetry is broken by choosing the

vertical plane of rotation at random. As shown in Figure 4.16A, the new growth direction,

H ′, is then calculated as the weighted sum (extending Equation 4.4):

H ′ = αH+βT + γE (4.5)

α +β + γ = 1

0 ≤ α,β ,γ ≤ 1

where E is the unit vector corresponding to the optimal direction of local growth obtained

from the competition for attraction points (Figure 4.4). Parameters α , β and γ control the

relative influence of current bud direction (straightness), gravitropism and space available

for growth, respectively. Their values can be conveniently visualized as a point in barycen-

tric coordinates spanned by vertices (α,β ,γ) = (1,0,0), (0,1,0) and (0,0,1), respectively

(Figure 4.16B). This visualization is used in the design of the widget for manipulating these

parameters interactively (Chapter 5) The effects of gravitropism can be seen in Figures 4.17

and 4.18.

42

Figure 4.17: The effect of plagiotropism on tree form. Tree is initially grown upwards then grown

outwards with strong plagiotropism (horizontal).

43

Figure 4.18: The effects of shoot length on tree form (parameter nmax from Equation 4.3). Tree is

initially grown upwards then a strong downwards tropism is applied. Left) nmax = 2, causes short

shoots. Right) nmax = 6, longer shoots results in drooping pendulous branches.

In many trees, different branches exhibit different gravitropic behavior [Hallé et al.,

1978]. For example, in a conifer tree, the main axis grows upwards while lateral branches

tend to grow horizontally. To model such trees, the tropism of the main axis can be

optionally constrained upwards, different from all other branches. Figure 4.19 shows a

conifer tree generated using this method.

44

Figure 4.19: A conifer tree created by setting the tropism of the main axis upwards while all other

branches are plagiotropic. Tree is generated by autonomous growth.

Y

P

V

A B

H

P

V

d
ev

sp

sv

Figure 4.20: Specification of the gravimorphic response. The axes sv and sp of the control ellipse

are aligned with axes V and P of the HV P (Heading – most V ertical – P arallel to the ground)

reference system associated with the internode. The center of the ellipse is translated by distance ev

along the axis V . Bias of bud activation in direction χ is proportional to the distance d from the

internode to the ellipse, measured in this direction.

45

4.4.3 Gravimorphism

As discussed in Chapter 2, gravimorphism refers to the differential growth potential of

buds that depends on the orientation of the bud with respect to its parent axis. To quantify

this phenomenon, an ellipse is defined lying in a plane perpendicular to the parent axis at

the location of a bud (Figure 4.20A). The propensity b of this bud to grow (characterized

further down) depends on the distance d between the branch axis and the ellipse, measured

in the direction χ determined by the polar position of the bud on the axis (Figure 4.20B).

Since gravimorphism is most predominant on horizontal branches, its strength is defined

depending on the angle τ between the axis direction H and the vertical direction Y .

Grouping these factors together, the effect of gravimorphism is captured by the equation:

b = cos2 τ +d sin2 τ (4.6)

b

d

1

τ 90°

Figure 4.21: Graph of Equation 4.6.

46

A graph of Equation 4.6 is shown in Figure 4.21.The strength of gravimorphism, b,

is incorporated by modifying how buds report light exposure (Section 4.2.2). This is

accomplished by introducing into Equation 4.2, the strength of gravimorphism b as follows:

Q = bLκ (4.7)

This captures the differential development of lateral buds depending on their orientation

on horizontal or slanted parent axes. Gravimorphic responses of different types and

magnitudes can be defined by manipulating the position and displacement of the control

ellipse (Section 5). Gravimorphism and gravitropism often work in concert, producing

dramatically different tree forms. Examples are shown in Figure 4.22.

A B C

Figure 4.22: Contrasting tree forms resulting from the interplay between gravitropism and gravimor-

phism. Trees generated by autonomous growth. A) Downward tropism and epitony. B) Upward

tropism and hypotony. C) Plagiotropism and amphitony.

47

4.4.4 Deflection Angle

The growth of a lateral bud can divert the path of its supporting branch as shown by

Prusinkiewicz et al. [1997]. This effect is captured by the deflection angle δ (Figure 4.23).

When the value of δ is equal to that of the branching angle ψ , junctions form a characteristic

Y shape which can be seen in many trees. With small angles, this parameter can be used to

give tree structures a gnarled character.

Figure 4.23: At the branching point, the main branch may deflect in the direction opposite to the

lateral bud by angle δ . Figure courtesy of Adam Runions.

48

Figure 4.24: The effect of the deflection angle on tree form. The angle δ changes is 0◦ for the tree

on the left and 30◦ for the tree on the right. All other parameters remain constant. Trees generated

by autonomous growth.

4.5 Discussion

In this chapter I presented a new growth model which retained the high level of realism

obtained by previous models while allowing for interactive control. I have increased the

diversity of previous models through the incorporation of gravimorphism and tropisms

quantified using the gravitropic set-point angle. The next chapter introduces interactive

widgets to control parameters of growth and a brush-based multi-touch interface for creating

trees. Further results utilizing this growth model are presented throughout the remainder of

this thesis, in particular Sections 5.6 and 6.9.

Chapter 5

TreeSketch

This chapter presents TreeSketch, a program that allows the modeller to create a wide

range of trees by combining procedural methods with detailed control of tree form. The

system integrates the procedural growth model discussed in Chapter 4 with a multi-touch

tablet interface that provides detailed control of tree form. The modeller can control the

tree structure by directing growth with a procedural brush, changing parameters as the

tree grows, interleaving controlled and autonomous growth, and editing generated forms.

Complex trees can be created in a matter of seconds. TreeSketch is on its third public

release for the Apple iPad and has obtained over fifty-thousand downloads.

Figure 5.1: Examples of trees created with TreeSketch. Arrows indicate the motions of the brush

that determined the corresponding tree forms.

49

50

The main tool is a brush, which gives the modeller decisive control over the form of

the tree (Figure 5.1). By changing the brush radius, the modeller can seamlessly progress

from specifying the exact course of individual axes to a broad definition of large branches

and the entire crown. The modeller can also direct the growth into predefined shapes using

a lasso tool to draw silhouettes, or allow the tree to grow autonomously. Reversing time

‘ungrows’ the tree, providing a continuous undo and making it possible to precisely target

the desired growth stage. The general character of branches is controlled using a small

number of parameters. The generated branches can be pruned, bent and stretched to meet

the requirements of the design (Figure 5.2 shows an example of editing the tree structure).

Branch widths are defined procedurally, but can be modified by placing constraints at

any point throughout the tree. Saved trees can be reloaded and further manipulated, thus

providing a set of templates for different tree types that expands as the system is used. By

combining fast procedural methods with an intuitive interface, TreeSketch makes it possible

to quickly create a wide diversity of natural and artistically expressive trees.

5.1 Interface

An important design goal was to create a seamless interface allowing modellers to freely

intermix operations of growing, manipulating and viewing the tree. Growing and manipu-

lating the tree structure are ‘first class citizens’, being controlled with a single touch, while

modifications to the view are invoked through multi-touch gestures. At any stage of the

design, the tree can be translated by sliding two touches across the screen and zoomed in

or out with the standard two-touch pinch gesture. Sliding three touches across the screen

grabs and tilts the tree toward the modeller (with vertical motion) and around the axis of

51

its trunk (horizontal motion). A rotation strip (Figure 5.3) is provided along the bottom of

the screen for rotating around the axis going through the trunk of the tree . While rotation

about this axis can also be invoked with three touches, this strip allows for easily rotating

the tree while painting, allowing for the creation of novel tree forms such as a spiraling

trunk (Figure 5.10).

Figure 5.2: Designing a bonsai-inspired tree. The modeller has first applied three strokes of a

small-sized procedural brush to create three superimposed arched branches (left). The design is

completed by pruning the overhanging parts of the first two arcs, adding smaller branches with

several strokes of a larger brush, increasing the girth of the main trunk, and stretching the trunk

vertically (right). Figure from Longay et al. [2012].

52

Tool Bar

Rotation Strip

Side Bar

Figure 5.3: Labeled overview of the TreeSketch interface.

53

5.1.1 Manipulating Growth Parameters

The bar located at top of the screen (Figure 5.3) allows the modeller quick access to tabs

that control the parameters of the model and rendering system. When these buttons are

pressed, the tab drops down and the work area is reduced in size but remains active. Below

is a description of the most important tab, the Architecture tab, which presents manipulable

diagrams to control procedural aspects of the model. The remaining tabs are shown in

Appendix E.

Figure 5.4: The TreeSketch architectural panel.

54

The architectural panel (Figure 5.4) allows the modeller to control general characteristics

of the modeled trees by manipulating key parameters of the generative algorithm. As

discussed in Chapter 4, the effects of tropism, gravimorphism and current branch direction

are correlated. Therefore, this control panel is designed to bring together these important

parameters. The widgets are designed such that several parameters can be edited at once

providing a higher level control. A central component of this panel is the two-dimensional

schematic tree model behind the tropism direction widget, which is generated using the

same growth model as the main tree but constrained to two-dimensions. This model changes

form instantaneously as the growth parameters are modified, providing the modeller with

real-time visual feedback.

Tropism Direction

This widget is represented by an arrow superimposed on the schematic tree model and

controls the gravitropic set-point angle θ shown in Figure 4.16A. Sliding a touch across the

region ‘pushes’ the arrow defining tropism direction and modifying its angle with respect to

gravity. The strength of tropism is defined by the branch direction widget discussed below.

55

Figure 5.5: Tropism direction widget. Left) Downwards tropism, Center) Upwards tropism, Right)

Horizontal tropism with the trunk constrained to be vertical.

Gravimorphism

This widget controls the preferential growth of buds according to their orientation on the

supported axes. The gravimorphism widget is a manipulable version of the ellipse in

Figure 4.20B, returning values of parameters sv, sp and ev. The lines emanating from the

center of the widget represent bud directions, and their color, transitioning from red to

green, corresponds to the relative quantity of resources (small to large, respectively) a bud

in this orientation will receive. The ellipse is manipulated by sliding it vertically using a

single touch or pinching with two touches to scale it in either direction.

56

Figure 5.6: Left) Ellipse shifted down. Buds on the underside of their supporting axis are preferred

for development (hypotony). Center) Ellipse shifted up and pinched horizontally. Buds strictly on

the upper side of their supporting axis will be preferred for development (amphitony). Right) Ellipse

pinched vertically. Buds in a horizontal position on their parent axis will be preferred (epitony).

Branching Angles

The branching angle widget allows for interactive control of the branching angle, ψ

(Figure 4.2), and the deflection angle, δ (Figure 4.23). Both the main and lateral buds can

be rotated to adjust their corresponding angle.

Figure 5.7: Branching angles widget. Left) A large deflection angle results in a gnarled structure.

Center) Reducing the deflection angle produces smooth branches. Right) Large branching angles

can result in swooping branches.

Branch Direction

The direction of shoot growth is computed as an affine combination of the direction of

tropism, current bud direction and a direction from the environment (Figure 4.16). Since

their weights are interdependent, it is not appropriate to use sliders to control them because

57

changing one slider would require changing the value of the other two. The branch direction

widget is a manipulable version of Figure 4.16B, returning values of weights α , β and γ .

The modeller manipulates the current value by pushing the white dot around the triangle

(Figure 5.8). A smaller triangle at the center of the widget is used to visualize the weights by

scaling the distance of each vertex from the center depending on its corresponding weight.

This idea was inspired by the concept of star glyphs used for visualizing multi-dimensional

data points [Ward, 1994].

Figure 5.8: Branch direction widget. The position of the white dot within the triangle controls the

relative weighting of tropism, current direction and free space (environment).

Remaining Parameters

In addition, apical dominance, λ , sensitivity of buds to light, κ , branch shedding threshold,

T h, and maximum shoot length, nmax, are controlled using sliders. Finally, the panel in-

cludes switches for inferring tropism direction from the direction of brush stroke (discussed

further in Section 5.2.3) and setting an upward tropism of the trunk independently of the

58

tropism of the branches (useful when modeling conifers). The buttons relating to Algorithm

are purely for backward compatibility with previous versions of the software and are not

discussed in this thesis.

5.1.2 Side Bar

The side bar (Figure 5.3) provides control of important tools used when growing the

tree. Hidden sliders emerge when pressing one of the top two buttons, Brush and Grow

(Figure 5.9). Hiding these sliders while not in use allows all tools to fit within the limited

screen space and maintains the clean, minimalist look of the interface.

The brush slider modifies the radius of the spherical brush used to distribute attraction

points that direct the growth of the tree (discussed further in Section 5.2.1). As this slider

emerges, the position of the bar shifts vertically to keep the button under the touch, allowing

its position to reflect the current brush radius. This ensures all adjustments to the brush

radius are relative to its current value. The size of the brush radius (measured in screen

space) is displayed on the screen whenever the Brush button is held down. Changing of the

brush radius while painting is extremely useful (Figure 5.11). Reflecting this usefulness,

the position of the side bar can be switched between the left and right side of the screen to

accommodate both left- and right-handed modellers.

59

Figure 5.9: The expanded state of the side bar when the Brush or Grow buttons are held down.

A second slider emerges when the Grow button is pressed allowing the modeller to

adjust the speed of autonomous growth (pulled upwards) and continuous undo (pulled

downwards, ‘ungrowing’ the tree). When this button is released, growth is halted and the

slider disappears. Continuous undo rolls back the state of the tree to an earlier time by

small intervals.

The Undo button rolls back the model by entire operations such as a stroke of the brush.

The remaining buttons are discussed in the context of their operations in the next section.

60

5.2 Artistically Driven Tree Growth

The modeller can guide tree growth interactively by distributing attraction points using a

procedural brush or by defining or extending the envelope of the tree with a lasso tool.

5.2.1 Brushing and Sketching

The brush is implemented by continually generating attraction points (with uniform random

distribution) within a sphere invoked and manipulated by the modeller using single-finger

strokes (Figure 5.10, left). By default, the brush moves in the plane that passes through

the base of the tree and is parallel to the screen. Strokes originating at a branch modify

the depth of the drawing plane so that it includes the selected branch point. As stated

previously, the radius of the brush can be changed while brushing (Figure 5.11). As the

radius of the brush decreases to zero, brushing transitions to sketching in a continuous

manner (Figure 5.10, right).

61

Figure 5.10: Brushing and sketching. Left) A snapshot of the TreeSketch screen. The tree was

rotated while brushing, resulting in a helical trunk. Pink dots indicate position of fingers on the

tablet. Right) A candelabra espalier created by sketching the main branches, then brushing the upper

crown. Figure from Longay et al. [2012].

62

Figure 5.11: A hanging branch and a tree created with single strokes of the brush (arrow) with

interactively changed radius (visualized as colored sweeps). Figure from Longay et al. [2012].

5.2.2 Lasso

The lasso is used to sketch the silhouette of the entire tree or its part (Figure 5.12). When

the ‘Lasso’ button is held down, single strokes are interpreted as 2D silhouette sketches.

The same rules for inferring the depth of the stroke in the case of brushing are used here.

To infer a 3D envelope from this 2D sketch, image-based erosion of the silhouette is first

used to infer its chordal axes [Hall, 1989]. The silhouette is then inflated around these axes

63

as in the Teddy system [Igarashi et al., 1999]. The inflated envelope is filled with attraction

points by generating random points within a cube bounding the envelope, and retaining

those points that fall within the envelope.

Figure 5.12: Examples of tree forms controlled with a lasso (red contours shown for two of the

models). Figure from Longay et al. [2012].

5.2.3 Sketch-based Tropisms

When artists paint with a brush, the bristles of the brush leave groves in the paint, indicating

the direction of the stroke. This effect can be used, for example, to provide structure to

coarsely painted foliage as shown in Figure 5.13.

64

Figure 5.13: Examples of paintings that utilize brush stroke direction to indicate the structure of

foliage. Paintings by [Metcalf], Left: The Boat Landing (1902), Right: The Bower (1907).

As discussed in previous chapters, tropism defines the tendency of branches to grow

in a particular direction. In previous systems, the strength and direction of this parameter

was set as a uniform global value [Měch and Prusinkiewicz, 1996], changed as a function

of developmental stage [Pałubicki et al., 2009], or interpolated from a collection of point

attractors [Aono and Kunii, 1984] . In TreeSketch, when creating a tree interactively, the

direction of tropism can be coupled with the direction of the brush stroke. This provides the

modeller with the feeling that they control the flow of branches while brushing, significantly

enhancing the expressiveness of brush strokes as shown in Figure 5.1. With this feature

enabled, the branches take on the style of brush strokes as shown in Figure 5.14

65

Figure 5.14: Example trees created with sketch-based tropism. Green arrows represent brush

movement.

5.2.4 Selective Growth

By default, all buds associated with at least one attraction point are considered enabled:

they will produce new shoots if they are sufficiently vigorous. The resulting proliferation

of shoots from the existing branches can make it difficult, however, to create a large new

branch in proximity of one or more older branches. Consequently, TreeSketch also supports

the selective growth mode, in which growth is limited to the branch originating at the bud

selected by the modeller. To enter this mode, the modeller presses and holds a point on

a branch from which they want to grow. The selection is confirmed by an animation of

expanding red circles. Due to the discrete nature of the generated structure, it is possible

that the closest bud to the selection point is not oriented in the direction of the brush stroke.

To ensure reliable growth, TreeSketch re-orients the nearest bud in the initial direction of

the brush stroke. In the selective mode, all buds remove markers within their occupancy

zones, but only buds in the new branch may grow after competing for the remaining markers

(Figure 5.15).

66

Figure 5.15: Comparison of non-selective and selective growth. The initial tree crown (left) was

refined using non-selective growth (middle) and selective growth (right). Non-selective growth

produced a series of branches extending from the initial tree lobe, whereas selective growth produced

a separate lobe from the selected bud indicated by the expanding red circles. Figure from Longay

et al. [2012].

5.3 Manipulating Tree Form

Interaction with procedural tree models can be accomplished not only by guiding tree

development, but also by editing trees that have already been generated. TreeSketch

supports three editing operations: bending branches, selective modification of branch width

and pruning.

5.3.1 Branch Bending

Branch bending provides a convenient metaphor for editing trees, consistent with the

physical manipulations employed by horticulturists when training trees. In computer

graphics, bending was introduced as a method for editing plants by Power et al. [1999],

67

who implemented it using inverse kinematics. After reimplementing and tested their

technique, it was noticed that while it produced plausible deformations, it suffered from

two limitations. First, it did not support circular editing: moving the end effector back to

its original position did not restore the branch to its original form. Second, manipulations

did not preserve the local character of branches (Figure 5.16).

A B C

Figure 5.16: Comparison of deformation methods. The ghosted branch represents initial state and

red arrow shows the desired bending operation. A) Bending with inverse kinematics results in a loss

of local features. B) Bending a branch with the PriMo-based method described in the text preserves

the local character of the branch. C) Increased prism width favors stretching of joints over bending,

resulting in a more rigid deformation.

In the broader context of surface editing, similar limitations were overcome in the

PriMo mesh-based surface deformation method [Botsch et al., 2006]. I have adapted PriMo

for the purpose of deforming tree skeletons. PriMo represents mesh geometry as a set

of rigid prisms connected by elastic joints. The modeller manipulates this structure by

placing positional constraints on a subset of these prisms. The resulting deformation is

determined by minimizing the elastic energy of the joints. A detailed description of this

branch deformation method is presented in Appendix A.

68

The PriMo method supports circular editing [Lipp et al., 2011] as moving the selected

prisms back to their initial location undoes the deformation. As noted by Botsch et al.

[2006], scaling the radius of the prism geometry provides control over the susceptibility

of joints to stretching and bending (Figure 5.16). Although real tree branches are almost

non-stretchable, it is convenient to allow for stretching when editing branches, which is

particularly useful to elongate a trunk.

The tree is manipulated by changing the position of the selected internodes with a

multi-touch gesture (Figure 5.17). As an axis is deformed, other branches maintain their

relative positions and orientations with respect to their supporting internodes. Bending

branches can be used to create a variety of novel tree forms as shown in Figure 5.18.

Figure 5.17: Bending a branch with a three-touch gesture. Left) the initial state of the system; Right)

the result of manipulation. The bottom and top touches establish the base B and end internode E,

respectively. The in-between touch provides an additional positional constraint. Figure from Longay

et al. [2012].

69

Figure 5.18: Novel tree forms which relied heavily on branch bending in throughout their creation.

Figure from Longay et al. [2012].

5.3.2 Width Constraints

The width of tree branches can be predicted by the formula,

dn = dn
1 +dn

2 (5.1)

which relates the diameter d of an internode below a branching point to the diameters d1

and d2 of the internodes above [MacDonald, 1983]. Da Vinci claimed that the cross-section

of the parent branch is equal to the sum of cross-sections of the child branches, which

implies that the exponent n involved in this equation is equal to 2. MacDonald [1983]

70

pointed out, however, that other values of this exponent, usually between 2 and 3, may

be more realistic. This formula makes it possible to recursively compute the width of all

branches by propagating information from the extremities of the tree towards the trunk.

The trunk of a tree supporting M+1 terminal branches with diameters d0, ...,dM will thus

have diameter d that satisfies the equation:

dn =
M

∑
i=0

dn
i . (5.2)

However, these equations are only suitable for younger tree structures. Old, mature

trees tend to have branches and trunks that appear thicker than the formula predicts. This is

due to the creation of biomass to support branches that were shed or broken in later stages

of development. The degree of freedom provided by parameter n is used to incorporate

modeller-defined constraints into the computation of branch widths. In the simplest case,

the modeller specifies the width of branches at the extremities (de) and at the base of the

tree (db). From Equation 5.2 it then follows that:

n =
logM

logdb − logde
(5.3)

In addition the modeller can introduce any number of constraints at arbitrary locations on

the tree (Figure 5.19). These locations partition the tree into subtrees and Equation 5.2

is applied to calculate the exponent n separately in each subtree. As the branches at the

extremities of these subtrees may have different diameters de, Equation 5.2 no longer has

an analytic solution and is solved numerically, using the Newton-Raphson method. The

computation is fast, allowing branch widths to be specified interactively even for complex

trees with a large number of constraints.

71

d1

d2

d3
d4

dM−1

dM

db

d0

Figure 5.19: Width constraints (red) divide a tree into subtrees. Within each subtree, Equation 5.2

is solved to yield the exponent n, then branch width is calculated using the generalized da Vinci

formula. Figure from Longay et al. [2012].

A width constraint can be placed on a branch by holding the Width button on the Side

Bar while selecting the desired branch. The width is then adjusted by pulling either of the

handles in the direction perpendicular to the branch axis. Selective changes in branch width

have a significant impact on the appearance of the tree (Figure 5.20).

72

Figure 5.20: A model (left) is refined by modifying the width of selected branches (right). The

model on the right has the character of a more mature tree. Figure from Longay et al. [2012].

5.3.3 Pruning

Pruning is the most common tree manipulation procedure in horticultural practice. In

TreeSketch, it is accomplished by double-tapping on a branch. The branch is then removed

at the branching point closest to the tapped location, and the diameter of remaining branches

is adjusted as if the pruned branch was never present. When needed, the stub of the removed

branch can be maintained, and the radius of the remaining branches preserved, by placing a

width constraint on the branch, and pruning just above it (e.g., the stub over constraint d0

in Figure 5.19).

5.4 An Augmented Reality Interface

This section presents an augmented reality interface which allows the modeller to create

a tree in the context of a real world environment. This interface not only provides an

immersive and fun experience, but also has functional advantages that can improve the

73

modelling process. Depth throughout brush strokes can be conveniently modified by

moving the tablet in and out during the sketch. Large strokes are also possible by panning

the tablet while sketching. Furthermore, the environment the tree is modeled in can play an

active roll in the tree’s development. Trees take a significant amount of time to grow, with

the overall shape of the tree changing throughout the development. The ability to grow the

tree and visualize future stages of development makes this interface particularly useful in

landscaping applications.

5.4.1 Scene Tracking

Augmented reality tracking is performed by the PointCloud SDK [13th Lab AB, 2012].

For each input video frame, the PointCloud library returns a matrix, corresponding to

the current camera transformation, along with the set of 3D feature points. The camera

transformation is appended to the scene transformation when rendering the virtual geometry

allowing the tree to appear as if it was part of the real world.

For each frame, a 2D Delaunay triangulation of the feature points is computed to

construct a screen space mesh representing scene geometry. An incremental algorithm

[Lischinski, 1994] is used to create the triangulation, and a quad-edge data structure [Guibas

and Stolfi, 1985] is used to store and traverse the mesh. The mesh is constructed in 2D

screen space but depth information from the 3D feature points is used when rendering.

This mesh is rendered with the current video frame as a texture providing a background

to overlay the virtual tree rendering. This allows for (approximate) occlusion handling

between the real scene and digital objects.

The tracking system is first initialized by pointing the camera at a roughly-planar

textured surface, then moving the tablet forward and backward and rotating it around the

74

surface. This allows the system to identify an initial set of feature points, which determines

the virtual ground plane. I use a RANSAC method [Fischler and Bolles, 1981] to fit a

plane to these initial feature points. The centroid of the feature points, projected onto the

plane becomes the origin of the virtual world. This entire process takes a few seconds, after

which a seedling is planted at the origin of the world and the modeller can start creating a

tree.

5.4.2 Interface

In TreeSketch, the main method of interacting with the tree is through brushing to induce

growth. Brush strokes are projected onto a camera facing plane with the scene depth

controlled by the starting point of the stroke. This interface allows the camera to be

freely panned and zoomed by moving the tablet. While painting, a constant scene depth is

maintained between the camera and the plane of the brush. This allows the brush depth to

be conveniently modified throughout the stroke by moving the tablet forward and backward.

Larger strokes are made possible by panning the tablet while painting.

5.4.3 Interaction with the Environment

The environment in which the tree is grown plays an active roll in its development. While

modelling, the tree can be pruned to the scene geometry resulting in a topiary effect where

all branches intersecting real world objects are cut. Alternatively, the environment can play

a constant roll in the tree development by restricting attraction points to exist strictly in

front of all scene geometry. The latter method results in more natural’. looking tree forms

which appear to grow into the environment instead of being cut to fit but does not strictly

guarantee that the tree will not grow through sections of the environment.

75

Figure 5.21: From left to right, top to bottom. The scene is initialized on a highly textured

planar section of ground. A seedling is sketched using the brush, feature points (vertices) and the

corresponding depth map are visualized as a green mesh. The seedling is grown for a few stages

then pruned to the depth of the scene resulting in geometry that grows around the wall instead of

intersecting it. A view from above the tree, notice how the tree is still growing around the edge of

the wall but no branches are growing through it. Final shot of the tree from a further out view.

76

5.4.4 Discussion and Limitations

Modelling a tree at a correct scale and fitting within the constraints of an environment is

difficult when the tree is not presented in context. The augmented reality interface alleviates

this issue for trees that are being modelled for incorporation in a real environment (i.e. for

architectural visualization). This interface allows for existing trees to be recreated digitally

on site while allowing the modeller to compare the two structures.

A suitable environment is required for initializing and maintaining accurate tracking.

Surfaces that are highly reflective, transparent or lack texture do not allow for robust

tracking. Fortunately, outdoor environments are highly textured and often do not have large

reflective or transparent surfaces making tracking outdoors remarkably robust.

5.5 Model Visualization

Trees modelled with TreeSketch are intended to be assembled into scenes and rendered using

external programs. However, a relatively realistic rendering during the modelling process

helps reduce the number of iterations, providing the modeller with a better impression of

the final tree appearance. To this end, the following rendering techniques are combined:

• Phong light model of the tree, with texture-mapped leaves and texture- and normal-

mapped bark. Position of the light source is indicated by a spherical ‘sun’, which can

be interactively moved around the tree. By default, rotation of the tree also rotates

the sun. Alternatively, the modeller may pin the position of the sun with one hand

while rotating the tree with the other.

77

• Indirect light model. An approximate distribution of light intensity within the tree

crown is computed with the shadow propagation algorithm as an inherent component

of the growth model. This information is used while rendering, by modulating the

ambient light component in the Phong model. This results in a much improved

perception of crown form in three dimensions at no computational cost (Figure 5.22

left).

• Shadows. Shadow-mapping is used to cast Gaussian-filtered blurred shadows on the

ground and hard shadows within the tree [Eisemann et al., 2011].

Figure 5.22: Examples of complex tree structures modeled and rendered with TreeSketch.

78

Figure 5.22 illustrates the complexity and visual realism of structures generated with

TreeSketch. The tree on the left also illustrates the effectiveness of the indirect light model,

which has been used almost exclusively in rendering this tree. In addition, differences

in leaf color are accounted for by shifting the hue of leaves on less vigorous branches

towards yellows and reds (leaf placement and orientation are discussed in Appendix C). The

magnitude of this shift is a parameter controlled by the modeller. To accelerate rendering,

several quality-improving features, such as anti-aliasing and soft shadows, are temporarily

disabled while interactively manipulating the tree. These effects are automatically phased

in when the modeller is not interacting with the system.

5.6 Results

Diverse trees modeled with TreeSketch are shown in Figure 5.23. While specific aspects of

their form are due to the use of the brush and lasso, general architectural characteristics

correspond to the parameters grouped in the architectural panel. The impact of tropism is

most easily discernible, ranging from the upward tropism (trees B3 and B4) to plagiotropism

(A1, A4, B1) to strong downward tropism (B2, C2). In the case of trees A3 and C1, the

initial growth with upward tropism was followed by plagiotropic growth. Trees B2 and B3

illustrate the effect of strong gravimorphism, favoring growth on the upper and lower side

of the parent branches, respectively. The sparsity of tree C1 is due to the strong shedding of

branches, while the sparse, gnarled appearance of tree C4 is due to a combination of high

sensitivity to light and interactively increased branch width.

79

A

1 2 3 4

B

C

Figure 5.23: Diverse trees modeled using TreeSketch. Figure from Longay et al. [2012].

80

Figure 5.24: A scene with trees generated using TreeSketch. The scene was assembled and rendered

in Maya. Figure from Longay et al. [2012].

Figures 5.24 and 5.25 provide examples of generating realistic tree models that address

the artistic requirements of target scenes. Figure 5.24 is a weathered tree on a sheer cliff

face. The tree’s architecture was modeled by combining direct sketching of the main

branches with procedural brushing of the tree crown. The form of branches was then

modified to generate a more gnarled appearance using bending. Finally, width constraints

were used to increase the bulk of the trunk and the leafless branches near the base, and

create a more even distribution of widths in the crown. A similar design process was used

to create the gnarled oak tree in Figure 5.25.

81

Figure 5.25: A scene with trees generated using TreeSketch. The scene was assembled and rendered

in Maya. Figure from Longay et al. [2012].

5.7 Discussion

We are continually astonished by the degree and intuitive feel of control afforded by strokes

of different length, direction, speed, and brush width. While rigorous user studies of

a program for performing tasks as complex as artistic design of trees are difficult, the

statements made about TreeSketch are supported by positive feedback from the users of

three public releases and over 50 000 downloads. Users stated that TreeSketch presents

82

“excellent balance between procedural and hand-crafted controls”, “combines intuitive

modeling of plant life [...] with a simplicity and joy of a game”, and is “easy to learn and

use, [yet] challenging to master” because of the depth of artistic possibilities it offers.

Crucial model parameters are manipulated through a set of interactive widgets which

have been specially designed for the purpose of tree modelling. These widgets greatly

help in navigating the space of architectural characteristics of the models, especially when

manipulating correlated variables such as direction and magnitude of gravimorphism, or the

different factors affecting directions of growth. Visual feedback of changing parameters is

provided by a two-dimensional schematic tree model which changes form instantaneously

as the modeller manipulates the widgets.

Modeless design is essential to the TreeSketch interface where main operations are

instead distinguished by the number of touch points and context within the scene. When

necessary, secondary editing operations such as editing of branch widths are performed

by enabling a spring-loaded mode (having the modeller press and hold a button while

performing the gesture). By utilizing multi-touch to enable these spring-loaded modes,

the act of pressing and holding the button simply feels like a component of the gesture,

maintaining the seamless impression of the interface. Multi-touch is particularly useful

when bending branches and offers a method for controlling brush size or rotating the

tree while painting. Opinions of users strongly indicate that the touch and gesture-based

interface significantly enhances the interactive modelling process.

The current design of TreeSketch is the result of iterative refinement and incorporation

of user feedback. The initial version utilized the two different growth models that were

presented by Pałubicki et al. [2009]. The user was able to freely intermix interactive

painting with a brush or grow the tree autonomously, however, each growth mode produced

83

branches with a different character. Moreover, if the modeller grew the tree autonomously

after brushing many branches would be shed, possibly even those explicitly specified. This

motivated the development of the hybrid growth model presented in Chapter 4 which

results in a consistent branch character and significantly reduces branch shedding. The

need for an interactive widget to control the direction of branch growth was also motivated

through user feedback. The initial version used two sliders to control the relative strength

of branch straightness and tropism, however, it was not clear that these parameters were

interdependent. The triangle widget makes this coupling clear as the user can see visually

how increasing the strength of one parameter decreases the other two.

Chapter 6

Trees To Forests

Large landscapes of trees can be generated using a small number of tree models that are

instanced and independently transformed to provide the illusion of diversity. The resulting

landscapes are visually acceptable when viewed from a distance, but fail when the viewer is

close. A key artifact with this technique is the lack of crown plasticity. Since the same tree

geometry is used, it does not fit with its neighboring trees. This either results in unrealistic

gaps between trees or intersecting geometry.

Instead of generating plant models independently and later combining them into a scene,

growth of a population of plants can be simulated simultaneously. Algorithms that generate

the form of trees by simulating competition are particularity well suited for this as plants

can compete for a shared resource. Simulation from this perspective dates back to the

seminal work of Greene [1989] and Takenaka [1994] and has also been utilized in the more

recent work of Měch and Prusinkiewicz [1996], Rodkaew et al. [2003] and Pałubicki et al.

[2009]. In these models, neighboring plants compete with each other for space or light,

which results in non-uniform, adaptive tree shapes.

However, such simulations do not scale to the level of entire landscapes. Since the

growth of one tree has the potential to impact the form of all other trees, the entire ecosystem

must be simulated together. Moreover, tuning parameters to obtain realistic results from a

simulation of multiple species with varying growth rates is challenging. Faster growing

trees easily overtake slower growing models. Trees with a drooping character will take

significantly more simulations steps to reach a desired height than trees with branches

84

85

tending upwards. This must be accounted for if two trees are grown together in the same

environment and changing the parameters of one species can require recalibrating all

species. Pałubicki et al. [2009] showed a scene with two trees of different species growing

in the same simulation but their interaction was limited by the placement of a house between

them.

Multi-level techniques have proven useful in generating large complex landscapes

[Deussen et al., 1998]. Lane and Prusinkiewicz [2002] propose a system in which a

distribution of tree bases is computed by simulating interactions between tree species such as

clustering or inhibition. This distribution defines the placement of predefined crown shapes

which are substituted for tree geometry when the tree is rendered. I extend their model by

introducing a brush-based interface for distributing trees and simulating competition for

space between trees at the level of tree crowns. The resulting shapes act as constraints for

self-organizing trees that grow into the space resulting in a natural form. Since inter-tree

competition is simulated at a higher level than the trees themselves, the detailed form of each

specific tree can be generated independently, given its constraining shape. Therefore, there

is no need to tweak parameters to account for growth speed of a particular species. This

allows parallel computing techniques to be utilized, significantly increasing the scalability

and performance of the algorithm. Growth parameters of individual trees can be tweaked

without the need to regenerate the entire landscape. This eliminates the concern of large

scale changes when editing a single tree model.

86

6.1 Algorithm Overview

I propose to generate landscapes of trees using a multi-stage process.

• The terrain is defined using a brush-based interface to specify its elevation and areas

where trees are excluded from being placed.

• On this terrain, the distribution of tree bases is defined interactivity with a brush.

The algorithm proposed by Lane and Prusinkiewicz [2002] is used to maintain

inter-species interactions, such as clustering and inhibition.

• From this distribution, trees compete for crown space. This segments the entire space

into volumetric-regions associated with each tree.

• Detailed models of individual trees are generated using the growth model defined

in Chapter 4. Attraction points are restricted to be within the volumetric-region

associated with each tree. Trees can be simulated in parallel as they no longer depend

on each other.

• Growth parameters for each tree can be adjusted by the modeller. Only the adjusted

tree needs to be updated and the rest of the landscape remains unchanged.

6.2 Species Definition

Each tree species is defined by a set of growth parameters (Chapter 4) and a representative

tree shape. The tree shape is made up of two components, the trunk and crown. The trunk is

a cylindrical component defined by its width and height (Tw,Th) and the crown is an ellipse

vertically offset by the trunk height and defined by the length of its major and minor axes

87

(Cw,Ch) (Figure 6.1). The shape of the tree crown is created such that it resembles the size

of a free-standing tree model grown with the corresponding parameters. The dimensions of

this shape, modified by a per-instance scale factor, define the maximum height of the tree

and its projected crown area (π Cw
2

2
).

C
w

C
h

T
h

T
w

Figure 6.1: Example representative crown shapes

6.3 Terrain Specification

The initial size of the plot of terrain is specified as a parameter to the system. The terrain,

represented internally as a height-field, is initialized to a planar surface offset slightly by

Perlin noise. The modeller can change the elevation of the terrain by brushing which moves

the region within the brush up or down. If the height at any point is below a predefined

water level, an animated plane of water is exposed (Figure 6.2). The modeller can also

brush regions of the terrain which they wish to exclude from tree placement. These regions

are rendered with a rock texture to provide visual feedback.

88

Figure 6.2: An example of brushing the terrain. Left) The initial state, modeller brush shown in

green. Right) A region of terrain has been brushed below the water level creating a river. The region

on the right bank (shown by a rock texture) has been excluded from tree placement.

6.4 Tree Distribution

The ecosystem modeling method presented by Deussen et al. [1998] uses (among others)

the process of self-thinning to generate the locations of plants of various species. The self-

thinning process initially generates a relatively dense distribution of small plant seedlings.

Then, through an iterative process, the simulation grows plants radially at species-specific

rates, and some plants are removed when they are dominated by a larger plant (Figure 6.3).

89

Figure 6.3: Distribution of plants created using a self-thinning model. Plant locations represented by

light grey circles are being dominated by a larger plant. Figure from Lane and Prusinkiewicz [2002]

While this method can produce realistic distributions of plants, it lacks control over the

clustering of the distribution. A model proposed by Lane and Prusinkiewicz [2002] creates

clustered distributions by generating new plant seeds in the vicinity of large plants of the

same species. This seeding is intertwined with the process of removing dominated plants.

Lane and Prusinkiewicz [2002] noted that in the resulting distributions, it is probable to

find a plant of a particular species in the vicinity of another plant of the same species. This

observation motivated the development of a simple and more controllable statistical method

of creating plant distributions, the deformation-kernel method [Lane and Prusinkiewicz,

2002]. In contrast to the models based on self-thinning, the deformation-kernel method

iteratively adds trees to the distribution instead of removing them from an over-dense set.

This is highly desirable for interactive applications as adding more plants will never result

in the removal of existing ones. The following section presents this method in detail.

90

6.4.1 The Deformation-Kernel Method

The deformation-kernel method maintains a probability field for each species. This field

defines the probability of placing a new plant of a particular species at each location in the

field. Adding a plant to the distribution at location P(x,y) modifies the probability fields

of all species by multiplication of the corresponding kernel function at location P in the

probability field.

Figure 6.4: Visualization of the probability field as a height map after the placement of a few trees.

Figure from Lane and Prusinkiewicz [2002].

Kernel Functions

The pairwise interactions between species are defined using kernel functions that represent

the probability of a new tree being placed at a distance d from the location of an existing tree.

All trees occupy some radius r from their central position where they obstruct placement

new trees (Tw
2 , Section 6.2). Within an active radius, a, trees can effect the probability

of new tree placement. Clustering of tree locations can be simulated by increasing the

probability of new trees being placed in the vicinity of existing trees, using the following

kernel function:

91

0

1

s

 r a
Distance from Center (d)

P
ro

b
a

b
il

it
y

 M
u

lt
ip

li
e

r

K(d) =

0 : d ≤ r

(s−1)(6x5 −15x4 +10x3)+1, x = 1− d−r
a−r : r < d ≤ a

1 : d > a

(6.1)

The smooth-step function of Ebert et al. [2003] is used to blend from s to 1. The

exact form of this function is not important, any ease in-out function such as Hermite

interpolation could be used. The inverse effect is obtained using an inhibitory kernel which

decreases the surrounding probability and is defined as follows:

92

0

1

 r a
Distance from Center (d)

P
ro

b
a

b
il

it
y

 M
u

lt
ip

li
e

r

1

s

K(d) =

0 : d ≤ r

1− 1
s +

1
s (6x5 −15x4 +10x3), x = d−r

a−r : r < d ≤ a

1 : d > a

(6.2)

The form of these equations allows parameter s to scale the effect of clustering or

inhibition, even though it is inversed in their functions. For each pairwise species interaction,

the modeller selects which kernel is to be used and defines its scale and active range. Lane

and Prusinkiewicz [2002] provided support for a wider range of kernels, specifically those

which did not include the occupation radius r. This was necessary in their system because

they used static crown shapes to constrain the growth of the trees and neighboring plants

did not compete for crown space. To obtain a natural looking distribution without gaps

between neighboring trees, they allowed for intersecting tree bases. Since I simulate trees

competing for crown space, there is no need to have intersections.

93

Algorithm

Each probability field is implemented as a two dimensional array of floating point numbers,

with all values initially set to 1. The corresponding kernel function is multiplied into each

field each time a new tree is placed in the distribution.

The position of each tree, P(x,y), is computed as follows: The sum of each row in

the species probability field is calculated and stored in an array R. The values of R are

adjusted sequentially, R[i] = R[i]+R[i−1] to create a monotonically increasing sequence

of values. A random number, k, is then generated between 0 and the value stored in R[Max].

The y component for the plant can then be computed by first finding the row, r, such that

R[r]≤ k < R[r+1] and then linearly interpolating between R[r] and R[r+1]. Figure 6.5

illustrates this process. Since rows containing higher probabilities map to a larger range, a

bias is created.

Figure 6.5: A hypothetical probability field, left, and resulting monotonically increasing function of

the sums of rows, right.

94

The x component of the tree position is computed in a similar manner. The sum of

all columns in the row, r, is stored in an array C. The values of C are adjusted as above

to create a monotonically increasing sequence. A random number, n, is then generated

between 0 and the value stored in C[Max]. The x position for the plant can be computed

by first finding the column, c, such that C[c]≤ n <C[c+1] and linearly interpolating their

positions. With the position of the new plant calculated, corresponding kernel function is

multiplied into the probability field of each species at the location of the tree. Figure 6.4

shows these effects.

The following figures show sample distributions created with the algorithm:

Figure 6.6: An example of a random distribution.

95

Figure 6.7: An example distribution showing clustering between plants of the same species. No

interactions between plants of different species.

Figure 6.8: An example distribution showing clustering between plants of the same species. An

inhibitory interaction between plants of different species.

96

Figure 6.9: A distribution with three species. Yellow trees cluster around their own species but

inhibit all other species. Purple trees inhibit yellow and other purple trees but have a clustering

interaction with the pink species. The pink species does not effect the others.

6.4.2 Interface

The algorithm presented in the previous section is used to iteratively add trees to the

landscape. However, it is not sufficient to have the trees simply scattered across the terrain.

Therefore, I propose a brush to define the placement of trees.

A tree can either be an instance of a predefined species (Section 6.2), or a hero tree. A

hero tree is one that has been pre-designed by the modeller, specifically for the scene, using

a tool like TreeSketch (Chapter 5). Available tree types are presented in a bar on the left

side of the screen (Figure 6.10). Each tree type Ti is associated with a relative probability

Pi,0 ≤ Pi ≤ 1 set by the modeller using the side bar (Figure 6.10).

97

Figure 6.10: Available tree types and their relative probabilities are defined in the species bar on

the left side of the screen. The top three thumbnails represent predefined species while the bottom

six are hero trees. The magnitude of probability is represented by a transparent grey overlay on the

species thumbnail. The modeller can adjust the probability of a species by dragging left or right

on its thumbnail. Left) Trees are brushed on the island favouring the smaller pink species. Right)

Species probabilities are adjusted, clustering of species is evident.

The radius and magnitude of the brush can be adjusted by the modeller. When the

modeller is brushing on the terrain, trees are added iteratively at a rate proportional to the

brush magnitude. Each iteration, a tree type is chosen using the following method (similar

as above): The probabilities of each tree type are stored in an array P such that P[i] = Pi.

The values of P are adjusted sequentially, P[i] = P[i]+P[i−1], to create a monotonically

increasing sequence. A random number, n, is then generated between 0 and the value

stored in P[Max]. The tree type corresponding to the probability P[t] is found such that

P[t]≤ n < P[t +1]. An instance of this tree type is generated and a scale factor is randomly

computed between a modeller defined min and max scale.

The method discussed in the previous chapter is used to compute the position of the

tree instance with the following modifications. The circular area of the brush is used as a

98

mask such that only points of the probability field within the brush are considered for tree

placement. Similarly, tree distribution is also masked by the terrain where areas specifically

excluded by the modeller (Section 6.3) and areas below the water level are not considered.

This algorithm is fast enough to provide the feeling of scattering trees in real time. With

a small brush radius the modeller can explicitly place a tree. Using a larger brush radius,

the effects of clustering and inhibition play an important role (Figure 6.10). The modeller

can tweak the resulting distribution by explicitly moving, or scaling any tree interactively

(Figure 6.11).

Figure 6.11: Instances of tree species are visualized using their representative tree shapes. Hero

trees (here imported from TreeSketch) are shown in full geometry. Hero trees are explicitly placed

and scaled. Smaller pink trees are scattered with a brush along the river bank. Larger species are

brushed in the background.

99

6.5 The Neighborhood Effect

One of the fundamental characteristics controlling tree form, as identified by Harper [1977],

is the neighborhood effect. This refers to the adaptive shape of tree crowns in the presence

of neighbors, also known as crown plasticity (this effect can be seen in Figures 6.12, 6.26

(bottom), 6.27 (bottom) and 2.4). In order to grow trees independently and still obtain

realistic results, it is important to capture this effect.

Since the seminal work of Mitchell [1975], much forestry research has focused on

simulating the shape of tree crowns. The model of Sorrensen-Cothern et al. [1993] expanded

on earlier models by introducing interaction between trees in the vertical space using stacks

of discs to represent the general shape of conifer tree crowns, and adjusting for intersections

with neighboring trees to determine more realistic shapes. Building on this work, the model

of Grote and Pretzsch [2002] simulates stacks of growing discs where the growth rate of

each layer is specifically tuned and calibrated to match a particular species. The goal of

these simulators is to obtain a crown shape which can be calibrated by experimental data

for a particular species and used to study other aspects of forest dynamics.

At the edge of the forest or on the bank of a river, trees can be found leaning into open

space and away from their neighbors. Hallé et al. [1978] termed this behavior the river-bank

effect, and it can be viewed as an extreme case of crown displacement. While free-standing

trees may have their crowns directly centered over their trunk bases, in the presence of

neighbors, tree crowns are often displaced in a particular direction [Brisson, 2001, Muth

and Bazzaz, 2002, 2003, Schröter et al., 2012]. The size and proximity of a neighboring tree

provide the best indication in determining the strength of crown displacement away from

the particular neighbor [Muth and Bazzaz, 2003]. For trees with a relatively symmetric

100

neighborhood, the effect is less noticeable as these neighbor pressures cancel each other out

[Brisson, 2001]. However, as neighborhood asymmetry increases, so does the magnitude

of crown displacement [Muth and Bazzaz, 2003].

Figure 6.12: A stand of trees tilting away from their neighbors at the edge of the forest. Image from

https://flic.kr/p/e3ySGX.

In this section I present an algorithm which simulates competition between trees

for crown space. This process segments space into volumetric regions associated with

individual trees. As mentioned in Section 6.1, these volumes constrain the growth of the

tree. It is not necessary for these volumetric regions to look like realistic crown shapes, only

to capture the higher level interactions between species which result in crown plasticity.

101

6.5.1 Space Constraints

The main cause of crown plasticity is competition between neighboring trees. I present

an algorithm to segment the space such that the resulting volumetric regions exhibit the

effects of this competition. A Voronoi diagram is commonly used to divide space into

regions, where all points in a given region are closer to the seed point for the region than to

any other seed. Figure 6.13 shows an example of a Voronoi diagram constructed from a

tree distribution. As seen in this figure, the size of the tree has no effect on the size of its

corresponding region. Some small trees are allocated too much space, while larger trees

are too constrained. Moreover, all dividing lines between trees are straight which results in

visible artifacts if these shapes are used to constraint tree growth.

Figure 6.13: A Voronoi diagram constructed from positions of trees. Tree positions are shown

by black circles with radius proportional to the projected area of their representative tree shape

(Section 6.2).

Inspired by the idea of generating crown shapes from independently growing discs

[Grote and Pretzsch, 2002], I simulate growing and colliding regions centered at the base

102

of each tree. The space of tree growth is divided into a two dimensional grid, each cell

containing the ID of its claiming tree. Each tree initializes a discretized circle under its

position, with a radius proportional to its trunk radius (Tw
2 , Section 6.2), and claims all grid

cells within. The rate of growth for each circle is proportional to the projected area of the

representative tree shape (Section 6.2).

Figure 6.14: Stages of the boundary propagation algorithm. Left) Growth of the blue area halted

for the points which reside in grid cells claimed by a different tree (red). Center) The direction

of growth for each point is defined as the direction perpendicular to the vector between its two

neighbors. Right) Points are moved to their new location and new points (bright green) are added

on line segments longer then a threshold length.

At each step of the simulation, each point grows in the direction perpendicular to the

line between its two neighbors (Figure 6.14). After growth, if a point is located in an

unclaimed grid cell, it claims it. Points that reside in a grid cell claimed by another tree

halt growth. Handling collisions on this coarse grid structure results in a fast and robust

implementation. As regions grow, new points are added between any two points which are

further apart than a threshold distance. The simulation stops when all grid cells have been

claimed. Figure 6.15 shows key frames of this simulation.

103

Figure 6.15: Frames of the boundary propagation algorithm. Simulation time increasing from left to

right, top to bottom. Semi-transparent grey circles represent tree locations with a radius proportional

to the projected crown area (Section 6.2). Larger trees have a faster growth rate and are able to

claim more space.

The resulting structure is similar to a multiplicatively weighted Voronoi diagram, except

that by simulating collisions between regions, I ensure their connectedness. This adaption

has been used as a model of growing crystal formations [Schaudt and Drysdale, 1991]. As

compared to a standard Voronoi diagram (Figure 6.16), boundaries between regions are

curved and larger trees able to claim significantly more space.

104

Figure 6.16: Comparison between a standard Voronoi diagram (left) and a diagram generated from

boundary propagation (right). Tree positions are shown by black circles with radius proportional to

the projected area of their representative crown shape.

Yet, this diagram only represents the situation at the base of trees. Extruding this

diagram upwards would not take into account the height of trees and not allow for branches

of a taller tree to overhang a shorter neighboring tree. I extend the simulation into 3D

by simulating this process in multiple layers. Instead of a grid structure dividing the two

dimensional space, I employ a voxel space dividing three dimensional space. Each layer of

the voxel space considers only those trees whose representative tree shape extends beyond

the height of the layer (Section 6.2). Since the regions only grow in two dimensions, each

layer can be simulated independently using parallel computing techniques. Figure 6.17

shows slices of the resulting voxel space.

105

Figure 6.17: Slices of the constraint voxel space increasing in height, left to right, top to bottom.

Radius of circles is proportional to the height of their corresponding tree shape (Section 6.2).

Since the final crown shape of hero trees is already known, they do not take part in this

process. Hero trees are instead incorporated afterwards by traversing their tree structure

and claiming all voxels which contain a hero tree segment. The final regions associated

with each tree are used to constrain tree growth as shown in Section 6.6.

6.5.2 Neighbourhood Asymmmetry

In the case where the tree exists in an asymmetric neighborhood (e.g. on the bank of a

river), I quantify the direction and magnitude of asymmetry in a Neighbourhood Asymmetry

Vector.

106

r
i

T
i

N
0

N
0

N
1

N
1

P
i1

P
i0

V
i

T
i

A) B)

Figure 6.18: Computing the neighborhood asymmetry vector. A) Trees within the radius ri (blue)

are considered neighbors and influence the tree. B) Neighbor pressure Pi j is weighted by the relative

area and distance of the neighbor. The sum of all neighbor pressures defines the neighborhood

asymmetry vector Vi.

As shown in Figure 6.18, the neighborhood asymmetry of a tree can be modeled as a

weighted sum of vectors from neighboring trees [Brisson, 2001, Muth and Bazzaz, 2003].

For each tree, Ti, I define its neighborhood, Ni, as all trees within the radius ri from the

tree base location. The vector Pi j represents the neighbor pressure from tree Tj ∈ Ni on Ti

and is defined as:

Pi j = ωi j ∗
Ti −Tj

||Ti −Tj||
, ωi j = αa

A j

Ai
+αd

(

1−
||Ti −Tj||

ri

)

(6.3)

where the weight ωi j is proportional to the relative size of the trees, measured in projected

crown area Ai, j [Muth and Bazzaz, 2003], and inversely proportional to the distance

between them. The parameters αa,d allow for tuning the relative importance of each

(αa = 1.0,αd = 2.0 for results shown in this thesis).

107

An important factor in determining a tree’s ability to displace its crown is whether or not

it has sufficient space. The maximum extent of tree growth is determined by the volumetric

region computed in the previous section. I compute the centroid Ci, and bounding-circle

radius Bi, for each layer of the region. If a tree base is near the edge of its volume then

it will have sufficient space to displace its crown, and its distance to the centroid relative

to the radius of the region will be 1. If the tree is positioned directly over the centroid, it

does not have enough space to displace its crown and the distance to the centroid relative

to the radius will be 0. The sum of all neighbor pressures scaled by this ratio defines the

neighborhood asymmetry vector:

Vi =
||Ti −Ci||

Bi
∑

j∈Ni

Pi j (6.4)

Figure 6.19 shows the resulting neighborhood asymmetry vectors for two sample

distributions. This vector is used to bias the growth of the tree as shown in the following

section.

108

Figure 6.19: Neighborhood asymmetry vectors (red arrows) overlaid on the constraint graph.

Positions of trees are shown as semi-transparent black circles with a radius proportional to the

projected crown area of their representative tree shape. Trees at the center of clusters are not

affected while trees on the edges of clusters have strong neighborhood asymmetry, especially when

neighboring large trees.

6.6 Tree Growth

As stated in Section 6.1, this algorithm for generating landscapes is a multi-stage process.

The position and species of each tree instance is defined by the distribution algorithm

discussed in Section 6.4, while spatial constraints and vectors of neighborhood asymmetry

are computed as in Section 6.5. At this stage, growth of each tree can be simulated

independently using the autonomous growth algorithm discussed in Chapter 4. Attraction

points are scattered around bud locations, but removed if they land outside of the voxel

constraints. The maximum height of a tree hmax, is defined by the instance scale and the

109

height of its representative tree shape (Si ∗ (Th +Ch)). Growth of the tree is halted when a

branch reaches the maximum height. Further growth would allow the tree to fill its crown

constraint shape but would result in an unnatural appearance near the boundary (i.e. a flat

top).

The neighborhood asymmetry vector Vi, is incorporated as an additional tropism. This

helps to push the growth of the tree away from its dominant neighbors and provides the

characteristic tilting of the main axes as seen in trees at the edge of a forest. In order to

effect only the larger branches of the tree, the effect of this tropism fades out as the tree

grows. The final tropism direction Fi is defined as:

Fi = (1−α)∗ (Vi +St)+α ∗St , α =

(

h

hmax

)
1
2

(6.5)

where St is the direction of tropism defined by the species parameters. The exponent in α

concentrates this effect in the early stages of development. Figure 6.20 shows a comparison

of trees grown with and without this additional tropism. Figure 6.21 shows how larger trees

remain unaffected while smaller trees tilt away from them.

110

Figure 6.20: Growth with the neighborhood asymmetry tropism results in trees tilted away from their

neighbors. Left) Three equally large trees tilting away from each other, neighborhood asymmetry

vectors shown in red. Right) The same scene grown without neighborhood asymmetry tropism

results in non-intersecting trees but without the characteristic lean seen in some real tree stands.

Figure 6.21: Larger trees have a greater effect on neighborhood asymmetry. Left) The larger tree

grows unaffected while the smaller trees are tilted away (the length of red arrows represents the

strength of the neighborhood asymmetry tropisms). Right) Trees do not tilt away from larger

neighbors when the neighborhood asymmetry tropism is disabled.

111

6.7 Editing Trees

After growth, parameters of individual trees can be modified. Only the modified tree

needs to be regrown while the rest of the landscape remains unchanged. The current

implementation supports changing key model parameters through an interactive widget and

sliders (Figure 6.22). However, a full suite of editing capabilities similar to that discussed

in Chapter 5 could be implemented.

Figure 6.22: Parameters of growth can be edited individually for each tree using an interactive

widget. Growth parameters for the tree on the left were edited to produce the gnarled tree on the

right. Only the modified tree was regrown, all other trees remain constant.

6.8 Analysis

"...the distribution of the crown cover centers was evidently uniformized against

the contagious distribution of the stems." [Ishizuka, 1984]

The magnitude of tree crown displacement from above the tree base is a widely used

measure to study crown plasticity [Ishizuka, 1984, Longuetaud et al., 2008, 2013, Schröter

et al., 2012]. The above quote describes the central observation, that trees displace their

112

crowns in such a manner that the resulting distribution of crown centers is more uniform

than the distribution of tree bases. Figure 6.23 shows an example tree base distribution

overlaid with the computed tree crown centroids.

Figure 6.23: Trees growing into free space relocate the centroid of their crowns resulting in a more

uniform distribution. Location of tree base is shown in red, location of tree crown centroid is shown

in blue. Green lines represent correspondences. Scale of circles represents scale of tree, larger trees

grow longer and thus have more potential to offset their crown. The crown centroids are relocated

away from their neighboring plants.

113

Statistical measurements such as the Ripley-K function [Ripley, 1976] have been used

to measure the uniformity of crown and base distributions [Longuetaud et al., 2008, 2013,

Schröter et al., 2012]. The Ripley-K function is defined as:

K(t) = λ−1 ∑
i,= j

I(di j < t)

n
(6.6)

where di j is the distance between tree i and tree j, n is the number of trees, t is the search

radius (5m in my measurements) and λ is the average density of trees (estimated as n
A ,A

being the area of the tree plot, 30m×30m). I(bool) is the indicator function which returns

1 or 0 if its parameter is true or false respectively. For a uniform distribution, K(t) = πt2

[Ripley, 1976]. Therefore, the value K(t)−πt2 can be used to measure the ‘distance from

uniformity’.

To validate my model, I have computed these statistics across a number of sample

distributions (Figure 6.24). In all cases the distribution of crown centroids is more uniform

than their bases, consistent with the results measured from real tree stands [Longuetaud

et al., 2008, 2013, Schröter et al., 2012].

114

0

10

20

30

40

D
is

ta
n

c
e

 f
ro

m
 U

n
if

o
rm

it
y

Tree Base Distribution

Growth without constraints

Growth with constraints, no

neighbourhood asymmetry tropism

Growth with constraints and

neighbourhood asymmetry tropism

Analysis of Crown Distribution Uniformity Under Di!erent Growth Conditions

Distribution Sample

1 2 3 4 5

Figure 6.24: Uniformity of tree crown distribution compared to tree base distribution measured

across five sample distributions (X-axis). The Y axis shows the difference between the Ripley-K

number for each distribution and the Ripley-K number representing a uniform distribution. Tree

base distribution is clustered and not uniform (as desired). In all cases, growth without constraints

fails to significantly effect the uniformity of the crown distribution. Growth constrained by the

growing discs increases the uniformity of the crown distribution. Uniformity is further increased by

enabling the neighborhood asymmetry tropism. Distribution from Sample 1 is shown in Figure 6.23

115

6.9 Results

Figure 6.25: Trees over-hang a path through a city park. Scene rendered using Maya with Mental

Ray.

116

Figure 6.26: Top) A view looking up through the canopy of the cluster of trees. Trees naturally

fill the available canopy space but do not intersect. Bottom) An image looking up into a real tree

canopy. (Image from http://onmaplesyrup.files.wordpress.com/2014/04/dscn6227-blog-v21.jpg)

117

Figure 6.27: Top) Trees at the edge of the distribution exhibit the river-bank effect. Bottom) Image

of a real tree tilting away from larger neighbors. (Image from https://flic.kr/p/egGwJY)

118

Figure 6.28: A large tree growing around and over the top of its neighbors.

119

6.9.1 Speed of Simulation

The following simulations were performed on a 2011 MacBook Air, with an Intel Core i7

processor (1.8 GHz) and 4GB of RAM.

Trees Distribution Simulation Constraint Simulation Growth Simulation

10 0.01s 0.17s 6.3s

30 0.02s 0.30s 12.6s

100 0.08s 0.42s 23.1s

300 0.27s 1.05s 33.9s

In all cases the plot size was constant (30× 30m). This accounts for the non-linear

relation between number of trees and simulation time, as increasing the number of trees also

decreases the space each one is allocated for growth and therefore the simulation time per

tree is faster. The voxel space used for the constraint simulation contained 128×128×20

voxels. On average, creation of tree geometry for rendering took roughly 2% of the

simulation time (included in the growth simulation column). Tree growth and simulation of

the constraint voxel space was split across 4 parallel threads.

Chapter 7

Conclusion

In spite of decades of computer graphics research, the modelling of three-dimensional

objects has remained a tedious task. The crux of the problem is the tension between detailed

control of form by the modeller and the complexity of the objects being modelled. In

this thesis I have presented software and algorithms for modelling trees and landscapes

which reconcile the interactive control needed in creative design with the emergence of

form inherent in procedural generation. This synthesis was accomplished by integrating

appropriately tailored procedural methods with a custom interface. This thesis demonstrates

that:

• procedural (tree and landscape) models can easily be controlled by modellers without

a computer science background,

• tree modelling based on a sound biological basis does not require a biological

background on the part of the modellers, and

• complex tree and landscape models can be created procedurally at interactive rates

using current (relatively low-end) hardware.

My proposed algorithm for tree growth combines the realism and controllability of

previous models. The diversity of generated forms has been enhanced with the incorporation

of gravimorphism and tropisms quantified using the gravitropic set-point angle. The ability

to produce natural looking trees of any shape is essential in the generation of landscapes.

120

121

I have extended previous landscape generation models by introducing competition

between trees for crown space. The intermediate crown regions capture the effects of

competition between neighboring trees and act as constraints on tree growth. This allows

each tree to be simulated independently yet results in trees with the visual characteristics of

those which were grown together.

TreeSketch has changed the landscape of virtual tree generation. It is the first system

which makes it possible to quickly create a diverse set of natural and artistically expressive

trees through an intuitive interface. A set of interactive widgets have been designed to

provide intuitive control over correlated parameters. Compared to previous brush-based

models [Pałubicki et al., 2009], the expressiveness of brush strokes has been significantly

enhanced with the incorporation of sketch-based tropisms. Algorithms for bending branches

and defining branch widths have been devised for the purpose of interactive tree modeling.

With over fifty-thousand downloads, TreeSketch users have commented saying it has

changed the way they create digital trees. TreeSketch has been used by professional visual

effects studios and to create trees for The Hobbit films. A wide diversity of trees can be

generated with ease and delight; even children can generate realistic trees.

TreeSketch is the first software to combine interactive procedural modelling of trees

with an augmented reality interface. This enables the creation and visualization of trees

within real world environments, while allowing them to adapt to their surroundings. This

technology opens the door to a new realm of landscaping applications allowing expensive

designs to be visualized at various stages of development.

The applications that were originally envisioned for TreeSketch lie in the domain of

image synthesis for computer animation, games, and computer-assisted landscape design.

However, throughout our experiments with TreeSketch, we were surprised by the extent to

122

which it has sharpened our own perception of tree form and development in nature. Thus,

possible applications of TreeSketch could be explored to teach students of botany and art,

including children, about tree development and form. Another prospective application of

TreeSketch is in the domain of horticulture. In this application, the modeller would sketch

the form of an existing tree using model parameters consistent with the tree species, edit

the form by pruning, then grow it autonomously to predict the impact of pruning on the

tree over the years.

The flexible, interactive control of highly realistic procedural models achieved in this

thesis defines the state of the art. It provides a benchmark for evaluating future systems for

modelling trees and landscapes, and perhaps interactive 3D procedural modeling systems

in general.

7.1 Future Work

A number of problems remain open for future work. I broadly categorized them below

starting with those more research oriented and ending with technical advancements.

• Interaction: Coupling the direction of the brush strokes to the direction of branch

growth has proven to be a very powerful feature, yet controlling other parameters

with stroke dynamics has not been explored. Thiel et al. [2011] proposed exploiting

stroke dynamics to neaten sketches by distinguishing between fine details of a stroke

which are intentional, those drawn at a slow speed, from stroke noise (to be removed)

in high speed sketches. These ideas could be further developed for the purpose of

tree modelling, for instance, making branches closely follow the brush stroke while

slowly sketching yet specify branches more generally with faster strokes.

123

• Evolutionary Modelling: Evolutionary techniques could be employed to explore

the parameter space of the model and present the modeller with various versions

of their tree. Different trees could be generated by simulating the growth history

of the current tree (brush strokes) but modifying parameter settings in each case.

Alternatively, aspects of the strokes such as speed, direction and order could be

modified.

• Landscapes: The slope of the terrain may effect the direction of canopy displacement

[Umeki, 1995]. Simulating the affect of gravity on branches while the tree is growing

may reduce the need to explicitly direct away from their larger neighbors when

their neighborhood is asymmetric (the neighborhood asymmetry tropism). Since the

spatial constraints would already be asymmetric, the tree would naturally bend away

as it grew towards free space.

• Gravimorphism: Botanists observed that not only the inclination of branches, but

also their curvature play a role in gravimorphism. The incorporation of this role of

curvature may further increase the diversity and realism of trees.

• Branch Geometry: Higher resolution branch geometry could be generated by a

system similar to that of Mizoguchi and Miyata [2011] and textures could be proce-

durally generated to allow for realistic flow across branching points [Lefebvre and

Neyret, 2002].

• Animation of Plant Development: Currently trees are only shown in their most

recent stage of development. Yet, it may be desirable to show an animation of the tree

developing from a seedling into its current state. Pirk et al. [2012a] have presented

124

a model which creates animation of tree development from static tree models. The

growth model presented in this thesis already simulated the growth of a tree from the

seedling. I believe this history could be leveraged to produce a superior result.

• Augmented Reality Interface: More advanced methods for reconstructing scene

geometry would allow for a new range of plant-environment interactions including

growth of climbing plants on scene geometry. To improve the visual quality of digital

trees within the live video feed, illumination conditions of the outdoor environment

could be captured and used to render the virtual content ([Liu et al., 2009]). Lighting

conditions could also effect how plants grow in a virtual gardening application.

Bibliography

13th Lab AB. Pointcloud SDK for iOS. http://pointcloud.io, 2012.

M. Alsweis. Extended competition rules for interacting plants. In Proceedings of the 15th International

Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pages 1–8.

Václav Skala-UNION Agency, 2007.

M. Alsweis and O. Deussen. Modeling and visualization of symmetric and asymmetric plant competition. In

Proceedings of the First Eurographics Conference on Natural Phenomena, pages 83–88. Eurographics

Association, 2005.

M. Aono and T. L. Kunii. Botanical tree image generation. IEEE Computer Graphics and Applications, 4(5):

10–34, 1984.

D. Barthélémy and Y. Caraglio. Plant architecture: A dynamic, multilevel and comprehensive approach to

plant form, structure, and ontology. Annals of Botany, 99:375–407, 2007.

B. Beneš, N. Andrysco, and O. Št’ava. Interactive modeling of virtual ecosystems. In Proceedings of the

Fifth Eurographics Conference on Natural Phenomena, pages 9–16. Eurographics Association, 2009.

B. Beneš, M. A. Massih, P. Jarvis, D. G. Aliaga, and C. A. Vanegas. Urban ecosystem design. In Symposium

on Interactive 3D Graphics and Games, pages 167–174. ACM, 2011.

B. Beneš, O. Št’ava, R. Měch, and G. Miller. Guided procedural modeling. Computer Graphics Forum, 30

(2):325–334, 2011.

J. Bloomenthal. Modeling the Mighty Maple. Computer Graphics, 19(3):305–311, 1985.

R. Borchert and H. Honda. Control of development in the bifurcating branch system of Tabebuia rosea: A

computer simulation. Botanical Gazette, 145(2):184–195, 1984.

M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. Primo: Coupled prisms for intuitive surface modeling. In

Proceedings of the Fourth Eurographics symposium on Geometry Processing, pages 11–20, 2006.

125

http://pointcloud.io

126

F. Boudon, P. Prusinkiewicz, P. Federl, C. Godin, and R. Karwowski. Interactive design of bonsai tree

models. Computer Graphics Forum, 22(3):591–599, 2003.

J. Brisson. Neighborhood competition and crown asymmetry in acer saccharum. Canadian Journal of Forest

Research, 31(12):2151–2159, 2001.

X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. Sketch-based tree modeling using Markov

random field. ACM Transactions on Graphics, 27(5):109, 2008.

N. Chiba, S. Ohkawa, K. Muraoka, and M. Miura. Visual simulation of botanical trees based on virtual

heliotropism and dormancy break. The Journal of Visualization and Computer Animation, 5:3–15, 1994.

E. Coen. The art of genes: How organisms make themselves. Oxford University Press, 1999.

D. Cohen. Computer simulation of biological pattern generation processes. Nature, 216:246–248, 1967.

J.-F. Côté, J.-L. Widlowski, R. Fournier, and M. Verstraete. The structural and radiative consistency of

three-dimensional tree reconstructions from terrestrial LIDAR. Remote Sensing of Environment, 113:

1067–1081, 2009.

P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. Plant models faithful to botanical structure and

development. Computer Graphics, 22(4):151–158, 1988.

O. Deussen and B. Lintermann. A modelling method and user interface for creating plants. In Proceedings of

Graphics Interface, pages 189–197, 1997.

O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and P. Prusinkiewicz. Realistic modeling and

rendering of plant ecosystems. In Proceedings of the 25th Annual Conference on Computer Graphics and

Interactive Techniques, pages 275–286. ACM, 1998.

O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. Interactive visualization of complex plant

ecosystems. In Proceedings of the Conference on Visualization’02, pages 219–226. IEEE Computer

Society, 2002.

127

A. Dietrich, C. Colditz, O. Deussen, and P. Slusallek. Realistic and interactive visualization of high-density

plant ecosystems. In Proceedings of the First Eurographics Conference on Natural Phenomena, pages

73–81. Eurographics Association, 2005.

J. Digby and R. D. Firn. The gravitropic set-point angle (GSA): The identification of an important devel-

opmentally controlled variable governing plant architecture. Plant, Cell & Environment, 18:1434–1440,

1995.

D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing & modeling: A procedural approach.

Morgan Kaufmann, 2003.

E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer. Real-time shadows. AK Peters, Ltd., 2011.

M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applications to

image analysis and automated cartography. Communications of the ACM, 24(6):381–395, June 1981.

N. Greene. Voxel space automata: modeling with stochastic growth processes in voxel space. Computer

Graphics, 23(4):175–184, 1989.

R. Grote and H. Pretzsch. A model for individual tree development based on physiological processes. Plant

Biology, 4(2):167–180, 2002.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of

Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123, April 1985.

R. W. Hall. Fast parallel thinning algorithms: parallel speed and connectivity preservation. Communications

of the ACM, 32:124–131, 1989.

F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson. Tropical trees and forests: An architectural analysis.

Springer-Verlag, Berlin, 1978.

A. Hanson. Quaternion Gauss maps and optimal framings of curves and surfaces. Technical Report 518,

Computer Science Department, Indiana University, Bloomington, IN, 1998.

J. Harper. Population biology of plants. Academic Press., 1977.

Przemek

Przemek
Przemek 6 September, 2014 10:13 AM

128

J. Harper. Modules, branches, and the capture of resources. In Population biology and evolution of clonal

organisms, pages 1–33, 1985.

H. Honda. Description of the form of trees by the parameters of the tree-like body: Effects of the branching

angle and the branch length on the shape of the tree-like body. Journal of Theoretical Biology, 31:331–338,

1971.

B. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society

of America, 4(4):629–642, Apr 1987.

T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface for 3D freeform design. In Proceedings

of SIGGRAPH, pages 409–416, 1999.

T. Ijiri, S. Owada, M. Okabe, and T. Igarashi. Floral diagrams and inflorescences: Interactive flower modeling

using botanical structural constraints. ACM Transactions on Graphics, 24(3):720–726, 2005.

T. Ijiri, S. Owada, and T. Igarashi. Seamless integration of initial sketching and subsequent detail editing in

flower modeling. Computer Graphics Forum, 25(3):617–624, 2006.

T. Ijiri, S. Owada, and T. Igarashi. The sketch L-system: Global control of tree modeling using free-form

strokes. In Proceedings of Smart Graphics, pages 138–146, 2006.

M. Ishizuka. Spatial pattern of trees and their crowns in natural mixed forests. Japanese Journal of Ecology,

34:421–430, 1984.

K. Kahlen, D. Wiechers, and H. Stützel. Modelling leaf phototropism in a cucumber canopy. Functional

Plant Biology, 35:876–884, 2008.

R. Karwowski and P. Prusinkiewicz. Design and implementation of the L+C modeling language. Electronic

Notes in Theoretical Computer Science, 86(2):134–152, 2003.

B. Lane and P. Prusinkiewicz. Generating spatial distributions for multilevel models of plant communities. In

Proceedings of Graphics Interface, pages 69–80, 2002.

129

S. Lefebvre and F. Neyret. Synthesizing bark. In Proceedings of the 13th Eurographics Workshop on

Rendering, pages 105–116. Eurographics Association, 2002.

B. Lintermann and O. Deussen. Interactive modeling of plants. IEEE Computer Graphics and Applications,

19(1):56–65, 1999.

M. Lipp, D. Scherzer, P. Wonka, and M. Wimmer. Interactive modeling of city layouts using layers of

procedural content. Computer Graphics Forum, 30(2):345–354, 2011.

D. Lischinski. Incremental delaunay triangulation. Graphics Gems IV, pages 47–59, 1994.

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng. Light source estimation of outdoor scenes for mixed reality.

The Visual Computer, 25(5-7):637–646, 2009.

Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. Texture-lobes for tree modeling.

ACM Transactions on Graphics, 30:53:1–53:10, 2011.

S. Longay, K. Kahlen, and P. Prusinkiewicz. Geometry of leaf orientation. 2010. Poster presented at

Functional Structural Plant Modlelling. University of California, Davis.

S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. Treesketch: Interactive procedural modeling of

trees on a tablet. In Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling,

pages 107–120, 2012.

F. Longuetaud, T. Seifert, J-M. Leban, and H. Pretzsch. Analysis of long-term dynamics of crowns of sessile

oaks at the stand level by means of spatial statistics. Forest Ecology and Management, 255(5):2007–2019,

2008.

F. Longuetaud, A. Piboule, H. Wernsdörfer, and C. Collet. Crown plasticity reduces inter-tree competition in

a mixed broadleaved forest. European Journal of Forest Research, 132(4):621–634, 2013.

N. MacDonald. Trees and networks in biological models. J. Wiley & Sons, 1983.

W. L. Metcalf. http://www.the-athenaeum.org, All images in public domain.

130

G. Mc Millen and J. Mc Clendon. Leaf angle: An adaptive feature of sun and shade leaves. Botanical Gazette,

pages 437–442, 1979.

K. Mitchell. Dynamics and simulated yield of douglas-fir. Forest Science, 21(Supplement 17):a0001–z0001,

1975.

A. Mizoguchi and K. Miyata. Modeling trees with rugged surfaces. In The IEEE 10th International

Conference on Trust, Security and Privacy in Computing and Communications, pages 1464–1471, 2011.

P. Mueller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural modeling of buildings. In ACM

Transactions on Graphics, volume 25, pages 614–623. ACM Press, August 2006.

K. Musgrave, C. Kolb, and R. Mace. The synthesis and rendering of eroded fractal terrains. 23(3):41–50,

1989.

C. Muth and F. A. Bazzaz. Tree canopy displacement at forest gap edges. Canadian Journal of Forest

Research, 32(2):247–254, 2002.

C. Muth and F. A. Bazzaz. Tree canopy displacement and neighborhood interactions. Canadian Journal of

Forest Research, 33(7):1323–1330, 2003.

R. Měch and P. Prusinkiewicz. Visual models of plants interacting with their environment. In Proceedings of

SIGGRAPH, pages 397–410, 1996.

B. Neubert, T. Franken, and O. Deussen. Approximate image-based tree modeling using particle flows. ACM

Transactions on Graphics, 26(3):88:1–88:8, 2007.

Ü. Niinemets and S. Fleck. Petiole mechanics, leaf inclination, morphology, and investment in support in

relation to light availability in the canopy of liriodendron tulipifera. Oecologia, 132(1):21–33, 2002.

M. Okabe, S. Owada, and T. Igarashi. Interactive design of botanical trees using freehand sketches and

example-based editing. Computer Graphics Forum, 24(3), 2005.

K. Onishi, N. Marukami, Y. Kitamura, and F. Kishino. Modeling of trees with interactive L-system and 3D

gestures. In Biologically Inspired Approaches to Advanced Information Technology, pages 222–235, 2006.

131

P. Oppenheimer. Real time design and animation of fractal plants and trees. Computer Graphics, 20(4):

55–64, 1986.

W. Pałubicki. A Computational Study of Tree Architecture. PhD thesis, University of Calgary, 2012.

W. Pałubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. Self-organizing tree

models for image synthesis. ACM Transactions on Graphics, 28(3):58:1–58:10, 2009.

S. Pirk, T. Niese, O. Deussen, and B. Neubert. Capturing and animating the morphogenesis of polygonal tree

models. ACM Transactions on Graphics, 31(6):169:1–169:10, 2012a.

S. Pirk, O. Št’ava, J. Kratt, M.A.M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. Plastic trees:

interactive self-adapting botanical tree models. ACM Transactions on Graphics, 31(4):50:1–50:10, 2012b.

C. Pissarro. Apple Tree at Eragny. http://www.the-athenaeum.org, All images in public domain, 1884.

J. Power, A. J. Bernheim-Brush, P. Prusinkiewicz, and D. Salesin. Interactive arrangement of botanical

L-system models. In Proceedings of the ACM Symposium on Interactive 3D Graphics, pages 175–182,

1999.

P. Prusinkiewicz. In search of the right abstraction: the synergy between art, science, and information

technology in the modelling of natural phenomena. In C. Sommerer and L. Mignonneau, editors, Art@

Science, pages 60–68. Springer, Wien, 1998.

P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-Verlag, New York, 1990.

With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

P. Prusinkiewicz, M. James, and R. Měch. Synthetic topiary. In Proceedings of SIGGRAPH, pages 351–358,

1994.

P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of plant development. In G. Rozenberg

and A. Salomaa, editors, Handbook of formal languages, Vol. III: Beyond words, pages 535–597. Springer,

Berlin, 1997.

132

P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The use of positional information in the

modeling of plants. In Proceedings of SIGGRAPH, pages 289–300, 2001.

W. T. Reeves and R. Blau. Approximate and probabilistic algorithms for shading and rendering structured

particle systems. Computer Graphics, 19(3):313–322, 1985.

B. Ripley. The second-order analysis of stationary point processes. Journal of Applied Probability, pages

255–266, 1976.

Y. Rodkaew, P. Chongstitvatana, S. Siripant, and C. Lursinsap. Particle systems for plant modeling. In

B.-G. Hu and M. Jaeger, editors, Plant growth modeling and applications. Proceedings of PMA03, pages

210–217. Tsinghua University Press and Springer, Beijing, 2003.

A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan, and P. Prusinkiewicz. Modeling and

visualization of leaf venation patterns. ACM Transactions on Graphics, 24(3):702–711, 2005.

A. Runions, B. Lane, and P. Prusinkiewicz. Modeling trees with a space colonization algorithm. In

Eurographics Workshop on Natural Phenomena, pages 63–70, 2007.

T. Sachs. Self-organization of tree form: A model for complex social systems. Journal of Theoretical Biology,

230:197–202, 2004.

T. Sachs. How can plants choose the most promising organs? In Communication in Plants, pages 53–63.

Springer Berlin Heidelberg, 2006.

T. Sachs and A. Novoplansky. Tree form: Architectural models do not suffice. Israel Journal of Plant

Sciences, 43:203–212, 1995.

T. Sachs, A. Novoplansky, and D. Cohen. Plants as competing populations of redundant organs. Plant, Cell

& Environment, 16(7):765–770, 1993.

B. Schaudt and R. L. Drysdale. Multiplicatively weighted crystal growth voronoi diagrams. In Proceedings

of the Seventh Annual Symposium on Computational Geometry, pages 214–223. ACM, 1991.

133

M. Schröter, W. Härdtle, and G. von Oheimb. Crown plasticity and neighborhood interactions of European

beech (fagus sylvatica l.) in an old-growth forest. European Journal of Forest Research, 131(3):787–798,

2012.

R. Smelik, T. Tutenel, K. de Kraker, and R. Bidarra. A declarative approach to procedural modeling of virtual

worlds. Computers & Graphics, 35(2):352–363, 2011.

A. R. Smith. Plants, fractals, and formal languages. ACM SIGGRAPH Computer Graphics, 18(3):1–10, 1984.

K. Sorrensen-Cothern, D. Ford, and D. Sprugel. A model of competition incorporating plasticity through

modular foliage and crown development. Ecological Monographs, pages 277–304, 1993.

O. Št’ava, S. Pirk, K. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. Inverse procedural modelling of

trees. In Computer Graphics Forum. Wiley Online Library, 2014.

A. Takenaka. A simulation model of tree architecture development based on growth response to local light

environment. Journal of Plant Research, 107(3):321–330, 1994.

J. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun. Metropolis procedural modeling. ACM

Transactions on Graphics, 30(2):11:1–11:14, 2011.

P. Tan, G. Zeng, J. Wang, S.-B. Kang, and L. Quan. Image-based tree modeling. ACM Transactions on

Graphics, 26:87:1–87:7, 2007.

Y. Thiel, K. Singh, and R. Balakrishnan. Elasticurves: Exploiting stroke dynamics and inertia for the real-time

neatening of sketched 2d curves. In ACM Symposium on User Interface Software and Technology, pages

383–392, 2011.

S. Ulam. On some mathematical properties connected with patterns of growth of figures. Proceedings of

Symposia on Applied Mathematics, 14:215–224, 1962.

K. Umeki. A comparison of crown asymmetry between picea abies and betula maximowicziana. Canadian

Journal of Forest Research, 25(11):1876–1880, 1995.

H. M. Ward. Trees. Volume V: Form and habit. Cambridge University Press, Cambridge, 1909.

134

M. Ward. Xmdvtool: Integrating multiple methods for visualizing multivariate data. In Proceedings of the

Conference on Visualization’94, pages 326–333. IEEE Computer Society Press, 1994.

J. Weber and J. Penn. Creation and rendering of realistic trees. In Proceedings of SIGGRAPH, pages 119–128,

1995.

C. F. H. Werner. Abraham’s Tree Near Hebron. http://www.the-athenaeum.org, All images in public domain,

1862.

J. White. The plant as a metapopulation. Annual Review of Ecology and Systematics, 10(1):109–145, 1979.

J. Wither, F. Boudon, M.-P. Cani, and C. Godin. Structure from silhouettes: A new paradigm for fast

sketch-based design of trees. Computer Graphics Forum, 28(2):541–550, 2009.

L. Xu and D. Mould. A procedural method for irregular tree models. Computers & Graphics, 36(8):

1036–1047, 2012.

M. Zakaria and S. Shukri. A sketch-and-spray interface for modeling trees. In Proceedings of Smart Graphics,

pages 23–35, 2007.

Appendix A

Bending Branches

This chapter presents an adaptation of the mesh deformation method PriMo [Botsch et al.,

2006] to tree skeletons. PriMo represents mesh geometry as a set of rigid prisms connected

by elastic joints. The modeller manipulates this structure by placing positional constraints

on a subset of these prisms. The resulting deformation is determined by minimizing the

elastic energy of the joints. In TreeSketch, prisms correspond to the internodes in the

path between a modeller-selected base internode B and end internode E. Each prism is

represented by its eight vertices. The faces separating a pair of adjacent prisms, Pi and

Pj, are noted f i→ j and f j→i. They are represented by bilinear patches, with the u,v axes

aligned with the Up and Left axes of the HLU coordinate frame of their corresponding

internode. Between these patches resides an elastic joint connecting Pi and Pj (Figure A.1).

135

136

Joints

Prisms

Figure A.1: Representation of branch geometry for the PriMo deformation method. Prisms corre-

spond to internodes, joints correspond to nodes of a path in a tree. The prisms have been stretched

apart for illustration, there are no gaps between prisms in the initial state of the system. Figure from

Longay et al. [2012].

Botsch et al. [2006] defines the energy between adjacent prisms Pi and Pj as the integral

of the squared distances between corresponding points on the faces f i→ j and f j→i:

Ei j =
∫

[0,1]2
‖f i→ j(u,v)−f j→i(u,v)‖2dudv (A.1)

This function approximates the energy incurred by the stretching of ‘fibers’ at the elastic

joint connecting the two prisms. To minimize this energy, I solve for the optimal rotation

Ri and translation ti of each unconstrained prism, which minimizes the weighted sum of

energy functions Ei j, yielding the following equation [Botsch et al., 2006]:

137

min
Ri,ti ∑

j∈Ni

w j

∫

[0,1]2
‖Rif

i→ j(u,v)+ ti −f j→i(u,v)‖2dudv (A.2)

Here Ni represents the set of prisms adjacent to Pi and w j is a weight associated with

Pj. Inspired by Power et al. [1999], I assign a weight to each prism corresponding to its

flexural stiffness. The flexural stiffness of a branch, or its resistance to bending, is defined

as the product of its elastic modulus and the second moment of area. Assuming that all

branches in the tree are made of the same material, the elastic modulus and constants can

be safely ignored. The weight is thus defined as:

wi =
r4

i

li
(A.3)

where ri and li are the radius and the length of the internode respectively. This weight

results in a more natural feel when pulling on branches as thicker branches deform relatively

less than thin branches.

The position and orientation of each prism are computed iteratively for each prism

using the method proposed by Horn [1987]. This technique only considers the neighboring

prisms and thus is referred to as local shape matching. The system of Botsch et al. [2006]

was designed to deform large mesh structures with many prisms. Therefore, they require

a hierarchical shape matching technique in which many iterations of global matching are

followed by this local shape matching. However, branches tend to have a relatively small

number of elements and I found it sufficient to use only local shape matching.

By construction, the global minimum of Equation A.2 is the initial undeformed state.

This facilitates circular editing [Lipp et al., 2011] as moving the selected prisms back to

their initial location undoes the deformation. As noted by Botsch et al. [2006], scaling the

138

radius of the prism geometry provides control over the susceptibility of joints to stretching

and bending (Figure 5.16). Although real tree branches are almost non-stretchable, I found

it convenient to allow for stretching when editing branches. This is particularly useful to

elongate a trunk.

The tree is manipulated by changing the position of the selected internodes with a

multi-touch gesture (Figure 5.17). The end internode can be freely chosen within the

subtree rooted at B, and further internodes can be selected within the path from B to E. As

an axis is deformed, other branches maintain their relative positions and orientations with

respect to their supporting internodes. Bending branches can be used to create a variety of

novel tree forms as shown in Figure 5.18.

Appendix B

Depth Constraints

When investigating artistic depictions of trees it was noticed that crossing of large branches

tended to be avoided (Figure B.1). In the case where large branches do cross, they cross at

nearly right angles. Yet, when taking photographs of trees it is extremely difficult do obtain

such a view. Moreover, photographs of trees are often denser than their artistic counterparts.

Thus, it seems many artists choose to create trees which look visually appealing but are

not sufficiently dense to represent a 3D structure. While not biologically accurate, this

technique produces visually pleasing images.

Figure B.1: Paintings of trees. Large branches are only shown crossing at near right angles. If these

trees were reconstructed in 3D their structure would appear sparse. Left: [Werner, 1862], Right:

[Pissarro, 1884]

139

140

To create these forms, I introduce the concept of depth constraints, where the set of

attraction points is constrained to lie within a modeller controlled depth from a plane

centered at the base of the tree. All points that reside outside this depth are removed

before affecting growth (Figure B.2). I explored pruning those branches which extended

beyond the specified depth as in [Prusinkiewicz et al., 1994], but this resulted in a harsh,

dense structure at the boundary. By restricting locations of attraction points, the tree may

extend slightly outside the constrained depth, but the result is a more natural structure.

Conveniently, trees created using a depth constraint have considerably less geometry than

their fully 3D counterparts which is beneficial for many graphics applications which only

require a single view of the tree.

Figure B.2: Examples of trees grown with a constrained depth. The white plane at the base of the

trees represents the size of the depth constraint.

Appendix C

Details of Tree Appearance

While the form of the tree is mostly conveyed through the path of its branches, many small

details are necessary to produce realistic results. In this chapter I discuss the placement and

orientation of leaves and organs, and the geometry used to represent branches.

C.1 Leaves

Algorithms for modelling trees often focus on creating realistic branch architectures and do

not explicitly address the question of leaf orientation. In the following section I discuss

models for leaf placement and reorientation, which increase the visual appearance of tree

models without relying on a detailed computation of the light environment for individual

leaves.

C.1.1 Placement

The visual appearance of a tree is greatly effected by the density and size of leaves

(Figure C.1). In real trees, a leaf is positioned at the base of each new lateral bud. However,

in an interactive application, constraining the location of leaves to the location of buds is not

desirable as the modeller would need to regenerate the tree with a shorter internode length

to get denser leaves. Therefore, to provide more artistic freedom these two properties are

detached and leaves are positioned on all branches with a width below a modeller-defined

threshold.

141

142

Figure C.1: The effects of leaf density on tree form. Left) Sparse large drooping leaves produce

the feeling of a small structure. Center) Small dense leaves cause the structure to take on a grander

character. Right) Changing the left color and texture dramatically effects its perception.

C.1.2 Orientation

The initial orientation of leaves is defined by a phyllotactic pattern. Through responses

to their environment, leaves are able to assume a more favorable position [Kahlen et al.,

2008]. Some plants, primarily trees that are often exposed to the full radiation of the sun,

orient their leaves in a direction that is more parallel to the sun’s rays [Niinemets and Fleck,

2002]. This helps to control leaf temperature and, as more light propagates onto the crown,

it also enhances the radiation received by the lower layers of foliage, thus increasing the

photosynthetic ability of the tree as a whole [Millen and Clendon, 1979]. On the other

hand, under-story plants, which have limited light exposure, tend to orient their leaves as

horizontally as possible [Niinemets and Fleck, 2002].

Mechanisms of Leaf Orientation

Leaf movement in either the horizontal or vertical directions can be controlled through a

specialized motor organ, the pulvinus, or through differential changes in cell volume on

143

opposite sides of the petiole. In addition, although the mechanics are less evident, twisting

along the petiole can also occur. For instance, in a pea plant, regardless of the orientation of

the stem, flowers produced will always be oriented in an upwards direction. At times, the

petiole is required to perform a twist of 180◦ to obtain the desired orientation [Coen, 1999].

Model

A petiole is represented as an inextensible rod of length S, parameterized by the arc-length

distance from the point of petiole attachment to the branch to a given point P(s). Each

point P(s) of the petiole is associated with a local frame of reference defined by mutually

orthogonal unit vectors H , L and U (heading, left and up). Assuming that the vector H is

tangent to the petiole, and the vectors L and U are aligned with the principal axes of the

petiole cross-section. At the junction between the petiole and leaf blade, these vectors are

parallel and perpendicular to the leaf blade, respectively (Figure C.2).

Figure C.2: The result of leaf orientation on the petiole. The frame associated with the leaf petiole,

H (Red) L (Green) U (Blue).

144

In general, two successive frames of reference separated by an infinitesimal rod segment

of length ds are rotated with respect to each other. This infinitesimal rotation is represented

as a vector dφ . The vector Ω= dφ
ds calculated at point P(s) is the rate of petiole reorientation

at P(s). Considering the modes of leaf movement, the rate of rotation Ω is decomposed

into components: turning around the U axis, ΩU = Ω ·U , bending around the L axis,

ΩL = Ω ·L, and twisting around the H axis, ΩH = Ω ·H . These component rates of

rotation are calculated as functions of the difference between current and target orientation.

Considering a rotation around vector H aimed at aligning vector U with a given tropism

vector T . If T points upward, this rotation will twist the petiole such that the leaf blade

will be brought closer to a horizontal position. The rate of twist at point P(s) is modelled

as if T was a force acting on the arm U , creating a torque M =U ×T . The component

of this torque acting along the axis H has the magnitude H ·M = H · (U × T) =

(H ×U) ·T = −L ·T . The rate of rotation ΩH is assumed to be proportional to this

moment, ΩH =−eHL ·T , where eH is a parameter characterizing the susceptibility of the

petiole to twisting. Analogous reasoning leads to the formulae that capture other rotations,

ΩL = eLH ·T and ΩU = eUL · (T × (H×T)).

For computational purposes, a petiole is approximated as a sequence of segments of

length ∆s. Composing the component rotations described above specifies reorientation at

each node. The reorientation process then progresses through the petiole in the proximal to

distal order, defining the shape of the petiole and the position and orientation of the leaf at

its end. Figure C.3 shows the results of leaf orientation on a tree structure.

145

Figure C.3: Leaf orientation

C.2 Fruit

A model for determining whether or not a bud should flower was proposed by Pałubicki

[2012]. In this model, if the vigor of a bud is above a threshold it will produce a flower.

Since flowers produce fruit if fertilized, a similar technique is utilized here to compute the

placement of fruit within the tree crown. Instead of using the vigor of a bud to determine

its fate, the light exposure of the bud is used directly. This provides more intuitive control

over the fruit density since light exposure is not parameterized while the vigor of the bud is

effected by many parameters such as gravimorphism and apical dominance.

146

Only buds that reside on thin branches of the tree are considered for fruit placement. To

decide which of these buds will be fruit-bearing, a probability is assigned to each bud using

the following equation:

p = rL2 0 ≤ L,r ≤ 1 (C.1)

L represents the light exposure of the bud (Chapter 4) and the exponent helps to

accentuate its effect. r is a pseudo-random number computed for each bud by selecting

from a precomputed table of random numbers using a position-dependent hash function.

The table index is computed using the bitwise-XOR function to combine the components of

the 3D bud position. All buds that have a probability above a modeller-defined threshold will

produce fruit at their location. Fruit models are oriented in the frame of their supporting bud

with a modeller-defined parameter Droop used to rotate the frame downwards. Figure C.4

shows the more natural effect obtained from using light exposure to control probability

instead of using a purely random probability.

147

Figure C.4: Comparison of flower placement methods. Left) Buds with more light exposure have a

higher probability of bearing a fruit. Right) Similar fruit density where probability of bearing a fruit

is random.

C.3 Branches

Branch geometry is represented using generalized cylinders, with each cylinder segment

corresponding to an internode. A bark texture is tiled along the path of branches and

slightly rotated at each segment to avoid repetitive artifacts. To reduce polygon count on

thin branches, the number of contour sides is dynamically adjusted and determined by the

width at the base of each branch (Figure C.5). The thinnest branches in the tree, of width

de, are represented with 3 sided cylinders. For thicker branches of width d, the number of

sides C is computed with the following formula:

C =
3dn

de
(C.2)

When n = 1 the circumference represented by each face is constant. The parameter

n > 1 allows thicker branches to be represented by less polygons.

148

Figure C.5: Figure showing the dynamic change in contour sides determined by the width of

branches. Labels represent the number of contour sides used to represent the underlying branch.

The tree generating algorithm proposed in Chapter 4 associates branches with the

growth path of a single apex. When a lateral bud grows, it creates a new branch which

becomes a child of its supporting axis. This branch topology, however, does not always

correspond to the visual topology of the tree structure. Visually, the topology of a tree

structure can be defined by recursively associating a branch to the thickest path from its

base to a tip. All branches attached become its children. Figure C.6 shows a branching

structure where these two definitions of branch topology are not equivalent.

149

Figure C.6: An example where the thickest path is actually composed of many orders of branching.

(Image from http://home.cc.umanitoba.ca/ remphre/crooked.shtml)

If the cylinders representing branch geometry are created with the topology defined by

the path of each apex, cracks appear at branching points where lateral branches dominate

their parent axis (Figure C.7). Therefore, when creating branch geometry, I reorganize

branching structure following the thickest path topology, greatly increasing the resulting

mesh quality.

Figure C.7: Cracks in branch geometry. Left) Textured tree with cracks. Center) Colors show the

topological structure of the tree. Cracks appear when a lateral branch dominates its parent axis.

Right) Cracks in geometry are fixed using the proposed thickest path topology.

Appendix D

Modelling a Tree with TreeSketch

This chapter presents a sample tree design work flow. TreeSketch allows the modeller to

create trees by freely interweaving different modes of operation. This work flow shows one

possible method to create a tree, however, the modeller is not restricted to these steps. In

this case, the modeller uses a reference image to motivate the design process (Figure D.1).

Figure D.1: Photograph of a real birch tree used as a reference image to model the tree in Figure D.2.

Image from: https///flic.kr/p/jHcH

150

151

Starting from a seedling, the paths of main branches are specified by sketching (Fig-

ure D.2 A). Additional branches, filling out the crown, are then introduced using the

autonomous growth (Figure D.2 B).

Figure D.2: The process of creating a birch tree. Details explained in the text.

Next, the modeller changes the growth parameters to produce long downwards shoots

and grows the structure further (Figure D.3 C). Finally, the modeller fills out the base of the

tree by brushing, and adjusts the width of branches and bark texture to better match the

reference image (Figure D.3 D).

152

Figure D.3: The process of creating a birch tree. Details explained in the text.

While the resulting tree does not exactly match the reference photograph, it faithfully

captures its character. A closer match could be obtained by bending individual branches.

At this stage the tree can be exported for incorporation into a scene.

A detailed instruction manual explaining the interface and parameters is distributed

with TreeSketch. Video tutorials have also been created to explain process of creating a

tree and demo key features (https://vimeo.com/user7899797/videos).

Appendix E

Interface Panels of TreeSketch

Figure E.1: TreeSketch architectural panel

153

154

Figure E.2: TreeSketch leaves panel with showing the rendering tab.

155

Figure E.3: TreeSketch leaves panel with showing the placement tab.

156

Figure E.4: TreeSketch branches panel

157

Figure E.5: TreeSketch fruit and buds panel

158

Figure E.6: TreeSketch background selection panel

159

Figure E.7: TreeSketch environment panel

160

Figure E.8: The tree library where saved trees can be viewed, reloaded for further manipulation and

exported. The parameters of saved trees can also be loaded, acting as growth or rendering presets

	Approval Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Methodology
	Contributions
	Organization

	Tree Morphology
	Key Discriminates of Form
	Developmental Paradigms

	Previous Work
	Procedural Tree Modelling
	Recursive and Hierarchical Models
	Self-Organizing Trees

	Procedural Modelling of Landscapes

	Generative Algorithms
	Tree Architecture
	Previous Generative Algorithms
	Space Colonization
	Competition for Light

	Unified Generative Algorithm
	Competition for Space
	Shoot Growth
	Parameter Space Exploration

	Diversifying Form
	Branch Straightness
	Gravitropism
	Gravimorphism
	Deflection Angle

	Discussion

	TreeSketch
	Interface
	Manipulating Growth Parameters
	Side Bar

	Artistically Driven Tree Growth
	Brushing and Sketching
	Lasso
	Sketch-based Tropisms
	Selective Growth

	Manipulating Tree Form
	Branch Bending
	Width Constraints
	Pruning

	An Augmented Reality Interface
	Scene Tracking
	Interface
	Interaction with the Environment
	Discussion and Limitations

	Model Visualization
	Results
	Discussion

	Trees To Forests
	Algorithm Overview
	Species Definition
	Terrain Specification
	Tree Distribution
	The Deformation-Kernel Method
	Interface

	The Neighborhood Effect
	Space Constraints
	Neighbourhood Asymmmetry

	Tree Growth
	Editing Trees
	Analysis
	Results
	Speed of Simulation

	Conclusion
	Future Work

	Bibliography
	Bending Branches
	Depth Constraints
	Details of Tree Appearance
	Leaves
	Placement
	Orientation

	Fruit
	Branches

	Modelling a Tree with TreeSketch
	Interface Panels of TreeSketch

