Since their inception over forty years ago, L-systems have proven to be a useful conceptual and programming framework for modeling the development of plants at different levels of abstraction and different spatial scales. Formally, L-systems offer a means of defining cell complexes with changing topology and geometry. Associated with these complexes are self-configuring systems of equations that represent functional aspects of the models. The close coupling of topology, geometry and computation constitutes a computing paradigm inspired by nature, termed developmental computing. We analyze distinctive features of this paradigm within and outside the realm of biological models.
Download PDF here (380 kb), or download from the publisher's site.