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Abstract

Artificial neural networks are often used to identify
features of crop plants. However, training their models
requires many annotated images, which can be expensive
and time-consuming to acquire. Procedural models of
plants, such as those developed with Lindenmayer-systems
(L-systems) can be used to create visually realistic images,
where annotations are implicitly known. These synthetic
images can either augment or be used on their own
instead of using real images in training neural networks
for phenotyping tasks. The objectives of this paper are
two fold. Firstly, we explore the degree to which realism
in the synthetic images improves prediction. Secondly,
we systematically vary amounts of real images used for
training in both maize and canola to better understand
situations where only synthetic images generated from
L-systems can accurately predict phenotypic properties on
real images. We achieved a mean absolute error (MAE)
of 1.05 in predicting leaf count in maize and of 1.59 in
predicting inflorescence branch count in canola using only
synthetic images with U-Net. Furthermore, predictions
made with only synthetic images as training data were
improved by almost a ten-fold factor (in terms of MAE) by
carefully calibrating the procedural model to real images.

1. Introduction

The quality and quantity of agricultural outputs depends
on many factors such as crop genotype, disease,
growth patterns, nutritional deficiency, and environmental
conditions [23, 47]. The assessment and determination of
plant growth, morphology, function, composition, disease
detection, or any phenotype, is collectively called plant
phenotyping. Many of these factors are evident from
consistent monitoring, which has been found to be crucial
data towards helping with the successful cultivation of new
crops. This has traditionally been done for massive numbers

of plants in a manual fashion by plant breeders, however this
is both time-consuming and often overly reliant on intuition
[15]. The possibility of using automated high-throughput
phenotyping has long been recognized as an important step
forward [49], and is now in the initial stages of being used
to help cultivate new crop varieties [8, 45].

Image-based plant phenotyping is gaining in popularity
as a method to automatically extract useful information
from plant images [48] and to identify phenotypic traits
throughout a plant’s life [11], with machine learning being
an increasingly useful approach to analyze the massive
volumes of data generated by phenotyping platforms.
Artificial neural networks (ANNs) and deep learning are
providing excellent results on many data analysis and
image analysis tasks [12], and have successfully been
used in image classification, multi-instance detection, and
segmentation [25]. ANNs have been used for certain
complex image-based plant phenotyping tasks, such as
leaf counting, age estimation, mutant classification [52],
plant disease detection and diagnosis from images [34],
the classification of fruits and other organs [40], and
pixel-wise localization of root and shoot tips [41]. A
comprehensive summary of deep learning algorithms for
identification, regression, and prediction of plant stress
phenotypes was presented by Singh et al. 2018 [46]. Some
other plant phenotyping tasks where deep learning has been
successfully used are counting plant stalks and stalk width
[6], rice panicle segmentation [56], cotton bloom detection
[57], wheat spike detection [19], maize tassel counting [30],
and leaf counting in rosette plants [13, 17, 51]. Infected
leaves of maize plants were identified by simultaneously
localising wheat spikes and spikelets, demonstrating the
power of multi-task deep architectures [42].

One of the most popular and powerful networks for deep
learning is the convolutional neural network (CNN). The
CNN has layers of neurons representing image pixels, and
connections between layers that perform linear filtering.
CNNs are capable of learning highly discriminative features
during the training phase, and can classify plants without
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needing segmentation, or feature extraction. Many works
in the literature provide examples of different plants
where important phenotypic traits have been extracted with
CNNs; e.g. automatic joint feature and classifier learning
for temporal phenotype/genotype classification [37], crop
lodging detection [31], and leaf counting after segmenting
rosette leaves with a deconvolutional network [2]. Lee et
al. 2015 [26] proposed the Deep Plant framework that uses
CNNs to learn feature representations from leaves using
44 different plant species. Deep Plant Phenomics (DPP)
[52] has pre-defined trained CNNs built using TensorFlow
for several common phenotyping tasks involving object
detection, object counting, and semantic segmentation.

There are different popular networks that have been built
using CNNs. U-Net [44] is a predefined model architecture
that is widely used for segmentation and regression tasks.
U-Net has been used extensively for biomedical image
segmentation [4, 20, 21, 44, 58]. For crops, Ullah et
al. [53] developed a segmentation model based on U-Net
to segment canola plants from weeds and background in
canola field images. Najafian et al. [36] customized U-Net
for wheat head segmentation. Li et al. [27] used U-Net to
extract tobacco plants from UAV images. Naik et al. [35]
developed a semantic segmentation method with U-Net for
weed segmentation. Ullah et al. [54] used U-Net to segment
crop rows. U-Net has been modified for counting tasks from
the obtained segmentations, e.g. Jeong et al. [22] applied a
3D cell-counting method using U-Net to identify initial seed
cell numbers, and Bhagat et al. [7] used a modified U-Net
model for plant leaf segmentation and counting.

Supervised machine learning methods require a training
set where correct labels for the phenotype of interest are
known, and the model is trained on the labelled dataset.
A major challenge for deep learning applications for plant
phenotyping tasks is the availability of a large quantity of
annotated data for training models. Unfortunately, plant
image datasets of the desired species, environment, scale,
and size, labelled with the phenotypic properties of interest,
are likely not available, and they might be difficult to
obtain due to the large cost associated with collecting and
annotating this type of data [51]. Hence, a motivation arises
for using an alternative source of training data.

Computational systems for modelling and simulating
plants have been an important area of research. One
of the most common types of models used for this
purpose are Lindenmayer systems (L-systems), introduced
by Lindenmayer in 1968 [28] as a formalism for simulating
the development of multicellular organisms in terms of
division, growth, and death of individual cells. They can be
used as a mathematical theory of plant development and for
creating visually rich simulations of plants [29]. L-systems
are a formal grammar system, with a set of rewriting rules
that are applied in parallel to all letters of a string, which

then iterates to the next string. Each string can describe an
image and, a sequence of strings can describe a sequence of
images for a temporal process. L-systems can have different
plant geometries [18, 29, 38], environmental factors [3, 55],
and mechanistic controls [38, 43].

The idea of using synthetic images from these
simulations to train ANNs for the purpose of identifying
phenotypic properties was initially explored by Ubbens et
al. [51]. This idea overcomes many of the obstacles of
manual annotations. If the phenotype of interest is built
into the L-system model, then the correct annotations are
automatically known. For the purposes of identifying plant
organs and architecture, they can be precisely incorporated
into an L-system model [29, 32]. In comparison to the cost
of real data collection, and the precise labelling of them,
it is easier to obtain synthetic data from these procedural
models of plants. Furthermore, once a model has been
created for a species, it is possible to generate arbitrarily
large synthetic images datasets at no additional expense. In
[51], it was shown that synthetic images from an L-system
can be used to augment datasets of real plant images or can
even be used alone as a source of training data. Mixing
real and synthetic datasets led to better prediction of leaf
count in Arabidopsis thaliana. A similar approach was
also used with maize to predict leaf count [33] but using
an existing procedural model of maize within Plant Factory
Exporter [1] instead of an L-system to create synthetic
images. In their work, results were mixed and there were
cases (depending on the number of synthetic images used)
where adding synthetic images to a real dataset for training
improved prediction versus only training on real images, but
often adding synthetic images did not help.

Cieslak et al. [10] demonstrated an approach for creating
L-system models to match a set of images and their
background, using maize and canola as a case study. They
also showed how to calibrate these models so they can
accurately capture the growth and visual characteristics in
order to generate usable synthetic images. Calibrating these
models is an important step for making realistic-looking
synthetic images. Indeed, one might expect that the more
realistic the synthetic images look, the more replaceable
they are for real images for training. But the degree to
which this is true is not yet understood. Their approach also
demonstrates that it is particularly easy to take an existing
L-system model and adapt it to a new environment, which
is another big potential advantage of using synthetic images
over manually labelling in each new environment.

Here, we continue the study of using synthetic images
for training ANNs. We use two complex plants, maize and
canola, and start with the same L-systems created in [10].

For maize, we systematically vary different amounts of
real images combined together with synthetic images from
L-system simulations, and measure success at leaf counting
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on real images using both mean absolute error (mean
absolute value of correct number minus predicted number)
and Pearson’s correlation. We find that using synthetic
images in addition to real images does not improve success.
However, using synthetic images has a large benefit vs. a
small number of real images, and the benefit decreasing
as the number of real images increases. The MAE when
trained on synthetic images is 1.59 times higher than the
MAE when trained on real images.

The next experiment involves canola, which is more
complex in our dataset with much larger numbers of
occluded leaves than in maize. We try to predict the number
of inflorescence branches (flowering branches). We again
find that in most situations real annotated images worked
better for training than a combination of real and synthetic
images. ANNs trained with only synthetic images and no
real images work well at predicting inflorescence branch
numbers in real images. We again found that MAE when
trained on synthetic images is 1.5 times higher than MAE
trained on real images. While visually these synthetic
images look similar to the real plant images, refining
and calibrating the L-system for the purposes of creating
even more realistic synthetic images had an almost 10-fold
decrease in MAE. The ANN prediction results were used to
help improve the L-system calibration process, which were
in-turn used to create even more accurate L-systems and
synthetic images. Hence, this same process can either be
used to make phenotype predictions from synthetic images,
or to improve the L-systems themselves, and it can be seen
as two different sides of the same coin.

To note, unlike past works, on using synthetic data for
phenotype prediction in crops, validation datasets were used
to avoid overfitting, which has an impact on whether both
real and synthetic combined data provided better results
than only real images in our tests.

2. Dataset
Synthetic images were generated starting from the maize
and canola models implemented in [10] that followed an
interactive method for creating and calibrating L-systems.

Maize dataset: Real images of maize were obtained from
an open dataset [39] called UNL-CPPD-I of 700 total
images taken using the visible light camera at the UNL
Lemnatec Scanalyzer 3D High-Throughput Phenotyping
Facility [9]. Images were taken of 13 maize plants
with different genotypes during 27 consecutive days of
development during the vegetative stage starting 2 days
after seed planting. Images were taken from two different
side views separated by 90 degrees, which we call the
view-0 image and view-90 image. The dataset also contains
ground-truth annotations where leaves that are visible in the
images are marked (leaves that were completely occluded in

the images were not annotated). This is evident because the
number of annotated leaves from the two views can differ
substantially. Additional details regarding the imaging
setup, dataset organization, and genotypes are in [9].

Maize follows an alternate phyllotaxy with each leaf
developing on the opposite side of the previous leaf, and
therefore the leaves form a planar-like surface. As the
view-0 image was not always orthogonal to this plane,
a pre-processing step was used to determine the best
view. The same procedure was performed as described in
[5]. Briefly, background subtraction was used to extract
the foreground to remove the fixed background of the
phenotyping system, Otsu thresholding was used on the
grayscale image of the foreground image to obtain the
segmented image, and another thresholding was performed
by calculating the excess green index of the image. At this
point, for each plant and each day, the convex hulls of the
binarized plant images of both views were calculated, and
the one with the largest convex hull by area was selected
as the view for that plant/day. Only the resulting images
chosen via this procedure were used for all subsequent
analyses. Lastly, only images with at least one leaf were
kept, and this dataset is known as the real maize dataset,
denoted by MR. In total, this dataset contains 328 images.

In total, the development of 50 plants was simulated
from the maize L-system where they were calibrated to use
the same timeline as the real plants. However, only a single
view was generated for each day and plant, taken directly
orthogonal to the leaves. In total, this created 1500 images.
Ground-truth annotations for the number of leaves were
automatically determined from the model. Furthermore,
these annotations were calibrated to the real images in that
it only counted a leaf if it was not occluded (algorithmically
determined), and if it was larger than a threshold chosen
so that the leaf would be visible by a human. Lastly, only
images with at least one leaf were kept, and the resulting
dataset is known as the synthetic dataset. This synthetic
dataset contained 1350 images and is referred to as MS . A
real image on day 25 from 0 degrees and a synthetic image
on the same day is in Figures 1b and 1a.

(a) (b)

Figure 1. (a) A synthetic maize image on day 25 generated from
maize L-system. (b) A real maize plant image on day 25 from 0
degree view.
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Canola dataset: Real images of Brassica napus (canola)
are available in a dataset called P2IRC Flagship 1 Data that
contains images of 50 different spring type genotypes, with
six replicates of each, grown under two treatment conditions
for over 38 days at the LemnaTec Scanalyzer 3D facility at
University of Nebraska, Lincoln. The dataset and its details
can be found in [14]. For the inflorescence branch count
predictions we selected only top view images and those that
had flowers. Also, while this dataset was a case/control
dataset (meaning some plants were watered sufficiently, and
some were not to study the affect of drought/stress), the
‘case’ images had technical issues [14]. Since the control
images were enough for the purposes of this work, we
only use the control images here. In total, the real dataset
contained 385 images, referred to as CR. The inflorescent
branch count annotations were scored manually (details
about manual scoring in [14]).

The development of 200 plants was simulated from
the canola L-system in [10] using the same timeline as
the real plants. Only flowering images were considered.
As canola is a more complex plant to model in
terms of leaf architecture and in terms of determining
inflorescence branches than in maize, calibrating the model
was challenging. Ultimately, we created 5 different
synthetic datasets of canola called CS

1 , C
S
2 , C

S
3 , C

S
4 , C

S
5 ,

each contained 1200 images generated from five different
variants of the canola plant model. These variants were
obtained using a refinement procedure as described below.
Figure 2 shows a synthetic image of canola from CS

4 at
approximately the same time point together with a real
image. This is similar to Klein et al. [24] who used synthetic
images to train a classifier to distinguish between healthy
and infected tomato plants, where they iteratively generated
synthetic images to obtain optimal performance.

(a) (b)

Figure 2. (a) A synthetic image of a canola plant generated from
CS

4 , at the same time point. (b) A real canola plant image at
approximately the same time.

3. Improving Realism in Synthetic Images
Before using ANNs trained with synthetic images to detect
phenotype (explained in Section 4) in this section, we
describe a similar preliminary methodology and its results.

The goal is to iteratively improve the realism of L-system
models and the visual accuracy of its synthetic images by
examining how close the mean absolute loss (MAE) is with
a CNN trained on its synthetic images and tested on real
images vs. one trained with real images and tested on real
images. If there is a large discrepancy, then we can visually
inspect the images and calibrate the model as done in [10].
We implement a simple CNN inspired from [51]. As canola
has a more complex structure than maize, we explain the
process with canola. A similar experiment was conducted
with Maize, however the results showed that the maize
L-system was already well calibrated and results did not
improve. Hence, no refinement phase was required.

3.1. Methodology
An inflorescence branch counting procedure and
experiment was performed on canola using the Deep Plant
Phenomics (DPP) platform [52] using a CNN that was
created and trained according to [50]. The model structure
contained six convolutional layers with filter dimensions
(5, 5, 3, 32), (5, 5, 32, 64), (5, 5, 32, 64), (3, 3, 64, 64),
(3, 3, 64, 64), and (3, 3, 128, 128), stride length 1, and
the tanh activation function. Each convolutional layer
was followed by a pooling layer with kernel size 3 and
stride length 2. The model parameters and training
hyper-parameters were: batch size 4, image dimensions
256×256, learning rate 0.0001, and number of epochs 500.
A data augmentation procedure was done that consisted of
cropping, flipping, and adjusting brightness/contrast. The
testing network had an additional output layer. We did not
further investigate other architectures as this experiment is
to only improve the level of realism in synthetic images,
and to better calibrate the L-system.

First only real images from all 39 distinct genotypes (285
images) were used for training. Testing was performed
using 100 randomly selected real images from all images
not used for training. Evaluation was measured by
comparing the number of real leaves to the number of
predicted leaves using MAE, standard deviation, and the
square of Pearson’s correlation coefficient (r2). Next, we
trained with only synthetic images and real images for
testing. This entire procedure was repeated five additional
times by using each of CS

1 , C
S
2 , C

S
3 , C

S
4 , C

S
5 respectively.

3.2. Results
Identifying the best synthetic image dataset of canola
was done by calculating the inflorescence branch count
predictions for canola. Table 1 shows the results when
testing on 100 real images for each of CS

1 , C
S
2 , C

S
3 , C

S
4 , C

S
5 .

The refinement of these datasets from one to the next
is described in Section 3.3. The MAE improved when
transitioning the synthetic training images from CS

1 to CS
4

from 12.48 to 1.45 which is 8.6 times smaller.
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Real images for
training

Synthetic CS
1 for

training
Synthetic CS

2 for
training

Synthetic CS
3 for

training
Synthetic CS

4 for
training

Synthetic CS
5 for

training
0.7 (0.87, 0.95) 12.48 (8.78, -7.22) 16.61 (5.63, -9.86) 1.98 (2.25, 0.68) 1.45 (1.76, 0.81) 5.6 (3.63, -0.57)

Table 1. Each table cell contains the MAE (respectively standard deviation and r2) for the inflorescence branch counting task in canola.
This inflorescence branch counting task results are a primary investigation to identify the best synthetic dataset only. Training was done on
real images as indexed in the first column, and column 2 through 6 were trained by synthetic data from CS

1 , C
S
2 , C

S
3 , C

S
4 , C

S
5 respectively

and tested on 100 real images.

Figure 3 shows some synthetic images of canola from the
same day generated from four different procedural models
of canola plants (Figure 3a from CS

1 , 3b from CS
2 , 3c from

CS
3 , and 3d from CS

4 ).

(a) (b) (c)

(d) (e) (f)

Figure 3. Synthetic images of canola on the same day generated
from four different procedural models of canola plants (a – d) and
two flowering images of same time point from different models.
(a) CS

1 (b) CS
2 (c) CS

3 (d) CS
4 (e) CS

1 (f) CS
4 .

3.3. Refinement of Canola L-systems
Poor prediction results in earlier L-system variants and
from visual inspection between real and synthetic images
of canola helped to create refined L-system variants.
Leaf shape and curvature, inflorescence branches, and
flower structures were adjusted using L-system parameters
to generate more realistic looking canola leaves, which
substantially helped in improving the deep learning results.
This observation is evident from Figure 3. A closer look
at these figures shows how leaf shape and curvature were
adjusted. Another scenario is shown in Figure 3e and
3f, where the inflorescence branches and flowers were
improved from the first to the fourth model.

Specifically, the first L-system was the canola model
from [10] (modified to count inflorescence branch
numbers). The second was created by changing to
the branch vigour parameter with the mean value and
standard deviation being increased for greater variability
of the feature in the synthetic images. This small change
to the branching parameter made a difference to plant
morphology. From the second to third L-system, the canola

model parameters were changed to generate a distribution
of inflorescence branch numbers that better reflect the
real dataset. Additionally, the mean value and standard
deviation were made slightly larger to decrease the number
of lateral branches, and to have better control over the apex
behaviour.

From the third to fourth L-system, there were a number
of adjustments. The means and standard deviations of
growth, branching, and leaf parameters were changed. The
user-defined functions for growth of all organs (e.g., leaves
and internodes) were stretched (so organs grow over a
longer period). The function used to determine leaf width
was changed to increase the leaf width. The leaf texture
was also changed from a simple green color with a white
midvein to an image-based color (i.e., the leaf texture was
extracted from one of the real canola images). Hence, the
fourth model was made substantially more realistic and was
more accurately calibrated to the real images, compared
to the first or second model. For the last L-system, few
changes were made, such as to petal color, although that
did not improve prediction.

Hence, the rest of the paper uses CS
4 for synthetic canola

images.

4. Phenotyping Methodology
This section describes the phenotype prediction in both
maize and canola.

4.1. Leaf counting task in maize
A leaf counting procedure and experiment on maize was
performed using the predefined network U-NET with the
DPP platform [52]. The model parameters and training
hyper-parameters were: batch size 4, image dimensions
256 × 256, learning rate 0.001. The number of epochs
was chosen from the training and validation loss curve
to avoid overfitting. A data augmentation procedure was
done that consisted of cropping, flipping, and adjusting
brightness/contrast. In all of the studies, 10% of the training
data was used as validation data.

Two sets of experiments were conducted for leaf
counting with maize. In the first set, only real images
were used for training. As MR consisted of 13 plants
with one image per day across 27 days, for each i from
1 to 8, training was done by randomly sampling without
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replacement i of the 13 plants, and then using all of the
images of those i plants for training. This was done in
contrast to training with a randomly selected subset of
images from the entire real image set, as it could be easier
for an experimenter to create ground truth annotations for a
small number of plants over time than to find and create
ground truth annotations for a large number of different
plants and randomly selected time points. For each, 5 of the
remaining real plants were used for testing in two ways, first
using 100 randomly selected images, and second using all
remaining images. Evaluation was measured by comparing
the number of real leaves to the number of predicted leaves
using MAE, standard deviation, and the square of Pearson’s
correlation coefficient. In this second set of experiments,
the procedure above was repeated by using the synthetic
images for training but using real images for testing.

4.2. Inflorescence branch counting task in canola
A similar experiment was performed on canola for
inflorescence branch count. The U-Net model and
parameters were the same as described above in Section
4.1 for maize. As there are 39 distinct genotypes, we use
images from i genotypes, in increments of 3 for training
(again, using all images from each selected genotype). For
example, the first training set has images of flowering plants
from 3 genotypes, and the next training set has images of
flowering from 6 genotypes, and so on. Testing was again
done both using 100 randomly selected real images and with
all remaining real images, and evaluation was done between
number of real and predicted inflorescent branch numbers
using MAE and standard deviation.

5. Phenotyping Results
The results regarding prediction of maize leaf count are
in Table 2. Of note is the first row only synthetic images
for training but testing on real data. Finally, we calculated
the Root Mean Squared Error (RMSE) while training with
all real images, and tested on 100 real maize images, and
obtained the value of 1.2. This value increased to 1.61 while
the training was done on all the synthetic images.

Inflorescence branch count predictions for canola were
calculated on the best synthetic canola dataset CS

4 with
U-Net. Table 3 shows the results, with the first row showing
results for training on synthetic but testing on real data.

6. Discussion
As has been found consistently in the literature (e.g. [16])
training with real images performed better than training
with synthetic images. Hence, the focus is on seeing how
close prediction can be when training on synthetic images
vs. real images, depending on the number of real images (or
real plants over time).

For maize, training with only synthetic images gives
better results than training with 2 real plants with 51 images.
The MAE for training with 2 real maize plants or less is
at least 1.19, whereas synthetic images only improves it to
1.05. The MAE when trained with synthetic images is quite
low at, 1.05 vs. 0.66 when trained on real images (testing on
100 real images) respectively. It should be noted that it was
relatively easy to produce visually realistic synthetic images
of maize due to its simpler architecture, and indeed using
these synthetic images was very good at leaf prediction.
The difference in MAE between training with all synthetic
versus training with all real is only 0.39.

In maize, while training with all real images, the RMSE
was 1.2, and it increased to 1.61 while training on all
synthetic images. In contrast, in [33] the RMSE obtained
after training 720 real images was 1.33, and their RMSE for
training with synthetic images was ≥ 2. While their real
images of maize were taken at the same imaging facility,
we caution against any firm conclusions as their real images
were different and included up until 66 days after planting,
versus 29 days in our dataset which could affect predictions.
However, their often worse prediction results when using
synthetic images were likely caused by less realistic
synthetic images. Indeed, they indicated that despite
maize following alternating phyllotaxy, their procedurally
generated images had successive leaves that emerged from
the stalk at random angles [33]. Our L-system was built
to properly follow alternating phyllotaxy. This also shows
the importance of biological realism in creating synthetic
images. Figure 4 shows distributions of relative leaf count
difference histograms for training on all real (4a, blue), and
training on all synthetic (4a, orange). In addition, Figure 4
plots real leaf count versus predicted count, which shows
the frequency of the data points (4b for training on all real,
and 4c for training on all synthetic).

For canola, there were later stage images with more
overlapping and occluded components with flowering
images. In addition, canola has a more a complex branching
pattern, so the ANN has to distinguish different orders of
branches. The fourth L-system variant showed by far the
most promising results. For canola, the MAE for training
with only synthetic images gives better results than training
with 3 genotypes of 9 plants and 32 images (1.59 and 2.17
respectively). Similarly to maize, the results with synthetic
training only, vs. trained on all real images is quite close;
1.59 vs. 1.06 (testing on 100 fixed real images) respectively.
There are however several points of interest. Figure 5
presents the distribution of relative count difference for
inflorescence branch count in canola, while testing on 100
real canola images and trained on all the remaining real
images (5a, blue), and all the synthetic images (5a, orange).
Figures 5b and 5c plots real inflorescence branch count
versus predicted count for training on all real images and
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Numbers of real plants used in Training (number of real
images)

MAE (Absolute Loss Standard
Deviation, r2), tested with remaining
real images

MAE (Absolute Loss Standard
Deviation, r2), tested with 100 real
images

Synthetic images used for training; 1350 0.82 (0.64, 0.77) 1.05 (0.66, 0.63)
1 real plant (26) 1.21 (0.84, 0.54) 1.44 (0.92, 0.31)
2 real plant (51) 0.94 (0.71, 0.69) 1.19 (0.71, 0.54)
3 real plant (77) 0.55 (0.64, 0.83) 0.67 (0.73, 0.76)
4 real plant (103) 0.75 (0.77, 0.74) 0.74 (0.76, 0.73)
5 real plant (126) 0.96 (0.82, 0.65) 1.04 (0.82, 0.58)
6 real plant (150) 0.87 (0.92, 0.66) 0.79 (0.77, 0.70)
7 real plant (175) 0.71 (0.66, 0.79) 0.7 (0.65, 0.78)
8 real plant (201) 0.65 (0.64, 0.84) 0.66 (0.65, 0.86)

Table 2. The MAE (respectively standard deviation, r2) of leaf number prediction in maize appears in each table cell. The first column
indexes the number of real plants (total number of images in parentheses) used for training. Results when testing with all remaining images
and 100 real images are in the second and third column respectively.

Numbers of real plant genotypes (Number of real plants,
Number of real images) used in Training

MAE (Absolute Loss Standard
Deviation, r2), tested with remaining
real images

MAE (Absolute Loss Standard
Deviation, r2), tested with 100 real
images

Synthetic images used for training; 1200 1.68 (1.96, 0.84) 1.59 (2.05, 0.76)
3 genotypes (9, 32) 2.30 (2.84, 0.65) 2.17 (2.61, 0.59)
6 genotypes (17, 63) 1.05 (1.66, 0.89) 0.78 (0.93, 0.94)
9 genotypes (26, 80) 1.14 (1.90, 0.87) 0.9 (1.01, 0.93)
12 genotypes (34, 101) 1.15 (2.19, 0.84) 0.8 (0.97, 0.94)
15 genotypes (43, 123) 1.15 (2.04, 0.86) 1.18 (1.98, 0.81)
18 genotypes (50, 146) 1.20 (1.80, 0.86) 1.19 (1.56, 0.86)
21 genotypes (59, 165) 1.32 (2.05, 0.83) 1.18 (1.79, 0.83)
24 genotypes (66, 184) 1.11 (1.83, 0.87) 1.03 (1.43, 0.88)
27 genotypes (73, 200) 0.90 (1.69, 0.90) 0.88 (1.30, 0.91)
30 genotypes (80, 215) 1.05 (1.79, 0.89) 0.97 (1.26, 0.90)
33 genotypes (89, 236) 1.12 (1.89, 0.89) 0.96 (1.37, 0.90)
36 genotypes (96, 254) 1.16 (2.08, 0.88) 1 (1.6, 0.87)
39 genotypes (104, 285) NA 1.06 (1.69, 0.85)

Table 3. The MAE (respectively standard deviation, r2) of inflorescence branch counting task in canola. The first column indexes the
number of real plant genotypes (total number of real plants and images in parentheses) used for training. Results when testing with all
remaining images and 100 real images are in the second and third column respectively.
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Figure 4. For leaf count in maize (a) Distributions of relative count difference while trained on all real images (in blue) and distributions of
relative count difference while trained on all synthetic images (in orange) (b) Scatter plots of actual and predicted leaf counts while trained
on all real images (c) Scatter plots of actual and predicted leaf counts while trained on all synthetic images. In all cases, test set had fixed
100 real images.

all synthetic images respectively.
The columns of Table 3 demonstrates how improvements

were made to the the L-systems, thereby leading to
improved deep learning results. Pearson’s r2 values
show that the synthetic images from the fourth canola

L-system were quite similar to the real canola images as
the Pearson’s correlation coefficients indicates the strength
of associations between variables. The r2 = 0.85 when
trained on 285 real images and tested on 100 real images,
and r2 = 0.76 when trained on the 1200 synthetic images
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Figure 5. For inflorescence branch count in canola (a) Distributions of relative branch count difference while trained on real images (in
blue) and distributions of relative branch count difference while trained on synthetic images (in orange) (b) Scatter plots of actual and
predicted branch counts while trained on real images (c) Scatter plots of actual and predicted leaf counts while trained on synthetic images.

generated from CS
4 and tested on the same 100 real images.

And, r2 = 0.59 when trained on 32 real images and
tested on 100 real images. The RMSE we obtained for
inflorescence branch count in canola is 1.94 while trained
on all the real images and tested on 100 fixed images, and
2.43 while trained on all the synthetic images and tested on
the same test set.

It is evident that these results were quite sensitive to the
precise L-system construction. For example, when trained
on only CS

2 , the MAE was exceptionally large at 16.6, but
it was quite good when trained only on CS

4 at 1.45. This
again shows that producing realistic synthetic images is
extremely important. This is an important contribution as
there is a large spectrum from training on simple geometry
(e.g., ball-and-stick) images to those that accurately reflect
phenotype captured in the described improvements from
CS

2 to CS
4 . It also shows the simulated images alone

even in canola can perform quite well, while requiring no
groundtruth labelling.

One interesting contrast between the maize and canola
experiments is that when both training and testing on only
synthetic images (a separate experiment, not described),
the MAE in maize was extremely low. This seems to
indicate that the canola L-system is considerably more
complicated and more difficult for the ANN to make
accurate predictions. This is important as this was one of
the important points of discussion in [51] regarding the A.
thaliana model.

Finally, we chose to always train with all the available
synthetic images when training rather than smaller numbers
(such as the same number of real images). This was
done because it is easy to generate arbitrarily large sets
of synthetic images from the same L-system. Also,
we ran a separate experiment to test if the amount of
synthetic images played a role in prediction accuracy, and
it showed that it was better to always use all the synthetic
images rather than gradually adding them in, but further
experimentation would be useful.

7. Conclusions
Machine learning and procedural plant models are two
broad and impactful fields in plant phenotyping research.
Here, we showed how each can help the other. This
study conducted computational experiments in maize and
canola regarding the use of synthetic images of plants for
training artificial neural networks. For the task of leaf
counting in maize, we calculated the mean absolute value
of the difference between the predicted and correct number
of leaves. The L-system used to create synthetic images
was quite realistic, and this realism may have been a key
contributor to its improved success versus others in the
literature. Furthermore, it was more accurate to only use
synthetic images with no groundtruth labelling than using
51 real images. The task of inflorescence branch counting
in canola was conducted and results were evaluated using a
similar procedure. This study again showed the importance
of realism for some phenotypes and species. In some cases,
the L-systems required calibration, with changes leading to
remarkable improvements in prediction.

Here, we also saw that the deep learning results served
to quantify how replaceable the synthetic images were
for real images rather than using only visual inspections.
The results show that using only synthetic images worked
reasonably well at predicting on real images, while
requiring no groundtruth labelling. After adjusting for
overfitting, we achieve 1.05 MAE in predicting leaf count
in maize and 1.59 MAE in predicting inflorescence branch
count in canola using only synthetic images with U-Net.
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