viab

The Virtual Laboratory

THE vlab FRAMEWORK
REFERENCE MANUAL

Last updated: December 11, 2022

Copyright © The Authors 1990-2022 (see Document Revision History, Section 8). This document is
distributed under the terms of the Creative Commons Attribution-ShareAlike CC BY-SA 4.0 license
(https://creativecommons.org/licenses/by-sa/4.0/), which permits reproduction,
redistribution and adaptation of the material, provided the original work is properly cited, changes, if
any are indicated, and the derivative material is distributed under the same license as the original.

https://creativecommons.org/licenses/by-sa/4.0/

CONTENTS

1 Introduction

2 The oofs structure

2.1 Hyperlinks e
3 The Browser
3.1 Mouse operations Lo L e e e
3.2 TheFilemenu. e
3.3 The Viewmenu o e e
3.4 The Object menu e e
3.5 The Searchmenu e
4 The Object Manager
4.1 Components of the Object Manager
4.1.1 Theobjecticon L e
4.1.2 Thelabtable
4.1.3 Theobject menus L
4.2 The specifications file
4.3 Utilities e e e e
4.4 Preferences e e e e

5 Snapicon

6 Remote access server
6.1 Setting up raserver e
6.2 Daemonmode. e e
7 Credits

8 Document revision history

13

14
14
16

17

17

1 INTRODUCTION

The Virtual Laboratory (vlab) is an interactive environment for creating and conducting simulated
experiments: a playground for experimentation. It is a framework consisting of:

e a file structure, oofs (object-oriented file system), for storing models (objects);

e a browser to graphically navigate through the file structure and select objects for experimenta-
tion;

an object manager to move objects to a temporary location, the lab table, and apply tools (pro-
grams) to them;

a utility, snapicon, to create a unique icon for each object;
e a daemon, vlabd, used to communicate between the browser and object manager windows; and

e a remote access server, raserver, providing access to remote oofs file structures.

The basis of the virtual laboratory is the communication between collaborating programs (tools)
through the sharing of the data files comprising the object. For example, a plant may be visualized
using a simulator such as Ipfg, and manipulated by editing parameters in one or more data files. The
files may be changed using a text editor, a control panel, or a specialized tool. The simulator can
utilize file monitoring to update the model each time a change is made. The ability of the tools
and simulators to share files and, in some cases, update the model continuously, allows the user to
seamlessly experiment with an object.

The content of a virtual laboratory (the objects and tools) are domain-specific. This release of vlab
is focused on graphical applications of L-systems, with an emphasis on the generation of fractals and
the modeling of plants. The user can expand the laboratory by adding new objects and incorporating
new tools.

2 THE oofs STRUCTURE

Each wvlab object is a directory in which its associated files are found. The directory structure is
hierarchical, allowing the user to create a prototype object, and then experiment and save a hierarchy of
extension objects (Figure 1). Vlab uses this hierarchical structure to provide an inheritance mechanism:
an object contains only those files that are different from the corresponding files in its parent; files that
are identical are symbolics links to the parent object (Figure 2). This approach saves space, facilitates
creation of objects similar to the prototype, and allows a single change in the prototype to propagate
through all extensions.

2.1 HYPERLINKS

It is also possible to link to an object in another part of the hierarchy. This keeps the object at its
original location, but allows the user to see it as an extension of an object in a different part of the
oofs structure as well.

When a hyperlink is created, the original object is assigned a unique object ID, which is stored
with the object (in a .uuid file). This same ID is also stored with the hyperlink (in a node file). The
link between an object’s ID and its location is stored in a file at the root of the oofs structure (.uuids).
When an object is moved, its ID is moved with it and its location is updated in the database. When
copying, there is an option to keep the ID with the original object or move it to the copied object (see
Move h-links in Section 3.4).

2 THE OOFS STRUCTURE 3

Figure 1: An example of an oofs hierarchy, beginning with a single object that has two extensions, one
of which has two extensions of its own, and the other has a single extension.

Figure 2: An example of inheritance: model 1.1 is an extension of model 1. Two files in model 1.1 are
inherited from model 1: icon and data2. If changes are made to these two files in model 1, the changes
will also affect model 1.1.

The Virtual Laboratory

version 5.0

Figure 3: The splash screen for the current release of vlab.

M Remote

Directory:

{wlab/oofs

Recent OOFS u

Restore Defaults Cancel w

Figure 4: The initial Browser dialog box for entering the location of the oofs directory.

3 THE BROWSER

When the browser application (browser) is first opened, it displays the splash screen (Figure 3), followed
by a dialog box to define the location of the oofs structure (Figure 4). The initial screen is used to
enter your personal (“local”) oofs directory. See Section 6 for information on how to set up and access
a shared oofs structure. Enter, or verify, the location of your oofs directory, and click the Open button
to display the main browser window (Figure 5).

3 THE BROWSER

Object with
extensions

Object without
extensions

11-CPFG
12-LPFG Object icon
20-other-tools DECUSS&H_!]
90-user-ohjects MUHGD:dIIal
a 5 i))
L .;u-, ° Hyperlink with
extensions
. 2D-and-3D——
Exercises—| e
99-samples Fern-leaf
Fractals Koch-curve
Snowflake-curve
Ulam
Compound-leaf
Leaves
4[[Fern-leaf
Two-trees
vlabjoofsjext/99-samples/ext/ Two-trees \
Hyperlink

Selected object

Figure 5: An example of the browser window. The dotted lines indicate the object linked to.

The browser provides a visual interface for navigating through the oofs hierarchy, and for manip-
ulating objects as a whole (e.g. move, copy, delete, or rename an object). Each level of the hierarchy

is represented by a browser symbol, a name, and

an optional icon. The browser symbols are:

e a single box, representing an object with no extensions;

e double box, representing an object with extensions;

e an arrow, representing a hyperlink (an object linked from another part of the oofs hierarchy)

with no extensions; and

e double arrows, representing a hyperlink with extensions.

The basic functionality of browser, to navigate oofs and select an object for experimentation, can
be accomplished using the mouse. Additional functionality for maintaining the objects and the oofs
structure uses a combination of menu items and mouse operations.

It is also possible to have multiple browser windows open, displaying (different parts of) the same
oofs structure, or a different oofs structure altogether. Objects can be copied and pasted between

browser windows.

3.1 MOUSE OPERATIONS

The following operations can be done with the mouse. In all but one case a corresponding menu item

also exists.

3 THE BROWSER

Function

Select an object

Mouse action Menu item
Click on the object’s browser symbol,
name, or icon.

Open the Object Manager for Double click on the object’s browser = Object > Get

an object symbol.

Display extensions of the ob- = Double click on an object’s name. View > Show extensions
ject

Hide the entire subtree of ex- Double click on an object’s name View > Hide extensions
tensions again.

Display /hide an object’s icon Right click on an object’s name. View > Show icon

View > Hide icon

Copy a single object (not its Right click and drag the object to the = Object > Copy object
extensions) to another location location of the new parent object.

3.2 THE File MENU

The File menu contains general operations:

Menu item
New browser

Open shell

Open file

Open console
Import

Export

Description

Open another browser window. A dialog box (Figure 4) is displayed to enter the
location of the oofs structure.

Open a Terminal window in the storage directory of the selected object. This
is the same as the Object Manager menu item, Utilities > Shells > Storage (see
Section 4.3). This function is not available when accessing a remote oofs database.
Open a Mac Finder window in the storage directory of the selected object. This is
the same as the Object Manager menu item, Utilities > Shells > Storage (Finder)
(see Section 4.3). This function is not available when accessing an oofs file struc-
ture using raserver.

Open the operating system error log. This may be useful for debugging purposes.
Import an external oofs object or subtree as an extension of the selected object.
See Export for formats.

Export the selected object or subtree in either Windows or Mac/Linux format,
using the same directory structure as in oofs, or into a .zip or .tgz file.

3.3 THE View MENU

Most of the items on View menu act on the currently selected object, and will be grey if no object is
selected. Several of the menu items have mouse equivalents as seen in Section 3.1.

Menu item

Show extensions
Hide extensions

Description
Display the extensions of the selected object / hide the entire subtree
of extensions.

Show all extensions Display the entire subtree of extensions of the selected object.

Show icon
Hide icon

Hide all icons

Show all icons

Display /hide the icon associated with the selected object.

Hide the icons for the selected object and all its extensions.
Display the icons for the selected object and all its extensions.

Show hyperlink target Locate the object associated with the currently selected hyperlink, dis-

play it in the window, and select it.

3 THE BROWSER 7

Menu item
Begin tree here

Description

Hide all ancestors of the selected object, making it the visible root of
the tree. Only this object and its subtree can be seen. Reverse this
operation using the Begin tree from root menu item.

Display the oofs structure beginning at its root, regardless of the cur-
rently selected object.

Display the browser window in full screen mode / return to original size.

Begin tree from root

Enter Full Screen
Exit Full Screen

3.4 THE Object MENU

Functionality for organizing objects within the hierarchy is found on the Object menu. The Cut, Copy
and Paste functions use a Browser-specific clipboard.

Menu item
New object

Get

Rename

Cut

Copy object
Hypercopy object
Copy subtree
Paste

Delete

Move h-links

Description

Add a new object as an extension of the selected object. This is used to begin a
new subtree that does not inherit any information from its parent.

Opens the selected object on the lab table, the same as double-clicking on the
object’s browser symbol.

Change the name of the selected object. A dialog box will be displayed to update
the current name.

Remove the selected object and all its extensions (the entire subtree) from its
current location to the clipboard.

Copy the selected object only (not its extensions) to the clipboard. This can also
be done as a “drag & drop” action, using the right mouse button.

Copy the selected object’s link to the clipboard.

Copy the selected object and all its extensions (the entire subtree) to the clipboard.
Add the object, subtree, or link currently on the clipboard as an extension to the
currently selected object.

Delete the selected object and its entire subtree from oofs. Note that deleting a
hyperlink to an object does not delete the object itself.

Toggle this option on or off. When on, and an object is copied, the object’s ID is
moved to the new location. The default is on, so that copying an object and then
deleting the original object (rather than moving it) will not break any links to it.

3.5 THE Search MENU

The Find item on the Search menu can be used to locate an object within the entire oofs structure
given a part of its name. The subtree containing the object will be displayed, and the object will be
selected.

10-mycelis-realistic

Image
Colormap
L-system
View file
Animate file
Surfaces
Control panel
Description
Utilities

¥ ¥ ¥ ¥y ¥y Y TYry

Quit

Figure 6: An example of the Object Manager. It displays an icon representing the object, and provides
a menu of tools for manipulating it.

4 THE OBJECT MANAGER

The Object Manager (object) allows the user to experiment with an object by dynamically applying
tools (programs). It is invoked from the Browser by double-clicking on the object’s browser symbol in
the browser window, or by selecting the object and using the menu item Object > Get.

4.1 COMPONENTS OF THE OBJECT MANAGER

4.1.1 The object icon

When the Object Manager is invoked, it opens a window displaying the object’s icon, a small image
representing the object. Right-clicking on the icon displays the menu of tools that can be used to
manipulate the object (Figure 6).

4.1.2 The lab table

The Object Manager creates a copy of the object’s data files on the lab table: a temporary directory
within the user’s directory structure.! The user can then manipulate the object on the lab table
without disturbing the stored object. When done, the user may save the current state of the object
on the lab table by overwriting the stored data files, or by creating an extension (see Section 4.3). In
the latter case, only the data files that have been added or changed are explicitly stored; unchanged
data files are represented as symbolic links to the parent object. If the changes were only temporary,
the user may quit the Object Manager without saving the current state.

1 Use the Lab Table shell on the Utilities menu (Section 4.3) to find the exact location of the lab table directory for
an opened object. The base location of the lab table is set to /usr/.vlab/tmp when the browser is first invoked. If there
is a machine crash, look here for open objects.

4 THE OBJECT MANAGER 9

4.1.3 The object menus

Right-clicking on the object’s icon opens its menu of tools and utilities. The tools included on the
menu are defined specifically for this object using a specifications file (Section 4.2). Standard utilities
are always included on the menu, under the Utilities menu item (Section 4.3). In addition, there is an
Object Manager menu bar at the top of the screen. Object > Preferences opens the global preference
file for all objects (Section 4.4). The File menu has two functions:

Menu item
Export

Load all files

Description

Export the object in either Windows or Mac/Linux format, as a directory con-
taining all data files (replacing symbolic links with the actual files from the parent
object), or as a .zip or .tgz file. This is the same as File > Export on the browser
menu, and can be used in conjunction with File > Import to copy an object to
another oofs hierarchy.

Copy ALL files from storage to the lab table, not only the ones listed in the
specifications file. This is especially helpful if the object is missing its specifications
file.

4.2 THE SPECIFICATIONS FILE

Every object must include a file called specifications that:

e lists the data files that constitute the object and should be moved to and from the lab table;

e lists the temporary files that should be disregarded when saving changes;

e specifies the refresh mode for the object as a whole;

e describes the object’s menu hierarchy; and

defines how each tool is applied to the object.

The specifications file itself is also moved to the lab table and may be edited by the user to update
any of the above components (see Section 4.3).

The file begins with the list of data files to be retrieved from storage and put on the lab table, each
on a separate line. This is optionally followed by two statements, and then ends with a line with a
star (*) only. The optional statements are:

Statement
rmode: value

ignore:
filenamel
filename?2

Description

Set the refresh mode for all tools that support this feature. The wvalue can be:
trig / triggered; cont / continuous; or expl / explicit.

The default mode, if this statement is not present, is explicit. The refresh mode
can also be set in individual tools.

Ignore the listed files: do not save them to storage. The files are listed one per
line below the ignore: statement. An entire group of files can be specified using
the wildcard symbol, * (e.g. *.swp or gal.*).

Below the star is a hierarchy of menu items, where each level of the hierarchy is indented using a
tab. The menu item name ends with a colon (:). Note that colons should not be used in any other
context within the specifications file.

The lowest level defines the program (tool) to be used. It has the syntax of a MacOS/Linux
command line and generally includes one or more of the data files listed above. For example, the
following specifications file defines data files fractal.l through fractal.map, a description file, the
statements rmode and ignore, and the menu hierarchy:

4 THE OBJECT MANAGER 10

® O @ HilbertP...

HilbertPanels

model
display
edit

>

| 3
view file >
animate file [
colormap [
description [
Utilities >

Quit

Figure 7: The menu associated with the specifications file example. It is displayed by right clicking on
the object window.

fractal.l
fractal.v
fractal.a
panel.l
fractal.map
description.txt
rmode: cont
ignore:
*
model:
generate:
cpfg —-m fractal.map fractal.l fractal.v fractal.a

L-system:
panel:
display:
panel panel.l | awkped fractal.l
EDIT panel.l
EDIT fractal.l

view file:
EDIT fractal.v

animate file:
EDIT fractal.a

colormap:
palette fractal.map

description:
EDIT description.txt

4 THE OBJECT MANAGER

11

Modified files:

* plant.l

New version name:

Point to new version

Show Details. Cancel m

Figure 8: An example of the dialog box that is displayed when Utilities > New version is selected from
the menu. The Show Details button is used when the list of modified files is too long to display in the

dialog box.

Uppercase tool names indicate programs that are globally defined in the Object Manager’s Pref-
erences (Section 4.4). In the example specifications file above, EDIT is used to indicate the user’s
preferred text editor, which is globally defined in the preferences.

4.3 UTILITIES

The bottom entry on the main level of the object’s menu, Utilities, is not defined in the specification
file; it is standard for all objects. This menu consists of the following tools for managing the object:

Menu item
Icon

Specifications

Shells

Save changes**

New version**

Position object

Next level
Snap

Reread

Edit

Reread

Lab table

Lab table (Finder)
Storage

Storage (Finder)

Description

Create a new icon for the object’s window (see Section 5).
Update the icon in the object’s window.

Open the specifications file in a text editor.

Update the object’s menu from the specifications file.
Open a Mac Terminal window in the lab table directory.
Open a Mac Finder window in the lab table directory.
Open a Mac Terminal window in the oofs directory where
the original object is stored. This option is not available for
remote 0ofs.

Open a Mac Finder window in the oofs directory where the
original object is stored. This option is not available for
remote 0ofs.

Copy changed data files from the lab table back to the orig-
inal object in storage. A dialog box will be displayed listing
the files that have been modified or the message “Nothing
to be saved”.

Create an extension of the stored object and save the data
files from the lab table to this new version. Unchanged data
files are saved as symbolic links to the parent object. A dia-
log box will be displayed indicating the files that have been
modified, and providing a field to enter the name of the new
version (Figure 8). Use the Point to new version checkbox
to set the object on the lab table to the new version, and
select it in the browser window.

Select this object, and reposition the oofs hierarchy in the
browser window to display it.

4 THE OBJECT MANAGER 12

@® @ 01-Lych...

&l

01-Lychnis

model
edit
pane|

view file
animate file

Figure 9: The edit menu item, under L-system, created with the EDIT macro in the object’s preferences.

**Only files listed in the specifications are saved with the Save changes, New Version and Quit menu
items. If new files are added to the object on the lab table, it is important to Edit the specifications,
add the new files, and then Reread the specifications.

4.4 PREFERENCES

Global object preferences can be customized by selecting Object > Preferences on the object’s menu
bar. This opens a text editor on the preferences file, ~/.vlab/object. The file may include the
following elements:

e define statements located at the beginning of the file;
e macros (named menu item hierarchies) for use in specifications files; and

e comments, in lines beginning with a semicolon (;), which may be placed anywhere in the file.

By convention the names of macros are in uppercase. For example, vlab comes with a basic text editor
(see the vlab Tools manual) which can be defined and referred to as follows:

;Standard text editor
#define OBJED vlabTextEdit

EDIT
edit:
0OBJED

The EDIT macro can then be used as follows in the specifications file::

L-system:
EDIT plant.1l
panel:
panel panel.l | awkped plant.l

This would define two menu items under L-system on the object’s pop-up menu for editing the L-
system file (Figure 9): the vlab text editor or a panel. The text after the EDIT macro is appended to
the command line when it is invoked:

vlabTextEdit plant.1l

Figure 10: The snapicon window overlaying an object image. The window can be moved and resized
to capture the image.

5 SNAPICON

The snapicon tool captures a selected area of the screen, creating a thumbnail image which will be
used to represent the object in both the object and browser windows. The image is stored in PNG
format in the file icon on the lab table, replacing the current content of this file, if it exists.

The tool is called from the object’s menu: Utilities > lcon > Snap. This opens a window outlined
in red (Figure 10) that can be moved by clicking and holding the left mouse button to position it on
the area of the screen to be captured.

The snapicon functions can be accessed from the menu bar, or by right-clicking on the window to
open the pop-up menu. In both cases the following menu items are available:

Menu item Description

Size Select the size of the window to snap. See the options below.

Snap Capture the content of the snapicon window.

Preview Display a preview of the image captured by Snap, reduced to the size of the
object window if a larger size was used.

Save icon Save the image captured by Snap to the file icon. The image will be reduced
to the size of the object window if a larger size was used.

Save and exit Save the image captured by Snap to the file icon, and exit the program.

Snap, save and exit Capture and save the content of the snapicon window to the file icon, and
exit the program.

Save as... Save the image captured by Snap to another file - NOT icon. This allows
snapicon to capture and save images for other purposes.

The Size options are:

Actual - Set the image size to the actual size of the object window.

Double / Quadruple - Set the image size to double / quadruple the size of the object window.

Aspect - Set the image size using the mouse, but keeping the same aspect as the object window.
e Free - Set the image size using the mouse, adjusting as required in all directions.

The final icon will be scaled to the size of the object window when it is saved, except in the case of
Free sizing, which will alter the object window. Note that this rescaling also occurs when using Save
as, unless Size = Free.

To display the new icon in the object window, use the menu item: Utilities > Icon > Reread.

13

RN Remote |

Host host.com
Directory [vlab/oofs
Login
Password
Recent OOFS E

Restore Defaults Cancel [Open |

Figure 11: The dialog box for entering details for a remote access server.

6 REMOTE ACCESS SERVER

When the Browser is first invoked, or when the File > New Browser menu item is selected, a dialog box
is displayed to enter the location of the oofs structure. This may be a personal (“local”) hierarchy as
described in Section 3, or a shared (“remote”) oofs structure.

Access to a shared oofs structure is accomplished using a remote access server, raserver, which
runs as a daemon and performs operations on behalf of the Browser. The owner of the shared oofs
structure assigns users a name and password, and defines their read or read/write access to specific
subtrees (objects and their child objects) within the oofs structure.

The raserver is designed to run as a background process on any machine within a network.

WARNING: The remote access server is not secure. Only use it within a network properly secured
by other means (e.g. a firewall).

The Remote button at the top of the Browser dialog box is used to display the required fields for
access to the raserver (Figure 11).

Most operations available locally can also be performed on shared oofs structures, provided proper
permissions have been granted. For example, the user may browse the hierarchy of objects, experiment
with an object (which is transferred to the local lab table for fast access), and copy objects and object
subtrees between browsers.

6.1 SETTING UP raserver

The owner must first set up the users who will have access to the shared oofs structure by running
raserver in setup mode:

raserver -pe
A command line interface is presented with the text:

For a list of available commands type ’help’.
raserver>

14

6 REMOTE ACCESS SERVER 15

The list of commands are:

Command Description

1s List the current users

add loginname password [logincopy] =~ Add a new user with the specified loginname and password.
Optionally, also copy the permissions from user, logincopy, to
this new user.

del loginname Delete the user named loginname

chlog oldname newname Change a user’s login name from oldname to newname
chpass loginname newpassword Change a user’s password to newpassword

edit loginname Edit the directory permissions for loginname. See below.
quit Exit the program

help List these commands

The edit command is used to set up access within the oofs structure. When it is invoked, the
following set of commands can be used to update the specified user:

Command Description
1s List the current permission rules for this user
add permission path Add a new rule for this user, where permission can be one

of the values listed below, and path is the full file structure
pathname to the required node in the oofs hierarchy.

del rnum Delete rule number rnum for this user

chmod permission rnum Change the permissions associated with rule number rnum to
one of the values listed below.

quit Exit the permissions editor, and return to the main raserver
prompt.

help List these commands

The permission assigned in the add and chmod rules may be specified using a character or number:

Character Number Description

= 0 No permission

r 4 Read access only

W 2 Write access only

rw 6 Read and write access

Permissions are granted within the actual file structure, and must contain the complete path. For
example, to grant read access to the entire oofs structure, but read/write access only to a subtree
beginning with an object three levels down, two rules would be used:

add r /vlab/oofs
add rw /vlab/oofs/ext/levell/ext/level2/ext/level3

and would be displayed (using the 1s command) as:

I R/W Path
0 R/- /vlab/oofs
1 R/W /vlab/oofs/ext/levell/ext/level2/ext/level3

Note that rules are ordered by a number, but the number is not assigned specifically to a rule. For
example, if three rules are created they will be numbered 0, 1, and 2. However, if the middle rule (1)
is deleted, the remaining rules will be numbered 0 and 1 (i.e. rule 2 will become rule 1).

6 REMOTE ACCESS SERVER 16

6.2 DAEMON MODE

The owner provides access to the shared oofs structure, using the permissions set up above, by running
the remote access server in daemon mode. This is done by simply running the command raserver.
Follow it with an ampersand (&) to run it in the background:

raserver &
The server will respond with:
raserver: running

and will listen for communications from Browser programs.

7

CREDITS

Precursor ideas were introduced by Przemyslaw Prusinkiewicz and Jim Hanan in [1]. The original
version of vlab was designed and implemented by Lynn Mercer [2; 3].

Hyperobjects were introduced by Pavol Federl. The graphical interface for the browser was proto-

typed using Tcl/Tk by Earl Lowe [4], implemented using Motif and OpenGL by Pavol Federl [5; 6],
and ported to Qt by Jin Xiao. The vlab daemon was designed and implemented by Earle Lowe [4], and
enhanced by Pavol Federl. The remote access server was designed and implemented by Pavol Federl
and extended by Pierre Barbier de Reuille and Pascal Ferraro. File monitoring and refresh modes were
prototyped by Cordell Bloor; the current implementation is by Pascal Ferraro. The snapicon tool was
designed and implemented by Jin Xiao and Pascal Ferraro. The vlab splash screen art is by Martin
Fuhrer [7].

All components of the vlab framework have been enhanced and maintained by Pascal Ferraro.

8 DOCUMENT REVISION HISTORY
Date Description By
1996 The first version of this documentation in HTML. Istvan Hernadi
1997 - 2020 Updates made to the HTML documentation. Pavol Federl
Pascal Ferraro
2022 Rewritten to include all features of the current implementa- Lynn Mercer
tion, and reformatted in LaTex.
REFERENCES
[1] Przemyslaw Prusinkiewicz and Jim Hanan. A hypertext environment for unix. In Proceedings of
Graphics Interface 88, pages 50-55, 1988.
[2] Lynn Mercer, Przemyslaw Prusinkiewicz, and Jim Hanan. The concept and design of a virtual
laboratory. Proceedings of Graphics Interface ’90, pages 149155, 1990.
[3] Lynn Mercer. The virtual laboratory. Master’s thesis, University of Regina, 1991.
[4] Earl Lowe. Extensions to the virtual laboratory. Master’s thesis, University of Calgary, 1995.
[5] Pavol Federl. Design and implementation of a global virtual laboratory - a network-accessibile
simulation environment. Master’s thesis, University of Calgary, 1997.
[6] Pavol Federl and Przemyslaw Prusinkiewicz. Virtual laboratory: an interative software environment
for computer graphics. Proceedings of Computer Graphics International, pages 93—100, 1999.
[7] Martin Fuhrer, Henrik Wann Jensen, and Przemyslaw Prusinkiewicz. Modeling hairy plants. In

12th Pacific Conference on Computer Graphics and Applications, pages 217-226, 2004.

17

	Introduction
	The oofs structure
	Hyperlinks

	The Browser
	Mouse operations
	The File menu
	The View menu
	The Object menu
	The Search menu

	The Object Manager
	Components of the Object Manager
	The object icon
	The lab table
	The object menus

	The specifications file
	Utilities
	Preferences

	Snapicon
	Remote access server
	Setting up raserver
	Daemon mode

	Credits
	Document revision history

