
LPFG
Reference Manual

Last updated: December 11, 2022

Copyright c© The Authors 1990-2022 (see Document Revision History, Section 12). This document
is distributed under the terms of the Creative Commons Attribution-ShareAlike CC BY-SA 4.0
license (https://creativecommons.org/licenses/by-sa/4.0/), which permits reproduction,

redistribution and adaptation of the material, provided the original work is properly cited, changes, if
any are indicated, and the derivative material is distributed under the same license as the original.

https://creativecommons.org/licenses/by-sa/4.0/

Contents

1 Introduction 4
1.1 Running lpfg . 4

1.1.1 Command line options . 4
1.1.2 Input files . 5

1.2 User Interface . 6
1.2.1 View manipulation . 6
1.2.2 Main menu . 7
1.2.3 Animate menu . 9

1.3 File monitoring . 9

2 The L-system file 10
2.1 Derivation Length . 10
2.2 Axiom statement . 10
2.3 Module and type declarations . 11

2.3.1 Modules . 11
2.3.2 Types . 11

3 Productions 12
3.1 The predecessor . 12

3.1.1 The strict predecessor . 12
3.1.2 Left and right context . 12
3.1.3 Left and right new context . 12
3.1.4 Ring L-systems . 13

3.2 Production body . 13
3.2.1 The produce statement . 14
3.2.2 The nproduce statement . 15

3.3 Testing context within a production body . 15

4 Control statements 18
4.1 Start and End statements . 18
4.2 Ignore and Consider statements . 18
4.3 Decomposition and Interpretation Rules . 19

4.3.1 Decomposition Rules . 19
4.3.2 Interpretation rules . 20
4.3.3 Rule blocks . 21

4.4 Production groups . 21

5 Predefined modules 23
5.1 Position and drawing . 23
5.2 Turtle rotations . 24
5.3 Display parameters . 24
5.4 Branching structures . 25
5.5 Circles and spheres . 25
5.6 Polygons, rhombi, and isosceles triangles . 26
5.7 Surfaces and Meshes . 26
5.8 Generalized cylinders . 27
5.9 Textures . 27
5.10 Labels . 27
5.11 Tropism Control . 28

1

5.12 Query modules . 28
5.13 Environment communication . 29
5.14 Dynamic view control . 29
5.15 Mouse interaction . 29

6 Predefined functions 30
6.1 Controlling the simulation . 30

6.1.1 Simulation progress . 30
6.1.2 L-system derivation . 30
6.1.3 Communication with the environment . 31

6.2 Accessing externally defined entities . 31
6.2.1 Parameters . 31
6.2.2 Graphically defined functions . 32
6.2.3 Graphically defined curves . 32
6.2.4 Graphically defined surfaces . 33

6.3 Auxiliary math functions . 33
6.3.1 Vector algebra . 33
6.3.2 Random number generation . 34

6.4 View-related functions . 34
6.5 Mouse and menu functions . 35
6.6 Input and output functions . 35

7 Advanced topics 36
7.1 Dynamic surfaces . 36

7.1.1 Creating dynamic surfaces . 36
7.1.2 Manipulating dynamic surfaces . 36

7.2 Gillespie groups . 37
7.3 Multi-view mode . 38
7.4 Mouse interactions . 38
7.5 User-Defined Menus . 41

8 Lpfg-specific input files 42
8.1 View file . 42

8.1.1 Setting the view . 42
8.1.2 Rendering commands . 43
8.1.3 Geometry presentation . 44
8.1.4 Tropism commands . 45
8.1.5 External files . 46
8.1.6 Fonts . 46
8.1.7 Postscript output control . 47
8.1.8 Deprecated commands . 47

8.2 Animation file . 48

9 Appendix: Production Matching 49

10 Appendix: Deprecated / Undocumented features 52
10.1 B-spline surfaces . 52

10.1.1 Defining and drawing B-spline surfaces . 52
10.1.2 Dynamic B-spline surfaces . 52

10.2 Tablet interaction . 53
10.3 Terrain . 53
10.4 String verification . 54

2

3

11 Credits 56

12 Document revision history 56

1 Introduction

lpfg is a plant modeling program based on the formalism of L-systems but also has many other appli-
cations, such as the generation of fractals. Models are defined using the L+C language, which extends
the syntax of C++ to include constructs inherent in L-systems. It is assumed that the reader is fa-
miliar with C/C++ and with the basic concepts of modeling with L-systems as introduced in [1] and
the CPFG Reference manual. While simple L-system models may be created more compactly using
cpfg, the powerful programming constructs in lpfg make it preferable for the development of complex
models [2; 3].

This is a reference manual with limited examples. However, sample vlab objects are indicated in
some sections to illustrate usage.

1.1 Running lpfg

lpfg is included with the vlab distribution, and is normally run from an object’s menu within vlab. The
command line below is defined in the object’s specification file.

lpfg [-a] [-b] [-c] [-cleanEA20] [-cn] [-d] [-dll filename.dll] [-ds] [-dtf] [-dtfes]

[-o filename.dll] [-out filename] [-q] [-rmode mode] [-v] [-w w h] [-wnb] [-wp x y] [-wpr x
y] [-wr w h] [animation.a] [colormap.map] [contour.con] [contourset.cset] [environment.e]
[function.func] [functionset.fset] [material.mat] [parameter.vset] [timeline .tset] [view.v]
lsystem.l

Command line options may appear in any order. In general, the only mandatory argument is the
L-system file, lsystem.l, which contains the L+C code for the model. (See the -dll/-o options for an
exception.)

1.1.1 Command line options

Option Description
-a Start lpfg in animate mode, using the information in animationfile.a. Only

first frame steps are performed, as opposed to derivation length steps.
-b Start lpfg in batch mode: no window is created. The simulation is performed

and the final content of the string is stored in the file specified by the -out

option. Only module names are stored in the file. This mode cannot be
combined with the -a option.

-c Compile the L-system into object code, and create a shared library file called
lsys.so. This library can subsequently be used by lpfg to run the L-system
model without recompiling (see the -dll and -o options). Do not run the
simulation.

-cleanEA20 Zero the array of (20) return values from an environmental program before
the next iteration. This is used to ensure the array is clear if an environmental
program returns an arbitrary number of values. See the vlab Environmen-
tal Progams manual for more information.

-cn Check for numerical errors in the arguments of turtle movement modules.
When this option is included, lpfg checks that the arguments to modules
such as F and Right are valid numbers. It is useful for finding division-by-
zero errors in the model.

-d Start lpfg in debug mode. Information regarding the execution of the program
is sent to the standard output. This mode is intended for lpfg developers only.

4

1 INTRODUCTION 5

Option Description
-dll filename.so
-o filename.so

Use the precompiled library file filename.so (usually lsys.so unless explic-
itly renamed) instead of lsystem.l. See the -c option. This is useful when
a simulation will be run many times but the L-system does not change (al-
though other input files may). These two options are synonymous.

-ds Output the current string to the console after each derivation step, before
the interpretation: block.

-dtf Output the final interpreted string to a file (i.e. after the interpretation:

block). Uses the filename: Lsystemfile.str.
-dtfes Output the interpreted string after each derivation step, to separate files.

Uses the filename: Lsystemfile.str, but with an 8-digit suffix. For example
the first string output would be in Lsystemfile00000001.str.

-out filename In batch mode, use filename for the output string. This will be a text
file.
In regular (not batch) mode, run the model to the end and produce a
single image in filename, based on the extension: bmp, jpg, pdf, png,
tiff. The model window will close on completion. Also see the Save As...
menu item (Section 1.2.2).

-q Start lpfg in quiet mode. All messages, including warnings and errors, are
suppressed.

-rmode mode Define the method for re-reading input files. The values of mode are:
expl = explicit
cont = continuous
trig = triggered
The refresh mode may also be set with the Refresh mode menu item
(Section 1.2.2), and within a vlab object’s specification file (see the vlab
Framework manual).

-v Start lpfg in verbose mode. Displays additional information/warning mes-
sages.

-w w h Specify the width w and height h of the lpfg output window in pixels. Use
either this option or -wr, but not both.

-wnb Create the lpfg window without borders or title bar. This mode is useful for
demonstration purposes.

-wp x y Specify the lpfg window’s top left corner position (x,y) in pixels relative to
the top left corner of the screen. Use either this option or -wpr but not both.

-wpr x y Specify the relative window position of the lpfg window: x and y are numbers
between 0 and 1, and represent the position of the top left corner of the
window relative to the top left corner of the screen. Use either this option or
-wp but not both.

-wr w h Specify the relative window size of the lpfg window: w and h parameters
are numbers between 0 and 1 and specify the relative size of the lpfg output
window with respect to the screen. Use either this option or -w but not both.

1.1.2 Input files

Input files are recognized based on their extension. The L+C modeling language in lsystem.l is
described in this manual, as are the lpfg-specific input files, animation.a and view.v (Sections 8.2 and
8.1 respectively). Other file types can be found in the vlab Tools manual.

When the refresh mode is set to Triggered/Continuous, either from the command line (-rmode) or
from the menu, lpfg turns on file monitoring to watch for changes in any of its input files. See Section
1.3 for more information on file monitoring.

1 INTRODUCTION 6

File Description
lsystem.l Defines the L+C model.
view.v Defines the drawing and viewing parameters, including setting the view, ren-

dering, surfaces, etc. See Section 8.1.
animation.a Defines the parameters for controlling animation of the model. See Section

8.2.
colormap.map
material.mat

Specifies 256 colors or 256 materials, respectively. A colormap is generally
used to create schematic images, whereas material files are used to create
realistic images. If no colormap file or material file is specified, the default
colormap is used. See Section 5.3 for information on how to use the colors
within lpfg, and the palette and medit tools in the vlab Tools manual.

contour.con
contourset.cset

Specifies contours defined as B-spline curves. There may be multiple con-
tour.con files, each containing a single contour definition, but only one con-
tourset.cset file containing multiple contour definitions. See Section 6.2.3
for information on how to access the contours within lpfg, and the cuspy and
gallery tools in the Vlab Tools manual.

function.func
functionset.fset
timeline.tset

Specifies functions of one variable. The functions are defined as B-spline
curves constrained in such a way that they assign exactly one y to every
x in the normalized function domain [0,1]. There may be multiple func-
tion.func files, each containing a single function definition, but only one
functionset.fset file containing multiple function definitions, and one time-
line.tset file containing functions constrained by a timeline rather than the
normalized function domain. See Section 6.2.2 for information on how to
access the functions within lpfg, and the funcedit, gallery, and timeline tools
in the vlab Tools manual.

parameter.vset Defines parameters that can be read from the L-system without recompiling.
See Section 6.2.1 for the val function used to access the parameters within
lpfg, as well as the file format.

environment.e Specifies the environmental program and its parameters. See the vlab En-
vironmental programs manual for more information.

1.2 User Interface

When lpfg is opened, it typically runs the L-system and graphically interprets the final string. (Some
command line options, such as -a and -b, produce different results.) Once the model is drawn it is
possible to manipulate the view of the L-system, or make adjustments to it.

1.2.1 View manipulation

The view in the output window is manipulated using both the mouse buttons and the SHIFT and
COMMAND keys within the lpfg window:

Action Key & Mouse Description
Rotation Left mouse Rotate around the Y axis by moving the mouse horizon-

tally, and around the X axis by moving the mouse verti-
cally.

Roll SHIFT + middle mouse Roll clockwise around the Z axis by moving the mouse to
the right, and roll counter-clockwise by moving the mouse
to the left.

Zoom COMMAND + left or
middle mouse

Zoom in by moving the mouse up, and zoom out by moving
down.

1 INTRODUCTION 7

Action Key & Mouse Description
Pan SHIFT + left mouse Move model in all directions using the mouse.
Change
frustrum
angle

COMMAND + middle
mouse

Increase the angle by moving the mouse up, and decrease
the angle by moving down. This operation has an effect
only in perspective projection mode.

1.2.2 Main menu

A menu of options is displayed by clicking the right mouse button within the lpfg window. It includes
the following menu items:

Menu item Description
New model Re-read all input files, recompile the L-system, reset the view, and run the simu-

lation. This is equivalent to restarting the model from the object menu, but uses
the existing lpfg window rather than opening a new one.

New L-system Re-read all input files, except the view and animation files, and re-run the simu-
lation. The view is not reset.

New run Re-run the simulation without re-reading (and recompiling) the L-system file, or
re-reading the view and animation files. Other parameter files (colors, functions,
etc.) are re-read.

New view Re-read the view file, along with the materials/colormap, surfaces, and textures,
and reset the view without re-running the simulation.

New rendering Re-read the same files as New view, but reset the rendering parameters only,
without changing the view or re-running the simulation.

Save Save to the default file name and type. The initial file name is the same as the
original L-system file, with a PNG extension. Use Save as to change the name
and/or file type. The file used in the Save as window will then become the default
file for this Save command.

Save as ... Open a dialog window to save the current view with a different name and/or in
a different format. (See below for a description of the dialog window).

String > Input Input the binary form of an L-system string from the file, lsystemfile.strb. Gen-
erally, this is a file created earlier by String > Output.

String > Output Output the current string to the file, lsystemfile.strb, in binary form.
Animate Switch to animate mode and re-run the model, stopping and drawing the inter-

preted string at the first frame as defined in the animation file. Additional
menu items are added to the menu (Section 1.2.3).

Refresh mode Set the mode used to refresh the input files. The default is Explicit, where the
menu options above must be used to re-read each file. Triggered/Continuous mode
monitors all files for changes (see Section 1.3).

Exit Quit lpfg.

1 INTRODUCTION 8

Figure 1: An example of the Save as... dialog window.

In summary, the New commands include the following actions:

Menu item Re-read (&
recompile)
L-system

Re-read
view

Reset
view

Reset
rendering

Re-read
colors,
surfaces,
textures

Re-read
functions,
contours,
timeline,
parameters

New model x x x x x x
New L-system x x x
New run x x
New view x x x x
New rendering x x x

The Save as menu item opens a dialog window such as the one in Figure 1. The fields in the window
are:

Menu item Description
Target Directory The directory in which to save the file. The default is the lab table directory.
Name The name of the file. The default is the same as the Save command. If this name

is changed, it will become the default for subsequent Save and String commands.
Note that the file extension cannot be edited; it is set based on the Type (and
possibly the Format) field.

Numbering Check this box to add a number to the file name. The number will be incremented
automatically each time the file is saved. For example, if the file name in this dialog
box is set to lsystem0000.png, subsequent Save commands will automatically save
lsystem0001.png, lsystem0002.png, and so on. This can be used to save the frames
of an animation.

Type The file type. This will set the extension in the Name field for all types except
Image.

Format Set the extension when Type is Image. This field is ignored for other types.
Alpha channel Check this box to make the background transparent in the saved file.

1 INTRODUCTION 9

1.2.3 Animate menu

When Animate is selected from the menu, or the -a option is included on the command line (Sec-
tion 1.1.1), the model is re-interpreted, stopping and drawing after the first frame defined in the
animation file (Section 8.2), and the following menu items are added:

Menu item Description Keyboard
shortcut

Step Advance the simulation and redraw. This may correspond to more
than one derivation step if the step parameter in the animation
file is greater than 1.

Cmd+F

Run Display consecutive animation frames after each step derivation
steps until last frame is reached or passed.

Cmd+R

Forever Start or resume the animation. After the last frame is reached the
animation returns to the first frame and continues.

Cmd+V

Stop Stop the animation. Cmd+S
Rewind Reset the animation to the first frame. Cmd+W
Clear Clear and redraw the latest frame. This is used if the clear

between frames: parameter in the animation file is set to no.
New animate Re-read the animation file. Changes take effect when the simula-

tion is re-run.
Start recording Record each frame of the animation as it is displayed, using the

current file format specified in the Save option. To save each frame
in a separate file, use the Save as option and set the Numbering

checkbox.
Don’t animate Stop the animation, and return to the original menu. Display the

model at the first frame as defined in the animationfile.

Note that in lpfg the Rewind command returns to the axiom (whereas in cpfg it returns to the first
derivation step), and the first frame defaults to 1, not 0.

1.3 File monitoring

When Refresh mode is set to Triggered/Continuous, either from the command line (-rmode) or from the
menu, lpfg turns on file monitoring to watch for changes in any of its input files. This allows changes
to be made in the simulation as soon as a file is updated.

When a file change occurs, the following action is taken by lpfg :

File changed Action
L-system New L-system
View New view
Animate Rereads the animation file only.
Colormap
Material

New rendering

Surface
Texture

New rendering

Function
Contour
Timeline
Parameters

New run

2 The L-system file

L-system files use the L+C modeling language [4; 5; 6]. It is a declarative language which combines
L-system constructs (notably, modules and productions) within the general-purpose programming
language C++. The principle advantage of this hybrid approach is that the expressive power of C++
can be used in L+C programs, making it easier to develop complex models.

A typical L+C program file has the following format:

#include <lpfgall.h>

// data structure declarations
// module declarations
// function declarations
derivation length: expression;
axiom: module list;
// productions

The three statements, #include, derivation length and axiom are mandatory, as well as declarations
of all user-defined modules in the axiom and production(s).

Statements may appear in any order with the following restrictions:

• The #include statement should be the first line in the file.1 It contains embedded header
files with declarations and definitions used by lpfg and the L2C translator, including predefined
types.2

• All elements referred to in a statement must be declared beforehand:

– Types used as parameters of a module must be declared before the module is declared.

– Modules must be declared before they appear in any statements.

• Productions are matched in the order in which they are listed in the L-system file. (The set of
potentially applicable productions may change, however, from one derivation step to the next.
See Section 4.4.)

2.1 Derivation Length

This statement specifies the number of derivation steps in the L-system, and has the format:

derivation length: expression

There are no restrictions on expression. Non-integer values are turncated to an integer. However, some
care should be taken to ensure that expression is constant, as the behaviour of lpfg is undefined if the
value changes during the simulation.

2.2 Axiom statement

The syntax of an axiom statement is:

axiom: module list;

where module list is a sequence of modules. Examples of valid axioms are:

1Optional non-lpfg-specific header files should be included before lpfgall.h, since this file signals the start of the
translation from L+C to C++.

2Most predefined types are described in this manual. For additional information see the lintrfc.h file.

10

2 THE L-SYSTEM FILE 11

axiom: A(1,2) B() A(0,0);

axiom: A(idx*2,(int)(sin(x*M_PI));

There are no commas between the modules in the list. If a module has no parameters, the parentheses
may be omitted. For example, the first axiom above could be written as:

axiom: A(1,2) B A(0,0);

2.3 Module and type declarations

2.3.1 Modules

L+C requires that all modules be declared before they appear in any other statements. No module can
be declared twice, even with a different number of parameters. Many standard modules are predefined
(see Section 5) and, therefore, must not be redeclared. The syntax for declaring a new module is:

module name(ptypes);

where name is the module name, and ptypes is a list of the parameter types. If a module has no
parameters, the parentheses can be omitted. For example:

module A(int, int);

module B;

module C(float, string);

Note that, unlike function arguments, module parameters have no names (they are identified by
position). Thus the declaration module A(int id, int age) is illegal. However, comments may be
used to note the parameter names to be used:

module A(int /*id*/, int /*age*/);

2.3.2 Types

All user-defined types (such as string above) must be defined before being used in a module decla-
ration. In addition, each type must be a single identifier; compound types such as char* or unsigned
int are not allowed. To use these types, include a typedef statement to define a single name:

typedef char* string;

typedef unsigned int uint;

3 Productions

Productions define the structure of the L-system string over time by specifying the fate of modules with
each derivation step. A production has two parts: the predecessor defines the module(s) to be changed,
as well as the context they must be found in for the production to apply; and the production body
defines how the predecessor will be changed in the next derivation step if the production is applied.
The syntax of a production is:

predecessor: { production body }

3.1 The predecessor

3.1.1 The strict predecessor

The predecessor of a production contains, at a minimum, the strict predecessor. This is the module or
sequence of modules which, if the production is applied, will be replaced by new modules in the next
derivation step. Examples of valid productions containing only a strict predecessor include:

F(x): { ... }
A(age, length) B(): { ... }

All module parameters in the predecessor must be listed and given unique names, even if they
are not used in the production body. In addition, a module with no parameters must be followed by
parentheses ().

3.1.2 Left and right context

In addition to the strict predecessor, a production may also list a context to its left or right, or both.
These contexts must also be matched within the string for the production to be applied, although only
the strict predecessor will be replaced. The syntax is:

left context < strict predecessor > right context:

For example, the production

F(x) > G(y): { F(x+1) }

will replace F(x) with F(x+1) in the next derivation step only if G(y) is to the right of F(x) in the
string. G(y) is not replaced by this production: it remains in the string unless it is replaced by another
production in which it is the strict predecessor.

3.1.3 Left and right new context

In each derivation step, the right and left context constructs above are matched to modules in the
current (or “old”) string, in order to produce the next (or “new”) string. Since matching is done
sequentially from one end of the string to another, it is also possible to match to the newly created
modules in the new string. Normally, the string is matched from left to right (“forward”) which enables
matching to the left new context using the << operator. For example:

12

3 PRODUCTIONS 13

B() << D(): { ... }

See object:
NewContext

will replace D() in the next derivation step only if B() is the last module to be added to the new string
so far.

The direction of the derivation can be controlled with the Backward() and Forward() statements
(Section 6.1.2), usually called within a control statement (see Section 4.1). When the string is matched
from right to left (“backward”), the right new context can be used with the operator >>. For example:

Start: { Backward(); }
E() >> F(): { ... }

Note that a production with a new context will never match if the derivation is going in the wrong
direction: a new right context will not match if the direction is left to right (“forward”), and a new
left context will not match if the direction is right to left (“backward”).

Old’ and new contexts can be combined in a single predecessor. For example, a production with
the predecessor:

Age(age,length) << B() > B(): { ... }

will match the module B() in the current string if the derivation is proceeding in the forward direction,
the last module in the new string is Age(age,length), and the current string has another B() to the
right of the strict predecessor.

3.1.4 Ring L-systems

A ring L-system provides an alternate topology for context matching in the L-system string. Matching
is performed as if the last module in the string and the first module in the string are adjacent, so that
the string forms a ring.

For example:

Axiom: A B C;

C() < A() : { ... }

would match the A module in the axiom, because its left context is the C module at the end of the
string.

See object:
B-spline

To specify a ring L-system, include a statement before the Axiom:

ring L-system: value

where value is a non-zero number, or an expression returning a non-zero number.

3.2 Production body

If a production predecessor is matched successfully, lpfg executes the production body. This block
may contain any valid C++ statement. The names given to module parameters in the predecessor act
similar to function parameters in a C++ function.

3 PRODUCTIONS 14

3.2.1 The produce statement

The produce statement ends execution of the production body (like a return statement in a C++
function) and tells lpfg what the successor is. Its syntax is:

produce successor;

where successor is a sequence of modules. For example:

produce A(newAge,newLength);

produce B() A(x,length*12) B();

As with the axiom, there are no commas between modules and, if a module has no parameters, the
parentheses may be omitted.

When the produce statement is reached, the successor is added to the new string and the production
ends. However, a production may also end without reaching a produce statement: by reaching the
end of the production block or by a return statement. In that case, the production is considered
not applied, and lpfg will continue to look for a production that does apply to the predecessor. For
example, the production:

A(age,length):

{
if (age < 10)

produce A(age+1,length+dl);

}

will only be applied if the first parameter of module A is less than 10. Otherwise lpfg will continue to
look for a production that matches A(age,length). For instance, there may be another production
such as:

A(age,length):

{
if (age >=10)

produce B(length);

}

A produce statement may be found anywhere in the production body where a C++ statement is
valid, and there may be multiple produce statements, similar to C++ return statements. For example
the two productions above could be written as:

A(age,length):

{
if (age < 10)

produce A(age+1,length+dl);

else

produce B(length);

}

A produce statement may also be issued without a successor:

produce;

3 PRODUCTIONS 15

In this case the strict predecessor is removed from the string and not replaced.
Note the difference between ending a production with an empty produce statement which removes

the predecessor from the string, and ending with a return statement (or reaching the end of the
production body without applying a produce statement), in which case lpfg continues to look for
another production to match the predecessor.

3.2.2 The nproduce statement

It is sometimes useful to build a production’s successor incrementally. The nproduce statement spec-
ifies part of a successor, but, critically, does not end the production. It syntax is like that of the
produce statement:

nproduce module(s);

The nproduce statement adds the listed modules to the currently defined successor, but does not
end execution of the production. A subsequence produce statement will add its own argument to the
successor, then add the entire successor to the string. For example:

A(age,length):

{
for (int i=0; i<age; i++)

nproduce B;

produce C(length);

}

will replace A(age,length) with a number of B modules equivalent to the value of the age parameter
with a final C(length) module. If the predecessor is A(3,1), it will be replaced with:

B B B C(1)

If the production body ends without a produce statement, the production is not applied, and the
partial successor is ignored.

3.3 Testing context within a production body

The context of the strict predecessor can also be tested within the production body, using one of the
four InContext expressions:

InLeftContext (module list)
InRightContext (module list)
InNewLeftContext (module list)
InNewRightContext (module list)

The expressions are of type bool and are true if the context matches and false otherwise.
For example, rather than defining the context in the predecessor of the production with:

F(x) < G(length) > H(y): { ... }

the context can be tested within the production body as follows:

3 PRODUCTIONS 16

G(length):

{
float x,y;

if (InLeftContext(F(x)) && InRightContext(H(y))

{ ... };
}

This applies to InNewContext expressions as well where

F(x) << G(length): { ... }

is equivalent to:

G(length):

{
float x;

if InNewLeftContext(F(x))

{ ... };
}

See object:
InNewContext

Note the following:

• Modules within the InContext constructs are not separated by commas (these are not function
calls). They are listed in the same manner as in the predecessor.

• The order in which modules are listed should be the same as in the predecessor.

• Module parameters must be declared beforehand and their types must match the module’s dec-
laration. This is different from checking context in the predecessor where the parameters are
declared implicitly.

• All the rules of context matching are the same as when matching context in a production’s
predecessor.

It is possible to combine InContext constructs with a context-sensitive predecessor. The InCon-
text expression will begin matching with the module preceding the left context (InLeftContext) or
following the right context (InRightContext) in the production. For example, the production

F(x) < G(length) > H(y): {
float x;

if InLeftContext(F(x))

produce(G(x));

else

produce(G(length+1));

}

will match module G(3) in the string E(1) F(2) G(3) H(4). However, the InLeftContext expression
will then try to match the E(1) module. Since it does not find the F(x) module, the else clause will
apply and G(3) will be replaced with G(4).

Multiple InContext expressions that evaluate as true will continue to match modules further left
(InLeftContext) or right (InRightContext). Consider the following example:

3 PRODUCTIONS 17

G(length):

{
float fl, fr, a, b;

if ((InLeftContext(F(f1)) && InRightContext(R(a) F(fr))) ||

(InLeftContext(F(f1)) && InRightContext(U(b) F(fr))))

{ ... };
}

The intention of this code is to consider two cases that have the same left context but different right
contexts. However, if the first InRightContext expression returns false after evaluating the first
InLeftContext expression, the second InLeftContext expression (after the || operator) will try to
match the module to the left of the one matched by the first InLeftContext. To avoid this issue the
production should be rewritten as:

G(length):

{
float f1, fr, a, b;

if InLeftContext(F(f1))

{
if (InRightContext(R(a) F(fr)) || InRightContext(U(b) F(fr)))

{ ... };
};

}

Note that the two InRightContext expressions will be attempting to match the same module since
only one of them will evaluate as true.

In general InContext expressions should be treated as operations that read from a stream: as each
expression evaluates as true, the next module in the stream will be available for matching.

For details regarding context matching in branching structures see Section 9.

4 Control statements

4.1 Start and End statements

There are four statements used to specify C++ statements to be executed outside of productions at
specific points during the L-system execution process:

• Start - called before the first derivation step (i.e. before the output string is set to the axiom)

• StartEach - called before each derivation step

• EndEach - called after each derivation step

• End - called after the final derivation step

Each of these statements has the syntax:

statement name: { C++ statements };

For example, to maintain a global variable steps equal to the current derivation step, the following
statements can be used:

int steps;

Start: { steps = 0; }
EndEach:{ steps++; }

Note that the End statement is called after the final derivation step. Therefore, in Animate mode,
if the animation is stopped or rewound before it reaches the final derivation step, the End statement
is not called. If the End statement runs a vital command (for instance, to close an output file), ensure
that the animation is run to the final frame.

4.2 Ignore and Consider statements

By default, all modules are considered when matching contexts (more or less - see Section 9 for
exceptions that may occur when modeling branching structures). It is often convenient, however, to
consider only certain module types. There are two statements that can be used for this purpose:

ignore: module list;

or

consider: module list;

where module list is a sequence of module names separated by spaces. Use the ignore statement to
list the modules that should be ignored when matching context, or the consider statement to list the
only modules to be considered when matching context. For example, the code:

ignore: A B;

C(1) < D(2) > E(3): { ... }

would be matched to the string: C(1) A(10) D(2) B(5) E(3), since the A and B modules are ignored.
The same effect can be achieved with a consider statement:

18

4 CONTROL STATEMENTS 19

consider: C D E;

C(1) < D(2) > E(3): { ... }

In this case the same string would find a match because only the C, D and E modules are considered
when matching.

Multiple ignore and consider statements are allowed within an L-system. Each statement applies
to the subsequent productions until another ignore or consider statement is encountered. To cancel
the effect of the last statement, use the empty ignore statement:

ignore: ;

The predefined modules SB and EB (Section 5.4) are always considered. Listing them in an ignore

or consider statement has not effect.

4.3 Decomposition and Interpretation Rules

While productions are rules which define how the model advances over time, decomposition rules divide
modules into simpler components, and interpretation rules specify how modules should be displayed.

4.3.1 Decomposition Rules

In complex L-systems, productions can be used to define modules at a higher level of abstraction
with more details specified in decomposition rules. This provides a clear overview of the algorithm in
the productions, with details to follow. Decomposition rules are applied to the L-system string in a
decomposition step after the axiom and after each derivation step. The format is:

decomposition:

predecessor : { successor }
predecessor : { successor }
...

where each rule (predecessor/successor) has the same syntax as a production rule.
When the decomposition statement is present in an L-system it indicates that all the following

rules are decomposition rules, until the end of the source file, or until a production or interpretation
statement is encountered.

For example, a decomposition rule may replace a module by its constituent parts:

M(t) : {
produce I(t)

SB() Right(45) A(t) EB()

SB() Left(45) A(t) EB()

I(t) ;

}

The module M(t) is replaced in the L-system string by all the modules in the produce statement. This
successor will then be used in the interpretation step, and in the next derivation.

Decomposition rules can be recursive: the module in the strict predecessor can appear in the
successor. However, the default maximum decomposition depth is 1. Therefore, to actually recursively
use a decomposition rule, a maximum depth statement must be used. It has the syntax:

maximum depth: n

4 CONTROL STATEMENTS 20

where n is (truncated to) an integer. Decomposition is performed as long as the string does not contain
any modules that can be further decomposed, or until maximum depth is reached. Only one instance
of a maximum depth statement is allowed in an L-system. It is applied to all decomposition rules.

An example of a recursive decomposition rule is as follows:

decomposition:

maximum depth: 6;

A(age):

{
if (age > 0)

produce F(1) A(age-1);

}

This rule will produce a series of F(1) modules equal to age, to a maximum of 6, ending with module
A.

4.3.2 Interpretation rules

Interpretation rules are executed only during the graphical interpretation of the string. Modules
produced by interpretation rules are not inserted into the string for the next derivation step; they are
only used as commands to the turtle when creating the visualization. This provides a useful separation
between the functional aspects of a model and its graphical interpretation.

An interpretation step is performed in the following cases:

• When drawing the model in a window.

• When generating an output file (e.g. a rayshade file).

• When calculating the (axes-aligned) bounding box of the model.

• After the axiom and each derivation step, if any of the production predecessors contain query or
communication modules (see Section 5.12).

Syntactically, interpretation rules have the same format as decomposition rules, including a maximum

depth statement for recursive rules:

interpretation:

maximum depth: expression;
predecessor : { successor }
predecessor : { successor }
...

Generally, interpretation rules are replacing conceptual modules with predefined modules for turtle
interpretation (see Section 5). For example:

interpretation:

A(age,length): { produce Sphere(age); }

interprets each module A(age,length) in the string as a sphere of radius age.

4 CONTROL STATEMENTS 21

4.3.3 Rule blocks

Generally, an L-system is written as an axiom followed by a block of productions, then decomposition
rules, and finally interpretation rules:

axiom: module list;
predecessor : { successor }
predecessor : { successor }
...

decomposition:

...

interpretation:

...

However, in some cases it may be convenient to change this order, which will require a production

statement to return to regular productions after rules of a different type have been listed.
For example, in the following code the L-system is organized into a block of rules pertinent to

module A(), and then another block of rules pertinent to module X(), using a production statement
to end the first set of interpretation rules.

A() : { ... B() ... }
decomposition:

B() : { ... C() D() ... }
interpretation:

C() : { ... }
D() : { ... }

production:

X() : { ... Y() ... }
decomposition:

Y() : { ... Z() ... }
interpretation:

Z() : { ... }

4.4 Production groups

In some models it is convenient to organize rule blocks into groups, such that only one specific group is
considered in a given derivation step. By default, all productions, decompositions, and interpretation
rules belong to the default group, numbered 0. The default group has a special property: if no
production in the current group can be applied to a symbol, the productions in the default group will
be tried, even if it is not the current group.

See object:
B-spline

To specify an additional group, use the group statement:

group id:

where the group identifier, id, is an integer constant (not an expression or enumerated value) with a
value greater than zero. A group ends with another group statement, or with an endgroup statement.

When lpfg is started, the default (group 0) rules are applied. To select another group for the
subsequent derivation step, use the function:

UseGroup(id);

where id evaluates to an integer. It can be called at any time, but only takes effect at the beginning
of the next derivation step. Consequently, it is often called in a Start Each statement. For example,
productions can alternate between two groups using the following statements:

4 CONTROL STATEMENTS 22

Start: {n=0;}
StartEach: { UseGroup(((n++ % 2) == 0) ? 1 : 2) }
group 1:

...

group 2:

...

interpretation:

group 0:

...

In this case, the value of the UseGroup parameter is defined by a conditional statement: if the remainder
when n++ is divided by 2 is zero, then the group is 1, otherwise it is 2. Note that the interpretation

block returns to group 0; therefore, the productions in this block will be used in each step.
There are also two specialized groups that are explained in greater detail later: Gillespie groups,

ggroup (Section 7.2), and view groups, vgroup (Section 7.3).

5 Predefined modules

The following modules are predefined. The same names cannot be used for user-defined modules or
global variables of any type. (The modules f and g cause name collisions particularly frequently.). See
Section 6.3.1 for a description of the predefined vector data types, V2f, V2d, V3f, and V3d.

5.1 Position and drawing

Module Description Equiv.
in
cpfg

F(float d)

G(float d)

Move forward a step of length d and draw a line segment
from the original position to the new position. For F

only: If the polygon flag is on (see Section 5.6), the final
position is recorded as a vertex of the current polygon.

F(d)

G(d)

f(float d)

g(float d)

Move forward a step of length d. No line is drawn. For f
only: If the polygon flag is on (see Section 5.6), the final
position is recorded as a vertex of the current polygon.

f(d)

g(d)

MoveTo(float x,

float y, float z)

Move the turtle to point (x,y,z) @M(x,y,z)

MoveTo3f(V3f p)

MoveTo3d(V3d p)

MoveTo2f(V2f p)

MoveTo2d(V2d p)

Move the turtle to point p.

MoveRel3f(V3f p)

MoveRel3d(V3d p)

MoveRel2f(V2f p)

MoveRel2d(V2d p)

Move the turtle to the turtle’s current position + p. The
heading, left and up vectors are not changed.

LineTo(float x,

float y, float z)

Draw a line from the turtle’s current position to point
(x,y,z).

LineTo3f(V3f p)

LineTo3d(V3d p)

LineTo2f(V2f p)

LineTo2d(V2d p)

Draw a line from the turtle’s current position to point p.
The turtle will be positioned at point p.

LineRel3f(V3f p)

LineRel3d(V3d p)

LineRel2f(V2f p)

LineRel2d(V2d p)

Draw a line from the turtle’s current position to its cur-
rent position + p. The turtle will be positioned at point
p.

Line3f(V3f p1, V3f p2)

Line3d(V3d p1, V3d p2)

Line2f(V2f p1, V2f p2)

Line2d(V2d p1, V2d p2)

Draw a line from point p1 to point p2. The turtle will
be positioned at point p2.

SetCoordinateSystem

(float s)

Set the coordinate system affecting the above modules,
using the turtle’s current position and orientation and
the global scaling factor s. The modules will be applied
with respect to the modified coordinate system.

@D(s)

The turtle’s heading, left and up vectors are not changed by these modules. If the distance between
the two points is less than ε (a constant = 10−5), these modules are ignored.

23

5 PREDEFINED MODULES 24

5.2 Turtle rotations

In the following modules, parameter a is an angle expressed in degrees.

Module Description Equiv.
in
cpfg

Left(float a) Turn left around the U axis by angle a +(a)

Right(float a) Turn right around the U axis by angle a -(a)

Up(float a) Pitch up around the L axis by angle a (̂a)

Down(float a) Pitch down around the L axis by angle a &(a)

RollL(float a) Roll left around the H axis by angle a \(a)
RollR(float a) Roll right around the H axis by angle a /(a)

RollToVert() Roll around the H axis so that H and U lie on a common
vertical plane, with U closer to up than down.

@v

RotateXYZ

(V3f axis,

float angle)

Rotate by angle around axis in global XYZ coordinates. The
axis will be normalized. If its length is less than ε, no rotation
will occur.

RotateHLU

(V3f axis,

float angle)

Rotate by angle around axis in local turtle (HLU) coordi-
nates. The axis will be normalized. If its length is less than
ε, no rotation will occur.

SetHead

(float hx,

float hy, float hz,

float ux, float uy,

float uz)

Set the heading vector of the turtle to hx,hy,hz, the up vector
to ux,uy,uz, and the left vector to the cross product of the
new H and U. Normalized vectors do not need to be specified.
The module is ignored if any of the three settings is less than
ε.

@R(hx,

hy,hz,

ux,uy,

uz)

SetHead3f(V3f h) Set the heading vector of the turtle to vector h. The turtle
frame is rotated by the smallest rotation necessary to align
the old and new heading vectors (i.e. parallel transport trans-
formation).

NOTE: There was a bug in the previous implementation of Up, Down, RollL and RollR, which
caused the turtle to rotate in the opposite direction in some cases. This has been fixed; however, in
order to keep compatibility with existing models, the view file command corrected rotation can be
used to switch between the original and corrected behaviour (see Section 8.1.3).

5.3 Display parameters

Module Description Equiv.
in
cpfg

IncColor() Increase the current colour index or material index by one. ;

DecColor() Decrease the current colour index or material index by one. ,

SetColor(int n) Set the current colour index or material index to n. If n < 1 or >
255, the module is ignored.

;(n)

,(n)

SetWidth(float v) Set the line width to v. In pixel mode, the result is undefined if v
< 0, and in other modes if v ≤ 0.

#(n)

!(n)

5 PREDEFINED MODULES 25

5.4 Branching structures

Module Description Equiv.
in
cpfg

SB() Start new branch by pushing the current state onto the turtle stack. [

EB() End branch by popping the state from the turtle stack.]

Cut() Cut the remainder of the current branch, if the derivation direction is Forward

(left to right). This module and all following modules are ignored up to the
closest unmatched EB module, or the end of the string if no EB module is found.
This module has no effect if the derivation direction is Backward.

%

5.5 Circles and spheres

Module Description Equiv.
in
cpfg

Circle0() Draw a circle, with diameter equal to the current line
width, in the HL plane.

@o

CircleFront0() Draw a circle, with diameter equal to the current line
width, in the screen plane.

Circle(float r) Draw a circle of radius r in the HL plane, centred at
the current turtle position.

@o(d) where d is
the diameter, not
the radius.

CircleFront

(float r)

Draw a circle, with radius r, in the screen plane.

CircleB(float r) Draw a circle outline in the HL plane, with inner ra-
dius = r - width/2 and outer radius = r + width/2,
where width is the current line width.

@bc(r)

CircleFrontB

(float r)

Draw a circle outline in the front plane, with inner ra-
dius = r - width/2 and outer radius = r + width/2,
where width is the current line width. Note that it is
always drawn in the front plane even when the object
is rotated. This is different from cpfg where it would
keep its orientation in relationship to other elements
in the scene.

@bo(r)

Sphere0() Draw a sphere, with diameter equal to the current line
width.

@O

Sphere(float r) Draw a sphere of radius r at the current turtle position. @O(d) where d is
the diameter, not
the radius.

The number of sides in the circle approximation is controlled by the ContourSides module (Section
5.8), or the contour sides command in the view file (Section 8.1.3). For spheres, there will be
contour sides longitudinal sections and (contour sides+1)/2 transversal sections.

5 PREDEFINED MODULES 26

5.6 Polygons, rhombi, and isosceles triangles

Module Description Equiv.
in
cpfg

SP() Start a polygon. {
EP() End a polygon. }
PP() Set a polygon vertex. .

Rhombus(float length,

float width)

Draw a rhombus in the HL plane. The turtle is at the center
of the bottom edge.

Triangle(float width,

float height)

Draw an isosceles triangle in the HL plane. The turtle is at
the center of the bottom edge.

5.7 Surfaces and Meshes

Predefined surfaces and meshes are specified in the view file (Section 8.1.5), where the first surface in
the file has id=0.

Module Description Equiv.
in
cpfg

Surface(int id,

float scale)

Draw the predefined Bézier surface id at the current
location and orientation. The surface will be uniformly
scaled by the factor scale.

∼

Surface3(int id,

float xscale,

float yscale,

float zscale)

Draw the predefined Bézier surface id at the current lo-
cation and orientation. The surface will be scaled inde-
pendently along the x, y and z axes by xscale, yscale,

and zscale, respectively.
Mesh(int id,

float scale)

Draw the predefined mesh at the current location and
orientation. The mesh will be uniformly scaled by the
factor scale.

Mesh3(int id,

float xscale,

float yscale,

float zscale)

Draw the predefined mesh at the current location and
orientation. The mesh will be scaled independently along
the x, y and z axes by xscale, yscale, and zscale,
respectively.

SetUPrecision

(float p)

Set the drawing precision of bicubic surfaces to p in the
U direction. If set to zero, the U precision is reset to the
surface default, defined in the view file.

SetVPrecision

(float p)

Set the drawing precision of bicubic surfaces to p in the
V direction. If set to zero, the V precision is reset to the
surface default, defined in the view file.

InitSurface(int id) Initialize an L-system-define surface. Currently there is
only one surface allowed, so the parameter is ignored.

@PS

SurfacePoint

(int id, int p, int q)

Set the (p,q) control point of the L-system-defined sur-
face to the current turtle position. The id parameter is
ignored.

@PC

DrawSurface(int id) Draw the L-system-defined surface. The id parameter
is ignored.

@PD

DSurface

(SurfaceObj s)

Draw the dynamic Bézier surface s. See Section 7.1.

5 PREDEFINED MODULES 27

5.8 Generalized cylinders

Generalized cylinders are specified as contours, which can be defined using the cuspy tool (see the vlab
Tools manual), and listed on the command line (Section 1.1.2). Contours are referenced sequentially
by an id in the order in which they are listed, starting with 1.

Module Description Equiv.
in
cpfg

StartGC() Start a generalized cylinder at the current turtle position. @Gs

PointGC() Specify a control point on the central line of the generalized
cylinder.

Similar to
@Gc(n)

EndGC() End the current generalized cylinder. @Ge

CurrentContour

(int id)

Set contour id as the current contour for generalized cylin-
ders. If id=0, the default contour (a circle) is used.

@#(id)

BlendedContour

(int id1, ind id2,

float blend)

Interpolate the contour between id1 and id2 using the
interpolating coefficient blend. At blend=0 the contour
is id1; at blend=1 the contour is id2.

ScaleContour

(float p, float q)

Scale the contour independently by p (left) and q (up).

ContourSides

(int sides)

Specify the number of sides all subsequent generalized
cylinders will have. This module should be placed before
the StartGC module; it has no effect within a generalized
cylinder (i.e. between StartGC and EndGC).

5.9 Textures

Cylinders and surfaces can be texture mapped using an image file specified in the view file (Section
8.1). Textures are referenced sequentially by an id in the order in which they are listed in the view
file, starting with 0.

Module Description
CurrentTexture

(int texid)

Use texture txtid to texture map a surface or cylinder. If txtid = -1,
texture mapping is turned off.

TextureVCoeff

(float vscale)

Scale the texture mapped on cylinders in the v direction (along the cylinder
axis). vscale is the portion of the texture that will be mapped to the cylinder
as the turtle moves forward one unit. For example, to map the texture to a
cylinder that is 10 units long, set vscale to 0.1. If the texture v coordinate
is greater than 1, the texture wraps. This module only affects the texturing
of cylinders; surfaces are not affected.

5.10 Labels

Module Description Equiv.
in cpfg

Label(char* str) Print the string, str, at the current turtle position. @L(str)

Note that if the Label module is drawn before other objects when render mode is set to shadows, the
shadows will not be rendered. For example:

Label("a") F(1) F(1) F(1)...

5 PREDEFINED MODULES 28

will break shadow mapping, but the following will not:

F(1) F(1) F(1)... Label("a")

5.11 Tropism Control

Tropisms are defined in the view file (Section 8.1.4). They are assigned consecutive integer id numbers,
starting with 1, in the order in which they appear in the file.

Module Description Equiv.
in
cpfg

SetElasticity

(int id, float v)

Set the elasticity parameter of tropism or torque id to v. This
is equivalent to the E: parameter of the tropism and torque

commands in the view file.

@Ts

IncElasticity

(int id)

Increment the elasticity parameter of tropism or torque id by
the value defined by the S: parameter of the tropism and
torque commands in the view file.

@Ti

DecElasticity

(int id)

Decrement the elasticity parameter of tropism or torque id by
the value defined by S: parameter of the tropism and torque

commands in the view file.

@Td

Elasticity

(float v)

Set the elasticity or a “simple” tropism (command stropism

in the view file) to v. (under-
score)

5.12 Query modules

If any of the following query modules are present in the predecessor of any production in the L-system,
an interpretation step is performed after each derivation step even if no drawing occurs. The turtle is
“moved” and all positions are calculated in case they are needed by the query modules.

If there are multiple views (Section 7.3), the interpretation rules in vgroup 0 will be used.3

Module Description Equiv.
in
cpfg

GetPos(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle po-
sition.

?P(x,y,z)

GetHead(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle head-
ing vector.

?H(x,y,z)

GetLeft(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle left
vector.

?L(x,y,z)

GetUp(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle up
vector.

?U(x,y,z)

3Vgroup 0 is a special group, distinct from the vgroups defined using the window command in the view file (Section
8.1.1).

5 PREDEFINED MODULES 29

5.13 Environment communication

Module Description Equiv.
in
cpfg

E1(float v)

E2 (float v1, float v2)

EA20(EA20Array a)

Send or receive environmental information, using
the individual parameters, v, or v1 and v2, or the
array a.

?E(v)

See the vlab Environmental Programs manual for more details, including the definition of the
EA20Array data type.

5.14 Dynamic view control

Module Description
Camera() Change the view parameters such that the camera is located at the position of the

turtle, with the same orientation. See also the new view between frames: parameter
in the animation file (Section 8.2).

5.15 Mouse interaction

The following two modules are used to interactively identify a component of the model using the mouse
and a combination of key strokes. The module is inserted into the string before the object identified
by the mouse. If no object is identified (i.e. the mouse is clicked outside of the model components),
no module is inserted.

Module Description Equiv.
in
cpfg

MouseIns() Inserted into the string when the user holds down the Shift and
Command keys (or the 1 key) and clicks the left mouse button on
a component of the model.

x

MouseInsPos

(MouseStatus)

Inserted into the string when the user holds down the Alt and
Command keys (or the 2 key) and clicks the left mouse button on
a component of the model. A MouseStatus structure is included
with the insertion of this module.

See Section 7.4 for more details, including the definition of the MouseStatus data type.

6 Predefined functions

6.1 Controlling the simulation

6.1.1 Simulation progress

Function Description
StepNo() Return the current derivation step number.
void RunSimulation() Run the simulation. Including this function in the Start

block (Section 4.1) will start the animation as soon as lpfg is
called, without selecting the Run menu item (Section 1.2.3)
or using the keyboard shortcut to start.

void PauseSimulation() Pause the simulation after completing the current derivation
step. The simulation can be resumed using the Step, Run
or Forever menu options (Section 1.2.3). The End statement
block (Section 4.1) is not executed.

void Stop() Stop the simulation. The End statement block (Section 4.1)
is executed after the current derivation step. The animation
can be rewound, but cannot be advanced further using the
Animate menu items (Section 1.2.3) or the keyboard short-
cuts.

void DisplayFrame() Display a frame of the animation at the current derivation
step, if the display on request parameter is set to on in
the animation file (Section 8.2). If it is off, this function
has no effect.

void OutputFrame("filename.ext") Output a frame of the animation at the end of the current
derivation step, as an image, postscript, or OBJ file, de-
pending on ext. If display on request = on in the ani-
mation file (Section 8.2), this call must be preceded by a
DisplayFrame() function so that the frame buffer is up-
dated. If this function is called outside of Animate mode, it
is ignored. The actual saving is done at the end of the deriva-
tion step: if Stop() is called in the same step, the frame will
not be output.

6.1.2 L-system derivation

L-system derivation can be affected by groups (Section 4.4) and Gillespie groups (Section 7.2) using
the following functions:

Function Description
void UseGroup(int) Use the group from the specified group or ggroup in the next

derivation step.
int CurrentGroup() Return the number of the current group.
void SeedGillespie(long seed) Seed the pseudo-random number generator used by Gillespie

groups (see Section 7.2).

Derivation direction, used with new context functionality (Section 3.1.3), is determined by the
following functions:

30

6 PREDEFINED FUNCTIONS 31

Function Description
void Forward() Perform the next derivation step from left to right. This is the default.
void Backward() Perform the next derivation step from right to left.
bool IsForward() Return the last derivation direction. Note that this function returns the value

of the last Forward or Backward statement but may not reflect the current
derivation direction if it is changed during a derivation step.

6.1.3 Communication with the environment

Function Description
void Environment()

void NoEnvironment()

Specify whether the “interpretation for environment” step should be
performed after the current derivation step. This affects whether en-
vironmental information will be available in the next derivation step.
Interpretation for environment is performed after the EndEach block, so
these functions can be used in the StartEach or EndEach blocks with
the same effect.

See the vlab Environmental Programs manual for more information.

6.2 Accessing externally defined entities

Parameters, functions, contours and surfaces accessed using functions listed in this section can be
manipulated without modifying, re-reading and recompiling the L-system file. This facilitates and
accelerates exploration of the models, using the tools in the vlab Tools manual. To see the results
of changes, rerun the L-system using the New run menu item (Section 1.2.2). To see the results
immediately, set lpfg and the tool to continuous refresh mode (see Section 1.3).

6.2.1 Parameters

Parameters may be defined in a .vset file (Section 1.1.2) which can be modified using the panel

tool. Each parameter is identified by a name (pname) which lpfg maps to an integer number (using a
#define statement invisibile to the user).

The following function is used to retrieve the value of a parameter from the file:

Function Description
float val(int pname) Return the value of parameter pname from the parame-

ter.vset file.

The parameter.vset file contains #define statements, one per line, in the format:

#define pname n

where pname is the parameter name, and n is its value.
For example, if parameter.vset contains the lines:

#define LENGTH 10

#define ANGLE 60

the L-system can retrieve the values of these parameters with the statements:

6 PREDEFINED FUNCTIONS 32

len = val(LENGTH);

a = val(ANGLE);

Note that the return variable cannot have the same name as the parameter. The variable must be
declared, but the parameter is not.

6.2.2 Graphically defined functions

Graphically defined functions can be input into lpfg using three types of input files: function.func,
functionset.fset, and timeline.tset (see Section 1.1.2). Each function is identified by a name, fname,
which is mapped to a sequential integer number (using a #define statement invisible to the user).

The functions can be accessed within the L-system using the following calls:

Function Description
float func(int fname, float x) Return the value of function fname, specified in a .func

or .fset file. The parameter x is clamped to the interval
[0,1].

float pfunc(int fname,

float x, float min, float max)

Return the value of function fname, specified in a .func

or .fset file. The function is evaluated over the interval
[min,max]. The parameter x is clamped to that interval.

float tfunc(int id, float x) Return the value of function fname, specified in a .tset

file. The function is evaluated over the interval specified
in the file. The parameter x is clamped to that interval.

V2f funcTangent (int id, float x) Return the tangent to function fname, specified in a
.func or .fset file. The parameter x is clamped to
the interval [0,1].

6.2.3 Graphically defined curves

Similar to cpfg, lpfg supports B-spline curves, defined via their control points. Planar curves can be
defined using the cuspy tool. See the vlab Tools manual for the file format, which can also be used
to define 3-dimensional contours. Contour files are listed on the command line (Section 1.1.2). Each
contour is assigned an id in the order in which it was listed, starting at 1.

See Section 5.8 for the use of contours to create generalized cylinders.

Function Description
float curveX(int id, float s)

float curveY(int id, float s)

float curveZ(int id, float s)

--- curveXY(int id, float s)

V2f curveXYf(int id, float s)

V2d curveXYd(int id, float s)

--- curveXYZ(int id, float s)

V3f curveXYZf(int id, float s)

V3d curveXYZd(int id, float s)

Return the coordinates of curve id defined in the con-
tour file. Parameter s is the normalized arc-length
positin clamped to the interval [0,1]. The curveXY and
curveXYZ functions return a structure type internal to
lpfg and may require explicit casting to V3f or V3d within
the L-system code.

V3f curveNormal(int id, float s) Return the normal vector to the curve id at position t.
void curveScale (int id,

float x, float y, float z)

Scales curve id by the factors x, y, and z.

6 PREDEFINED FUNCTIONS 33

Function Description
void curveSetPoint(int id, int p,

float x, float y, float z)

Assign control point p in curve id to position
(x,y,z). The curve must be recalculated using
curveRecalculate in order for the curve functions to
return proper values.

void curveRecalculate(int id) Recalculate curve id after assigning a control point with
curveSetPoint.

void curveReset(int id) Reset curve id to the state define in the contour file.
The file is not re-read.

6.2.4 Graphically defined surfaces

Predefined surfaces can be created using either the bezieredit or stedit tool and are listed in the view
file (Section 8.1.5). Surfaces are assigned an id in the order in which they were listed, starting at 1.

Function Description
SurfaceObj GetSurface(int id) Return the control points of the predefined Bézier surface

specified in the view file as id. If the surface contains more
than one patch, only the first patch is returned. Used to
dynamically manipulate a surface (see Section 7.1).

6.3 Auxiliary math functions

6.3.1 Vector algebra

Vector functions are used with a set of pre-defined structures:

struct V2f { float x,y; };
struct V2d { double x,y; };
struct V3f { float x,y,z; };
struct V3d { double x,y,z; };

Most functionality associated with vectors are actually methods:

Method Description
Length() Return the vector’s length as float or double, depending on the structure.
Normalize() Normalize the vector.
Normalized() Return a normalized form of the vector. The argument vector is not affected.
Set(x,y)

Set(x,y,z)

Set the components of a vector.

Examples of these methods are:

float x = a.Length();

a.Normalize(); // Vector a is normalized
b = a.Normalize(); // Both vectors a and b are normalized
b = a.Normalized(); // Vector b is normalized only

V2f a;

a.Set(7,5);

However, there are also Normalize functions:

6 PREDEFINED FUNCTIONS 34

Function Description
V2d Normalize(V2d v)

V2f Normalize(V2f v)

V3d Normalize(V3d v)

V3f Normalize(V3f v)

Normalize vector v, and return a copy of this vector.

And, unless the preprocessor symbol NOAUTOOVERLOAD is specified before #include lpfgall.h, more
operators are defined on vectors, including the addition and subtraction of two vectors of the same
type, unary change of sign (direction), multiplication and division of a vector by a scalar, dot product,
and the assignment operators +=, -=, *=, and /=. Moreover, the cross product is defined on V3f and
V3d with operator %. Some usage examples are:

V2f a(1.5, 2,0), b(0, 0.5);

V2f c = a * 2.5 + b;

float x = a * b;

V3f d(1.2, 2.3, 0), e(0, 0,5, 0,1);

V3f f = d % e;

6.3.2 Random number generation

The random number functions, ran and sran, provide convenient access to simple random number
generation, based on Unix drand48().

Function Description
float ran(float range) Generate a peseudo-random number uniformly distributed over [0,

range].
void sran(long seed) Seed the pseudo-random number generator used by ran. Use this

function in the Start block to ensure every run is identical, even
after rewinding.

6.4 View-related functions

Views are identified by name in the view file (Section 8.1.1), which lpfg maps to sequential integer
numbers internally (using #define statements invisible to the user). Therefore, the following functions
have an integer parameter which can be specified using the view name. See Section 7.3 for more
information on multi-view mode, and the use of vname.

Function Description
void UseView(int vname) Activate the view, vname, specified in a window com-

mand in the view file.
float vvXmin(int vname)

float vvYmin(int vname)

float vvZmin(int vname)

float vvXmax(int vname)

float vvYmax(int vname)

float vvZmax(int vname)

Return the coordinate of the bounding box of view
vname.

float vvScale(int vname) Return the current projection scaling factor of view
vname.

CameraPosition GetCameraPosition(0) Get the current position of the camera.

6 PREDEFINED FUNCTIONS 35

CameraPosition is a predefined data type:

struct CameraPosition {
V3f position, lookat;

V3f head, left, up;

float scale;

};

6.5 Mouse and menu functions

Function Description
struct MouseStatus

GetMouseStatus()

Return the state of the mouse. See Section 7.4 for examples of its
usage.

void UserMenuItem

(char* label, int id)

Add a menu item, label, to a user-defined menu, with a numerical
id to be returned when the item is selected. The menu is accessed
by holding down the ‘4’ key and clicking the left mouse button over
the lpfg window.

int UserMenuChoice() Return the id defined by UserMenuItem() associated with the last
selection made from the user-defined menu since the previous call
to this function.

void UserMenuClear() Clear the user-defined menu.

See Sections 7.4 and 7.5 for examples of mouse interactions and user-defined menus, respectively..

6.6 Input and output functions

Function Description
void Printf(const char*, ...) Print message to the lpfg.log file, and to the console if it

is open. Recommended over the standard C function printf
when lpfg is not called from and connected to a console.

void OutputString

(const char* filename)

Write the current string to the specified file in binary format
(.strb), similar to the String > Output menu item. This
function should be called in a control block, not within a
production.

void LoadString

(const char* filename)

Overwrite the current string with the string in the specified
binary file (.strb), similar to the String > Input menu item.
Normally this is a string created by the OutputString func-
tion, or the String > Output menu item. This function should
be called in a control block, not within a production.

7 Advanced topics

7.1 Dynamic surfaces

Single-patch Bézier surfaces can be dynamically created and/or manipulated from within the L-system.
This is useful, for example, when creating an animation with “keyframe” surfaces, or when building a
family of similar surfaces that are modifications of a predefined set of base surfaces.

The manipulations that can be performed on a surface include:

• non-uniform scaling,

• linear interpolation between surfaces, and

• manipulation of individual control points,

7.1.1 Creating dynamic surfaces

A dynamic surface can be initialized for further manipulation by:

• Using the GetSurface function (Section 6.2.3) to get the control point coordinates of a predefined
surface specified in the view file (Section 8.1)

• Initializing the coordinates of individual control points within the L-system

To explicitly initialize the coordinates of a control point use one of the Set methods:

void SurfaceObj::Set(int id, const float* arr)

void SurfaceObj::Set(int id, const V3f& v)

See Section 6.3.1 for a description of the predefined vector data type, V3f.
A similar method is available to get the coordinates of a control point:

V3f SurfaceObj::Get(int id) const

7.1.2 Manipulating dynamic surfaces

Scalar multiplication operators can be used to scale a surface object by a real number:

const SurfaceObj SurfaceObj::operator*(float r)

SurfaceObj operator*(float r, const SurfaceObj& obj)

To scale the surface non-uniformly (by a different factor in each direction), make the scaling factors
coordinates of a V3f vector and use the method:

void SurfaceObj::Scale(const V3f& scale)

The addition operator combines two surfaces by pointwise adding their control points:

SurfaceObj operator+(const SurfaceObj& l,const SurfaceObj& r)

The addition operator, along with the scalar multiplication operator, defines a vector space over
patches. This can be used to interpolate between surfaces. Then use the predefined DSurface module
(Section 5.7) to draw the resulting surface. For example:

36

7 ADVANCED TOPICS 37

interpretation:

Leaf(age):

{
SurfaceObj young = GetSurface(L_YOUNG);

SurfaceObj mature = GetSurface(L_MATURE);

SurfaceObj leaf_surface = young*(1-age) + mature*age;

produce DSurface(leaf_surface);

}

7.2 Gillespie groups

Gillespie groups are a special type of production groups (Section 4.4), with a different derivation
strategy. They are designed for modeling chemical reactions as stochastic processes. The specification
of a Gillespie group begins with

ggroup number:

where number is an integer and part of a shared numbering system with regular production groups;
therefore, a regular group and a Gillespie group cannot have the same number. Gillespie groups end
with the standard endgroup statement, and are called using the standard UseGroup function.

Unlike a regular derivation step where every module in the string can produce a successor, a
derivation step using a Gillespie group will have only one module in the entire string produce a
successor, chosen using Gillespie’s method [7; 8]. All other modules will remain the same.

Each module defined in a Gillespie group specifies the reactions that may occur within the module,
and the propensity (likelihood) of each reaction. For example, if the Cell module implements reactions:

S + E →
c1
ES, ES →

c2
S + E, ES →

c3
P + E

then the production for the Cell module in the Gillespie group will be:

Cell(S,E,ES,P):

{
propensity c1*S*E produce Cell(S-1,E-1,ES+1, P);

propensity c2*ES produce Cell(S+1,E+1,ES-1,P);

propensity c3*ES produce Cell(S,E+1,ES-1,P+1);

}

In each derivation step, lpfg will randomly choose the next reaction to take place based on the
propensities of all the modules in the Gillespie group such that the reaction with the greatest propensity
is more likely to be chosen. For example, if there are ten Cell modules with the three reactions
above, lpfg will pick one reaction out of 30. It will also calculate the time τ to the next reaction as
τ = ln(1− χ)/p, where χ is a uniform random number in [0,1] and p is the sum of the propensities of
all modules. To access τ , call the function:

float GillespieTime();

There are two restrictions when using Gillespie groups:

• ring L-system statements are ignored, and

• new context is not supported.

7 ADVANCED TOPICS 38

7.3 Multi-view mode

lpfg allows multiple views to be displayed simultaneously. The location of each view within the main
window is defined in the view file (Section 8.1.1) using the window command. For example, to create
three views, one at the top and two beneath it, the commands would be:

window: View1 0.0 0.0 1.0 0.5

window: View2 0.0 0.5 0.5 0.5

window: View3 0.5 0.5 0.5 0.5

where View1, View2, and View3 are mapped to integer numbers and used in UseView and vgroup

statements, and the four numbers are:

• the x coordinate of the top left corner,

• the y coordinate of the top left corner,

• the width, relative to the main window, and

• the height, relative to the main window.

The default border between the views is a black line, one pixel wide. This can be altered with the
window border command (Section 8.1.1). Note that the view area is reduced by the size of the border.
This is especially noticeable if a wide border is used.

See object:
Multiview

To display these views, they must be activated with the UseView function (Section 6.4). The
function is normally called within the Start statement (Section 4.1). For example:

Start: {
UseView(View1);

UseView(View2);

UseView(View3);

}

If a UseView function is added or changed within the L-system file, lpfg must be restarted or New
model selected from the pop-up menu. (Selecting New L-system does not suffice.)

The actual content of each view is defined in the interpretation section of the L-system using
the vgroup command. For example, View1 above would be defined as follows:

interpretation:

vgroup View1:

...

produce ... ;

...

7.4 Mouse interactions

The status of the mouse can be obtained using the GetMouseStatus() function, which returns a
MouseStatus structure defined as:

struct MouseStatus {
int viewNum; // currently active view

int viewX,viewY; // x,y pixel positions of mouse cursor

7 ADVANCED TOPICS 39

V3d atFront,atRear,atMiddle;

// Intersection of the cursor ray with

// front plane, back plane, and halfway between them.

// Not affected by any keys.

bool lbDown; // Left button currently down

bool lbPushed; // Left button pressed

// since last call to GetMouseStatus

bool lbReleased; // Left button released

// since last call to GetMouseStatus

};

The cursor ray is the line passing through the cursor location, perpendicular to the screen, mapped
into world space.

The left button values, lbDown and lbPushed, are only set when the left button is pushed with
a combination of keys. These key combinations are also used to determine which mouse module is
inserted when the left mouse button identifies a component of the model:

Key combination Alternate key Module inserted
Shift+Command
Shift+Alt+Command

1 MouseIns()

Alt+Command 2 MouseInsPos(MouseStatus)

Shift+Alt 3 No module inserted

Therefore, using any combination of the keys above, and the left mouse button, it is possible to draw
a line:

See object:
SimpleDrawderivation length: 1;

module Cursor();

MouseStatus ms; // mouse status

StartEach: { ms = GetMouseStatus(); }

Axiom: SetColor(2) SetWidth(0.3) Cursor();

production:

Cursor() :

{
if(ms.lbPushed) // start a line

produce MoveTo3d(ms.atMiddle) Cursor();

if(ms.lbDown) // continue drawing

produce LineTo3d(ms.atMiddle) Cursor();

}

The following code draws a sphere when the left mouse button is pushed along with one of the key
combinations for MouseIns(). Spheres can then be selected and moved.

See object:
MoveBalls

7 ADVANCED TOPICS 40

derivation length: 1;

module AddBall(); // generates new balls

module Ball(V3d, int); // position, currencly selected?

MouseStatus ms;

int moving; // Set to 1 after selecting a module

// and set to 0 after releasing the mouse button

Axiom: AddBall;

Start: { moving = 0; }

StartEach: { ms = GetMouseStatus(); }

/* Add sphere if mouse clicked outside any existing sphere. */

AddBall():

{
if (!moving && ms.lbPushed) {

moving = 1;

produce Ball(ms.atMiddle, 1) AddBall();

}
}

/* An existing ball has been selected. Adjust its position to

that of the mouse. Set flag "moving" to 1 to prevent the

addition of another ball at the same location. */

MouseIns() Ball(pos, selected) :

{
moving = 1;

produce Ball(ms.atMiddle, 1) ;

}

/* Move the selected ball as long as the mouse button

is not released. */

Ball(pos, selected):

{
if (selected) {

moving = !ms.lbReleased;

produce Ball(ms.atMiddle, moving);

}
}

interpretation:

Ball(pos, selected) :

{
produce MoveTo3d(pos) SetColor(1+selected) Sphere(1);

}

7 ADVANCED TOPICS 41

7.5 User-Defined Menus

In addition to the standard lpfg pop-up menu, a user-defined pop-up menu can be created and accessed
by holding down the ‘4’ key and using the left mouse button. The content of the menu is defined
with multiple calls to UserMenuItem() functions, and each menu selection is identified using the
UserMenuChoice() function.

Typically, the menu content is defined in the Start statement, and the menu item selected in the
StartEach statement:

See object:
UserMenuint choice;

Start:

{
UserMenuItem("First menu item",1);

UserMenuItem("Second menu item",2);

...

}

StartEach:

{
choice = UserMenuChoice();

}

8 Lpfg-specific input files

8.1 View file

Viewing and drawing parameters are stored in the view file, identified by its extension (filename.v)4.
The view file is read by the C++ preprocessor; therefore, the use of comments (both C style /*

... */ and C++ style //), as well all other standard preprocessor directives such as #define and
#if statements are allowed.

The commands in the file are interpreted in the order in which they appear in the file. If there
are two or more commands that specify the same parameter, the last one takes precedence. This does
not apply to commands that specify new set of parameters every time they appear (e.g. lights,

tropisms). Every command must be contained on a single line.

8.1.1 Setting the view

Command Description Default
projection: pvalue Set the projection to parallel or perspective. parallel

scale: s
scale factor: s

Set the size of the final image on the screen. For full
size, set s = 1.0. The two commands are equivalent.

0.9

min zoom: zmin Set the minimum value of the zooming factor. 0.05

max zoom: zmax Set the maximum value of the zooming factor. 50

generate on view

change: vchange
Rerun the simulation. Lpfg rewinds to the axiom
and performs the derivation again depending the
value of vchange:
on: rerun every time the view changes through ro-
tation, zoom, or pan.
triggered: rerun after the user releases the mouse
button.
off: never rerun.

off

view: id
dir: dx dy dz
up: ux uy uz
pan: px py pz
fov: val
shift: val
scale: val

Define the view transformations to be used for view
window id. In single view mode, set id to 0. All the
transformation commands are optional.
dir and up: the view direction and up direction.
pan: the point that is the center of the view, rela-
tive to the center of the bounding box.
fov: the angle of the field of view in the y direc-
tion.
shift: the distance between the camera and the
point being looked at.
scale: the scale of objects.
See Section 8.1.8 for a deprecated form of this com-
mand.

dir: 0 0 -1

up: 0 1 0

pan: 0 0 0

fov: 45

shift: 1

scale: 0.9

box: id xmin xmax ymin
ymax zmin zmax

Define the default bounding box for view window id.
In single view mode, set id to 0.

4Some older models may use filename.dr

42

8 LPFG-SPECIFIC INPUT FILES 43

Command Description Default
window: vname left top
width height

Define the location of view vname within the lpfg win-
dow. The parameters left, top, right and bottom are
the relative position of the view within the main win-
dow, where (0,0) is the upper left corner and (1,1) is
the bottom right. See Section 7.3 for a description of
all components of multi-view mode.

window border: size
r g b

Define the size and color of the border between mul-
tiple views, where size is in pixels, and r, g, b are
integers between 0 and 255. See Section 7.3 for a
description of all components of multi-view.

size = 1

r=g=b=0

front distance: d1
back distance: d2

Set the distance to the front (d1) and back (d2) clip-
ping planes, from the viewer in perspective projec-
tion, or from the position of the clipping plane with
respect to the centre of the object’s bounding box
in parallel projection. Thus in parallel projec-
tion the front distance should be a negative num-
ber and the back distance should be positive. Both
commands must be specified in order to have an ef-
fect.

See below

Default clipping planes are calculated on the basis of minimum and maximum distances to the bounding
box in the view direction.

8.1.2 Rendering commands

Command Description Default
z buffer: on|off Turn Z buffer on and off. off

render mode: rvalue Set the rendering mode to filled, wireframe,

shaded, or shadows. Note that when the render
mode is shadows, the Z buffer is set to on regard-
less of the value of the z buffer command above.

filled

shadow map:

size: n
color: r g b
offset: factor units

Define parameters for shadow mapping when the
render mode command is set to shadows.5 The
shadow map will be generated using the first direc-
tional or spot light source specified with the light

parameter. The following parameters are optional:
size: width and height of the shadow map (n x n),
where n must be an even number. Shadows may
not be displayed if values are too small (n < 100)
or too large (dependent on graphics card).
color: shadow color in rgb components.
offset: polygon offset for a generating depth
map used to reduce shadow acne (erroneous self-
shadowing). To reduce shadow acne, try increasing
these values.

n = 1024

r = 0.2

g = 0.2

b = 0.4

factor = 5

units = 10

5For details see https://registry.khronos.org/OpenGL-Refpages/gl4/html/glPolygonOffset.xhtml.

https://registry.khronos.org/OpenGL-Refpages/gl4/html/glPolygonOffset.xhtml

8 LPFG-SPECIFIC INPUT FILES 44

Command Description Default
light:

V: x y z
O: x y z
P: x y z e c
A: r g b
D: r g b
S: r g b
T: c l q

Define a light source.6 Include either:
V: vector of directional light source, or
O: origin of point light source, or
both O and P where P: spotlight with direction
(x,y,z), exponent e, and cutoff angle c.
In addition, the following options may be specified:
A: ambient color of light source.
D: diffuse color of light source.
S: specular color of light source.
T: constant c, linear l, and quadratic q attenua-
tion factors (affecting point light sources and spot-
lights).
It is possible to define up to 8 light sources, one per
line.

V: 0 0 1

(single light
source in
the default
view direction)

A: 1 1 1

D: 1 1 1

S: 1 1 1

T: 1 0 0

stationary lights:

on|off

Enable stationary light sources when on, keeping the
position of all light sources fixed.

on

concave polygons:

on|off

Enable the OpenGL tesselator when on, which di-
vides polygons into triangles. This allows rendering
of concave polygons, but lpfg may run slower.

off

auto normals: on|off Calculate normals to user-defined polygons generated
with the SP/EP modules. When on, the normals are
calculated as the cross-product of the first and second
polygon edge. When off, the up vector of the turtle
is used as the normal to the polygon.

off

antialiasing: n Set the preferred number of samples per pixel in the
anti-aliasing method. The parameter n is in the range
0 to 10. The final effect may depend on the hardware
used.

0 (no multi-
sampling)

8.1.3 Geometry presentation

Command Description Default
line style: lstyle Set the line style to pixel, polygon or cylinder. pixel

wireframe line width:

width
Set the line width when the render mode command is
set to wireframe. The value of width must be greater
than zero.

contour sides: n Set the number of sides n of polygonal approximations
of circles, cylinder cross-sections, and sphere sections
rendered in the lpfg window. This command can be
overridden by either the ContourSides module (Sec-
tion 5.8), or the samples parameter in the file created
by the contour editor (see the cuspy tool in the vlab
Tools manual). Values of n < 3 are clamped at 3.

16

6For details see https://www.glprogramming.com/red/chapter05.html.

https://www.glprogramming.com/red/chapter05.html

8 LPFG-SPECIFIC INPUT FILES 45

Command Description Default
capped cylinders:

on|off

Cap generalized cylinders defined by a closed contour
whenon, and generate a mesh consisting of one closed
surface (a watertight mesh). If a concave contour is
used to define the shape of the generalized cylinder,
the command concave polygons: on should also
be present. If an open contour is specified, this com-
mand should be set to off, otherwise an incorrect
triangulation will be generated.

no

backface culling:

on|off

Specify that backward-facing polygons should not be
drawn when on. This may speed up rendering or
improve the rendering of transparent objects.

off

corrected rotation:

on|off
Use the corrected rotations when on. Old versions of
lpfg had a bug which caused all rotations by the mod-
ules Up, Down, RollL, and RollR to be in the wrong
direction. This was fixed, but in order to run old mod-
els without corrections, set corrected rotation to
off.

on

8.1.4 Tropism commands

Command Description Default
tropism:

T: x y z
A: a
I: x
E: e
S: de

Set tropism parameters. The tropism vector (T) is required.
The remaining parameters are optional:
- A: angle (in degrees) that segments are trying to reach, with
respect to the tropism vector
- I: (global) intensity of the tropism
- E: initial elasticity
- S: elasticity step

A: 0

I: 1

E: 0

S: 0

torque:

T: x y z
I: x
E: e
S: de

Set parameters for rotating segments around their heading with-
out modifying the heading orientation. The tropism vector (T)
is required. The remaining parameters are optional, and are the
same as for tropism, except that A is not required.

I: 1

E: 0

S: 0

stropism: x y z, e Define a simple tropism, specifying the tropism vector (x,y,z)
and the elasticity e.

There may be multiple tropisms in the view file. Tropisms can be manipulated using the modules in
Section 5.11.

8 LPFG-SPECIFIC INPUT FILES 46

8.1.5 External files

Command Description Default
surface:

filename.s
scale sdiv tdiv txid

Declare the predefined Bezier surface in filename.s.
The remaining parameters are optional:
scale: a file-specific scaling parameter which is mul-
tiplied by the scaling parameter in the Surface

module to produce the actual scaling factor.
sdiv and tdiv: the number of subdivisions to draw
along the s and t axes. These parameters must be
used together.
txid: the texture associated with the surface.

scale = 1

mesh: filename
S:scale
C:x y z

Declare a predefined mesh in filename with optional
scaling (S:), and contact point coordinates (C:). The
mesh file must be in OBJ format.

scale = 1

x y z = 0 0 0

texture: filename Declare a texture in image file filename. Textures are
assigned identifiers in the order given, starting at 0.
Both the width and height of the image must be less
than 4096. RGB and PNG files are supported.

See Section 5.7 for surface and mesh modules.

8.1.6 Fonts

These commands define the font type to be used with the Label module (Section 5.10).

Command Description Default
font: Xfont Define the font type using the Xfont specifica-

tion.
-*-courier-

bold-r-*-*-

12-*-*-*-*-

--*
winfont: font size bi Define the font in Windows format:

- font: the font name. Enclose in quotation
marks if multiple words (e.g. "Times New

Roman")
- size: the font size in pixels.
- bi: optional flags to specify bold and/or ital-
ics respectively.

Ariel 12

8 LPFG-SPECIFIC INPUT FILES 47

8.1.7 Postscript output control

Lpfg provides limited support for outputting models in postscript format. This feature is particularly
useful when outputting 2D patterns. A key limitation in 3D is that hidden line/surface elimination is
not implemented; graphical elements are output and painted (and overpainted) in the order in which
they were generated and output to the postscript file.

Command Description Default
PS linecap: type Define whether line caps should be applied when

exporting to postscript.
type=0: butt caps
type=1: round caps
type=2: projecting caps

0

gradient:

direction magnitude
Define whether gradient shading should be applied
to Beziér surfaces when exporting to postscript.
direction=0: gradient off
direction=1: gradient in the vertical (y) direction
direction=2: gradient in the horizontal (x) direction
magnitude: percentage change from near to far edge
(where 1.0 represents 100%). May be positive or
negative.

8.1.8 Deprecated commands

The following commands have been replaced but may still exist in older models.

Command Description See new command
view: id px py pz scale
ux uy uz

Define the view transformations to be
used for view window id:
- px py pz: The center of the view (pan)
relative to the center of the bounding
box.
- scale: The scale of objects.
- ux uy uz: The up direction.

view: (Section 8.1.1)

8 LPFG-SPECIFIC INPUT FILES 48

8.2 Animation file

The animation file is identified by its extension (filename.a), and may contain the following commands:

Command Description Default
first frame: n Interpret derivation step n as the first frame of

an animation.
0

last frame: n Interpret derivation step n as the last frame of
an animation.

Derivation

length

step: n Set the number of derivation steps between
frames to n.

1

swap interval: t Set the time interval between frames to t. In
principle the units are one-hundredths of a sec-
ond, but the actual interval may be affected by
other factors (dependent on the operating sys-
tem and the graphics card), especially at small
t values.

0

double buffer: on|off Set double buffering on or off. on

clear between frames:

on|off

Clear between frames when on. on

hcenter between frames:

on|off

Horizontally center the model between frames
when on.

off

scale between frames:

on|off

Scale the model to fit the view window between
frames when on.

off

new view between frames:

on|off

Reset the view between frames when on.
This command is most useful when using the
Camera() module (Section 5.14) to dynamically
position the camera.

off

display on request:

on|off

Display frames only on request. When on, only
the first and last frame are displayed automat-
ically. The DisplayFrame() function (Section
6.1.1) must be called to display intermediate
frames. This makes it possible, for example, to
skip frames that do not advance time but per-
form other calculations. When off, frames are
displayed according to the step parameter.

off

Figure 2: Matching right context. Lateral branches are implicitly ignored.

9 Appendix: Production Matching

When rewriting the string it is necessary to determine which production must be applied to each mod-
ule in the string. The process of determining the applicable production is called production matching.
For every module in the string, productions are checked for matching. The productions are checked
in the order in which they are specified in the L-system. For a production to match, all three compo-
nents of the predecessor (left context, strict predecessor and right context) must match. The rules for
matching each of these components are different. This is because the L-system string is a means of rep-
resenting branching structures and symmetric operations on the string do not (in general) correspond
to symmetric operations on the branching structure.

This section contains a detailed explanation of rules that control the process of production matching.
The notation used here utilizes symbols [and] to denote the beginning of a branch and the end of a
branch (modules SB and EB in lpfg).

When the strict predecessor is compared with the module(s) at the current position in the string,
they must match exactly.

When matching the right context, if a module in the context is not the same as the module in the
string the following rules apply:

• If a module in the string is [and the module expected is not [then the entire branch (up to
and including the corresponding] symbol) is skipped. This rule reflects the fact that modules
may be topologically adjacent, even though in the string representation of the structure the two
modules may be separated by modules representing a lateral branch (e.g. branch B in Figure 2).

• When a branch in the right context ends (with a right bracket) then the rest of the branch in
the string is ignored by skipping to the first unmatched]. This rule also reflects the topology
of the branching structure, not its string representation. For example in Figure 3, module C is
closer to A than D.

• If multiple lateral branches start at a given branching point, then the predecessor in Figure 3 will
only check the first branch. To skip a branch it is necessary to specify explicitly which branch
at the branching point should be tested (see Figure 5). This notation is a simple consequence of
the rule presented in Figure 3. In the current L-system notation there is no shortcut to specify

49

9 APPENDIX: PRODUCTION MATCHING 50

Figure 3: Matching right context. Remainder of lateral branch is implicitly ignored.

Figure 4: Problem with multiple lateral branches when matching the right context.

the second, third etc. lateral branch in a branching point without explicitly including pairs of [
] in the production predecessor. There is also no way to specify “any of the lateral branches”.

When matching the left context the following rules apply:

• Module [is always skipped, since the preceding module will be topologically adjacent (see Figure
6).

• If the module in the string indicates the end of a branch (i.e. it is a] module) then the entire
branch (up to and including the corresponding [symbol) is skipped (Figure 7).

The rule illustrated in Figure 6 is a pronounced manifestation of the asymmetry in the left-context
/ right-context relationship: module C is the left context of both A and B. But the right context of C is
B (unless [] delimiters are used explicitly). The left context may be thought of as the parent module:
the module before (below) the branching point. It is then natural to say that C is the parent module
of both A and B.

9 APPENDIX: PRODUCTION MATCHING 51

Figure 5: Explicit enumeration of lateral branches in the right context.

Figure 6: Matching left context. The beginning of the branch is implicitly ignored..

Figure 7: Matching left context. The lateral branches are implicitly ignored..

10 Appendix: Deprecated / Undocumented features

The following features are no longer tested or supported, but may exist in older models.

10.1 B-spline surfaces

B-spline surfaces are not presently supported. All surfaces should be defined as Bézier patches (see
the bezieredit and stedit tools in the vlab Tools manual). However, the constructs used to manipulate
B-spline surfaces still exist within lpfg, in the expectation that an editor for them will be available at
some point.

10.1.1 Defining and drawing B-spline surfaces

Predefined B-spline surfaces are specified in the view file using the command:

bsurface: filename.s scale sdiv tdiv txid

where the parameters are defined the same as for the surface command used to specify Bézier surfaces
(see Section 8.1.5). The surface is drawn using the module:

BSurface(int id, float scale)

where id is the surface file number, and scale is a uniform scaling factor. The surface is drawn at the
current location and orientation of the turtle.

10.1.2 Dynamic B-spline surfaces

B-spline surfaces can also be manipulated from within the L-system using constructs equivalent to
their Bézier surface counterparts. See Section 7.1 for more details on dynamic surfaces.

The B-spline surface classes are:

BsurfaceObjS for surfaces with up to 10x10 control points
BsurfaceObjM for surfaces with up to 32x32 control points

and the following methods are available for each class:

Method Description
Set(int i, int j, const V3f& v) Initialize the coordinates of a control point.
Get(int i, int j) const Get the coordinates of a control point.
Scale(V3f scale) Non-uniformly scale the surface by a different factor in

each direction.

In addition, there are functions and modules to get and draw dynamic B-spline surfaces, similar to
the Bézier surface function (Section 6.2.3) and module (Section 5.7):

Module Description
BsurfaceObjS GetSurface(int id)

BsurfaceObjM GetSurface(int id)

Return the control points of the predefined B-spline sur-
face specified in the view file as id. If the surface con-
tains more than one patch, only the first patch is re-
turned.

DBSurfaceS(BsurfaceObjS s)

DBSurfaceM(BsurfaceObjM s)

Draw the dynamic B-spline surface s.

52

10 APPENDIX: DEPRECATED / UNDOCUMENTED FEATURES 53

10.2 Tablet interaction

Support for a tablet has not been tested with the newest versions of macOS or the newest tablet
drivers. It consists of:

• a command line argument: -tablet

• the function: struct TabletStatus GetTabletStatus()

When -tablet is specified on the command line, tablet input is consider separately from mouse
input, resulting in two separate input devices. With this option the tablet pointer is input using the
GetTabletStatus() function, not the GetMouseStatus() function. However, the tablet cannot be
used to change the view or insert MouseIns modules.

The GetTabletStatus() function returns the state of the tablet pointer, similar to GetMouseStatus(),
including tablet pressure and pen angle if the tablet supports them. TabletStatus is a predefined
data type:

struct TabletStatus {
bool connected;

int viewX, viewY;

float azimuth, altitude;

double pressure;

unsigned int cursorT, buttonState;

V3d atFront, atRear;

};

10.3 Terrain

An earlier version of lpfg supported a multi-resolution terrain object, with the terrain defined using a
specialized editor. Unfortunately, detailed documentation of the terrain feature (including the .patch

file format) is not available, and the editor has not been maintained. Nevertheless, the lpfg functionality
related to terrain has been kept to provide backward compatibility with existing models, and as a
stepping stone for reviving and supporting this functionality in the future.

See object:
TerrainDemo

Terrain functionality begins with the inclusion of a texture and a terrain in the view file using the
commands:

texture: filename.rgb
terrain: filename.patch levels scale offset grid txid UTiling VTiling

The texture must be in RGB format. The parameters to the terrain: command are:

Parameter Description Default
filename.patch A predefined terrain file.
levels The number of levels to be used in the LOD system, where 1 is

the lowest level. Must not exceed the Number of Resolutions

to Export field in the Terrain Editor program at the time of
export. This parameter is required.

scale The value that should be multiplied to the position of every
point in the terrain when the file is loaded.

1

offset The distance the camera must be to a patch of the terrain
before it changes its level of detail. A value of 1 is conservative
and will work well on slower systems, while 50 will generally
display the highest level of resolution.

1

10 APPENDIX: DEPRECATED / UNDOCUMENTED FEATURES 54

Parameter Description Default
grid Display the terrain LOD system on the screen as yellow rect-

angles, when set to on.
off

UTiling
VTiling

The number of times the texture will be tiled in the u and v
directions.

UTiling = 1

VTiling = 1

Parameters for drawing the terrain can be set with predefined functions:

Function Description
bool terrainHeightAt

(V3f pointInWorldSpace,

V3f &pointOnTerrain)

Project a ray along the Y axis, (0,1,0), from the
pointInWorldSpace, and return the pointOnTerrain at
which the ray intersects the terrain. If the ray intersects the
terrain mesh, return true, otherwise return false.

void terrainVisibilityAll

(VisibilityMode mode)

Set the visibility of all terrain to Shaded, Hidden or
Wireframe

void terrainVisibilityPatch

(VisibilityMode mode,

int level, V3f point)

Set the visibility of a single patch of terrain to to Shaded,

Hidden or Wireframe. The patch of terrain is selected by
casting a ray along the Y axis at point, and choosing the
visible patch that the ray intersects. All child patches are
also set to this mode. The level parameter is no longer used.

void scaleTerrainBy

(float value)

Multiplying the x, y and z components of each point of the
Terrain by value.

See Section 6.3.1 for a description of the predefined data type, V3f.
The terrain mesh is drawn using the predefined module

Terrain(CameraPosition)

which draws the terrain using the current position and orientation of the turtle, and the current color.
To ensure the most current camera position is used, it is generally defined just before the Terrain

module:

CamerPosition cameraPos;

...

cameraPos = GetCameraPosition(0);

produce Terrain(cameraPos);

See Section 6.4 for a description of the GetCameraPosition() function.

10.4 String verification

A mechanism was developed for automatic testing the lpfg derivation process. It is activated by
including the following statement in the L-system file (at the same level as the derivation length

or consider statements, for example):

VerifyString: module list;

This statement has effect only in the batch mode (see command line option -b in Section 1.1.1). If the
statement is present in the L-system after deriving the string, lpfg will compare the contents of the
derived string with the strings listed in module list (it compares only the module names, not parameter
values). If the derived string matches, lpfg will print the message: Verify: Success. If the strings
do not match, lpfg will print the message: Verify: Fail. It will also create two files containing the
textual representation of the strings (module names only, no parameters) named:

10 APPENDIX: DEPRECATED / UNDOCUMENTED FEATURES 55

Verify_ lsystemfile_expected.txt
Verify_ lsystemfile_actual.txt

where lsystemfile is the name of the L-system file specified in the lpfg command line.

11 Credits

The original specification of the L+C language (then named L) was developed jointly by Przemyslaw
Prusinkiewicz, Radoslaw Karwowski, Jari Pettunen, and Risto Sievanen. On this basis, lpfg was
designed and implemented by Radoslaw Karwowski, employing his idea of translating L+C to C++
and using an existing C++ compiler, rather than developing an L+C compiler from scratch [4; 5].
Further extensions have been introduced by Brendan Lane [6], Adam Kromm, Thomas Burt, Jason
Kraft, Steve Longay, Adam Runions, Cordell Bloor, Pascal Ferraro, and Mikolaj Cieslak.

12 Document revision history

Date Description By
2002 First version in Microsoft Word Radoslaw Karwowski

2010 & 2014 Updates made to Microsoft Word version Radoslaw Karwowski
Brendan Lane

2022 Updated and re-formatted in LaTex Lynn Mercer
Przemyslaw Prusinkiewicz
Pascal Ferraro
Mikolaj Cieslak

References

[1] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants. With
James S. Hanan, F. David Fracchia, Deborah R. Fowler, Martin J.M. de Boer, and Lynn Mercer.
Springer-Verlag, 1990.

[2] Przemyslaw Prusinkiewicz. Art and science for life: Designing and growing virtual plants with
L-systems. Acta Horticulturae, 630:15–28, 2004.

[3] Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan. Modeling plant de-
velopment with L-systems. In RJ Morris, editor, Mathematical Modelling in Plant Biology, pages
139–169. Springer, 2018.

[4] Radoslaw Karwowski. Improving the Process of Plant Modeling: The L+C Modeling Language.
PhD thesis, University of Calgary, 2002.

[5] Radoslaw Karwowski and Przemyslaw Prusinkiewicz. Design and implementation of the L+C
modeling language. Electronic Notes in Theoretical Computer Science, 86(2):19pp, 2003.

[6] Przemyslaw Prusinkiewicz, Radoslaw Karwowski, and Brendan Lane. The L+C plant modelling
language. In J. Vos, L.F.M. Marcelis, P.H.B. de Visser, P.C. Struik, and J.B. Evers, editors,
Functional-Structural Plant Modeling in Crop Production, pages 27–42. Springer, 2007.

[7] D. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. Journal of Computational Physics, 22:403–434, 1976.

[8] Mikolaj Cieslak and Przemyslaw Prusinkiewicz. Gillespie-Lindenmayer systems for stochastic sim-
ulation of morphogenesis. in silico Plants, 1(1):diz009, 2019.

56

	Introduction
	Running lpfg
	Command line options
	Input files

	User Interface
	View manipulation
	Main menu
	Animate menu

	File monitoring

	The L-system file
	Derivation Length
	Axiom statement
	Module and type declarations
	Modules
	Types

	Productions
	The predecessor
	The strict predecessor
	Left and right context
	Left and right new context
	Ring L-systems

	Production body
	The produce statement
	The nproduce statement

	Testing context within a production body

	Control statements
	Start and End statements
	Ignore and Consider statements
	Decomposition and Interpretation Rules
	Decomposition Rules
	Interpretation rules
	Rule blocks

	Production groups

	Predefined modules
	Position and drawing
	Turtle rotations
	Display parameters
	Branching structures
	Circles and spheres
	Polygons, rhombi, and isosceles triangles
	Surfaces and Meshes
	Generalized cylinders
	Textures
	Labels
	Tropism Control
	Query modules
	Environment communication
	Dynamic view control
	Mouse interaction

	Predefined functions
	Controlling the simulation
	Simulation progress
	L-system derivation
	Communication with the environment

	Accessing externally defined entities
	Parameters
	Graphically defined functions
	Graphically defined curves
	Graphically defined surfaces

	Auxiliary math functions
	Vector algebra
	Random number generation

	View-related functions
	Mouse and menu functions
	Input and output functions

	Advanced topics
	Dynamic surfaces
	Creating dynamic surfaces
	Manipulating dynamic surfaces

	Gillespie groups
	Multi-view mode
	Mouse interactions
	User-Defined Menus

	Lpfg-specific input files
	View file
	Setting the view
	Rendering commands
	Geometry presentation
	Tropism commands
	External files
	Fonts
	Postscript output control
	Deprecated commands

	Animation file

	Appendix: Production Matching
	Appendix: Deprecated / Undocumented features
	B-spline surfaces
	Defining and drawing B-spline surfaces
	Dynamic B-spline surfaces

	Tablet interaction
	Terrain
	String verification

	Credits
	Document revision history

