
The vlab Framework
Reference Manual

Last updated: November 30, 2021

vlab was developed in the labs of Przemyslaw Prusinkiewicz at the University of Regina and the
University of Calgary, Canada

1

Contents

1 Introduction 2

2 The oofs structure 2
2.1 Hyperlinks . 2

3 The Browser 4
3.1 Mouse operations . 5
3.2 The File menu . 6
3.3 The View menu . 6
3.4 The Object menu . 7
3.5 The Search menu . 7

4 The Object Manager 8
4.1 Components of the Object Manager . 8

4.1.1 The object icon . 8
4.1.2 The lab table . 8
4.1.3 The object menus . 9

4.2 The specifications file . 9
4.3 Utilities . 11
4.4 Preferences . 12
4.5 The text editor . 12

5 Snapicon 13

6 Remote access server 15
6.1 Setting up raserver . 15
6.2 Daemon mode . 17

7 Credits 18

8 Document revision history 18

1 Introduction

The Virtual Laboratory (vlab) is an interactive environment for creating and conducting simulated
experiments: a playground for experimentation. It is a framework consisting of:

• a file structure, oofs (object-oriented file system), for storing models (objects);

• a browser to graphically navigate through the file structure and select objects for experimenta-
tion;

• an object manager to move objects to a temporary location, the lab table, and apply tools (pro-
grams) to them;

• a utility to create a unique icon for each object;

• a daemon, invisible to the user, used to communicate between the browser and object manager
windows; and

• a remote access server that provides secure access to an oofs file structure on a remote device.

The basis of the virtual laboratory is the communication between collaborating programs (tools)
through the sharing of the data files comprising the object. For example, a plant may be visualized
using a simulator such as lpfg, and manipulated by editing parameters in one or more data files. The
files may be changed using a text editor, a control panel or, in the case of binary files, specialized tools.
The simulator can utilize file monitoring to update the model each time a change is made. The ability
of the tools and the simulator to share files and, in some cases, update the model continuously, allows
the user to seamlessly experiment with an object.

The content of a virtual laboratory (the objects and tools) are domain-specific. This release of vlab
is focused on graphical applications of L-systems, with an emphasis on the generation of fractals and
the modeling of plants. The user can expand the laboratory by adding new objects, incorporating new
tools, and creating new experiments.

2 The oofs structure

Each vlab object is a directory in which its associated files are found. The directory structure is
hierarchical, allowing the user to create a prototype object, and then experiment and save a hierarchy of
extension objects (Figure 1). Vlab uses this hierarchical structure to provide an inheritance mechanism:
an object contain only those files that are different from the corresponding files in its parent; files that
are identical are symbolics links to the parent object (Figure 2). This approach saves space, facilitates
creation of objects similar to the prototype, and allows a single change in the prototype to propagate
through all extensions.

2.1 Hyperlinks

It is also possible to link to an object in another part of the hierarchy. This keeps the object at its
original location, but allows the user to see it as an extension of an object in a different part of the
oofs structure as well.

When a hyperlink is created, the original object is assigned a unique object ID, which is stored
with the object (in a .uuid file). This same ID is also stored with the hyperlink (in a node file). The
link between an object’s ID and its location is stored in a file at the root of the oofs structure (.uuids).
When an object is moved, its ID is moved with it and its location is updated in the database. When
copying, there is an option to keep the ID with the original object or move it to the copied object (see
Move H-links in Section 3.4).

2

2 THE OOFS STRUCTURE 3

Figure 1: An example of an oofs hierarchy, beginning with a single object that has two extensions, one
of which has two extensions of its own, and the other has a single extension.

Figure 2: An example of inheritance: model 1.1 is an extension of model 1. Two files in model 1.1 are
inherited from model 1: icon and data2. If changes are made to these two files in model 1, the changes
will also affect model 1.1.

Figure 3: The splash screen for the current release of vlab.

Figure 4: The initial Browser dialog box for entering the location of the oofs directory.

3 The Browser

When the browser application (browser) is first opened, it displays the splash screen (Figure 3), followed
by a dialog box to define the location of the oofs structure (Figure 4). The initial screen is used to
enter a location on your local machine.1 Enter, or verify, the location of your oofs directory, and click
the Open button to display the main browser window.

The browser provides a visual interface for navigating through the oofs hierarchy (Figure 5), and
for manipulating objects as a whole (e.g. move, copy, delete, or rename an object). Each level of the

1See Section 6 for information on how to access an oofs structure on a remote machine.

4

3 THE BROWSER 5

Figure 5: An example of the browser window. The dotted lines indicate the object linked to.

hierarchy is represented by a browser symbol, a name, and an optional icon. The browser symbols are:

• a single box, representing an object with no extensions;

• double box, representing an object with extensions;

• an arrow, representing a hyperlink (an object linked from another part of the oofs hierarchy)
with no extensions; and

• double arrows, representing a hyperlink with extensions.

The basic functionality of browser, to navigate oofs and select an object for experimentation, can
be accomplished using the mouse. Additional functionality for maintaining the objects and the oofs
structure uses a combination of menu items and mouse operations.

It is also possible to have multiple browser windows open, displaying (different parts of) the same
oofs structure, or a different oofs structure altogether. Objects can be copied and pasted between
browser windows.

3.1 Mouse operations

The following operations can be done with the mouse. In all but one case a corresponding menu item
also exists.

3 THE BROWSER 6

Function Mouse action Menu item
Select an object Click on the object’s browser symbol,

name, or icon.
Open the Object Manager for
an object

Double click on the object’s browser
symbol.

Object > Get

Display extensions of the ob-
ject

Double click on an object’s name. View > Show extensions

Hide the entire subtree of ex-
tensions

Double click on an object’s name
again.

View > Hide extensions

Display/hide an object’s icon Right click on an object’s name. View > Show icon
View > Hide icon

Copy a single object (not its
extensions) to another location

Right click and drag the object to the
location of the new parent object.

Object > Copy object

3.2 The File menu

The File menu contains general operations:

Menu item Description
New browser Open another browser window. A dialog box (Figure 4) is displayed to enter the

location of the oofs structure.
Open shell Open a Terminal window in the storage directory of the selected object. This

is the same as the Object Manager menu item, Utilities > Shells > Storage (see
Section 4.3). This function is not available when accessing a remote oofs database.

Open file Open the Finder in the storage directory of the selected object. This is the same
as the Object Manager menu item, Utilities > Shells > Storage(Finder) (see Section
4.3). This function is not available when accessing a remove oofs database.

Open console Open the operating system error log. This may be useful for debugging purposes.
Import Import an external oofs object or subtree as an extension of the selected object.

See Export for formats.
Export Export the selected object or subtree in either Windows or Mac/Linux format,

using the same directory structure as in oofs, or into a .zip or .tgz file.

3.3 The View menu

Most of the items on View menu act on the currently selected object, and will be grey if no object is
selected. Several of the menu items have mouse equivalents as seen in Section 3.1.

Menu item Description
Show extensions
Hide extensions

Display the extensions of the selected object / hide the entire subtree
of extensions.

Show all extensions Display the entire subtree of extensions of the selected object.
Show icon
Hide icon

Display/hide the icon associated with the selected object.

Hide all icons Hide the icons for the selected object and all its extensions.
Show all icons Display the icons for the selected object and all its extensions.
Show hyperlink target Locate the object associated with the currently selected hyperlink, dis-

play it in the window, and select it.
Begin tree here Hide all ancestors of the selected object, making it the visible root of

the tree. Only this object and its subtree can be seen. Reverse this
operation using the Begin tree from root menu item.

3 THE BROWSER 7

Menu item Description
Begin tree from root Display the oofs structure beginning at its root, regardless of the cur-

rently selected object.
Enter Full Screen
Exit Full Screen

Display the browser window in full screen mode / return to original size.

3.4 The Object menu

Functionality for organizing objects within the hierarchy is found on the Object menu. The Cut, Copy
and Paste functions use a Browser-specific clipboard.

Menu item Description
New object Add a new object as an extension of the selected object. This is used to begin a

new subtree that does not inherit any information from its parent.
Get Opens the selected object on the lab table, the same as double-clicking on the

object’s browser symbol.
Rename Change the name of the selected object. A dialog box will be displayed to update

the current name.
Cut Remove the selected object and all its extensions (the entire subtree) from its

current location to the clipboard.
Copy object Copy the selected object only (not its extensions) to the clipboard. This can also

be done as a “drag & drop” action, using the right mouse button.
Hypercopy object Copy the selected object’s link to the clipboard.
Copy subtree Copy the selected object and all its extensions (the entire subtree) to the clipboard.
Paste Add the object, subtree, or link currently on the clipboard as an extension to the

currently selected object.
Delete Delete the selected object and its entire subtree from oofs. Note that deleting a

hyperlink to an object does not delete the object itself.
Move h-links Toggle this option on or off. When on, and an object is copied, the object’s ID is

moved to the new location. The default is on, so that copying an object and then
deleting the original object (rather than moving it) will not break any links to it.

3.5 The Search menu

The Find item on the Search menu can be used to locate an object within the entire oofs structure
given a part of its name. The subtree containing the object will be displayed, and the object will be
selected.

Figure 6: An example of the Object Manager. It displays an icon representing the object, and provides
a menu of tools for manipulating it.

4 The Object Manager

The Object Manager (object) allows the user to experiment with an object by dynamically applying
tools (programs). It is invoked from the Browser by double-clicking on the object’s browser symbol in
the browser window, or by selecting the object and using the menu item Object > Get.

4.1 Components of the Object Manager

4.1.1 The object icon

When the Object Manager is invoked, it opens a window displaying the object’s icon, a small image
representing the object. Right-clicking on the icon displays the menu of tools that can be used to
manipulate the object (Figure 6).

4.1.2 The lab table

The Object Manager creates a copy of the object’s data files on the lab table: a temporary directory
within the user’s directory structure.2 The user can then manipulate the object on the lab table
without disturbing the stored object. When done, the user may save the current state of the object on
the lab table by overwriting the stored data files, or by creating an extension (see Section 4.3). When
an extension is created, only the data files that have been added or changed are explicitly stored;
unchanged data files are represented as symbolic links to the parent object. If the changes were only
temporary, the user may quit the Object Manager without saving the current state.

2Use the Lab Table shell on the Utilities menu (Section 4.3) to find the exact location of the lab table directory for
an opened object.

8

4 THE OBJECT MANAGER 9

4.1.3 The object menus

Right-clicking on the object’s icon opens its menu of tools and utilities. The tools included on the
menu are defined specifically for this object using a specifications file (Section 4.2). Standard utilities
are always included on the menu, under the Utilities menu item (Section 4.3). In addition, there is an
Object Manager menu bar at the top of the screen. Object > Preferences opens the global preference
file for all objects (Section 4.4). The File menu has two functions:

Menu item Description
Export Export the object in either Windows or Mac/Linux format, as a directory con-

taining all data files (replacing symbolic links with the actual files from the parent
object), or as a .zip or .tgz file. This is the same as File > Export on the browser
menu, and can be used in conjunction with File > Import to copy an object to
another oofs hierarchy.

Load all files Copy ALL files from storage to the lab table, not only the ones listed in the
specifications file. This is especially helpful if the object is missing its specifications
file.

4.2 The specifications file

Every object must include a file called specifications that:

• lists the data files that constitute the object and should be moved to and from the lab table;

• lists the temporary files that should be disregarded when saving changes;

• specifies the refresh mode for the object as a whole;

• describes the object’s menu hierarchy; and

• defines how each tool is applied to the object.

The specifications file itself is also moved to the lab table and may be edited by the user to update
any of the above components.

The file begins with the list of data files to be retrieved from storage and put on the lab table, each
on a separate line. This is optionally followed by two statements, and then ends with a line with a
star (*) only. The optional statements are:

Statement Description
rmode: value Set the refresh mode for all tools that support this feature. The value can be:

trig / triggered; cont / continuous; or expl / explicit.
The default mode, if this statement is not present, is explicit. The refresh mode
can also be set in individual tools.

ignore:
filename1
filename2
...

Ignore the listed files: do not save them to storage. The files are listed one per
line below the ignore: statement.

Below the star is a hierarchy of menu items, where each level of the hierarchy is indented using a
tab. The menu item name ends with a colon (:). Note that colons should not be used in any other
context within the specifications file.

The lowest level defines the program (tool) to be used. It has the syntax of a MacOS/Linux
command line with one or more of the data files listed above. For example, the following specifications
file defines data files leaf.a through leaf.map, a description file, the statements rmode and ignore,
and the menu hierarchy:

4 THE OBJECT MANAGER 10

Figure 7: The menu associated with the specifications file example. It is displayed by right clicking on
the object window.

leaf.l

leaf.v

leaf.map

leaf.pan

description.txt

rmode: cont

ignore:

*.swp

*

Image:

generate:

cpfg -m leaf.map leaf.l leaf.v

L-system:

EDIT leaf.l

View:

panel:

display:

panel leaf.pan | awkped leaf.v

EDIT leaf.pan

EDIT leaf.v

Colormap:

palette leaf.map

Description:

EDIT description.txt

Uppercase tool names indicate programs that are globally defined in the Object Manager’s Pref-
erences (Section 4.4). In the example specifications file above, EDIT is used to indicate the user’s
preferred text editor, which is globally defined in the preferences.

4 THE OBJECT MANAGER 11

Figure 8: An example of the dialog box that is displayed when Utilities > New version is selected from
the menu.

4.3 Utilities

The bottom entry on the main level of the object’s menu, Utilities, is not defined in the specification
file; it is standard for all objects. This menu consists of the following tools for managing the object:

Menu item Next level Description
Icon Snap Create a new icon for the object’s window (see Section 5).

Reread Update the icon in the object’s window.
Specifications Edit Open the specifications file in a text editor.

Reread Update the object’s menu from the specifications file.
Shells Lab table Open a Mac terminal window in the lab table directory.

Lab table (Finder) Open a Mac Finder window in the lab table directory.
Storage Open a Mac terminal window in the oofs directory where

the original object is stored. This option is not available for
remote oofs.

Storage (Finder) Open a Mac Finder window in the oofs directory where the
original object is stored. This option is not available for
remote oofs.

Save changes Save changed data files on the lab table back to the original
object in storage. A dialog box will be displayed listing the
files that have been modified, or the message “Nothing to
be saved”.

New version Create an extension of the stored object and save the data
files from the lab table to this new version. Unchanged data
files are saved as symbolic links to the parent object. A dia-
log box will be displayed indicating the files that have been
modified, and providing a field to enter the name of the new
version (Figure 8). Use the Point to new position checkbox
to set the object on the lab table to the new version, and
select it in the browser window.

Position object Reposition the oofs hierarchy in the browser window to dis-
play this object.

4 THE OBJECT MANAGER 12

4.4 Preferences

Global object preferences can be updated by selecting Object > Preferences on the object’s menu bar.
This opens a text editor on the preferences file. The file consists of the following elements:

• Define statements located at the beginning of the file;

• Named menu item hierarchies for use in the specifications file, following the define statements;
and

• Comments, in lines beginning with a semicolon (;), which may be placed anywhere in the file.

By convention the names of the macros and menu hierarchies are in uppercase. For example, vlab
comes with a basic text editor (Section 4.5) which is defined and can be used as follows:

;Standard text editor

#define OBJED vlabTextEdit

EDIT

edit:

OBJED

FUNCTION

funcedit:

funcedit

file edit:

OBJED

In a specifications file, the above macros could be used as follows:

Function:

FUNCTION continuous.func

View file:

EDIT view.v

The text after the named entry is appended to the command line invoking each tool. Therefore,
the following entries would be created on an object’s menu, and invoke tools with the associated
parameters:

Menu item Tool with parameters
Function > funcedit funcedit continuous.func

Function > file edit vlabTextEdit continuous.func

View file > edit vlabTextEdit view.v

4.5 The text editor

The vlab text editor is a basic tool for making simple edits to data files. It is especially useful for
demos as it includes file monitoring: any changes made by other tools to the file being edited will
automatically update the content of the editor.

The text editor allows the user to make changes to the file using the mouse and keyboard, and
includes standard features for opening and saving changes (on the File menu), cutting and pasting (on
the Edit menu), as well as providing standard keyboard shortcuts. In addition, the View menu allows
the user to increase/decrease the font size of the entire window, and to enter/exit full screen mode.

The editor uses syntax highlighting, tuned for L-system files.

Figure 9: The snapicon window overlaying an object image. The window can be moved and resized
to capture the image.

5 Snapicon

The snapicon tool captures a selected area of the screen, creating a thumbnail image which will be
used to represent the object in both the object and browser windows. The image is stored in the file
icon on the lab table, replacing the current content of this file, if it exists.

The tool is called from the object’s menu: Utilities > Icon > Snap. This opens a window outlined
in red (Figure 9) that can be moved around the screen, by clicking and holding the left mouse button,
to position it on the area of the screen to be captured.

The snapicon functions can be accessed from the menu bar, or by right-clicking on the window to
open the pop-up menu. In both cases the following menu items are available:

Menu item Next level Description
Size Actual Set the image size to the actual size of the object window.

Double
Quadruple

Set the image size to double / quadruple the size of the object
window.

Aspect Set the image size using the mouse, but keeping the same aspect
as the object window.

Free Set the image size using the mouse, adjusting as required in all
directions.

File format Select a different file format for the Save As... option. Do NOT
use this to save an icon - the icon format is fixed.

Snap Snap Capture the content of the snapicon window.
Preview Display a preview of the image captured by Snap, reduced to

the size of the object window if a larger size was used.
Save icon Save the image captured by Snap to the file icon. The image

will be reduced to the size of the object window if a larger size
was used.

Save as... Save the image captured by Snap to another file - NOT icon.
This allows snapicon to be used to capture and save other im-
ages.

Snap, save and exit Capture and save the content of the snapicon window to the file
icon, and exit the program.

Save and exit Save the image captured by Snap to the file icon, and exit the
program.

13

5 SNAPICON 14

The final icon will be reduced to the size of the object window when it is saved, except in the case of
Free sizing, which will alter the object window.

To display the new icon in the object window, use the menu item: Utilities > Icon > Reread.

Figure 10: The dialog box for entering details for a remote access server.

6 Remote access server

When browser is first invoked, or when the File > New Browser menu item is selected, a dialog box
is displayed to enter the location of the oofs structure. If oofs is not on the local machine, use the
Remote button at the top of the dialog box to display the required fields for access to a remote server
(Figure 10).

Most operations available locally can be also performed on remote oofs structures, provided proper
permissions have been granted. For example, the user may browse the hierarchy of objects, experiment
with an object (which is transferred to the local lab table for fast access), and copy objects and object
subtrees between browsers.

Access to remote oofs structures is accomplished using a remote access server, raserver, which runs
as a daemon on the remote machine, and performs operations on behalf of the Browser. The server
also controls access within the remote oofs structure.

The owner of the remote machine runs the server and sets up users. A user is granted specific
access within the oofs file structure by the owner. For example, users may be assigned read access
only, or read/write access to a specified subtree within the hierarchy.

6.1 Setting up raserver

To set up the remote access server, the owner must first identify the users who will have access to the
remote oofs by running raserver in setup mode:

raserver -pe

A command line interface is presented with the text:

For a list of available commands type ’help’.

raserver>

The list of commands are:

15

6 REMOTE ACCESS SERVER 16

Command Description
ls List the current users
add loginname password [logincopy] Add a new user with the specified loginname and password.

Optionally, also copy the permissions from user, logincopy, to
this new user.

del loginname Delete the user named loginname
chlog oldname newname Change a user’s login name from oldname to newname
chpass loginname newpassword Change a user’s password to newpassword
edit loginname Edit the directory permissions for loginname. See below.
quit Exit the program
help List these commands

The edit command is used to set up access within the oofs structure. Once the login name is
specified in the edit command, a new set of commands is available that apply to the specified user
only:

Command Description
ls List the current permission rules for this user
add permission path Add a new rule for this user, where permission can be one

of the values listed below, and path is the full file structure
pathname to the required node in the oofs hierarchy.

del rnum Delete rule number rnum for this user
chmod permission rnum Change the permissions associated with rule number rnum to

one of the values listed below.
quit Exit the permissions editor, and return to the main raserver

prompt.
help List these commands

The permission assigned in a rule may be specified using a character or number:

Character Number Description
- 0 No permission
r 4 Read access only
w 2 Write access only
rw 6 Read and write access

Permissions are granted within the actual file structure, and must contain the complete path. For
example, to grant read access to the entire oofs structure, but read/write access only from a node
three levels down, two rules would be used:

add r /vlab/oofs

add rw /vlab/oofs/ext/node1/ext/node2/ext/node3

and will be displayed (using the ls command) as:

I R/W Path

--

0 R/- /vlab/oofs

1 R/W /vlab/oofs/ext/node1/ext/node2/ext/node3

Note that rules are ordered by a number, but the number is not assigned specifically to a rule. For
example, if three rules are created they will be numbered 0, 1, and 2. However, if the middle rule (1)
is deleted, the remaining rules will be numbered 0 and 1 (i.e. rule 2 will become rule 1).

6 REMOTE ACCESS SERVER 17

6.2 Daemon mode

The owner provides remote access using the permission set up above by running the remote access
server in daemon mode. This is done by simply running the command raserver. Follow it with an
ampersand (&) to run it in the background:

raserver &

The server will respond with:

raserver: running

The server will listen for communications from browser programs, establish connections, and provide
the requested services.

7 Credits

The original version of vlab was designed and implemented as part of the Master’s thesis [1] of Lynn
Mercer, and was described in [2]. A graphical interface for browser was designed and prototyped by
Earl Lowe [3]. This prototype was used by Pavol Federl to design and implement a new version [4; 5].
All components of the framework have been kept up-to-date by Pascal Ferraro.

8 Document revision history

Date Description By
1996 The first version of this documentation in HTML. Istvan Hernadi

1997 - 2020 Updates made to the HTML documentation. Pavol Federl
Pascal Ferraro

2021 Rewritten to include all features of the current implementa-
tion, and reformatted in LaTex.

Lynn Mercer

References

[1] Lynn Mercer. The virtual laboratory. Master’s thesis, University of Regina, 1991.

[2] Lynn Mercer, Przemyslaw Prusinkiewicz, and Jim Hanan. The concept and design of a virtual
laboratory. Graphics Interface ’90 Conference Proceedings, pages 149–155, 1990.

[3] Earl Lowe. Extensions to the virtual laboratory. Master’s thesis, University of Calgary, 1995.

[4] Pavol Federl. Design and implementation of global virtual laboratory - a network-accessibile sim-
ulation environment. Master’s thesis, University of Calgary, 1997.

[5] Pavol Federl and Przemyslaw Prusinkiewicz. Virtual laboratory: an interative software environment
for computer graphics. Proceedings of Computer Graphics International, pages 93–100, 1999.

18

