
LPFG
Reference Manual

Last updated: November 30, 2021

vlab was developed in the labs of Przemyslaw Prusinkiewicz at the University of Regina and the
University of Calgary, Canada

Contents

1 Introduction 4
1.1 Running lpfg . 4

1.1.1 Command line options . 4
1.1.2 Input files . 5

1.2 User Interface . 6
1.2.1 View manipulation . 6
1.2.2 Main menu . 7
1.2.3 Animate menu . 8

1.3 File monitoring . 8

2 The L-system file 9
2.1 Derivation Length . 9
2.2 Axiom statement . 9
2.3 Module and type declarations . 10

2.3.1 Modules . 10
2.3.2 Types . 10

3 Productions 11
3.1 The predecessor . 11

3.1.1 The strict predecessor . 11
3.1.2 Left and right context . 11
3.1.3 Left and right new context . 11
3.1.4 Ring L-systems . 12

3.2 Production body . 12
3.2.1 The produce statement . 12
3.2.2 The nproduce statement . 13

3.3 Testing context within a production body . 14

4 Control statements 17
4.1 Start and End statements . 17
4.2 Ignore and Consider statements . 17
4.3 Decomposition and Interpretation Rules . 18

4.3.1 Decomposition Rules . 18
4.3.2 Interpretation rules . 19
4.3.3 Rule blocks . 20

4.4 Production groups . 20

5 Predefined modules 22
5.1 Branching structures . 22
5.2 Changing position and drawing . 22

5.2.1 Turtle commands . 22
5.2.2 Affine geometry . 23

5.3 Other turtle modules . 23
5.3.1 Rotations . 23
5.3.2 Display parameters . 24
5.3.3 Turtle queries . 24
5.3.4 View and labels . 25

5.4 Circles and spheres . 25
5.5 Polygons, rhombus, and isosceles triangles . 25

1

5.6 Surfaces and Meshes . 26
5.7 Generalized cylinders . 26
5.8 Tropisms . 27
5.9 Mouse interaction modules . 27
5.10 Environment modules . 28

6 Predefined functions 29
6.1 Controlling the L-system derivation . 29

6.1.1 Forward and Backward functions . 29
6.1.2 Group functions . 29

6.2 Vectors . 29
6.2.1 Predefined vector structures . 29
6.2.2 Vector methods . 30
6.2.3 Vector functions . 30

6.3 Curve and surface functions . 30
6.4 View functions . 31
6.5 Animation functions . 31
6.6 Calling an external function . 32
6.7 External parameters . 32
6.8 Mouse and menu functions . 33
6.9 Input and output functions . 33
6.10 Random number functions . 33
6.11 Environmental functions . 34

7 Advanced topics 35
7.1 Dynamic surfaces . 35

7.1.1 Creating dynamic surfaces . 35
7.1.2 Manipulating dynamic surfaces . 35
7.1.3 Drawing dynamic surfaces . 36

7.2 Gillespie groups . 36
7.3 Multi-view mode . 37
7.4 Mouse interactions . 37

8 Lpfg-specific input files 40
8.1 Animation file . 40
8.2 View file . 40

8.2.1 Setting the view . 41
8.2.2 Rendering commands . 42
8.2.3 External files . 43
8.2.4 Tropism commands . 43
8.2.5 Fonts . 44
8.2.6 Correction . 44
8.2.7 Deprecated commands . 44

9 Appendix: Production Matching 45

10 Appendix: Deprecated / Undocumented features 48
10.1 B-spline surfaces . 48

10.1.1 Defining and drawing B-spline surfaces . 48
10.1.2 Dynamic B-spline surfaces . 48

10.2 Tablet interaction . 49
10.3 Terrain . 49
10.4 String verification . 50

2

3

11 Credits 51

12 Document revision history 51

1 Introduction

lpfg is a plant modeling program based on the formalism of L-systems. Models are defined using the
L+C language, which extends the syntax of C++ to include constructs inherent in L-systems.

This is a reference manual with limited examples. Sample vlab objects are indicated in some
sections to provide more detailed usage.

1.1 Running lpfg

lpfg is included with the vlab distribution, and is normally run from an object’s menu within vlab. The
command line below is defined in the object’s specification file.

lpfg [-a] [-b] [-c] [-cleanEA20] [-cn] [-d] [-dll filename.dll] [-ds] [-dtf] [-dtfes]

[-lp path] [-o filename.dll] [-out filename] [-q] [-rmode mode] [-v] [-w w h] [-wnb] [-wp x
y] [-wpr x y] [-wr w h] [animation.a] [colormap.map] [contour.con] [contourset.cset] [envi-
ronment.e] [function.func] [functionset.fset] [material.mat] [parameter.vset] [timeline .tset]
[view.v] Lsystem.l

Command line options may appear in any order. The only mandatory parameter is the L-system
file, Lsystem.l, which contains the L+C code for the model.

1.1.1 Command line options

Parameter Description
-a Start lpfg in animate mode, using the information in animationfile.a. Only

first frame steps are performed, as opposed to derivation length steps.
-b Start lpfg in batch mode: no window is created. The simulation is performed

and the final content of the string is stored in the file specified by the -out

option. Only module names are stored in the file. This mode cannot be
combined with the -a option.

-c Compile the L-system to the .dll file only. Do not run the simulation. There
is no translation of L+C to C++, and the C++ compiler is not invoked. The
default file is lsys.dll, but this can be changed with the -dll option.

-cleanEA20 Zero the array of (20) return values from an environmental program before
the next iteration. This is used to ensure the array is clear if an environ-
mental program returns an arbitrary number of values. See the Environment
Progams manual for more information.

-d Start lpfg in debug mode. Information regarding the execution of the pro-
gram is sent to the standard output. This mode is intended to be used by
developers.

-dll filename.dll
-o filename.dll

Use filename.dll rather than the default .dll file (lsys.dll) with the -c

option.
-ds Output the current string to the console after each derivation step, before

the interpretation: block.
-dtf Output the final interpreted string to a file (i.e. after the interpretation:

block). Uses the filename: Lsystemfile.str.
-dtfes Output the interpreted string after each derivation step, to separate files.

Uses the filename: Lsystemfile.str, but with an 8-digit suffix. For example
the first string output would be in Lsystemfile00000001.str.

4

1 INTRODUCTION 5

Parameter Description
-out filename In batch mode, use filename for the output string. This will be a text

file.
In regular (not batch) mode, run the model to the end and produce a
single image in filename, based on the extension: bmp, jpg, pdf, png,
tiff. The model window will close on completion. Also see the Save As...
menu item (Section 1.2.2).

-q Start lpfg in quiet mode. All messages, including warnings and errors, are
suppressed.

-rmode mode Define the method for re-reading input files. The values of mode are:
expl = explicit
cont = continuous
trig = triggered
The refresh mode may also be set with the Refresh mode menu item
(Section 1.2.2), and within a vlab object’s specification file (see the Vlab
Framework manual).

-v Start lpfg in verbose mode. Displays additional information/warning mes-
sages.

-w w h Specify the width w and height h of the lpfg output window in pixels. Use
either this option or -wr but not both.

-wnb Create the lpfg window without borders or title bar, and do not display the
output console window. This mode is useful for demonstration purposes.

-wp x y Specify the lpfg window’s top left corner position (x,y) in pixels relative to
the top left corner of the screen. Use either this option or -wpr but not both.

-wpr x y Specify the relative window position of the lpfg window: x and y are numbers
between 0 and 1, and represent the position of the top left corner of the
window relative to the top left corner of the screen. Use either this option or
-wp but not both.

-wr w h Specify the relative window size of the lpfg window: w and h parameters
are numbers between 0 and 1 and specify the relative size of the lpfg output
window with respect to the screen. Use either this option or -w but not both.

1.1.2 Input files

Input files are recognized based on their extension. The lpfg-specific input files, animation.a and
view.v, are described in Sections 8.1 and 8.2 respectively. Other file types can be found in the Vlab
Tools manual.

When the refresh mode is set to Triggered/Continuous, either from the command line (-rmode) or
from the menu, lpfg turns on file monitoring to watch for changes in any of its input files. See Section
1.3 for more information on file monitoring.

Filename Description
animation.a Define the parameters for controlling animation of the model. See Section

8.1.
view.v Define the drawing and viewing parameters, including setting the view, ren-

dering, surfaces, etc. See Section 8.2.
colormap.map
material.mat

Specify 256 colors or 256 materials, respectively. A colormap is generally
used to create schematic images, whereas material files are used to create
realistic images. If no colormap file or material file is specified, the default
colormap is used. See Section 5.3.2 for information on how to use the colors
within lpfg, and the palette and medit tools in the Vlab Tools manual.

1 INTRODUCTION 6

Filename Description
contour.con
contourset.cset

Specify contours defined as planar B-spline curves. The curves are consid-
ered as cross-sections of generalized cylinders. There may be multiple con-
tour.con files, each containing a single contour definition, but only one con-
tourset.cset file containing multiple contour definitions. See Section 6.3 for
information on how to access the contours within lpfg, and the cuspy and
gallery tools in the Vlab Tools manual.

function.func
functionset.fset
timeline.tset

Specify functions of one variable. The functions are defined as B-spline curves
constrained in such a way that they assign exactly one y to every x in the
normalized function domain [0,1]. There may be multiple function.func files,
each containing a single function definition, but only one functionset.fset file
containing multiple function definitions, and one timeline.tset file contain-
ing functions constrained by a timeline rather than the normalized function
domain. See Section 6.6 for information on how to access the functions within
lpfg, and the funcedit, gallery, and timeline tools in the Vlab Tools manual.

parameter.vset Define parameters that can be read from the L-system without recompiling.
See Section 6.7 for the val function used to access the parameters within
lpfg, as well as the file format.

environment.e Specify the environmental program and its parameters. See the Environment
programs manual for more information.

1.2 User Interface

When lpfg is opened, it normally runs the L-system and draws the final interpreted string. (Some
command line options, such as -a and -b, produce different results.) Once the model is drawn it is
possible to manipulate the view of the L-system, or make adjustments to it.

1.2.1 View manipulation

The view in the output window is manipulated using both the mouse buttons and the SHIFT and
COMMAND keys within the lpfg window:

Action Key & Mouse Description
Rotation Left mouse button Rotate around the Y axis by moving the

mouse horizontally, and around the X axis by
moving the mouse vertically.

Roll SHIFT key and middle
mouse button

Roll clockwise around the Z axis by mov-
ing the mouse to the right, and roll counter-
clockwise by moving the mouse to the left.

Zoom COMMAND key and left
or middle mouse button

Zoom in by moving the mouse up, and zoom
out by moving down.

Pan SHIFT key and left
mouse button

Move model in all directions using the mouse.

Change frustrum angle COMMAND key and
middle mouse button

Increase the angle by moving the mouse up,
and decrease the angle by moving down. This
operation has an effect only in perspective pro-
jection mode.

1 INTRODUCTION 7

1.2.2 Main menu

A menu of options is displayed by clicking the right mouse button within the lpfg window. It includes
the following menu items:

Menu item Description
New model Re-read all input files, recompile the L-system, reset the view, and run the simu-

lation. This is equivalent to restarting the model from the object menu, but uses
the existing lpfg window rather than opening a new one.

New L-system Re-read all input files, except the view and animation files, and re-run the simu-
lation. The view is not reset.

New run Re-run the simulation without re-reading (and recompiling) the L-system file, or
re-reading the view and animation files. Other parameter files (colors, functions,
etc.) are re-read.

New view Re-read the view file, along with the materials/colormap, surfaces, and textures,
and reset the view without re-running the simulation.

New rendering Re-read the same files as New view, but reset the rendering parameters only,
without changing the view or re-running the simulation.

Save Save the current state with the same name as the L-system file, with the given
extension. The default is to save the image in PNG format. For other options,
use Save as ...

Save as ... Save the current state with the same name as the L-system file, in one of sev-
eral image formats (BMP, JPG, PDF, PNG, TIF), or as Postscript, POV-Ray,
Rayshade, or View parameters.

String > Input Input the binary form of an L-system string from the file, lsystemfile.strb. Gen-
erally, this is a file created earlier by String > Output.

String > Output Output the current string to the file, lsystemfile.strb, in binary form.
Animate Switch to animate mode and re-run the model, stopping and drawing the inter-

preted string at the first frame as defined in the animation file. Additional
menu items are added to the menu (Section 1.2.3).

Refresh mode Set the mode used to refresh the input files. The default is Explicit, where the
menu options above must be used to re-read each file. Triggered/Continuous mode
monitors all files for changes (see Section 1.3).

Exit Quit lpfg.

In summary, the New commands include the following actions:

Menu item Re-read (&
recompile)
L-system

Re-read
view

Reset
view

Reset
rendering

Re-read
colors,
surfaces,
textures

Re-read
functions,
contours,
timeline,
parameters

New model x x x x x x
New L-system x x x
New run x x
New view x x x x
New rendering x x x

For rayshade output, the projection type must be set to perspective using the view file command
projection (Section 8.2.1).

1 INTRODUCTION 8

1.2.3 Animate menu

When Animate is selected from the menu, or the -a option is included on the command line (Sec-
tion 1.1.1), the model is re-interpreted, stopping and drawing after the first frame defined in the
animation file (Section 8.1), and the following menu items are added:

Menu item Description Keyboard
shortcut

Step Advance the simulation and redraw. This may correspond to
more than one derivation step if the step parameter in the
animation file is greater than 1.

Cmd-F

Run Start or resume the animation. Cmd-R
Forever Start or resume the animation. After the last frame is reached

the animation returns to the first frame and continues.
Cmd-V

Stop Stop the animation. Cmd-S
Rewind Reset the animation to the first frame. Cmd-W
Clear Clear and redraw the latest frame. This is used if the clear

between frames: parameter in the animation file is set to
no.

New animate Re-read the animation file. Changes take effect when the
simulation is re-run.

Start recording Record each frame of the animation as it is displayed, using
the current file format specified in the Save option. To save
each frame in a separate file, use the Save as option and set
the Numbering checkbox.

Don’t animate Stop the animation, and return to the original menu. Display
the model at the first frame as defined in the animationfile.

1.3 File monitoring

When Refresh mode is set to Triggered/Continuous, either from the command line (-rmode) or from the
menu, lpfg turns on file monitoring to watch for changes in any of its input files. This allows changes
to be made in the simulation as soon as a file is updated.

When a file change occurs, the following action is taken by lpfg :

File changed Action
L-system New L-system
View New view
Animate Rereads file only.
Colormap
Material

New rendering

Surface
Texture

New rendering

Function
Contour
Timeline
Parameters

New run

2 The L-system file

L-system files use the L+C modeling language. It is a declarative language which combines L-system
constructs (notably, modules and productions) within the general-purpose programming language
C++. The principle advantage of this hybrid approach is that the expressive power of C++ can
be used in L+C programs, making it easier to develop complex models.

A typical L+C program file has the following format:

#include <lpfgall.h>

// data structure declarations
// module declarations
// function declarations
derivation length: expression;
axiom: module list;
// productions

The three statements, #include, derivation length and axiom are mandatory, as well as declarations
of all user-defined modules in the axiom and production(s).

All components of the program may appear in any order except for the following restrictions:

• The #include statement should be the first line in the file. It contains embedded header files with
declarations and definitions used by lpfg and the L2C translator, including predefined types.1

• All elements referred to in a statement must be declared beforehand. This includes:

– Types used as parameters of a module - must be declared before the module is declared.

– Modules that appear in an ignore or consider statement - must be declared before the
statement.

• Productions are matched in the order in which they are declared.

2.1 Derivation Length

This statement specifies the number of derivation steps in the L-system, and has the format:

derivation length: expression

There are no restrictions on expression except that it must evaluate to an integer. For example:

derivation length: 5*k+2

is valid assuming k has a predefined integer value.
Some care should be taken that the value is constant as the expression may be evaluated more than

once and the behaviour of lpfg is undefined if the value changes.

2.2 Axiom statement

The syntax of an axiom statement is:

axiom: module list;

where module list is a sequence of modules. Examples of valid axioms are:

1Most predefined types are described in this manual. For additional information see the lintrfc.h file.

9

2 THE L-SYSTEM FILE 10

axiom: A(1,2) B() A(0,0);

axiom: A(idx*2,(int)(sin(x*M_PI));

There are no commas between the modules in the list. If a module has no parameters, the parentheses
may be omitted. For example, the first axiom above could be written as:

axiom: A(1,2) B A(0,0);

All modules used in the axiom must be declared beforehand. See the next section for module
declarations.

2.3 Module and type declarations

2.3.1 Modules

L+C requires that all modules be declared. Many standard modules are predefined (see Section 5)
and, therefore, do not need to be declared. The syntax for declaring a new module is:

module name(parameters);

where name is the module name, and parameters is a list of the parameter types. For example:

module A(int, int);

module B();

module C(float, string);

If a module has no parameters, the parentheses can also be omitted. For example, module B()

above can be declared as:

module B;

Note that, unlike function arguments, module parameters have no names. Thus the declaration
module A(int id, int age) is illegal. However, comments may be used to note the parameter names
to be used:

module A(int /*id*/, int /*age*/);

Also note that a module name cannot be used twice, even with different types or numbers of
parameters.

2.3.2 Types

All user-defined types (such as string above) must be defined before being used in a module decla-
ration. In addition, each type must be a single identifier; compound types such as char* or unsigned
int are not allowed. To use these types, include a typedef statement to define a single name:

typedef char* string;

typedef unsigned int uint;

3 Productions

Productions define the structure of the L-system string over time by specifying the fate of modules
with each derivation step. A production has two parts: the predecessor defines the module to be
changed and the context it must be found in; and the production body defines how the predecessor will
change in the next derivation step. The syntax of a production is:

predecessor: { production body }

3.1 The predecessor

3.1.1 The strict predecessor

The predecessor of a production contains, at a minimum, the strict predecessor. This is the module or
sequence of modules which, if the production is applied, will be replaced by new modules in the next
derivation step. Examples of valid productions containing only a strict predecessor include:

F(x): { ... }
A(age, length) B(): { ... }

Module parameters must be listed and given unique names, even if they are not used in the
production body. Also, unlike module declarations and the axiom, a module with no parameters must
be followed by parentheses ().

3.1.2 Left and right context

In addition to the strict predecessor, a production may also list a context to its left or right, or both.
These contexts must also be matched within the string for the production to be applied, although only
the strict predecessor will be replaced. The syntax is:

left context < strict predecessor > right context:

For example, the production

F(x) > G(y): { ... }

will replace F(x) in the next derivation step only if G(y) is to the right of F(x) in the string. How-
ever, G(y) is not replaced: it remains in the string unless another production has G(y) as the strict
predecessor.

3.1.3 Left and right new context

The right and left context constructs above are matched to modules in the input string of the derivation.
Since matching is done sequentially from one end of the string to another, it is also possible to match
to the newly created modules in the output string. Normally, the string is matched from left to right
(“forward”) which enables matching to the left new context using the << operator. For example:

B() << D(): { ... }

See object:
NewContext

will replace D() in the next derivation step only if B() is the last module to be added to the new string
so far.

The direction of the derivation can be controlled with the Backward() and Forward() statements,
usually called within a control statement (see Section 4). When the string is matched from right to
left (“backward”), the right new context can be used for matching with the operator >>. For example:

11

3 PRODUCTIONS 12

Start: { Backward(); }
E() >> F(): { ... }

Note that a production with a new context will never match if the derivation is going in the wrong
direction: a new right context will not match if the direction is left to right (“forward”), and a new
left context will not match if the direction is right to left (“backward”).

“Old” and new contexts can be combined in a single predecessor. For example:

Age(age,length) << B() > B(): { ... }

will match the module B() if the derivation is proceeding in the forward direction, the last module
in the new string is Age(age,length), and the old string has another B() to the right of the strict
predecessor.

3.1.4 Ring L-systems

A ring L-system provides an alternate topology for context matching in the L-system string. Matching
is performed as if the last module in the string and the first module in the string are adjacent, so that
the string forms a ring.

For example:

Axiom: A B C;

C() < A() : { ... }

would match the A module in the axiom, because its left context is the C module at the end of the
string.

See object:
B-spline

To specify a ring L-system, include a statement before the Axiom:

ring L-system: value

where value is a non-zero number, or an expression returning a non-zero number.

3.2 Production body

If a production predecessor is matched successfully, lpfg executes the production body. This block
may contain any valid C++ statement. The names given to module parameters in the predecessor act
similar to function parameters in a C++ function.

3.2.1 The produce statement

The produce statement ends execution of the production body (like a return statement in a C++
function) and tells lpfg what the successor is. Its syntax is:

produce successor;

where successor is a sequence of modules. For example:

produce A(newAge,newLength);

produce B() A(x,length*12) B();

3 PRODUCTIONS 13

As with the axiom, there are no commas between modules and, if a module has not parameters, the
parentheses may be omitted.

When the produce statement is reached the successor is added to the new string and the production
ends. However, a production may also end without reaching a produce statement: by reaching the
end of the production block or by a return statement. In that case, the production is considered
not applied, and lpfg will continue to look for a production that does apply to the predecessor. For
example, the production:

A(age,length):

{
if (age < 10)

produce A(age+1,length+dl);

}

will only be applied if the first parameter of module A is less than 10. Otherwise lpfg will continue to
look for a production that matches A(age,length). For example, there may be another production
such as:

A(age,length):

{
if (age >=10)

produce B(length);

}

A produce statement may be found anywhere in the production body where a C++ statement is
valid, and there may be multiple produce statements, similar to C++ return statements. For example
the two productions above could be written as:

A(age,length):

{
if (age < 10)

produce A(age+1,length+dl);

else

produce B(length);

}

A produce statement may also be issued without a successor:

produce;

In this case the strict predecessor is removed from the string and not replaced.
Note the difference between ending a production with an empty produce statement, which re-

moves the predecessor from the string, and a return statement, which continues to look for another
production to match the predecessor.

3.2.2 The nproduce statement

It is sometimes useful to build a production’s successor incrementally. The nproduce statement spec-
ifies part of a successor, but, critically, does not end the production. It syntax is like that of the
produce statement:

nproduce module(s);

3 PRODUCTIONS 14

The nproduce statement adds the listed modules to the currently defined successor, but does not
end execution of the production. A subsequence produce statement will add its own argument to the
successor, then add the entire successor to the string. If the production body ends without a produce

statement, the production is not applied, and the partial successor is ignored. For example:

A(age,length):

{
for (int i=0; i<age; i++)

nproduce B;

produce C(length);

}

will replace A(age,length) with a number of B modules equivalent to the value of the age parameter
with a final C(length) module. If the predecessor is A(3,1), it will be replaced with:

B B B C(1)

3.3 Testing context within a production body

The context of the strict predecessor can also be tested within the production body, using one of the
four InContext expressions:

InLeftContext (module list)
InRightContext (module list)
InNewLeftContext (module list)
InNewRightContext (module list)

The expressions are of type bool and are true if the context matches and false otherwise.
For example, rather than defining the context in the predecessor of the production with:

F(x) < G(length) > H(y): { ... }

the context can be tested within the production body as follows:

G(length):

{
if (InLeftContext(F(x)) && InRightContext(H(y))

{ ... }
}

This applies to InNewContext expressions as well where

F(x) << G(length): { ... }

is equivalent to:

3 PRODUCTIONS 15

G(length):

{
if InNewLeftContext(F(x))

{ ... }
}

See object:
InNewContext

Note the following:

• Modules within the InContext constructs are not separated by commas (these are not function
calls). They are listed in the same manner as in the predecessor.

• The order in which modules are listed should be the same as in the predecessor.

• Module parameters must be declared beforehand and their types must match the module’s dec-
laration. This is different from checking context in the predecessor where the parameters are
declared implicitly.

• All the rules of context matching are the same as when matching context in a production’s
predecessor (see Section 9).

It is possible to combine InContext constructs with a context-sensitive predecessor. The InCon-
text expression will begin matching with the module preceding the left context (InLeftContext) or
following the right context (InRightContext) in the production. For example, the production

F(x) < G(length) > H(y): {
if InLeftContext(F(x))

produce(G(x));

else

produce(G(length+1));

}

will match module G(3) in the string E(1) F(2) G(3) H(4). However, the InLeftContext expression
will then try to match the E(1) module. Since it does not find the F(x) module, the else clause will
apply and G(3) will be replaced with G(4).

Multiple InContext expressions that evaluate as true will continue to match modules further left
(InLeftContext) or right (InRightContext). Consider the following example:

G(length):

{
if ((InLeftContext(F(f1)) && InRightContext(R(a) F(fr))) ||

(InLeftContext(F(f1)) && InRightContext(U(b) F(fr))))

{ ... }
}

The intention of this code is to consider two cases that have the same left context but different right
contexts. However, if the first InRightContext expression returns false after evaluating the first
InLeftContext expression, the second InLeftContext expression (after the || operator) will try to
match the module to the left of the one matched by the first InLeftContext. To avoid this issue the
production should be rewritten as:

3 PRODUCTIONS 16

G(length):

{
if InLeftContext(F(f1))

{
if (InRightContext(R(a) F(fr)) || InRightContext(U(b) F(fr)))

{ ... }
}

}

Note that the two InRightContext expressions will be attempting to match the same module since
only one of them will evaluate as true.

In general InContext expressions should be treated as operations that read from a stream: as each
expression evaluates as true, the next module in the stream will be available for matching.

4 Control statements

The following statements are used to control when specific productions, modules, and procedures are
utilized in the derivation process.

4.1 Start and End statements

There are four statements that define procedures at specific points in an L-system derivation:

• Start - called before the first derivation step (i.e. before the output string is initialized from the
axiom)

• StartEach - called before each derivation step

• EndEach - called after each derivation step

• End - called after the final derivation step

Each statement has the syntax:

statement name: { C++ statements };

For example, to maintain a global variable steps equal to the current derivation step, the following
statements can be used:

int steps;

Start: { steps = 0; }
EndEach:{ steps++; }

Note the End statement is called after the final derivation step. Therefore, in Animate mode, if the
animation is stopped or Rewind is used before it reaches the final derivation step, the End statement is
never called. If the End statement runs a vital command (for instance, to close an output file), ensure
that the animation is run to the final frame.

4.2 Ignore and Consider statements

By default, all modules are considered when matching contexts (more or less - see Section 9 on how
productions are matched). However, there are cases where modules should not be included for the
purposes of matching context. There are two statements that can be used for this:

ignore: module list;

or

consider: module list;

where module list is a sequence of module names. Use the ignore statement to list the modules that
should be ignored when matching context, or the consider statement to list the only modules to be
considered when matching context. For example, the code:

ignore: A B;

C(1) < D(2) > E(3): { ... }

would be matched to the string: C(1) A(10) D(2) B(5) E(3), since the A and B modules are ignored.
The same effect can be achieved with a consider statement:

17

4 CONTROL STATEMENTS 18

consider: C D E;

C(1) < D(2) > E(3): { ... }

In this case the same string would find a match because only the C, D and E modules are considered
when matching.

Multiple ignore and consider statements are allowed within an L-system. Each statement applies
to the subsequent productions until another ignore or consider statement is encountered. To cancel
the effect of the last statement, use the empty ignore statement:

ignore: ;

The predefined modules SB and EB (Section 5.1) are always considered. Listing them in an ignore

or consider statement has not effect.

4.3 Decomposition and Interpretation Rules

While productions are rules that specify how an L-system string evolves over time, decomposition rules
are applied to decompose modules in the string into sub-modules, and interpretation rules are applied
to provide information on how to display the L-system.

4.3.1 Decomposition Rules

In complex L-systems, productions can be used to define modules at a higher level of abstraction with
more details specified in decomposition rules, similar to the use of function calls in C++. This provides
a clear overview of the algorithm in the productions, with details to follow. Decomposition rules are
applied to the L-system string in a decomposition step after the axiom and after each derivation step.
The syntax is:

decomposition:

predecessor : { successor }
predecessor : { successor }
...

where each rule (predecessor/successor) follows the same standards as a production rule.
When the decomposition: statement is present in an L-system it indicates that all the fol-

lowing rules are decomposition rules, until the end of the source file, or until a production: or
interpretation: statement is encountered.

For example, a decomposition rule may replace a module by its constituent parts:

M(t) : {
produce I(t)

SB() Right(45) A(t) EB()

SB() Left(45) A(t) EB()

I(t) ;

}

The module M(t) is replaced in the L-system string by all the modules in the produce statement. This
successor will then be used in the interpretation step, and for the next derivation.

Decomposition rules can be recursive: the module in the strict predecessor can appear in the
successor. However, the default maximum decomposition depth is 1. Therefore, to actually recursively
use a decomposition rule, a maximum depth statement must be used. It has the syntax:

maximum depth: n

4 CONTROL STATEMENTS 19

where n must be an integer value. Decomposition is performed as long as the string does not contain
any modules that can be further decomposed, or until maximum depth is reached. Only one instance
of a maximum depth statement is allowed in an L-system. It is applied to all decomposition rules.

An example of a recursive decomposition rule is as follows:

decomposition:

maximum depth: 6;

A(age):

{
if (age > 0)

produce F(1) A(age-1);

}

This rule will produce a series of F(1) modules equal to age, to a maximum of 6, ending with module
A.

4.3.2 Interpretation rules

Interpretation rules are executed only during the interpretation of the string. Modules produced by
interpretation rules are not inserted into the string for the next derivation step; they are only used
as commands to the turtle when outputting the string. This provides a useful separation between the
functional aspects of a model and its graphical interpretation.

An interpretation step is performed in the following cases:

• When drawing the model in a window.

• When generating an output file (e.g. a rayshade file).

• When calculating the (axes-aligned) bounding box of the model.

• After the axiom and each derivation step, if any of the production predecessors contain query or
communication modules (see Section 5.3.3).

Syntactically, interpretation rules have the same format as decomposition rules, including a maximum

depth statement for recursive rules:

interpretation:

maximum depth: expression;
predecessor : { successor }
predecessor : { successor }
...

Generally, interpretation rules are replacing conceptual modules with predefined modules for turtle
interpretation (see Section 5). For example:

interpretation:

A(age,length): { produce Sphere(age); }

interprets each module A(age,length) in the string to be a sphere of radius age.

4 CONTROL STATEMENTS 20

4.3.3 Rule blocks

Generally, an L-system is written with an axiom, a block of productions, then decomposition rules,
followed by interpretation rules.

axiom: module list;
predecessor : { successor }
predecessor : { successor }
...

decomposition:

...

interpretation:

...

However, another possible organization, is to create a block of rules that apply to one type of
module. For this, a production: statement is needed to return to regular productions after the first
block. For example:

A() : { ... B() ... }
decomposition:

B() : { ... C() ... }
interpretation:

C() : { ... }

production:

X() : { ... Y() ... }
decomposition:

Y() : { ... Z() ... }
interpretation:

Z() : { ... }

4.4 Production groups

It is possible to specify alternate groups of productions and switch between them from one derivation
step to the next. By default, all productions, decompositions, and interpretation rules belong to the
default group, numbered 0. The default group has a special property: if no production in the current
group can be applied to a symbol, the productions in the default group will be tried, even if it is not
the current group.

See object:
B-spline

To specify an additional group, use the statements:

group number:
...

endgroup

where number is an integer constant (not an expression or enumerated value) with a value greater
than zero. The endgroup statement is not always required: a group also ends with another group

statement, or with a decomposition: or interpretation: statement.
When lpfg is started, the default production group is used for the first derivation. To change to

another group use the function:

UseGroup(grpid);

where grpid evaluates to an integer. It can be called at any time, but only takes effect on the next
derivation step. It is often called at the beginning of each derivation step, in the Start Each: state-
ment. For example, productions can alternate between two groups using the following statements:

4 CONTROL STATEMENTS 21

Start: {n=0;}
StartEach: { UseGroup(((n++ % 2) == 0) ? 1 : 2) }
group 1:

...

group 2:

...

interpretation:

group 0:

...

In this case, the value of the UseGroup parameter is defined by a conditional statement: if the remainder
when n++ is divided by 2 is zero, then the group is 1, otherwise it is 2. The productions in the
appropriate group will be apply in the next derivation step. Note that the interpretation: block
returns to group 0; therefore, the productions in this block will always be used in the interpretation
step.

There are also two specialized groups that are explained in greater detail later: Gillespie groups,
ggroup (Section 7.2), and view groups, vgroup (Section 7.3).

5 Predefined modules

The following modules are predefined in the lpfg include files. The same names cannot be used for
user-defined modules or global variables of any type. (The modules f and g cause name collisions
particularly frequently.)

5.1 Branching structures

Module Description Equiv.
in
cpfg

SB() Start new branch by pushing the current state onto the turtle stack. [

EB() End branch by popping the state from the turtle stack.]

Cut() Cut the remainder of the current branch, if the derivation direction is Forward

(left to right). This module and all following modules are ignored up to the
closest unmatched EB module, or the end of the string if no EB module is found.
This module has no effect if the derivation direction is Backward.

%

5.2 Changing position and drawing

5.2.1 Turtle commands

Module Description Equiv.
in
cpfg

F(float d)

G(float d)

Move forward a step of length d and draw a line segment from the
original position to the new position. For F only: If the polygon
flag is on (see Section 5.5), the final position is recorded as a
vertex of the current polygon.

F(d)

G(d)

f(float d)

g(float d)

Move forward a step of length d. No line is drawn. For f only:
If the polygon flag is on (see Section 5.5), the final position is
recorded as a vertex of the current polygon.

f(d)

g(d)

MoveTo(float x,

float y, float

z)

Move the turtle to point (x,y,z) @M(x,y,z)

MoveTo3f(V3f p)

MoveTo3d(V3d p)

MoveTo2f(V2f p)

MoveTo2d(V2d p)

Move the turtle to point p. @M

MoveRel3f(V3f p)

MoveRel3d(V3d p)

MoveRel2f(V2f p)

MoveRel2d(V2d p)

Move the turtle to the turtle’s current position + p. The heading,
left and up vectors are not changed.

See Section 6.2.1 for a description of the predefined vector data types. For V2d and V2f: the z
coordinate is assumed to be zero.

22

5 PREDEFINED MODULES 23

5.2.2 Affine geometry

Module Description
LineTo(float x,

float y, float z)

Draw a line from the turtle’s current position to point (x,y,z).

LineTo3f(V3f p)

LineTo3d(V3d p)

LineTo2f(V2f p)

LineTo2d(V2d p)

Draw a line from the turtle’s current position to point p. The turtle
will be positioned at point p.

LineRel3f(V3f p)

LineRel3d(V3d p)

LineRel2f(V2f p)

LineRel2d(V2d p)

Draw a line from the turtle’s current position to its current position
+ p. The turtle will be positioned at point p.

Line3f(V3f p1, V3f p2)

Line3d(V3d p1, V3d p2)

Line2f(V2f p1, V2f p2)

Line2d(V2d p1, V2d p2)

Draw a line from point p1 to point p2. The turtle will be positioned
at point p2.

SetCoordinateSystem

(float s)

Set the coordinate system affecting the above modules, using the
turtle’s current position and orientation and the global scaling fac-
tor s. The modules will be applied with respect to the modified
coordinate system.

The turtle’s heading, left and up vectors are not changed by these modules. If the distance between
the two points is less than ε (a constant = 10−5), these modules are ignored.

See Section 6.2.1 for a description of the predefined vector data types. For V2d and V2f: the z
coordinate is assumed to be zero.

There are no cpfg equivalents for these modules.

5.3 Other turtle modules

5.3.1 Rotations

Module Description Equiv.
in
cpfg

Left(float a) Turn left around the U axis by angle a +(a)

Right(float a) Turn right around the U axis by angle a -(a)

Up(float a) Pitch up around the L axis by angle a (̂a)

Down(float a) Pitch down around the L axis by angle a &(a)

RollL(float a) Roll left around the H axis by angle a \(a)
RollR(float a) Roll right around the H axis by angle a /(a)

RollToVert() Roll around the H axis so that H and U lie on a common
vertical plane, with U closer to up than down.

@v

RotateXYZ

(V3f axis,

float angle)

Rotate by angle around axis in global XYZ coordinates. The
axis will be normalized. If its length is less than ε, no rotation
will occur.

RotateHLU

(V3f axis,

float angle)

Rotate by angle around axis in local turtle (HLU) coordi-
nates. The axis will be normalized. If its length is less than
ε, no rotation will occur.

5 PREDEFINED MODULES 24

Module Description Equiv.
in
cpfg

SetHead

(float hx,

float hy, float hz,

float ux, float uy,

float uz)

Set the heading vector of the turtle to hx,hy,hz, the up vector
to ux,uy,uz, and the left vector to the cross product of the
new H and U. Normalized vectors do not need to be specified.
The module is ignored if any of the three settings is less than
ε.

@R(hx,

hy,hz,

ux,uy,

uz)

SetHead3f(V3f h) Set the heading vector of the turtle to vector h. The turtle
frame is rotated by the smallest rotation necessary to align
the old and new heading vectors (i.e. parallel transport trans-
formation).

NOTE: There was a bug in the previous implementation of Up, Down, RollL, and RollR which
caused the turtle to rotate in the opposite direction. This has been fixed; however, in order to keep
compatibility with existing models, the view file parameter corrected rotation can be used to turn
off the corrected behaviour (see Section 8.2.6).

See Section 6.2.1 for a description of the predefined vector data type, V3f.

5.3.2 Display parameters

Module Description Equiv.
in
cpfg

IncColor() Increase the current colour index or material index by one. ;

DecColor() Decrease the current colour index or material index by one. ,

SetColor(int n) Set the current colour index or material index to n. If n < 1 or >
255, the module is ignored.

;(n)

,(n)

SetWidth(float v) Set the line width to v. If v ≤ 0, the module is ignored. #(n)

!(n)

5.3.3 Turtle queries

If any of the following query modules are present in the predecessor of any production in the L-system,
an interpretation step is performed after each derivation step even if no drawing occurs. The turtle is
“moved” and all positions are calculated in case they are needed by the query modules.

Module Description Equiv.
in
cpfg

GetPos(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle po-
sition.

?P(x,y,z)

GetHead(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle head-
ing vector.

?H(x,y,z)

GetLeft(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle left
vector.

?L(x,y,z)

GetUp(float x,

float y, float z)

Query the x, y, and z coordinates of the current turtle up
vector.

?U(x,y,z)

If there are multiple views (Section 7.3), the interpretation rules in vgroup 0 will be used.

5 PREDEFINED MODULES 25

5.3.4 View and labels

Module Description Equiv.
in
cpfg

Camera() Change the view parameters such that the camera is located at the
position of the turtle, with the same orientation. See also the new

view between frames: parameter in the animation file (Section
8.1).

Label(Text str) Print the string str at the current turtle position. Text is a pre-
defined data type: typedef const char lc Text

@L(str)

5.4 Circles and spheres

Module Description Equiv.
in
cpfg

Circle() Draw a circle, with diameter equal to the current line
width, in the HL plane.

@o

CircleFront0() Draw a circle, with diameter equal to the current line
width, in the screen plane.

Circle(float r) Draw a circle of radius r in the HL plane, centred at
the current turtle position.

@o(d) where d is
the diameter, not
the radius.

CircleFront

(float r)

Draw a circle, with radius r, in the screen plane.

CircleB(float r) Draw a circle outline in the HL plane, with inner ra-
dius = r - width/2 and outer radius = r + width/2,
where width is the current line width.

@bc(r)

CircleFrontB

(float r)

Draw a circle outline in the screen plane, with inner ra-
dius = r - width/2 and outer radius = r + width/2,
where width is the current line width.

@bo(r)

Sphere0() Draw a sphere, with diameter equal to the current line
width.

@O

Sphere(float r) Draw a sphere of radius r at the current turtle position. @O(d) where d is
the diameter, not
the radius.

The number of sides in the circle approximation is controlled by the ContourSides module (Section
5.7), or the contour sides command in the view file (Section 8.2.2). For spheres, there will be
contour sides longitudinal sections and (contour sides+1)/2 transversal sections.

5.5 Polygons, rhombus, and isosceles triangles

Module Description Equiv.
in
cpfg

SP() Start a polygon. {

5 PREDEFINED MODULES 26

Module Description Equiv.
in
cpfg

EP() End a polygon. }
PP() Set a polygon vertex. .

Rhombus(float length,

float width)

Draw a rhombus in the HL plane. The turtle is at the center
of the bottom edge.

Triangle(float width,

float height)

Draw an isosceles triangle in the HL plane. The turtle is at
the center of the bottom edge.

5.6 Surfaces and Meshes

Predefined surfaces and meshes are specified in the view file (Section 8.2.3), where the first surface in
the file has id=0.

Module Description Equiv.
in
cpfg

Surface(int id,

float scale)

Draw the predefined Bézier surface id at the current
location and orientation. The surface will be uniformly
scaled by the factor scale.

∼

Surface3(int id,

float xscale,

float yscale,

float zscale)

Draw the predefined Bézier surface id at the current lo-
cation and orientation. The surface will be scaled inde-
pendently along the x, y and z axes by xscale, yscale,

and zscale, respectively.
Mesh(int id,

float scale)

Draw the predefined mesh at the current location and
orientation. The mesh will be uniformly scaled by the
factor scale.

Mesh3(int id,

float xscale,

float yscale,

float zscale)

Draw the predefined mesh at the current location and
orientation. The mesh will be scaled independently along
the x, y and z axes by xscale, yscale, and zscale,
respectively.

SetUPrecision

(float p)

Set the drawing precision of bicubic surfaces to p in the
U direction. If set to zero, the U precision is reset to the
surface default, defined in the view file.

SetVPrecision

(float p)

Set the drawing precision of bicubic surfaces to p in the
V direction. If set to zero, the V precision is reset to the
surface default, defined in the view file.

InitSurface(int id) Initialize an L-system-define surface. Currently there is
only one surface allowed, so the parameter is ignored.

@PS

SurfacePoint

(int id, int p, int q)

Set the (p,q) control point of the L-system-defined sur-
face to the current turtle position. The id parameter is
ignored.

@PC

DrawSurface(int id) Draw the L-system-defined surface. The id parameter
is ignored.

@PD

DSurface

(SurfaceObj s)

Draw the dynamic Bézier surface s. See Section 7.1.

5.7 Generalized cylinders

Generalized cylinders are specified as contours, which can be defined using the cuspy tool (see the
Vlab Tools manual), and listed on the command line (Section 1.1.2). In addition, the cylinder can

5 PREDEFINED MODULES 27

be texture mapped using an image file specified in the view file (Section 8.2.3). Both contours and
textures are referenced sequentially by an id in the order in which they were listed.

Module Description Equiv.
in
cpfg

StartGC() Start a generalized cylinder at the current turtle position. @Gs

PointGC() Specify a control point on the central line of the generalized
cylinder.

Similar to
@Gc(n)

EndGC() End the current generalized cylinder. @Ge

CurrentContour

(int id)

Set contour id as the current contour for generalized cylin-
ders. If id=0, the default contour (a circle) is used.

@#(id)

BlendedContour

(int id1, ind id2,

float blend)

Interpolate the contour between id1 and id2 using the
interpolating coefficient blend. At blend=0 the contour
is id1; at blend=1 the contour is id2.

ScaleContour

(float p, float q)

Scale the contour independently by p (left) and q (up).

ContourSides

(int sides)

Specify the number of sides all subsequent generalized
cylinders will have. This module should be placed before
the StartGC module; it has no effect within a generalized
cylinder (i.e. between StartGC and EndGC).

CurrentTexture

(int texid)

Use texture txtid to texture map the generalized cylin-
ders. If txtid=-1, texture mapping is turned off.

TextureVCoeff

(float v)

Set the texture’s scaling factor, where v is the portion of
texture that will be mapped to the cylinder as the turtle
moves forward one unit. For example, to map the texture
to a cylinder that is 10 units long, set v to 0.1. If v > 1,
the texture wraps.

5.8 Tropisms

Tropisms are defined in the view file (Section 8.2.4). They are numbered sequential with an id as they
appear in the file.

Module Description Equiv.
in
cpfg

SetElasticity

(int id, float v)

Set the elasticity parameter of tropism id to v. This is equiv-
alent to the S: parameter of the tropism and torque com-
mands in the view file.

@Ts

IncElasticity

(int id)

Increment the elasticity parameter of tropism id by the value
defined by SetElasticity.

@Ti

DecElasticity

(int id)

Decrement the elasticity parameter of tropism id by the value
defined by SetElasticity.

@Td

Elasticity

(float v)

Set the elasticity to v.
(under-
score)

5.9 Mouse interaction modules

The following two modules are used to interactively identify a component of the model using the mouse
and a combination of key strokes. The module is inserted into the string before the object identified

5 PREDEFINED MODULES 28

by the mouse. If no object is identified (i.e. the mouse is clicked outside of the model components),
no module is inserted.

Module Description
MouseIns() Inserted into the string when the user holds down the Shift and Command

keys (or the 1 key) and clicks the left mouse button on a component of the
model.

MouseInsPos

(MouseStatus)

Inserted into the string when the user holds down the Alt and Command keys
(or the 2 key) and clicks the left mouse button on a component of the model.
A MouseStatus structure is included with the insertion of this module.

See Section 7.4 for more details, including the definition of the MouseStatus data type.

5.10 Environment modules

Module Description Equiv.
in
cpfg

E1(float v)

E2 (float v1, float v2)

EA20(EA20Array a)

Send or receive environmental information, using
the individual parameters, v, or v1 and v2, or the
array a.

?E(v)

See the Environment Programs manual for more details including the definition of EA20Array.

6 Predefined functions

6.1 Controlling the L-system derivation

6.1.1 Forward and Backward functions

Function Description
void Forward() Perform the next derivation step from left to right. This is the default.
void Backward() Perform the next derivation step from right to left.
bool IsForward() Returns the last derivation direction. Note that this function returns the

value of the last Forward or Backward statement but may not reflect the
current derivation direction if it is changed during a derivation step.

See the section on new context (Section 3.1.3) for use of these functions.

6.1.2 Group functions

Function Description
void UseGroup(int) Use the group from the specified group or ggroup in the next derivation

step.
int CurrentGroup() Return the number of the current group.

See the sections on groups (Section 4.4) and Gillespie groups (Section 7.2) for use of these functions.

6.2 Vectors

6.2.1 Predefined vector structures

Vector functions are used with a set of pre-defined structures.

struct V2f { float x,y; };
struct V2d { double x,y; };
struct V3f { float x,y,z; };
struct V3d { double x,y,z; };

If the preprocessor symbol NOAUTOOVERLOAD is not defined before #include lpfgall.h, these struc-
tures receive additional functionality including operators for addition and subtraction of two structures
of the same type, unary negation, multiplication and division of a vector by a scalar, dot product, and
the assignment operators +=, -=, *=, and /=. In addition, the cross product is defined on V3f and
V3d with operator %. Some examples are:

V2f a(1.5, 2,0), b(0, 0.5);

V2f c = a * 2.5 + b;

float x = a * b;

v3f d(1.2, 2.3, 0), e(0, 0,5, 0,1);

V3f f = d % e;

29

6 PREDEFINED FUNCTIONS 30

6.2.2 Vector methods

Most functionality associated with vectors are actually methods:

Method Description
Length() Return the vector’s length as float or double, depending on the structure.
Normalize() Normalize the vector.
Normalized() Return a normalized form of the vector.
Set(x,y)

Set(x,y,z)

Set the components of a vector.

Examples of these methods are:

float x = a.Length();

a.Normalize(); // Vector a is normalized
b = a.Normalize(); // Both vectors a and b are normalized
b = a.Normalized(); // Vector b is normalized only

V2f a;

a.Set(7,5);

6.2.3 Vector functions

There is only one type of vector function:

Function Description
V2d normalize(V2d v)

V2f normalize(V2f v)

V3d normalize(V3d v)

V3f normalize(V3f v)

Normalize vector v, and return a copy of this vector.

6.3 Curve and surface functions

Curves are predefined B-spline contours, which can be defined using the cuspy tool (see the Vlab Tools
manual), and are listed on the command line (Section 1.1.2). Predefined surfaces can be defined using
either the bezieredit or stedit tool and are specified in the view file (Section 8.2.3). Both contours and
surfaces are referenced sequentially by an id in the order in which they were listed.

Function Description
float curveX(int id, float t)

float curvey(int id, float t)

float curveZ(int id, float t)

V2f curveXY(int id, float t)

V3f curveXYZ(int id, float t)

Return the coordinates of of curve id defined in the
contour-set file, where t is the arc-length parameter.

void curveScale (int id,

float x, float y, float z)

Scales curve id by the factors x, y, and z.

void curveSetPoint(int id, int p,

float x, float y, float z)

Assign control point p in curve id to position
(x,y,z). The curve must be recalculated using
curveRecalculate in order for the curve functions to
return proper values.

6 PREDEFINED FUNCTIONS 31

Function Description
void curveRecalculate(int id) Recalculate curve id after assigning a control point with

curveSetPoint.
void curveReset(int id) Reset curve id to the state define in the contour-set file.

The file is not re-read.
SurfaceObj GetSurface(int id) Return the control points of the predefined Bézier surface

specified in the view file as id. If the surface contains
more than one patch, only the first patch is returned.
Used to dynamically manipulate a surface (see Section
7.1).

See Section 5.7 for the use of contours to create generalized cylinders, and Section 5.6 for modules
related to surfaces.

6.4 View functions

Function Description
void UseView(int id) Activate view number id from the view file.
Float vvXmin(int id)

Float vvYmin(int id)

Float vvZmin(int id)

Float vvXmax(int id)

Float vvYmax(int id)

Float vvZmax(int id)

Return the coordinate of the bounding box of view
number id.

float vvScale(int id) Return the current projection scaling factor of view
number id.

CameraPosition GetCameraPosition(0) Get the current position of the camera.

See Section 7.3 for a description of all the components of multi-view mode including UseView.
CameraPosition is a predefined data type:

struct CameraPosition {
V3tf position, lookat;

V3tf head, left, up;

float scale;

};

6.5 Animation functions

The following functions are available in Animate mode only; they are ignored outside of this mode.

Function Description
void DisplayFrame() Display a frame of the animation at the current derivation

step, if the display on request parameter is set to on in
the animation file (Section 8.1). If it is off, this function has
no effect.

6 PREDEFINED FUNCTIONS 32

Function Description
void OutputFrame("filename.ext") Output a frame of the animation at the end of the current

derivation step, as an image, postscript, or OBJ file, depend-
ing on ext. If the display on request parameter is set to
on in the animation file (Section 8.1), this call must be pre-
ceded by a DisplayFrame() function so that the frame buffer
is updated.

void RunSimulation() Run the simulation. Only executed when a derivation step is
performed; thus, at least a single step may be required if the
simulation is already paused.

void PauseSimulation() Pause the simulation.
void Stop() Stop the simulation. The End statement is executed after the

current derivation step.

6.6 Calling an external function

External functions are defined in three types of input files: function.func, functionset.fset, and
timeline.tset (see Section 1.1.2). The functions are numbered in the order they are read from the
files, beginning with 1. There is also an all-caps version of the name parameter defined.

The functions are called within the L-system using one of the following forms. If a function
number (id) is outside the number of functions, or the function name (fname) is not found, the value
0 is returned.

Function Description
float func(int id, float x)

float func(char* fname, float x)

Return the value of a function defined in a function file,
specified by its order number (id) or its name (fname).
The parameter x must be in the range [0,1].

float pfunc(int id,

float x, float min, float max)

float pfunc(char* fname,

float x, float min, float max)

Return the value of a function defined in a function file,
specified by its order number (id), or its name (fname).
The function is evaluated over the range [min,max]. The
parameter x must be within that range.

float tfunc(int id, float x)

float tfunc(char* fname, float x)

Return the value of a function defined in a timeline
(.tset) file specified by its order number (id), or its
name (fname). The function is evaluated over the range
specified in the timeline file. The parameter x must be
within the specified range.

6.7 External parameters

Parameters can be defined in a .vset file (Section 1.1.2) to explore the parameter space of a model
without editing and re-reading the L-system file, which requires that the L+C code be re-compiled
before generating the new image. The following function is used to retrieve the value of a parameter
from the file:

Function Description
float val(char* pname) Return the value of parameter pname from the parame-

ter.vset file.

The parameter.vset file contains #define statements, one per line, in the format:

#define pname value

6 PREDEFINED FUNCTIONS 33

where pname is the parameter name, and value is its initial value.
For example, if parameter.vset contains:

#define LENGTH 10

#define ANGLE 60

the L-system retrieve the parameters with the statements:

len = val(LENGTH);

a = value(ANGLE);

Note that the return variable cannot have the same name as the parameter. The variable must be
declared, but the parameter is not.

To see the results of parameter changes immediately, ensure the refresh mode is set to Contin-
uous. This can be done on the command line (-rmode cont) or from the menu (Refresh mode >
Triggered/Continuous).

6.8 Mouse and menu functions

Function Description
struct MouseStatus

GetMouseStatus()

Return the state of the mouse. See Section 7.4 for examples of its
usage.

void UserMenuItem

(char* label, int code)

Add the menu item label to the user menu, and return code when
it is selected. The menu is accessed by holding down two of the
CMD, SHIFT, and ALT keys and clicking the right mouse button.

int UserMenuChoice() Return the code associated with the last selection made from the
user menu since the previous call to this function.

void UserMenuClear() Clear the user menu.

6.9 Input and output functions

Function Description
void Printf(const char*, ...) Print message to the lpfg.log file, and to the console if it

is open. Recommended over the standard C function printf
since lpfg may not be connected to a console.

void OutputString

(const char* filename)

Write the current string to the specified file in binary format
(.strb), similar to the String > Output menu item.

void LoadString

(const char* filename)

Overwrite the current string with the string in the specified
binary file (.strb), similar to the String > Input menu item.
Normally this is a string created by the OutputString func-
tion, or the String > Output menu item. This function should
be called in a control block, not within a production.

6.10 Random number functions

Function Description
float ran(float range) Generate a peseudo-random number uniformly distributed in

the range (0, range).

6 PREDEFINED FUNCTIONS 34

Function Description
void sran(long seed) Seed the pseudo-random number generator used by ran. Use

sran in the Start block to ensure every run is identical, even
after rewinding.

void SeedGillespie(long seed) Seed the pseudo-random number generator used by the Gille-
spie engine (see Section 7.2).

6.11 Environmental functions

Function Description
void Environment() Perform environment interpretation after the EndEach block. Environ-

ment information will be available in the next derivation step.
void NoEnvironment() Turns environment interpretation off unconditionally.

See the Environment Programs manual for more information.

7 Advanced topics

7.1 Dynamic surfaces

Single-patch Bézier surfaces that can be dynamically created and/or manipulated from within the L-
system. This are useful, for example, when creating an animation with the use of “keyframe” surfaces,
or when building a family of similar surfaces that are modifications of a predefined set of base surfaces.

The manipulations that can be performed on a surface include:

• Non-uniform scaling

• Linear interpolation between surfaces

• Manipulation of individual the control points

7.1.1 Creating dynamic surfaces

A dynamic surface can be initialized for further manipulation by:

• Using the GetSurface function (Section 6.3) to get the control point coordinates of a predefined
surface specified in the view file (Section 8.2)

• Initializing the coordinates of individual control points within the L-system

To explicitly initialize the coordinates of a control point use one of the Set methods:

void SurfaceObj::Set(int id, const float* arr)

void SurfaceObj::Set(int id, const V3f& v)

See Section 6.2.1 for a description of the predefined vector data type, V3f.
A similar method is available to get the coordinates of a control point:

V3f SurfaceObj::Get(int id) const

7.1.2 Manipulating dynamic surfaces

Scalar multiplication operators can be used to scale a surface object by a real number:

const SurfaceObj SurfaceObj::operator*(float r)

friend SurfaceObj operator*(float r, const SurfaceObj& obj)

To scale the surface non-uniformly (by a different factor in each direction), make the scaling factors
coordinates of a V3f vector and use the method:

void SurfaceObj::Scale(V3f scale)

The addition operator combines two surfaces by pointwise adding their control points:

friend SurfaceObj operator+(const SurfaceObj& l,const SurfaceObj& r)

The addition operator, along with the scalar multiplication operator, defines a vector space over
patches. This can be used to interpolate between surfaces. For example:

35

7 ADVANCED TOPICS 36

SurfaceObj s1, s2;

float weight;

...

SurfaceObj interpolated = s1*weight + s2*(1-weight);

7.1.3 Drawing dynamic surfaces

To draw a dynamic surface, use the predefined DSurface module (Section 5.6). For example, a surface
can be initialized and drawn with:

SurfaceObj leaf_surface = GetSurface(LEAF);

...

produce DSurface(leaf_surface);

7.2 Gillespie groups

Gillespie groups are a special case of production groups (Section 4.4), with a different derivation
strategy. They are designed for modeling chemical reactions as stochastic processes. The specification
of a Gillespie group begins with

ggroup number:

where number is an integer and part of a shared numbering system with regular production groups;
therefore, a regular group and a Gillespie group cannot have the same number. Gillespie groups end
with the standard endgroup statement, and are called using the standard UseGroup function.

Unlike a regular derivation step where every module in the string can produce a successor, a
derivation step using a Gillespie group will have only one module in the entire string produce a
successor, chosen using Gillespie’s method [1]. All other modules will remain the same.

Each module defined in a Gillespie group specifies the reactions that may occur within the module
and the likelihood (or propensity) of each reaction. For example, if the Cell module specifies the
Michaelis-Menten reactions:

S + E →
c1
ES, ES →

c2
S + E, ES →

c3
P + E

then the production for the Cell module in the Gillespie group would be:

Cell(S,E,ES,P):

{
propensity c1*S*E produce Cell(S-1,E-1,ES+1, P);

propensity c2*ES produce Cell(S+1,E+1,ES-1,P);

propensity c3*ES produce Cell(S,E+1,ES-1,P+1);

}

In each derivation step, lpfg will randomly choose the next reaction to take place based on the
propensities of all the modules in the Gillespie group such that the reaction with the greatest propensity
is more likely to be chosen. For example, if there are ten Cell modules with the three reactions
above, lpfg will pick one reaction out of 30. It will also calculate the time τ to the next reaction as
τ = ln(1− χ)/p, where χ is a uniform random number in (0,1) and p is the sum of the propensities of
all modules. To access τ , call the function:

float GillespieTime();

7 ADVANCED TOPICS 37

There are two restrictions when using Gillespie groups:

• Ring L-systems are ignored.

• New context is not supported.

7.3 Multi-view mode

lpfg allows multiple views to be displayed simultaneously. The location of each view within the main
window is defined in the view file (Section 8.2.1) using the window command. For example, to create
two views that use the left and right halves of the lpfg window, the commands would be:

window: leftview 0.0 0.0 0.5 1.0

window: rightview 0.5 0.0 1.0 1.0

The default border between the views is a black line, one pixel wide. This can be altered with the
window border command. Note that the view area is cut on the side with a border. This is especially
noticeable if a wide border is used.

See object:
Multiview

To activate these views within the L-system, they must be defined with the UseView function
(Section 6.4). The function is normally called within the Start: statement. For example:

Start: {
UseView(leftview);

UseView(rightview);

}

The actual content of each view is defined in the interpretation: section of the L-system using
the vgroup command. For example, for the two views defined above, there would be two vgroup

subsections within the interpretation section:

interpretation:

vgroup leftview:

...

produce ... ;

...

vgroup rightview:

...

produce ... ;

...

7.4 Mouse interactions

The status of the mouse can be obtained using the GetMouseStatus() function, which returns a
MouseStatus structure defined as:

struct MouseStatus {
int viewNum; // currently active view

int viewX,viewY; // x,y pixel positions of mouse cursor

V3d atFront,atRear,atMiddle;

// Intersection of cursor ray with viewplane

// Front or back viewplane, or halfway between them

7 ADVANCED TOPICS 38

// Independent of any keys

bool lbDown; // Left button currently down

bool lbPushed, lbReleased;

// Left button pressed/released

// since last call to GetMouseStatus

};

The left button values, lbDown and lbPushed, are only set when the left button is pushed with a
combination of keys. These key combinations are also used to determine which mouse module is
inserted when the left mouse button identifies a component of the model:

Key combination Alternate key Module inserted
Shift+Command
Shift+Alt+Command

1 MouseIns()

Alt+Command 2 MouseInsPos(MouseStatus)

Shift+Alt 3 No module inserted

Therefore, using any combination of the keys above, and the left mouse button, it is possible to draw
a line:

MouseStatus ms;

...

ms = GetMouseStatus();

if(ms.lbPushed) // start a line

produce MoveTo3d(ms.atMiddle) Cursor();

if (ms.lbDown) // continue drawing while button is down

produce LineTo3d(ms.atMiddle) Cursor();

See object:
DrawLine

The following code draws a sphere when the left mouse button is pushed along with one of the key
combinations for MouseIns(). The sphere can then be selected and moved.

See object:
MoveSphere

module AddSphere();

module PosSphere(V3d, int);

...

MouseStatus ms;

...

StartEach: { ms = GetMouseStatus(); }

production:

// Draw sphere when button first pushed

AddSphere():

{
if(ms.lbPushed) { produce PosSphere(ms.atMiddle, 1); }

}

// Existing sphere selected

// (MouseIns() module has been inserted into the string)

MouseIns() PosSphere(pos, selected) :

7 ADVANCED TOPICS 39

{
produce PosSphere(ms.atMiddle, 1) ;

}

// Move the sphere as long as the mouse button is not released

PosSphere(pos, selected) :

{
if (selected && !ms.lbReleased)

produce PosSphere(ms.atMiddle, 1);

if (selected)

produce PosSphere(ms.atMiddle, 0) ;

}
...

interpretation:

PosSphere(pos, selected) :

{ produce MoveTo3d(pos) SB Sphere(1) EB ; }

8 Lpfg-specific input files

8.1 Animation file

The animation file is identified by its extension (filename.a), and may contain the following commands:

Command Description Default
first frame: n Interpret derivation step n as the first frame of

an animation.
0

last frame: n Interpret derivation step n as the last frame of
an animation.

Derivation

length

step: n Set the number of derivation steps between
frames to n.

1

swap interval: t Set the time interval between frames to t.
double buffer: flag Set double buffer flag on or off. on

clear between frames:

flag
Clear between frames (flag = on). on

hcenter between

frames: flag
Horizontally center the model between frames
(flag = on).

off

scale between frames:

flag
Scale the model to fit the view window between
frames (flag = on).

off

new view between

frames: flag
Reset the view between frames (flag = on).
This command is most useful when using the
Camera() module (Section 5.3.4) to dynamically
position the camera.

off

display on request:

flag
Display frames only on request. When flag = on,
only the first and last fame are displayed auto-
matically. The DisplayFrame() function (Sec-
tion 6.5) must be called to display intermediate
frames. This makes it possible to skip frames
that do not advance time but perform other cal-
culations. If flag = off, frames are displayed
according to the step parameter.

off

Note that in lpfg the Rewind command on the pop-up menu returns to the axiom (whereas in cpfg
it returns to the first derivation step), and the first frame defaults to 1, not 0).

8.2 View file

Viewing and drawing parameters are stored in the view file, identified by its extension (filename.v)2.
The view file is read by the C++ preprocessor; therefore, the use of comments (both C style /*

... */ and C++ style //), as well all other standard preprocessor directives such as #define and
#if statements are allowed.

The commands in the file are interpreted in the order in which they appear in the file. If there
are two or more commands that specify the same parameter, the last one takes precedence. This does
not apply to commands that specify new set of parameters every time they appear (e.g. lights,

tropisms). Every command must be contained on a single line.

2Some older models may use filename.dr

40

8 LPFG-SPECIFIC INPUT FILES 41

8.2.1 Setting the view

Command Description Default
projection: pvalue Set the projection to parallel or perspective. parallel

scale: s
scale factor: s

Set the size of the final image on the screen. For full
size, set s = 1.0. The two commands are equivalent.

0.9

min zoom: zmin Set the minimum value of the zooming factor. 0.05

max zoom: zmax Set the maximum value of the zooming factor. 50

line style: lstyle Set the line style to pixel, polygon or cylinder. pixel

front distance: d1
back distance: d2

Set the distance to the front (d1) and back (d2) clip-
ping planes, from the viewer in perspective projec-
tion, or from the position of the clipping plane with
respect to the centre of the object’s bounding box
in parallel projection. Thus in parallel projec-
tion the front distance should be a negative num-
ber and the back distance should be positive. Both
commands must be specified in order to have an ef-
fect.

No clipping
plane

generate on view

change: vchange
Regenerate the L-system string (the simulator
rewinds to the axiom and performs the derivations
again) to:
- on - every time the view changes through rotation,
zoom, or pan
- triggered - after the user releases the mouse but-
ton
- off - never

off

view: id
dir: dx dy dz
up: ux uy uz
pan: px py pz
fov: val
shift: val
scale: val

Define the view transformations to be used for view
window id. All the transformation commands are
optional.
- dir and up: the view direction and up direction.
- pan: the point that is the center of the view, rel-
ative to the center of the bounding box.
- fov: the angle of the field of view in the y direc-
tion.
- shift: the distance between the camera and the
point being looked at.
- scale: the scale of objects.

box: id xmin xmax ymin
ymax zmin zmax

Define the default bounding box for view window id.

window: vname left top
width height

Define the location of view vname within the lpfg win-
dow. The parameters left, top, right and bottom are
the relative position of the view within the main win-
dow where 0,0 is the upper left corner and 1,1 is the
bottom right. See Section 7.3 for a description of all
components of multi-view.

window border: size
r g b

Define the size and color of the border between mul-
tiple views, where size is in pixels, and r, g, b are
integers between 0 and 255. See Section 7.3 for a
description of all components of multi-view.

size = 1

r=g=b=0

8 LPFG-SPECIFIC INPUT FILES 42

8.2.2 Rendering commands

Command Description Default
z buffer: zflag Turn z buffering on and off. off

render mode: rvalue Set the rendering mode to filled, wireframe,

shaded, or shadows.
filled

light:

O: x y z
V: x y z
P: x y z e c
A: r g b
D: r g b
S: r g b
T: c l q

Define a light source as one of:
- O: origin of point light source
- V: vector of directional source
- P: spotlight with direction (x,y,z), exponent e, and
cutoff angle c
And, optionally, the characteristics of the source:
- A: ambient color of light source
- D: diffuse color of light source
- S: specular color of light source
- T: attenuation factors
It is possible to define up to 8 light sources, one per
line.

V: 0 0 1

(corresponds to
the default view
direction)

shadow map:

size: n
color: r g b
offset: factor units

Define parameters for shadow mapping when the
render mode parameter is set to shadows. The
shadow map will be generated using the first direc-
tional or spot light source specified with the light

parameter. The following parameters are optional:
- size: width and height of the shadow map (n x
n), where n must be an even number. Values that
are too small (n < 100) or too large (dependent on
graphics card) may cause shadows not to displayed.
- color: shadow color in rgb components.
- offset: polygon offset for a generating depth
map used to reduce shadow acne (erroneous self-
shadowing). To reduce shadow acne, try increasing
these values.

n = 1024

r = 0.2

g = 0.2

b = 0.4

factor = 5

units = 10

stationary lights:

flag
Enable stationary light sources (flag = on) keeping
the position of all light sources fixed.

on

contour sides: n Set the number of sides n that will be drawn on gen-
eralized cylinders. Affects all generalized cylinders,
but can be overridden by either the ContourSides

module (Section 5.7), or the contour-specific samples
parameter.

backface culling: flag Specify that backward-facing polygons should not be
drawn (flag = on). This may speed up rendering or
improve the rendering of transparent objects.

off

concave polygons: flag Enable the OpenGL tesselator (flag = on), which di-
vides polygons into triangles. This allows for more
complex concave polygon shapes, but will cause lpfg
to run slower.

8 LPFG-SPECIFIC INPUT FILES 43

Command Description Default
gradient:

direction magnitude
Define whether gradient shading should be applied
to surfaces when exporting to postscript.
direction=0: gradient off
direction=1: gradient left to right
direction=2: gradient bottom to top
magnitude: percentage change from near to far edge
(where 1.0 represents 100%). May be positive or
negative.

8.2.3 External files

Command Description Default
surface:

filename.s
scale sdiv tdiv txid

Declare the predefined Bezier surface in filename.s.
The remaining parameters are optional:
- scale: a file-specific scaling parameter which is
multiplied by the scaling parameter in the Surface

module to produce a total scaling factor.
- sdiv and tdiv: the number of subdivisions to draw
along the s and t axes. These parameters must be
used together.
- txid: the texture associated with the surface.

scale = 1

mesh: filename
S:scale
T:txid
C:x y z

Declare a predefined mesh in filename with optional
scaling (S:), texture (T:), and contact point coordi-
nates (C:). The mesh file can be in OBJ or PLY
format.

scale = 1

x y z = 0 0 0

texture: filename Declare a texture in image file filename. Textures are
assigned identifiers in the order given, starting at 0.
Both the width and height of the image must be less
than 4096. Only RGB files are supported.

See Section 5.6 for surface and mesh modules.

8.2.4 Tropism commands

Command Description Default
tropism:

T: x y z
A: a
I: x
E: e
S: de

Set tropism parameters. The tropism vector (T) is required.
The remaining parameters are optional:
- A: angle (in degrees) that segments are trying to reach, with
respect to the tropism vector
- I: (global) intensity of the tropism
- E: initial elasticity
- S: elasticity step

A: 0

I: 1

E: 0

S: 0

torque:

T: x y z
I: x
E: e
S: de

Set parameters for rotating segments around their heading with-
out modifying the heading orientation. The tropism vector (T)
is required. The remaining parameters are optional, and are the
same as for tropism, except that A is not required.

I: 1

E: 0

S: 0

stropism: x y z, e Define a simple tropism, specifying the tropism vector (x,y,z)
and the elasticity e.

8 LPFG-SPECIFIC INPUT FILES 44

There may be multiple tropisms in the view file. Tropisms can be manipulated using the modules in
Section 5.8.

8.2.5 Fonts

Command Description Default
font: Xfont Define the font type to be used in @L interpre-

tation, using the Xfont specification.
-*-courier-

bold-r-*-*-

12-*-*-*-*-

--*
winfont: font size bi Define the font for the Label module.

- font: the font name. Enclose in quotation
marks if multiple words (e.g. "Times New

Roman")
- size: the font size in pixels.
- bi: optional flags to specify bold and/or ital-
ics respectively.

Ariel 12

8.2.6 Correction

Old versions of lpfg had a bug which caused all rotations by the modules Up, Down, RollL, and RollR

to be in the wrong direction. This was fixed, but in order to run old models without corrections, this
command is needed.

Command Description Default
corrected rotation:

on|off
Use the corrected rotations (on). Turn off for older L-
systems created before the bug was fixed.

on

8.2.7 Deprecated commands

The following commands have been replaced but may still exist in older models.

Command Description See new command
view: id px py pz scale
ux uy uz

Define the view transformations to be
used for view window id:
- px py pz: The center of the view (pan)
relative to the center of the bounding
box.
- scale: The scale of objects.
- ux uy uz: The up direction.

view: (Section 8.2.1)

Figure 1: Matching right context. Lateral branches are implicitly ignored.

9 Appendix: Production Matching

When rewriting the string it is necessary to determine which production must be applied to each mod-
ule in the string. The process of determining the applicable production is called production matching.
For every module in the string, productions are checked for matching. The productions are checked
in the order in which they are specified in the L-system. For a production to match, all three compo-
nents of the predecessor (left context, strict predecessor and right context) must match. The rules for
matching each of these components are different. This is because the L-system string is a means of rep-
resenting branching structures and symmetric operations on the string do not (in general) correspond
to symmetric operations on the branching structure.

This section contains a detailed explanation of rules that control the process of production matching.
The notation used here utilizes symbols [and] to denote the beginning of a branch and the end of a
branch (modules SB and EB in lpfg).

When the strict predecessor is compared with the module(s) at the current position in the string,
they must match exactly.

When matching the right context, if a module in the context is not the same as the module in the
string the following rules apply:

• If a module in the string is [and the module expected is not [then the branch is skipped.
This rule reflects the fact that modules may be topologically adjacent, even though in the string
representation of the structure the two modules may be separated by modules representing a
lateral branch B (see Figure 1).

• When a branch in the right context ends (with a right bracket) then the rest of the branch in
the string is ignored by skipping to the first unmatched]. This rule also reflects the topology
of the branching structure, not its string representation. For example in Figure 2, module C is
closer to A than D.

• If multiple lateral branches start at a given branching point, then the predecessor in Figure 2
would check the first branch (see Figure 3). To skip a branch it is necessary to specify explicitly
which branch at the branching point should be tested (see Figure 4). This notation is a simple
consequence of the rule presented in Figure 2. In the current L-system notation there is no

45

9 APPENDIX: PRODUCTION MATCHING 46

Figure 2: Matching right context. Remainder of lateral branch is implicitly ignored.

Figure 3: Problem with multiple lateral branches when matching the right context.

shortcut to specify the second, third etc. lateral branch in a branching point without explicitly
including pairs of [] in the production predecessor. There is also no way to specify “any of the
lateral branches”.

When matching the left context the following rules apply:

• Module [is always skipped, since the preceding module will be topologically adjacent (see Figure
5).

• If the module in the string indicates the end of a branch then the entire branch is skipped (Figure
6).

The rule illustrated in Figure 5 is a pronounced manifestation of the asymmetry in the left-context
/ right-context relationship: module C is the left context of both A and B. But the right context of C is
B (unless [] delimiters are used explicitly). The left context may be thought of as the parent module:
the module before (below) the branching point. It is then natural to say that C is the parent module
of both A and B.

9 APPENDIX: PRODUCTION MATCHING 47

Figure 4: Explicit enumeration of lateral branches in the right context.

Figure 5: Matching left context. The beginning of the branch is implicitly ignored..

Figure 6: Matching left context. The lateral branches are implicitly ignored..

10 Appendix: Deprecated / Undocumented features

The following features are no longer tested or supported, but may exist in older models.

10.1 B-spline surfaces

B-spline surfaces and the editor for them, splineEdit, are no longer supported. All surfaces should be
defined as Bézier patches (see the bezieredit and stedit tools in the Vlab Tools manual). However, the
constructs used to manipulate B-spline surfaces still exist within lpfg.

10.1.1 Defining and drawing B-spline surfaces

Predefined B-spline surfaces are specified in the view file using the command:

bsurface: filename.s scale sdiv tdiv txid

where the parameters are defined the same as for the surface command used to specify Bézier surfaces
(see Section 8.2.3). The surface is drawn using the module:

BSurface(int id, float scale)

where id is the surface file number, and scale is a uniform scaling factor. The surface is drawn at the
current location and orientation of the turtle.

10.1.2 Dynamic B-spline surfaces

B-spline surfaces can also be manipulated from within the L-system using constructs equivalent to
their Bézier surface counterparts. See Section 7.1 for more details on dynamic surfaces.

The B-spline surface classes are:

BsurfaceObjS for surfaces with up to 10x10 control points
BsurfaceObjM for surfaces with up to 32x32 control points

and the following methods are available for each class:

Method Description
Set(int i, int j, const V3f& v) Initialize the coordinates of a control point.
Get(int i, int j) const Get the coordinates of a control point.
Scale(V3f scale) Non-uniformly scale the surface by a different factor in

each direction.

In addition, there are functions and modules to get and draw dynamic B-spline surfaces, similar to
the Bézier surface function (Section 6.3) and module (Section 5.6):

Module Description
BsurfaceObjS GetSurface(int id)

BsurfaceObjM GetSurface(int id)

Return the control points of the predefined B-spline sur-
face specified in the view file as id. If the surface con-
tains more than one patch, only the first patch is re-
turned.

DBSurfaceS(BsurfaceObjS s)

DBSurfaceM(BsurfaceObjM s)

Draw the dynamic B-spline surface s.

48

10 APPENDIX: DEPRECATED / UNDOCUMENTED FEATURES 49

10.2 Tablet interaction

Support for a tablet has not been tested with the newest versions of iOS or the newest tablet drivers.
It consists of:

• a command line argument: -tablet

• the function: struct TabletStatus GetTabletStatus()

When -tablet is specified on the command line, tablet input is consider separately from mouse
input, providing two separate input devices. With this option the tablet pointer is input using the
GetTabletStatus() function, not the GetMouseStatus() function. However, the tablet cannot be
used to change the view or insert MouseIns modules.

The GetTabletStatus() function returns the state of the tablet pointer, similar to GetMouseStatus(),
including tablet pressure and pen angle if the tablet supports it. TabletStatus is a predefined data
type:

struct TabletStatus {
bool connected;

int viewX, viewY;

float azimuth, altitude;

double pressure;

unsigned int cursorT, buttonState;

V3d atFront, atRear;

};

10.3 Terrain

Functionality related to terrain is kept to provide backward compatibility with older models, in partic-
ular models of plants in the Rhynie chert. Unfortunately, no further documentation (including .patch

file format) is available, and the terrain editor no longer works. However, files used by this editor are
kept in the example object, in case the editor is ”revived” in the future.

See object:
TerrainDemo

Terrain functionality begins with the inclusion of a texture and a terrain in the view file using the
commands:

texture: filename.rgb
terrain: filename.patch levels scale offset grid txid UTiling VTiling

The texture must be in RGB format. The parameters to the terrain: command are:

Parameter Description Default
filename.patch A predefined terrain file.
levels The number of levels to be used in the LOD system, where 1 is

the lowest level. Must not exceed the Number of Resolutions

to Export field in the Terrain Editor program at the time of
export. This parameter is required.

scale The value that should be multiplied to the position of every
point in the terrain when the file is loaded.

1

offset The distance the camera must be to a patch of the terrain
before it changes its level of detail. A value of 1 is conservative
and will work well on slower systems, while 50 will generally
display the highest level of resolution.

1

10 APPENDIX: DEPRECATED / UNDOCUMENTED FEATURES 50

Parameter Description Default
grid Display the terrain LOD system on the screen as yellow rect-

angles, when set to on.
off

UTiling
VTiling

The number of times the texture will be tiled in the u and v
directions.

UTiling = 1

VTiling = 1

Parameters for drawing the terrain can be set with predefined functions:

Function Description
bool terrainHeightAt

(V3f pointInWorldSpace,

V3f &pointOnTerrain)

Project a ray along the Y axis, (0,1,0), from the
pointInWorldSpace, and return the pointOnTerrain at
which the ray intersects the terrain. If the ray intersects the
terrain mesh, return true, otherwise return false.

void terrainVisibilityAll

(VisibilityMode mode)

Set the visibility of all terrain to Shaded, Hidden or
Wireframe

void terrainVisibilityPatch

(VisibilityMode mode,

int level, V3f point)

Set the visibility of a single patch of terrain to to Shaded,

Hidden or Wireframe. The patch of terrain is selected by
casting a ray along the Y axis at point, and choosing the
visible patch that the ray intersects. All child patches are
also set to this mode. The level parameter is no longer used.

void scaleTerrainBy

(float value)

Multiplying the x, y and z components of each point of the
Terrain by value.

See Section 6.2.1 for a description of the predefined data type, V3f.
The terrain mesh is drawn using the predefined module:

Terrain(CameraPosition)

which draws the terrain using the current position and orientation of the turtle, and the current color.
To ensure the most current camera position is used, it is generally defined just before the Terrain

module:

CamerPosition cameraPos;

...

cameraPos = GetCameraPosition(0);

produce Terrain(cameraPos);

See Section 6.4 for a description of GetCameraPosition().

10.4 String verification

A mechanism was developed for verifying the main elements of the L-system string during the derivation
process. It was available only in batch mode, using the statement:

VerifyString: module list;

where the module list contained module names only, not parameter values. After deriving the string,
lpfg would compare it with the module list. If the modules matched, the message Verify: Success would
be printed to the standard output. Otherwise, the message would be Verify: Fail, and two files would
be created, one containing the module list and one containing the derived string:

Verify_[lsystem]_expected.txt

Verify_[lsystem]_actual.txt

where [lsystem] is the name of the L-system file specified in the lpfg command line.

11 Credits

The original implementation of the L+C language was by Radoslaw Karwowski in the scope of his
Ph.D. thesis [2], and published in [3]. Further extensions have been made by Brendan Lane [4], Thomas
Burt, Mikolaj Cieslak, and Pascal Ferraro.

Vlab uses a modified version of the rendering program rayshade written by Craig Kolb[5] for the
Save as Rayshade option.

12 Document revision history

Date Description By
2002 First version in Microsoft Word Radoslaw Karwowski

2010 & 2014 Updates made to Microsoft Word version Radoslaw Karwowski
Brendan Lane

2021 Updated and re-written in LaTex Lynn Mercer
Przemyslaw Prusinkiewicz
Pascal Ferraro
Mikolaj Cieslak

References

[1] D. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. Journal of Computational Physics, 22:403–434, 1976.

[2] Radoslaw Karwowski. Improving the Process of Plant Modeling: The L+C Modeling Language.
PhD thesis, University of Calgary, 2002.

[3] Radoslaw Karwowski and Przemyslaw Prusinkiewicz. Design and implementation of the L+C
modeling language. Electronic Notes in Theoretical Computer Science, 86(2):19pp, 2003.

[4] Przemyslaw Prusinkiewicz, Radoslaw Karwowski, and Brendan Lane. The L+C plant modelling
language. In J. Vos, L.F.M. Marcelis, P.H.B. de Visser, P.C. Struik, and J.B. Evers, editors,
Functional-Structural Plant Modeling in Crop Production, pages 27–42. Springer, 2007.

[5] Craig Kolb. Rayshade. URL http://www.graphics.stanford.edu/∼cek/rayshade/rayshade.html.

51

