
CPFG
Reference Manual

Last updated: November 30, 2021

vlab was developed in the labs of Przemyslaw Prusinkiewicz at the University of Regina and the
University of Calgary, Canada



Contents

1 Introduction 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Running cpfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Command line options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Optional files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Main files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 View manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Main menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Animation menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The L-system file 8
2.1 Axiom statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Local vs. global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Productions 10
3.1 The predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Programming statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Control statements 12
4.1 Start and End blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Ignore and Consider statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.1 Recursive homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Context in homomorphism productions . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.3 Random numbers in homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Stochastic L-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Predefined Functions 15
5.1 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Rounding functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Random number functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Input and output functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 User-defined contours and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Other functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Predefined modules 17
6.1 Position and drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Turtle rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Changing turtle parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 Branching structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.6 Circles and spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.7 Surfaces and generalized cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.7.1 Surface files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.7.2 L-system defined surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.7.3 Generalized cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



2

6.7.4 Textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.8 Tropisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.9 Query and communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.10 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Advanced topics 24
7.1 Mouse interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Sub-L-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 cpfg-specific input files 25
8.1 View file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.1.1 Turtle commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1.2 Setting the view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.3 Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.1.5 Lines, contours, and surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1.6 User-defined functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1.7 Textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.8 Tropisms and torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1.9 Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.1.10 Deprecated view commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.2 Animation file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Background file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.3.1 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3.4 Lighting and projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3.5 Example of a background file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.4 Tsurface specification file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Appendix: Deprecated / Undocumented features 38
9.1 Command line arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Move and save substrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3 Derivation Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4 Rayshade functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.5 System calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Credits 40

11 Document revision history 40



1 Introduction

cpfg is a program for modeling plants and visualizing their development using the formalism of L-
systems. It is assumed that the reader is familiar with the concepts of L-systems and turtle interpre-
tation presented in The Algorithmic Beauty of Plants [1], as well as elements of the C programming
language.

1.1 Installation

cpfg is distributed with vlab. Refer to the vlab documentation for installation instructions.

1.2 Running cpfg

The cpfg command line is defined as:

cpfg [-a] [-C commstr] [-d] [-g] [-homo] [-rmode mode] [-v] [-V] [-w xsize ysize] [-wnb]

[-wp xpos ypos] [-wpr x y] [-wr w h] [-wt wintitle] [-e environfile] [-gls glsfile] [-m mapfile]
[-M matfile] [-ps psfile] [-ray rayfile] [-str textstrfile] [-strb binstrfile] [-vv vvfile] Lsystemfile
viewfile [animationfile]

Note that the options can be listed in any order, but the L-system, view, and animation files must be
specified in order at the end of the command line. The L-system and view files are mandatory. For
example, the following command line sets the size of the drawing window and its title, and specifies a
colormap file:

cpfg -w 600 400 -wt Daisy -m daisy.map daisy.l daisy.v

1.2.1 Command line options

Parameter Description
-a Start cpfg in animation mode with the Animation menu (Section 1.3.3), rather than

with the main menu. If animationfile is specified, it will be used to control the
animation. Otherwise default values will be used (Section 8.2).

-d Set program output to debug mode. Information is sent to stdout. This mode is
intended only for code development. See -v and -V for warning and verbose modes.

-g Perform off-screen rendering. A colormap or material file must be specified (using
-m or -M). cpfg will generate the string up to the last derivation step as defined in
Lsystemfile. The results can be stored in a specified output file (Section 1.2.2).

-homo Output the string after applying homomorphisms (Section 4.3), using a specified
output file (Section 1.2.2).

-rmode mode Set the method for re-reading input files. The values of mode are:
expl = explicit
cont = continuous
trig = triggered
Refresh mode may also be set with the Refresh mode menu item (Section 1.3.2),
and within a vlab object’s specification file (see the Vlab Framework manual). If
not set, the default is explicit.

-v Set program output to warning mode. Warning and error messages (significantly
less than -V mode) are sent to stdout.

-V Set program output to verbose mode. Detailed warning and error messages are sent
to stdout.

3



1 INTRODUCTION 4

Parameter Description
-w xsize ysize Set the size of the drawing window, in pixels. For example, -w 1024 683 will open

a window suitable for saving image files with an aspect ration of 3:2, appropriate for
video recordings.

-wnb Open the drawing window without borders or title bar.
-wp xpos ypos Specify the initial position of the top left corner of the window.

-wpr x y Specify the relative window position: x and y are numbers between 0 and 1 giving
the position of the top left corner of the drawing window relative to the top left
corner of the screen.

-wr w h Set the relative window size: w and h are numbers between 0 and 1 specifying the
relative width and height of the drawing window with respect to the screen.

-wt wintitle Change the title of the window to wintitle.

1.2.2 Optional files

The following input files are optional:

Parameter Description
-e filename Input parameters for environment communication. Also sets environment

mode for communicating with an external program. See the Vlab Environ-
ment Programs manual for more information on environmental processes.

-m filename.map
-mn filename.map

Input a colormap from a .map file. See the colormap editor (palette) in the
Vlab Tools manual to interactively create a colormap file. Use -mn to specify
more than one colormap file. The first file (-m1) will contain color indices
0-255, the second file (-m2) color indices 256-511, etc.

-M filename.mat Input material records from a .mat file. Used instead of a colormap to im-
prove the results of shading calculations. See the Materials editor (medit) in
the Vlab Tools manual to interactively create a materials file.

One of the following file specifications should be used in batch mode (-g) and for output from animate
mode (-a):

Parameter Description
-gls filename.gls
-ps filename.ps
-ray filename.ray
-str filename.str
-strb filename.strb
-vv filename.vv

In batch mode (-g), output the final result to the specified file.
In animate mode (-a), or Animate on the pop-up menu), output each
frame as it is generated with the Step and/or Run menu items (Section
1.3.3). The filename will be appended with the frame number, beginning
with 000.
Results can also be output interactively using the Save as and String >
Output menu items (Section 1.3.2), as well as the Start recording menu
item in animate mode (Section 1.3.3).

For rayshade output (-ray), the projection type must be set to perspective using the view file
command projection (Section 8.1.2).



1 INTRODUCTION 5

1.2.3 Main files

The following files are identified by their position at the end of the command line. The standard
convention for each file extension is used here. They must be in this order:

Parameter Description
Lsystemfile.l Input the L-system. This file is mandatory.

viewfile.v Input view parameters (Section 8.1). This file is mandatory, although many of
the commands within the file have default values.

animationfile.a Input the animation parameters (Section 8.2). This file is optional; default values
will be used.

1.3 User Interface

1.3.1 View manipulation

The view in the drawing window is manipulated using the left and middle mouse buttons and the
SHIFT key.

Action Description
Rotate Hold the left mouse button down. Rotate around the Y axis by moving the mouse

horizontally, and around the X axis by moving the mouse vertically.
Pan Hold the SHIFT key and left mouse button down. Move the mouse to pan in that

direction.
Zoom Hold the middle mouse button down. Zoom in by moving the mouse up, and zoom out

by moving down.
Roll Hold the SHIFT key and middle mouse button down. Roll clockwise around the Z axis

by moving the mouse to the right, and roll counter-clockwise by moving the mouse to
the left.

1.3.2 Main menu

A pop-up menu is displayed by clicking the right mouse button.

Menu item Description
New model Reread the L-system and view files, generate a new string, and interpret it to

create a new image. The model is automatically centered in the window, or placed
according to the commands in the view file (Section 8.1).

New L-system Reread the L-system file, generate a new string and interpret it to create a new
image without modifying the view.

New view Reread the view file and re-interpret the existing string to create a new image.
The model is automatically centered in the window, or placed according to the
commands in the file.

New rendering Reread the view file and update the image using the rendering commands in the
file, but without changing the view (i.e. do not change the scale, camera, rotation,
etc.).

Save Save to the default file name and type. The initial file name is the same as the
original L-system file, with a PNG extension. Use Save as to change the name
and/or file type. The file used in the Save as window will then become the default
file for this Save command.

Save as... Open a dialog window to save the current view with a different name and/or in a
different format. (See below for a description of the dialog window).



1 INTRODUCTION 6

Figure 1: An example of the Save as... dialog window.

Menu item Description
String Input or Output the L-system string to either a Text file or a Binary file. This can

be used to externally manipulate the string, and then re-read it.
Animate Set cpfg to animate mode. The menu is updated with new items (Section 1.3.3).
Refresh mode Set the mode for re-reading files and updating the object in the drawing window.

The default is Explicit - the files are re-read by invoking one of the New... menu
items above. Alternatively, Triggered/Continuous mode uses cpfg ’s ability to re-
ceive messages from external programs (e.g. panels) to re-read a file as changes
are made.

Exit Exit cpfg.

The Save as menu item opens a dialog window such as the one in Figure 1. The fields in the window
are:

Menu item Description
Target Directory The directory in which to save the file. The default is the lab table directory.
Name The name of the file. The default is the same as the Save command. If this name

is changed, it will become the default for subsequent Save and String commands.
Note that the file extension cannot be edited; it is set based on the Type (and
possibly the Format) field.

Numbering Check this box to add a number to the file name. The number will be incremented
automatically each time the file is saved. For example, if the file name in this dialog
box is set to lsystem0000.png, subsequent Save commands will automatically save
lsystem0001.png, lsystem0002.png, and so on. This can be used to save the frames
of an animation.

Type The file type. This will set the extension in the Name field for all type except
Image.

Format Set the extension when Type is Image. This field is ignored for other types.
Alpha channel Check this box to make the background transparent in the saved file.



1 INTRODUCTION 7

1.3.3 Animation menu

When Animate is selected from the menu, or the -a option is included on the command line (Section
1.2.1), the following items are added to the menu. The menu items use parameters from the animation
file, or their default values (Section 8.2).

Menu item Description Shortcut
Step Display the frame resulting from the next step derivation steps. If

beyond the last frame, the first frame is displayed.
Ctrl+F

Run Display consecutive animation frames after each step derivation steps
until last frame is reached or passed.

Ctrl+R

Forever Display consecutive animation frames after each step derivation steps.
When last frame is reached, return to first frame and continue.

Ctrl+V

Stop Pause the animation at the current frame. Ctrl+S
Rewind Redisplay the first frame of the animation. Ctrl+W
Clear Remove the current image from the window.
New animate Reread the animation file.
Start recording Initiate recording of animation frames. Use the Save as option before

beginning the recording to set the file name and type and, most im-
portantly, to set Numbering on. This menu item will change to Stop
recording once it begins.

Don’t animate (Replaces the Animate item on the main menu.).
Quit animation mode and return to the main menu.



2 The L-system file

An L-system can be defined over an arbitrary alphabet that does not contain the asterisk (*) or any
separators (space, tab, etc.). Section 6 lists symbols that have a graphical interpretation.

A typical cpfg L-system file has the following format:

#define statements
lsystem: label
declarations
derivation length: integer
axiom: list
control statements
productions
endlsystem

The parameter label is optional. It is ignored except when using sub-L-systems (Section 7.2).

2.1 Axiom statement

The axiom defines the starting string and cannot be blank. It is composed of symbols with and without
specific parameter values. For example:

axiom: I(DELAY)FA(1)

is an axiom with three symbols, I, F and A, two of which have a parameter.

2.2 Variables

Variable names are defined as in C, and are assumed to be of type float.

2.2.1 Local vs. global variables

Both local and global variables can be defined. Local variables are used within a production’s pro-
gramming statements (see Section 3.2). Global variables are defined in start and end blocks before the
productions (see Section 4.1).

2.2.2 Arrays

Arrays in cpfg are defined in a single statement in the declarations section. The statement has the
format:

define: { array arrayname1[ dimensions ]; array arrayname2[ dimensions ]; ...}

Each array is specified by its name, arrayname, and the size of each dimension, dimensions, sepa-
rated by commas. All arrays are defined in a single define: statement, separated and ending with a
semicolon. The specification may extend over several lines.

The arrays may also be initialized at the same time using the syntax:

define: { array arrayname[ dimensions ] = { values }; }

where values are also separated by commas. For example, the following statement defines three arrays,
two of which are initialized:

8



2 THE L-SYSTEM FILE 9

define: { array GrowthRate[3,2] = {1, 0.9, 0.8, 1, 0.8, 0.6};
array Angle[4] = {75, 60, 45, 30};
array Nutrients[5]; }

In a plant model, the value of a parameter frequently depends on the order, age, or vigor of the apex
and each branch. It is possible to have separate productions for each branching order with different
values in the successor. But in some cases it is more effective to define an array of values and use only
one production.

See object:
Lilac



3 Productions

A production in cpfg consists of three parts: the predecessor defines the string to be matched and
the context in which it must be found; programming statements are evaluated once the predecessor is
matched, and may include a condition that, if present, must evaluate to true; and the successor defines
how the predecessor will change in the next derivation step.

The predecessor must be nonempty. The statements section is optional. An empty successor must
be represented by an asterisk (*). The basic formats of a production are:

predecessor --> *

predecessor --> successor
predecessor : statements --> successor

3.1 The predecessor

The predecessor consists of three components: the strict predecessor, its left context, and its right
context. It has the form:

lcontext < strict-predecessor > rcontext

Both the left and right context are optional (along with the corresponding separator), but the strict
predecessor must be nonempty. Each component consists of symbols with or without parameters. The
parameters are “formal”: they are variables that represent actual parameter values. For example:

S(a,b) < A(i) > T

will match a symbol A that has a single parameter (of any value) and is preceded by a symbol S with
any two parameters, and followed by a symbol T with no parameters.

3.2 Programming statements

A production may optionally include statements, which use C-like syntax. The statements are divided
into three components formatted as:

{ before-stmts } condition { after-stmts }

where condition is a Boolean conditional expression. The production will only be used if condition
evaluates to True.

Before-stmts are performed each time the predecessor (including the left and right context) match,
before the condition is evaluated. Thus, these statements can be used to precompute expressions
required in condition.

After-stmts are performed only after condition is evaluated as True, before the predecessor is
replaced by the successor.

All components are optional. An empty condition, which is always true, is represented by an
asterisk (*). Therefore, the general format of the statements can be:

{before-stmts } condition {after-stmts }
{before-stmts } * {after-stmts }
{before-stmts } condition
{before-stmts } *

condition {after-stmts }
* {after-stmts }

10



3 PRODUCTIONS 11

Three types of C statements may be used as part of the before-stmts and after-stmts:

• Assignment statements of the form:

varname = expression;

where expression is an arithmetic expression. The expression may include local variables assigned
a value in previous assignment statements within the same production. For example:

A(y) : { x=y/2; s=x*x; } s<10 --> B(x)

• Conditional statements have two forms:

if ( condition ) { statement; ... }
if ( condition ) { statement; ... } else { statement; ... }

where condition is a logical expression. Note that {} brackets are required even when there is
only one statement. For example:

A(y) : * { if ( y>10 ) { y=10; } } --> B(y)

• Loop statements also have two forms:

while ( condition ) { statement; ... }
do { statement; ... } while ( condition )

As in conditional statements, {} brackets are required in loop statements even when there is only
one statement.

However, compared to C syntax, the syntax of L-system programming statements must follow specific
rules:

• Each assignment statement must terminate with a semicolon, even if it is a last statement in a
block of statements (just before the ‘}’).

• Statements following if, else, while and do must always be enclosed in curly brackets, even
if there is only one statement.

• All parameters are assumed to have real (floating point) values.

• Operators such as ++, –, +=, -=, *=, and /= are not supported.



4 Control statements

4.1 Start and End blocks

There are four blocks of statements that define procedures to be executed at specific points in an
L-system simulation:

• Start - called before the output string is initialized from the axiom

• StartEach - called before each derivation step

• EndEach - called after each derivation step

• End - called after the final derivation step

Each block has the syntax:

block name: { statements };

where statements have the same syntax as programming statements within a production (Section 3.2).
The four blocks are added before the productions in the L-system file.

For example, to set a counter i that is incremented after each derivation step:

Start: { i=0; }
EndEach: { i=i+1; }

Variables used on the left side of an assignment statement in these blocks are considered global,
and can be accessed within other blocks and within productions.

4.2 Ignore and Consider statements

Symbols can be ignored when context matching using the statement:

ignore:symbols

Alternatively, to consider only specific symbols when context matching, use the statement:

consider:symbols

In both cases, symbols are listed without parameters, and without separators. For example:

ignore: / + - G

4.3 Homomorphism

An L-system homomorphism is defined as a set of productions applied only for interpretation purposes
(i.e. when drawing the object from the string). This allows the modeler to change the details of
the appearance without modifying the underlying logic of the model captured by the main L-system
productions.

In cpfg, the homomorphism is specified by productions that are placed at the end of the L-system,
beginning with the keyword homomorphism and ending with the endlsystem statement.

See object:
DragonCurve

Once the string has been derived using the main L-system productions and is ready for interpreta-
tion, each module in the string is matched to the homomorphism productions creating the string to be
interpreted. If a match is found, the successor in the homomorphism production is used in the string.
If no match is found, the original module is retained as the successor. Note that the resulting string
is used for interpretation purposes only. The next derivation step will use the string produced by the
main L-system productions, excluding the changes made by the homomorphism productions.

For example, a simple plant can be described in terms of apices (A) and internodes (I):

12



4 CONTROL STATEMENTS 13

Axiom: A

A --> I[+A][-A]IA

I --> II

The turtle commands to draw the apices and internodes can then be described in a homomorphism,
and changed as needed:

homomorphism

A --> ;F

I --> F

endlsystem

Homomorphism productions with parameters or programming statements operate similarly to L-
system productions: the expressions are evaluated and replace the formal parameters.

4.3.1 Recursive homomorphism

It is possible to repeatedly apply homomorphism productions to the string to be interpreted. To enable
this, the following statement can be added after homomorphism and before the productions:

maximum depth: d

where d is an integer representing the number of times the homomorphism productions are applied (to
avoid infinite recursion). If maximum depth is omitted, the default is 1 - i.e. no recursion.

A warning may be issued if the maximum depth is reached and it is possible to further apply the
homomorphism productions. To enable this, add warnings to the homomorphism statement:

homomorphism: warnings

No warnings are issued for the simple homomorphism statement. For backward compatibility, it is also
possible to state:

homomorphism: no warnings

4.3.2 Context in homomorphism productions

The context for a homomorphism production is the context in the original L-system string; homomor-
phism successors do not affect the context search.

For example, the following homomorphism is used to draw only branches whose endpoint P has a
y coordinate less than 3:

homomorphism

F > P(x,y) : y > 3 --> f

If the homomorphism in the previous example was defined as:

homomorphism

maximum depth: 2

F --> G P(0,0)

G > P(x,y) : y > 3 --> f

The context for the second homomorphism production would be a module P in the original L-system
string (with its parameters), and not the module P introduced by the first homomorphism production.



4 CONTROL STATEMENTS 14

4.3.3 Random numbers in homomorphism

The use of random values in a homomorphism is not recommended during an animation, since the
values used in one simulation step would be different from values used in next step and visible discon-
tinuities may result. The resulting structure may change after each redraw.

To prevent this, it is possible to define a separate random number generator used only with the
homomorphism productions by including a seed: statement after the homomorphism statement and
before the productions.

4.4 Decomposition

Decomposition productions make it possible to decompose a module in the string into several compo-
nents. Thus the L-system productions can focus only on the development of main building blocks of
a plant, such as an apex, meristem, or leaf.

After each simulation step, before the string is interpreted (and a possible homomorphism is ap-
plied), modules representing these organs can be replaced by several other modules, representing parts
of the organs. Unlike homomorphism productions, the results of decomposition stay in the string.

Decomposition productions must be specified after L-system productions and before homomorphism
productions (or at the end of an L-system if no homomorphism productions are included).

The syntax of a decomposition block is similar to a homomorphism block, beginning with a
decomposition statement, with or without a warning. There can also be a maximum depth state-
ment. However, decomposition productions use the same random number generator as the L-system
productions. Therefore, the seed statement cannot be used.

4.5 Stochastic L-systems

Stochastic L-systems require a seed for the random number generator. This is specified with the
statement:

seed: svalue

where svalue is an integer number. This should be the first statement in the L-system directly after
the lsystem: statement.

See object:
RandomMoss

Productions have an added element as well:

predecessor : statements --> successor : probability

where probability is a percentage (1-99) representing the probability factor for that production. For
example:

F --> F[+F]F : 40

F --> F[-F]F : 60

will create a branch to the left with 40% probability, and a branch to the right with 60% probability.
The seed is re-initialized to svalue when the New model menu item is selected, but not with the

New L-system menu item. This means that a random new image is displayed with each call to New
L-system.



5 Predefined Functions

The following predefined functions can be included in L-system expressions (e.g. to define a parameter
value, or in a predecessor statement).

5.1 Mathematical functions

Function Description
sin(α)
cos(α)
tan(α)

Return the sin/cos/tan of angle α, where α is in degrees

asin(x)
atan(x)

Return an asin/atan value between -90◦ and +90◦

acos(x) Return an acos value between 0◦ and 90◦

atan(x,y) Return the arctangent of y/x in the range -90◦ to +90◦

exp(x) Return ex.
log(x) Return the log of x
sqrt(x) Return the square root of x
fabs(x) Return the absolute value of x
xˆy Return xy

5.2 Rounding functions

Function Description
floor(x) Return the largest integer <= x
Ceil(x) Return the smallest integer >= x
trunc(x) Truncate x to an integer
sign(x) Return 0 if x = 0

Return 1 if x is positive
Return -1 if x is negative

5.3 Random number functions

Function Description
srand(seed) Initialize the random number generator used in the following functions.
ran(x) Generate floating point values uniformly distributed in the interval (0, x).
nran(m, δ) Generate a normal distribution of random numbers with mean m and stan-

dard deviation δ.
bran(α, β) Return random values with β distribution.
biran(n,p) Generate random numbers with a binomial distribution - i.e. how many out

of n numbers are below p.

See object:
WeepingBirch

15



5 PREDEFINED FUNCTIONS 16

5.4 Input and output functions

Function Description
printf(“format-string”,
var1, var2, ...)

Print variables to standard output using the specified format.

fopen(“filename”, “type”) Open the file filename for input (type = r) or output (type
= w). Returns an identifier for the file, which is used in the
functions below.

fclose(file-id) Close the file with identifier file-id.
fscan(file-id, “format-string”,
&var1, &var2, ...)

Input data from the file with identifier file-id, using the spec-
ified format.

fprintf(file-id, “format-string”,
var1, var2, ...)

Output the specified variables to the file with identifier file-id,
using the specified format.

fflush(file-id) Flush the buffers of the file with identifier file-id.

Note that all variables are of type float. Therefore, the format strings should contain %f and %g only.

5.5 User-defined contours and functions

User-defined contours and functions are described in files (see the cuspy and funcedit tools in the Vlab
Tools manual for the format of the files). The files are specified in the view file (Sections 8.1.5 and
8.1.6, respectively) and assigned an id that is used in the following functions.

Function Description
curveX(id,t)
curveY(id,t)
curveZ(id,t)

Return the x, y, or z coordinate, respectively, at coordinate t of the contour
identified by id. The value of t should be in the range [0,1]. If t < 0, return
the position of the start of the contour. If t > 1, return the position of the
endpoint of the contour.

curveGAL(id) Return the length of the contour identified by id.
func(id, x) Return the value at x of the user-defined function with identifier id. The

value of x should be in the range [0,1]. If x < 0, return the value of the
function at 0. If x > 1, return the value of the function at 1.

5.6 Other functions

Function Description
vvXmin()

vvXmax()

vvYmin()

vvymax()

vvZmin()

vvZmax()

Return the minimum and maximum extents of the rendered volume, in x, y, and z
coordinates.

stop(n) Stop the animation. If n=1, and Run or Forever is selected from the menu, draw the
current string and continue. Otherwise, stop the simulation.



Figure 2: Controlling the turtle in three dimensions

6 Predefined modules

During visualization, the string of symbols is parsed from left to right. When a predefined symbol
controlling the turtle is encountered, the function associated with the symbol is performed. Symbols
with predefined interpretations are listed below. If a symbol has more parameters than those specified
below, the additional parameters are ignored.

6.1 Position and drawing

In the following modules, the parameter l is optional. If not specified, the default is used.

Module Description Default
F(l) Move forward a step of length l and draw a line segment from the original

position to the new position of the turtle. If the polygon flag (Section 6.5) is
on, the final position is recorded as a vertex of the current polygon.

1

f(l) Move forward a step of length l without drawing a line. If the polygon flag
(Section 6.5) is on, the final position is recorded as a vertex of the current
polygon.

1

G(l) Move forward a step of length l and draw a line. 1
g(l) Move forward a step of length l without drawing a line. 1
@M(x,y,z) Set the turtle position to (x,y,z).

The view file command line style (Section 8.1.5) specifies whether the line is drawn as a line,
polygon, or cylinder.

6.2 Turtle rotations

The turtle can be rotated around its heading, left, or up vector only (Figure 2).

Module Description
+(θ) Turn left by angle θ◦ around the U axis.
-(θ) Turn right by angle θ◦ around the U axis.
&(θ) Pitch down by angle θ◦ around the L axis.
^ (θ) Pitch up by angle θ◦ around the L axis.

17



6 PREDEFINED MODULES 18

Module Description
\ (θ) Roll left by angle θ◦ around the H axis.
/(θ) Roll right by angle θ◦ around the H axis.
| Turn 180◦ around the U axis. This is equivalent to +(180) or -(180).

It does not roll or pitch the turtle.
@v Roll the turtle around the H axis such that H and U lie in a common

vertical plane with U closest to up.
@R(hx,hy,hz)

@R(hx,hy,hz,ux,uy,uz)

Set the turtle heading to (hx,hy,hz). If the vector is not normalized, it
will be done automatically. If (ux,uy,uz) are not specified, the turtle up
and left vectors are adjusted to minimize their rotation with respect to
their previous orientation. Otherwise, (ux,uy,uz) specify the turtle up
vector (which will also be normalized automatically), the left vector will
be computed directly from the heading and up vectors.

If the parameter θ is not specified, the value of the view file command angle increment, or its default,
will be used (Section 8.1.1).

Modules @v and @R adjust the turtle orientation with respect to absolute coordinates (as compared
to other rotations, which are performed with respect to the current turtle orientation).

6.3 Changing turtle parameters

The parameter is optional in all the following modules except @D(s). When no parameter is given,
the value of the indicated command in the view file or its default (Section 8.1.1) is used to increase or
decrease the current value. When a parameter is given, it sets a new value.

Module Description
;(n) Increase the value of the current color index or material index by color increment,

or set it to n.
,(n) Decrease the value of the current color index or material index by color increment,

or set it to n.
@;(n) Increase the value of the current color index or material index of the back side of a

surface by the second parameter of color increment, or set it to n.
@,(n) Decrease the value of the current color index or material index of the back side of a

surface by the second parameter of color increment, or set it to n.
#(n) Increase the value of the current line width by line width increment, or set it to n.
!(n) Decrease the value of the current line width by line width increment, or set it to n.
@D(s) Set the current turtle scale to s. All subsequent geometry will be scaled by this value.

The default scaling factor is initial scale.
@Di(s) Multiply the current turtle scale by scale multiplier, or set it to s.
@Dd(s) Divide the current turtle scale by scale multiplier, or set it to s.

Note that surfaces can have different colors or materials specified for each side only if the view file
command initial color has two parameters.



6 PREDEFINED MODULES 19

6.4 Branching structures

A branch is created by pushing the current state of the turtle (all its parameters) onto a stack, and
then popping them off the stack to return to the start of the branch when complete.

Module Description
[ Begin a new branch by pushing the current state of the turtle onto the stack.
] Complete a branch by popping the last turtle state from the stack and setting the turtle

to this state (i.e. to beginning of the branch).
% Cut the remainder of the branch: ignore this symbol and all following modules up

to the closest unmatched right bracket ], therefore eliminating them from the gener-
ated string. If no unmatched right bracket is found, all modules to the end of the
string are eliminated. See example below. This symbol is ignored if introduced by a
homomorphism production.

@mc(flag) Conditionally cut the remainder of the branch as above only if the value of flag is 1.
Otherwise, this module has no effect.

For example, if a new branch is defined in the string as

...[D(1)]...

where the parameter of D is the age of the branch, it can be removed from the string when it reaches
the age of 20 using the cut symbol %:

D(a) : a<20 --> D(a+1)

D(a) : a>=20 --> %

See object:
Shedding6.5 Polygons

The following modules are used in conjunction with F and f to create a polygon (Section 6.1).

Module Description
{ Start a new polygon by pushing the current turtle position onto the polygon stack and

setting the polygon flag on.
} Pop a polygon from the stack and render it, filling it with the current color. If there

are no more polygons on the stack, turn the polygon flag off.
. Create a polygon vertex at the current position, if the polygon flag is on, by placing

the current state of the turtle on the polygon stack.

See also the generalized cylinder modules using the { and } symbols with a parameter (Section 6.7.3).

6.6 Circles and spheres

Module Description Default
@o(d) Draw a circle of diameter d in the plane of the screen. current line width
@c(d) Draw a circle of diameter d in the HL plane. current line width
@bo(d) Draw the boundary a circle of diameter d in the plane of the screen.

The width of the boundary is set to the current line width
@bc(d) Draw the boundary a circle of diameter d in the HL plane. The

width of the boundary is set to the current line width
@O(d) Draw a sphere of diameter d. current line width



6 PREDEFINED MODULES 20

6.7 Surfaces and generalized cylinders

6.7.1 Surface files

Surfaces may be defined in a file that contains all the control points, geometry and neighbourhood
information. See the bezieredit and stedit tools in the Vlab Tools manual for interactively creating
surface files.

Surface files are specified in the view file (Section 8.1.5) and read at the beginning of the simulation.
Each file is identified by an id, and a single module within the L-system is used to draw it:

Module Description Default
∼id
∼id(scale)
∼id(sx,sy,sz)

Draw the surface identified by id at the turtle’s cur-
rent location and orientation. If the module has one
parameter, the surface is uniformly scaled by scale.
If there are three parameters, they specify the scal-
ing amount in the x, y, and z directions.

no scaling

6.7.2 L-system defined surfaces

Surfaces can also be defined within the L-system using an internal 4x4 array of control points, identified
by an id. To define and draw the surface, the following modules are used:

Module Description Default
@PS(id,type) Initialize the 4x4 set of control points for surface id to (0,0,0). The type

can be one of: 1 = Bézier, 2 = B-spline, 3 = Cardinal spline.
type = 1

@PC(id,r,c) Set the current position of the turtle to the control point at row r and
column c of surface id.

@PD(id,s,t) Draw the surface defined by the control points for surface id, forming a
mesh with s lines along the rows and t lines along the columns.

6.7.3 Generalized cylinders

The default contour for a generalized cylinder is a circle. However, it is possible to define the contour
using the following modules.

Module Description Default
{(type) Start a generalized cylinder. The parameter type can be

one of:
1 = an open curve of Hermite spline segments
2 = a closed curve of Hermite spline segments
3 = an open curve of B-spline segments
4 = a closed curve of B-spline segments
This module does not define the first control point. If
type is not specified, a polygon is defined (Section 6.5).

}(type) Finish a generalized cylinder started by module {(type).
The parameter type must match in both modules.

@Gs Start a generalized cylinder at the current turtle posi-
tion. This is equivalent to {(1).

@Ge(strips) Finish a generalized cylinder. The parameter strips de-
fines the number of mesh strips drawn between this final
control point and the previous one. This is similar to
}(1).



6 PREDEFINED MODULES 21

Figure 3: Hermite curves defined as: @Gs-(45)f-(45)@Gt(start,end)@Ge(20), where start and end

are (a) the default: 1.2, 1.2; (b) 2, 2; (c) 0.5, 0.5; (d) 4, 1. Visualized tangent vectors are scaled by
1/4 to fit the figure.

Module Description Default
@Gc(strips) Specify a control point on the central line of the cylinder.

The parameter strips defines the number of mesh strips
drawn between this control point and the previous one.

strips = 1

.(strips) Equivalent to @Gc(strips). If strips is not specified, a
polygon vertex is defined (Section 6.5).

@!(npolygons) Set the number of polygons around a generalized cylin-
der, or a cylinder represented by F or G, to npolygons.

@#(contour-id) Set the contour specified by contour-id as the current
contour for generalized cylinders. Contours are specified
in the view file (Section 8.1.5). When contour-id = 0,
the default circle is used.

@Gt(start,end) Modify the tangent coefficients at the start and end
points of a Hermite curve specifying the generalized
cylinder axis. The tangent lengths are equal to the dis-
tance between the two control points multiplied by the
tangent coefficients. This module must be inserted be-
fore the module defining the second control point of the
Hermite curve segment. (See Figure 3 and [2]).

start = end = 1.2

@Gr(angle1,
length1,angle2,
length2)

Specify the slope and length of two tangents of a Her-
mite curve which describe the change of radius of the
generalized cylinder axis. (See [2]).

@Gr(flag) Switch on or off an automatic adjustment of radius tan-
gents for segments of non-unit length. When on (flag =
1), the tangents are defined for a segment of unit length
and then stretched onto a segment of non-unit length,
thus the specified tangent angles do not correspond to
the real angles of the tangents. When off (flag = 0),
tangents are not adjusted after the stretching.

Only one generalized cylinder can be defined at a time unless it is defined within a branch delimited
by square brackets. For example:

{(1)f(1)[{(3)f(1)}(3)]}(1)

If the generalized cylinder is started using the { module, control points are also defined after each f

and F (Section 6.1), similar to polygons (Section 6.5). Since the number of strips cannot be specified,
it defaults to 4.



6 PREDEFINED MODULES 22

6.7.4 Textures

Textures are images that can be mapped on surfaces, cylinders, cones, and generalized cylinders (not
on disks or spheres). They are only used in material mode (with the -M command line option), and
are defined in the view file (Section 8.1.7) and referenced by id number starting with 1.

Module Description
@Tx(id) Set the current texture to id. If id = 0, texturing is switched off.

If a predefined bicubic surface has an associated texture in the view file, its texture is fixed and cannot
be changed by this module.

6.8 Tropisms

Tropisms are specified in the view file (Section 8.1.8) and referenced by id number starting with 1.

Module Description
@Ts(id,value) Set the elasticity parameter of tropism to value. This overrides the E: parameter of

the tropism command in the view file.
@T(id,value) Increase the elasticity parameter. If value is not specified, the S: parameter of the

tropism command in the view file is used.
@Td(id,value) Decrease the elasticity parameter. If value is not specified, the S: parameter of the

tropism command in the view file is used.
@Tp Adjust the turtle’s up and left vector to minimize twist. The command operates

locally, i.e. it adjust the turtle’s vectors only at the current point.
@Tf Force the twist. If the orientation of a segment following symbols / or \ is adjusted

due to a tropism (which as a default adjusts the segment’s up vector to prevent
twist), the effect of symbols / or \ is nullified and it is necessary to add this module
to force the twist. It operates locally, i.e. it prevents twist only for symbols / or \

to the left of @Tf.

6.9 Query and communication

If a query module (beginning with ?) is present in any L-system production, an interpretation step is
performed after each generate step, even if cpfg does not draw to the window. The parameters to the
module can then be accessed in the following generate step and affect the selection of productions.

Module Description
?P(x,y)
?P(x,y,z)

Query the turtle position.

?H(x,y)
?H(x,y,z)

Query the current turtle heading vector.

?L(x,y)
?L(x,y,z)

Query the current turtle left vector.

?U(x,y)
?U(x,y,z)

Query the current turtle up vector.

?E(p1,p2,...) Communicate with an external process. Used to both send and receive environ-
mental information. The parameters can be set by the model and transferred to the
environment process, or set by the environment process and transferred to the model.
See the Vlab Environment Programs manual for more information on environmental
processes, as well as [3] and [4].



6 PREDEFINED MODULES 23

6.10 Labels

Module Description
@L("label")
@L("format",p1,p2,...)

Print label, or specify a printf-like format and print the values of
parameters p1,p2,.... The content is printed in the drawing window
at the current turtle location using the font specified in the view
file (Section 8.1.9).



7 Advanced topics

7.1 Mouse interaction

It is possible to interact with the generated image using the mouse, by holding down the Shift and
Command keys and clicking with the left mouse button. When the mouse is over an element of the
model, an X module is inserted into the string immediately before the selected module.

Note that if there are several F modules in a row, X will be inserted before the first F. For more
granularity, the F modules can be separated by a null module, such as f(0) or []. To avoid complicating
the main L-system, this can be done in a homomorphism:

See object:
Snowflakehomomorphism:

F --> Gf(0)

Replacing F with G ensure that the production is not applied recursively.

7.2 Sub-L-systems

Several L-systems can be combined to create a single model, by defining each with a separate label
(Section 2). To call a sub-L-system, the following statement is added to the string:

?(label,s)mod $

where label is the number assigned in the lsystem: statement, s is the scaling factor, mod represents
the module that will be processed by the sub-L-system, and $ returns control to the calling L-system.
The module mod may have parameters.

For example, the main L-system (lsystem:1) can have a production that replaces module A(t)

with a call to a sub-L-system (lsystem:2), along with the module B(t-1). The sub-L-system then
has a production to match module B:

See object:
Sedge...

lsystem: 1

...

A(t) --> ?(2,1)B(t-1)$

...

endlsystem

lsystem: 2

...

B(x) --> ....

...

endlsystem

Note that each L-system requires an axiom statement, but the axiom is ignored when it is called
as a sub-L-system. However, if the L-system is run independently, it will use the axiom, which should
include the module defined in the sub-L-system call. For example, the sub-L-system above could have
the following statement:

axiom: !(3);(48)B(5)

to provide a starting point for the L-system that includes module B(x) with the defined parameter 5.

24



8 cpfg-specific input files

8.1 View file

The view file contains drawing, viewing, and rendering commands, as well as the names of external
files such as surfaces and functions.

Unless otherwise stated, the values have the following formats:

• x,y,z - floating point numbers

• i - integer

• id - a single character

• flag - on or off

Comments may be included in the file using the standard C notation:

/* ... */

Note that the commands are processed in the order they are specified in the file. Thus if there
are multiple instances of the same command, the last one takes precedence. Exceptions are noted for
individual commands that allow for multiples.

8.1.1 Turtle commands

Command Description Default
angle increment: x
angle factor: y

Set the angle associated with the +, -, &,

^, \, /, and | modules. The angle is set to
x◦, or to 360◦/y. These are alternative meth-
ods of setting the same parameter; therefore,
the last one specified will be applied.

45◦

initial color: i1 i2 Set the initial index into the colormap or ma-
terial file. The value should be a number be-
tween 0 and 255. The second value is optional.
If present, i2 specified the index to be used for
the back side of the surface.

128

color increment: i Set the color increment associated with the
current colormap or material file.

1

initial line width: x style Set the initial line width to x. The style pa-
rameter is optional; if included, the values are:
pixels or p - flat shaded lines with width in
pixels
shaded or s - shaded cylinders in world units
Alternatively, the line style command (Sec-
tion 8.1.5) can be used.

width = 1
style = p

line width increment: x Set the line width increment associated with
the # and ! modules to x, using the same units
as initial line width.

0

initial scale: x Set the initial scale factor associated with the
turtle to x. All geometry will be scaled by this
factor. This value can be modified by modules
@D, @Di, and @Dd (Section 6.3).

1

25



8 CPFG-SPECIFIC INPUT FILES 26

Command Description Default
scale multiplier: x Set the multiplicative factor by which the tur-

tle scale is multiplied or divided when module
@Di or @Dd (Section 6.3) is interpreted.

1

interpretation past %: flag Interpret past the cut symbol % if flag = on.
When flag = off, the symbols after % are not
interpreted.

on

8.1.2 Setting the view

Command Description Default
viewpoint: x,y,z Set the x,y, and z coordinates of the view-

point in world space.
0,0,1

view reference point: x,y,z Set the x,y, and z coordinates of the view
reference point in world space.

0,0,0

twist: i Rotate the image on the screen by i
tenths of a degree.

0

projection: type Set the projection to type, which can be
either parallel or perspective. Auto-
centering and auto-scaling work only in
parallel mode.

parallel

viewing angle: x Set the viewing angle of perspective pro-
jection. This command is ignored in par-
allel projection.

45◦

front distance: x Set the distance from the viewer to
the front clipping plane in perspective
project, or the position of the clipping
plane with respect to the viewpoint in
parallel projection (thus a negative value
must be used).

-100000

back distance: x Set the distance from the viewer to
the back clipping plane in perspective
project, or the position of the clipping
plane with respect to the viewpoint in
parallel projection.

100000

scale factor: x Set the size of the final image on the
screen. When x = 1, the image is full
size.

1

box: x: xmin, xmax
y: ymin, ymax
z: zmin, zmax

Set the bounding box for the model. The
view is adjusted so that the whole bound-
ing box is visible. Effective only in par-
allel projection.

x: 0,1

y: 0,1

z: 0,1

min zoom: zmin
max zoom: zmax

Set how much the user can zoom in or
out on the view.

zmin = 0.05
zmax = 50

generate on view change: flag Regenerate the L-system string (the sim-
ulator rewinds to the axiom and performs
the derivations again) every time the
view changes through rotation, zoom, or
pan (flag = on), or after the user releases
the mouse button (flag = triggered).

off



8 CPFG-SPECIFIC INPUT FILES 27

Note that modifying scale factor in perspective projection moves the viewer closer or farther from
the viewpoint and therefore the front distance and back distance will need adjusting.

8.1.3 Lights

Colormap mode. The following commands are used in colormap mode only.

Command Description Default
light direction: x,y,z Define the direction of light as the x, y, and z coordi-

nates of a vector.
(1,0,0)

diffuse reflection: i Define the coefficient used to determine the range of
colors for lighting a shaded surface. See below for the
formulas that use this coefficient.

10

surface ambient: a
surface diffuse: d

Define the amount of ambient and diffuse light
present for shading bicubic surfaces and tsurfaces,
where a and d are numbers between 0 and 1. See
below for the formula used.

a = 0.15
d = 0.75

The diffuse reflection, surface ambient and surface diffuse commands are used to vary the
color based on the orientation of polygons representing the surface or cylinder with respect to the
direction of the light source, where ~N is the normal of the polygon, and ~L is the direction towards the
light source. Only the first light source is used, if more than one is specified in the view file.

The diffuse reflection coefficient i is used as follows:

• For a surface color col, the range of colors is varied within the interval [ col-i, col+i ].

• For a polygon representing a cylinder or generalized cylinder, the original color index col is used
to calculate the final color using the formula: col + i · ~N · ~L

The surface coefficients, a and d, are used to calculate the final color of a surface with the formula:

64 · int · (a+ d · abs( ~N · ~L))

where the color intensity int is calculated using the color index col associated with the surface:

int = col/64−floor(col/64)

Material mode. In material mode the light command is used. There may be multiple light
commands, each with a set of subcommands. Therefore, the syntax is:

light: subcmd1 subcmd2 subcmd3 ...
light: subcmd1 subcmd2 subcmd3 ...
...

The subcommands of light are:

Subcommand Description Default
O: x y z Define the origin (x, y, z) of a point light source. 0 0 1
V: x y z Define the vector (x, y, z) for a directional light source.
A: r g b Define the ambient light color in RGB components. 1 1 1
D: r g b Define the diffuse light color in RGB components. 1 1 1
S: r g b Define the specular light color in RGB components. 1 1 1
P: x y z e c Define a spotlight with direction (x,y,z), exponent e, and cutoff

angle c.
0 0 -1 0 180

T: c l q Define attenuation factors: constant c, linear l, and quadratic q. 1 0 0



8 CPFG-SPECIFIC INPUT FILES 28

8.1.4 Rendering

Command Description Default
render mode: mode Render the object using one of the following modes:

filled - All polygons have the same color. If materials are
specified the diffuse color is used.
fast - Same as filled except spheres and disks are drawn in
wireframe.
wireframe - All objects are drawn in wireframe.
interpolated - Interpolate between colors at the beginning
and end of a line or cylinder, or at different vertices of a
polygon.
flat - The color of each polygon is determined by its position
with respect to the light. (See explanation below.)
shaded - In colormap mode, the color is computed for each
vertex of the polygon, similar to flat mode. In material
mode, the normal for each polygon can be different at each
vertex, resulting in smooth shading.
shadows - Include shadows. Additional shadow parameters
are defined using the shadow map command below.

filled

shadow map:

size: n
color: r g b
offset:

factor units

Define parameters for shadow mapping when using render

mode: shadows. The shadow map will be generated using
the first directional or spot light source specified with the
light command. The following parameters are optional:
size: the width and height of the shadow map (n x n), where
n must be an even number. Values that are too small (n
< 100) or too large (dependent on graphics card) may cause
shadows not to display.
color: shadow color in rgb components.
offset: polygon offset for generating depth map used to
reduce shadow acne (erroneous self-shadowing). To reduce
shadow acne, try increasing these values.

n = 1024

r = 0.2

g = 0.2

b = 0.4

factor = 5

units = 10

z buffer: flag Define whether hidden surface elimination using the z buffer
should be on or off. When off, the last object drawn will
be visible.

on

antialiasing: flag Draw with antialiasing (flag = on). Currently, this only works
with line primitives.

off

concave

polygons:

flag

Enable the OpenGL tesselator (flag = on), which divides poly-
gons into triangles. This allows for more complex concave
polygon shapes, but will cause cpfg to run slower.

off

background

scene:

filename1,
filename2, ...

Specify additional objects to be drawn after the L-system gen-
erated string is interpreted. Each object is in a file containing
a set of graphics commands (Section 8.3).

When using flat mode, the color of each polygon representing surfaces, lines, or generalized cylinders
is determined according to its position with respect to the direction towards the first light source
specified in the view file (Section 8.1.3); other sources are ignored. In material mode, a single normal
is used for the whole polygon. For colormap mode, see the notes on the diffuse reflection, surface
ambient and surface diffuse commands in the view file.



8 CPFG-SPECIFIC INPUT FILES 29

8.1.5 Lines, contours, and surfaces

Command Description Default
line style: style Specify how lines (represented by modules F and G) are

drawn, where style is one of the following:
pixel - flat shaded lines with width in pixels
polygon - flat shaded polygons with width in world units
cylinder - cylinders with width in world units

pixel

tapered lines: flag Control whether lines and cylinders are drawn tapered (flag
= on).

on

line: id filename.s s Specify a line using a surface file filename.s and assign it
an id. The scaling factor s is mandatory.

contour: id filename Specify a contour file filename and assign it an id. Contours
are defined as planar B-spline curves, and are considered
cross-sections of generalized cylinders. See the cuspy tool
in the Vlab Tools manual for interactively creating a contour
file.

contour sides: n Define the level of detail used in generating the polygons
for spheres and cylinders. For cylinders, n is the number of
polygons around the circumference (n > 3). For spheres, the
closest upper power of two is used. For smooth connections
between cylinders and spheres when using small values of
n, use a power of 2. This initial value can be modified by
module @! (Section 6.7.3).

3

twist of cylinders:

flag
Do not minimize the twist when drawing generalized cylin-
ders (flag = on).

off

surface: id filename.s
s i j texfile

Specify a surface file filename.s and assign it an id. The
scaling factor s is mandatory. The values i and j are op-
tional, but if present, define the level of detail used when
drawing patches: i polygons along the rows, and j polygons
along the columns. The final argument, texfile, is also op-
tional, and specifies a texture file associated with the sur-
face. This value takes precedence over the texture id as-
signed with the @Tx module (Section 6.7.4). All instances
of this surface will have the same texture. See the bezieredit
and stedit tools in the Vlab Tools manual for interactively
creating surface files.

i = j = 0

tsurface: id
filename.ray s

Specify a surface file filename.ray in rayshade format (Sec-
tion 8.4), and assign it an id. The scaling factor s is manda-
tory.

There may be several line, contour and surface commands in the view file. Each should have a
unique id.

8.1.6 User-defined functions

The following commands specify files containing user-defined functions called with func (Section 5.5).
The files contain function(s) of one variable defined as B-spline curves constrained to assign exactly
one y value for every x in the normalized function domain [0,1]. See the funcedit tool in the Vlab Tools
manual to interactively create a single function, and the gallery tool to create a set of functions.

The files are specified using the following commands:



8 CPFG-SPECIFIC INPUT FILES 30

Command Description
function: filename n Specify the filename containing a function. If the optional parameter n

is present, cpfg will precompute n values of the function, evenly spaced
in [0,1] and the value returned when the function is called will be a linear
interpolation of the two closest precomputed values. If the parameter
is omitted, the return value will be computed exactly each time the
function is called.

function set: filename Specify the filename containing a set of user-defined functions, rather
than a single function. The number of precalculated samples (parameter
n above) is specified in the function set file.

The id parameter used to identify the function in func(id, x) is based on its order in the view
file or function set file, beginning with 1. When preprocessing the L-system file, cpfg will also create
define commands of the form:

-D FUNCNAME=id

where FUNCNAME is an all-capitals version of the function’s name as specified in the file, and id is
its order number. This makes it possible to call a function by name rather than its position, using the
format:

func(FUNCNAME,x)

where x is the parameter to the function. This applies to functions specified by both the function

and function set commands.

8.1.7 Textures

Textures can be mapped on surfaces, cylinders, cones, and generalized cylinders (not disks or spheres).
The command has the same format as the light command (Section 8.1.3):

texture: subcmd1 subcmd2 subcmd3 ...
texture: subcmd1 subcmd2 subcmd3 ...
...

The subcommands are:

Subcommand Description Default
F: filename Specify the image file containing the texture, in PNG or RGB format.

This subcommand is mandatory. The image width and height are
clamped in such a way that the image size is 2m × 2n.

E: mode Control the way the texture is combined with the surface colors,
where mode is one of the following:
modulate or m - multiply the surface color with the texel color
decal or d - use the texel color; the surface is not shaded
blend or b - interpolate between surface and texture color using the
color index value of the surface (colormap mode) or the material
properties (material mode).

modulate

S: Map the surface texture per surface, not per patch. The surface
boundaries are found and then the texture is mapped into the z = 0
plane with respect to the computed boundaries.

R: ratio Define the aspect ratio of a texture mapped on a cylinder or general-
ized cylinder. A value greater than 1 causes the texture to be more
stretched along the cylinder.

1



8 CPFG-SPECIFIC INPUT FILES 31

Subcommand Description Default
H: filter Define the display mode for textures with texels larger than image

pixels, where filter can be:
linear or l - texture image is smoothed
near or n - texture pixels are visible

near

L: filter Define the display mode for textures with texels smaller than im-
age pixels, where filter can be:
linear or l - more texture pixels are used to compute the given
pixel
near or n - only one texture pixel is used to compute the given
pixel (may result in aliasing).
mnn - use the nearest mipmap image and the nearest pixel in this
mipmap. Produces some artefacts but is the fastest.
mln - use the nearest mipmap image and linearly interpolate be-
tween neighbouring pixels. Still produces some artefacts.
mnl - use the nearest pixels in the two best mipmaps and interpo-
late between values.
mll or m - linearly interpolate between neighbouring pixels in the
two best mipmaps and interpolate between the values. Produces
the best result, but may be slower.

near

For mipmaps, the OpenGL library creates a smaller version of the texture (down to a size of 1×1),
and for smaller objects uses the smaller texture, resulting in faster displaying. These are the four filters
for L: beginning with m.

8.1.8 Tropisms and torque

There are two commands that have the same set of subcommands: tropism sets the tropism parame-
ters, and torque sets the parameters of movement that adjust segments around their heading without
modifying the heading orientation. The A: subcommand is ignored in the torque command. There
may be multiple tropisms defined, each assigned a sequential id starting with 1.

The commands consists of a series of subcommands:

tropism: subcmd1 subcmd2 subcmd3 ...
...

torque: subcmd1 subcmd2 subcmd3 ...
...

The subcommands are:

Subcommand Description Default
T: x y z Define the tropism vector. This subcommand is mandatory.
A: angle Define the angle, in degrees, with respect to the tropism vector that

segments are trying to reach. For example, a 90◦ angle corresponds
to diatropism.

0◦

I: intensity Define the global intensity of the tropism. 1
E: elasticity Set the initial elasticity. 0
S: step Set the elasticity step. 0

See Section 6.8 for modules using these tropisms. The elasticity modules @Ts, @T and @Td may override
the E and S values defined here.



8 CPFG-SPECIFIC INPUT FILES 32

8.1.9 Fonts

Command Description Default
font: font Define the font type to be used when interpreting the @L mod-

ules (Section 6.10), using the X font specification.
-*-courier-bold-

r-*-*-12-*-*-*-*-

*-*-*

8.1.10 Deprecated view commands

The following commands exist only for backwards compatibility. For all new view files, use the com-
mand in the ‘Use instead’ column.

Command Description Use instead
shade mode: i Render using one of the following modes:

1 - Simple fill (default)
2 - Interpolated fill
3 - Gouraud shading
4 - B-spline
5 - Closed B-spline
6 - Two sided
7 - Wireframe

render mode

polygonization

level: n
Define the level of detail used in generating the poly-
gons for spheres and cylinders. A high value, such as 4,
will generate very smooth surfaces, but take longer to
display. The lowest value is 1 and produces very rough
approximations of the surfaces. The default is 3.

contour sides

tropism

direction: x,y,z
Define the direction toward which branches tend to bend
using the vector with coordinates x, y, and z. The default
is (0,1,0).

tropism

initial

elasticity: x
Specify the susceptibility of a branch to bending. The
default is 0.

tropism

elasticity

increment: x
Increment or decrement the elasticity by x. The default
is 0.

tropism

The following commands are ignored in the current version, but may exist in old models.

Command Description Use instead
ambient light:

red, green, blue
Define the red, green, and blue compo-
nents of ambient light.

In colormap mode:
surface ambient

In material mode: light
background color:

red, green, blue
Define the red, green, and blue compo-
nents of the background color.

In colormap mode: color
index 0
In material mode: emis-
sion color

cue range: x Specify the range of color indices used for
depth cueing. A default of 0 indicates no
depth cueing. Usual values are between
10 and 100.

interpretation step: i Set the number of interpreted symbols
before the next X event is checked.



8 CPFG-SPECIFIC INPUT FILES 33

8.2 Animation file

This file is input when cpfg enters Animation mode, either from the main menu (Section 1.3.2) or with
the -a option on the command line (Section 1.2.1). If this file is not specified on the command line,
default values are set for the animation commands.

Command Description Default
first frame: i Set the first frame to be interpreted. 1
last frame: i Set the last frame to be interpreted. derivation

step
step: i Set the number of derivation steps between

drawing (and recording) of frames.
1

clear between frames: flag Specify whether the screen should be cleared
between frames (flag = on). When off, suc-
cessive images are superimposed.

on

new view between frames:

flag
Specify whether to reset the view between
frames (flag = on), or not (flag = off).

off

scale between frames: flag Specify whether the view should be adjusted
to fit the entire object in the window (flag
= on), or not (flag = off). If on, this ad-
justment is made before applying the scale

factor command (Section 8.1.2). This com-
mand works only in parallel projection.

off

double buffer: flag Specify whether double buffering is on or off

during animation.
on

frame intervals:

f1, f2, f3, ...,
fa-fb, ...,
fc-fd step s,
fe-ff rotate rx ry rz,
fg-fh scale sx sy xz

Define specific frames and/or ranges of
frames to be interpreted. A range may
also include:
step, to override the step command
with a specified step s;
rotate, to rotate after each frame by a
specified angle (in degrees) around each
axis; or
scale, to scale after each frame.
See examples below. This command
takes precedence over the first frame,

last frame, and step command regard-
less of the order in the file.

When clear between frames is turned off, double buffer should also be turned off. Otherwise
only every second frame will be displayed.

The frame interval command can simply select specific frames to be drawn. For example, to
select frames 1, 3, 4, 5, 10, 12, 14, 16, 19, 21, the command would be:

frame intervals: 1, 3-5, 10-16 step 2, 19, 21

It can also specify a rotation after each frame. For example, to rotate the object 1.5◦ around the x
axis after each frame is drawn, beginning with frame 11:

frame intervals: 1-10, 11-100 rotate 1.5 0 0

Or it can specify a scaling factor for each frame. For example, to scale the object to 90% of its size
for each of the first 100 frames:

frame intervals: 1-100 scale 0.9 0.9 0.9



8 CPFG-SPECIFIC INPUT FILES 34

Deprecated commands The following animation commands are ignored in the current version, but
may exist in old models.

Command Description
swap interval: i Set the minimum time i (in tenths of a second) between swapping of buffers in

double buffer mode. The time is measured between the moment cpfg begins
drawing one frame until the moment it begins drawing the next frame. If it
takes longer to draw a frame, the delay between frames will be longer.

8.3 Background file

A background scene can be effectively used to define additional objects around a simulated plant. It
can also be used during simulation of plant-environment interactions, for visualizing the environmental
field together with the plant (see the vlab Environmental Programs manual).

The name of the background file is specified by the background scene command in the view file
(Section 8.1.4). The file consists of commands similar to statements in the OpenGL R© graphics library.

8.3.1 Primitives

The following commands define basic geometric primitives, where the coordinates of the vertices and/or
the size of the primitives are defined with respect to the local coordinate system. It is possible to trans-
late or scale the objects by translating and/or scaling the coordinate system using the transformation
commands (Section 8.3.3).

Command Description
polygon x1 y1 z1 ... xn yn zn A polygon with n vertices, where n ≥ 3.
polygonuv x1 y1 z1 nx1 ny1 nz1
... xm ym zm nxm nym nzm

A polygon with m vertices, where m ≥ 3. Each vertex also
has an associated normal (nx, ny, nz).

rectangle a b A rectangle with one vertex at (0,0,0) and edges of length a
and b along the positive x and y axes respectively.

mesh x1 y1 z1 ... xn yn zn A rectangular mesh, where n = 4 + 2k and k ≥ 0. Vertices
2k, 2k + 1, 2k + 2, and 2k + 3 define a single rectangle of the
mesh.

box a b c A box with one vertex at (0,0,0) and edges of length a, b, and
c along the positive x, y and z axes, respectively.

cone r1 r2 h A cone with its axis along the y axis, a radius of r1 at the
base and r2 at the top, and a height of h.

cylinder r h A cylinder with its axis along the y axis, a radius of r, and
height h.

sphere r A sphere with center at (0,0,0) and radius r.

8.3.2 Materials

Command Description
material n1 n2 ... n17 This material is applied to all subsequently defined primitives.

n1 - n4: ambient light
n5 - n8: diffuse color
n9 - n12: specular color
n13 - n16: emissive color
n17: the specular exponent



8 CPFG-SPECIFIC INPUT FILES 35

The four values for each color are the R, G, and B components of the color (in the range of 0 to 1),
and the alpha value controlling the opacity (1 = opaque, 0 = transparent). The specular exponent is
a number in the range 0 to 128.

8.3.3 Transformations

The primitives above are defined with respect to a local coordinate system. The world coordinate
system is expressed by a single matrix, specifying the transformation necessary to map the world co-
ordinate system into the local coordinate system. Thus every rotation, translation, or scaling modifies
only the transformation matrix. This approach is equivalent to the use of the modelview matrix in
OpenGL R©.

The transformation matrix is set up using the commands:

Command Description
loadidentity Set the transformation matrix to identity (i.e. equal to the local coor-

dinate system).
loadmatrix a1 a2 ... a16 Set the transformation matrix to a 4 × 4 matrix where a1 - a4 are the

values of the first column, a5 - a8 the second column, and so on.
pushmatrix Store the current transformation matrix on a matrix stack.
popmatrix Retrieve a matrix from the stack and set the transformation matrix to

these values.

Transformations are then performed by modifying the current transformation matrix with the
commands:

Command Description
translate tx ty tz Translate the local coordinate system by vector (tx, ty, tz).
rotate angle vx vy vz Rotate the coordinate system around vector (vx, vy, vz) by angle degrees.
scale it sx sy sz Scale the local coordinate system by factors sx, sy, and sz along the x,

y, and z axes respectively.
mulmatrix a1 a2 ... a16 Multiply the current transformation matrix by the specified matrix.

8.3.4 Lighting and projection

The -gls command line option outputs the geometry of the L-system string in the format described
above. Thus, the geometry produced from one simulation can be included as a background scene in
another simulation.

The output file may also include commands for lighting and projection, not required in a background
file:

Command Description
clear red green blue The RGB components of the background color.
light x y z w The light source, specified as four homogeneous coordi-

nates of light position. If w = 1, the light is directional.
The color of the light is always white.

ortho minx maxx miny maxy front back An orthographic projection, where front and back are
distances.

perspective angle front back A perspective projection, where angle is the viewing an-
gle, and front and back are distances.

lookat posx posy posz
refx refy refz upx upy upz

The view: the camera position (pos), the view reference
point (ref) and, optionally, the up vector (up).



8 CPFG-SPECIFIC INPUT FILES 36

Command Description
maxtrixmode mode The current matrix mode:

0 = modelview matrix
1 = projection matrix

8.3.5 Example of a background file

A background scene composed of a sphere, cone and box, all in grey, can be defined as follows:

material 0.1 0.1 0.1 1 /* subsequent surfaces are grey */

0.16 0.21 0.27 1 /* with no specular reflections */

0 0 0 1 /* and no emissive color */

0 0 0 1

0

pushmatrix

translate 3 -20 -3

scale 1 0.7 0.7

sphere 15 /* ellipsoid */

popmatrix

pushmatrix

translate -14 -55.0 8

cone 15 2 14 /* cone */

popmatrix

translate -10 -65 0

box 30 5 30 /* box */

The file is preprocessed by cpfg, and therefore macros and comments are allowed.

8.4 Tsurface specification file

An alternative to using a surface editor to create a surface as a bicubic patch (see the Vlab Tools
manual), is to define a set of triangles in a text file, using the same syntax as a rayshade output file.
Each triangle is define by its three vertices (one per row), the normal to the vertice, and (optionally)
the coordinates of a texture at the vertex:

triangle

x1 y1 z1 nx1 ny1 nz1 u1 v1
x2 y2 z2 nx2 ny2 nz2 u2 v2
x3 y3 z3 nx3 ny3 nz3 u3 v3

where xn, yn and zn are the coordinates of the vertex, nxn, nyn and nzn specify the normal to the
vertex, and un and vn are the coordinates of the texture at the vertex. For example, two triangles
without texture coordinates could be specified as:

triangle

-0.5 1 0 0 0 1

0.0 2 0 0 0 1

0.5 1 0 0 0 1



8 CPFG-SPECIFIC INPUT FILES 37

triangle

0.5 1 0 0 0 1

0.0 0 0 0 0 1

-0.5 1 0 0 0 1

and with added texture coordinates:

triangle

-0.5 1 0 0 0 1 0.5 0.0

0.0 2 0 0 0 1 1.0 0.5

0.5 1 0 0 0 1 0.5 1.0

triangle

0.5 1 0 0 0 1 0.5 1.0

0.0 0 0 0 0 1 0.0 0.5

-0.5 1 0 0 0 1 0.5 0.0



9 Appendix: Deprecated / Undocumented features

The following features are no longer tested or supported, but may exist in older models.

9.1 Command line arguments

The following command line arguments are no longer in use:

Feature Description Use instead
-cmapnr Define the 256-entry portion of the color or material

table to be used.
-m and -M (Section 1.2.2)

-C commstr Specify connections to other processes in a dis-
tributed simulation. Not available for Mac iOS.

-mb Create a menu bar, as well as the pop-up menu.
-pipestrb Convert a binary L-system string from stdin into a

format specified by one of the output file options.
-pm Use X pixmap as back buffer.
-sstrsize Define the initial space allotment for a string gen-

erated by an L-system.
-S socketno Define the socket number to be used to receive

menu commands from external programs.
File monitoring using Re-
fresh mode (Sections 1.2.1 and
1.3.2)

-sb Set to single buffering during animation. double buffer command in
the Animation file (Section
8.2)

9.2 Move and save substrings

The modules %(par) and %(par, turtle-index) to move a substring but save its position (the turtle
parameters) are no longer supported. However, the module % alone is still available to cut a branch
from the string (Section 6.4).

The %(par) functionality enabled a substring between % and %(par) to be moved to the end of the
string, preceded by %(par, turtle-index), where turtle-index was a position in a special turtle array
that stored the turtle parameters as they were when the module %(par) was encountered. After the
substring was moved to the end of the L-system string, each time a module %(par, turtle-index) was
encountered in the following interpretation steps, the turtle parameters were set to the values stored
in the turtle array under turtle-index. This functionality is similar to the branching modules [ and ]

(Section 6.4) without moving the substring.

9.3 Derivation Length

The functions GetDerivationLength(dummy) and SetDerivationLength(s) are no longer supported.
If the derivation length is required within the L-system, it can be defined. For example:

#define DERIV 50

...

derivation length: DERIV

...

A(x) : x<DERIV-10 --> A(x+1)

A(x) : x>=DERIV-10 --> A(x+1)B

38



9 APPENDIX: DEPRECATED / UNDOCUMENTED FEATURES 39

There is no functionality to change the derivation length during execution of cpfg, but it is possible
to end before the final derivation step using the stop function (Section 5.6), and to end an animation
earlier using the last frame command in the animation file (Section 8.2).

9.4 Rayshade functionality

It is possible to output a file in rayshade format using the Save As menu item (Section 1.3.2). However,
specific rayshade functionality within L-system productions is no longer supported. This includes:

• The homomorphism production delimiter -o> to instantiate objects, as well as the rayshade

objects command in the view file to set parameters for these objects.

• The rayshade scale command in the view file to scale objects.

• The module @J(s1,s2,s3) to close the current grid for objects being output to rayshade, and start
a new grid with the given size.

• The module @I("rayshade-object",s) to include a rayshade object at the current turtle location.

To match the scaling of rayshade objects generated by different L-systems use the view file command
initial scale (Section 8.1.1).

9.5 System calls

The module @S("system-call") is not available for MacOS systems.



10 Credits

The original version of cpfg was implemented by Jim Hanan as part of his Ph.D. work [5], and described
in [6]. It has been extensively enhanced by Jim Hanan and Radomı́r Měch [2; 3], Mark Hammel, Mark
James, Brendan Lane, and most recently by Pascal Ferraro and Mikolaj Cieslak.

Vlab uses a modified version of the rendering program rayshade written by Craig Kolb [7] for the
Save as Rayshade and -ray options.

11 Document revision history

Date Description By
1992 Original documentation Jim Hanan
1997 Based on Version 2.7 of cpfg Mark James

Mark Hammel
Jim Hanan
Radomı́r Měch
Przemyslaw Prusinkiewicz

2016 Based on Version 4.0 of cpfg Radomı́r Měch
Radoslaw Karwowski
Brenda Lane

2021 Updated to current version Lynn Mercer
Przemyslaw Prusinkiewicz
Mikolaj Cieslak
Pascal Ferraro

References

[1] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. with James
S. Hanan, F. David Fracchia, Deborah R. Fowler, Martin J.M. de Boer, and Lynn Mercer. Springer-
Verlag, 1990.

[2] Radomı́r Měch, Przemyslaw Prusinkiewicz, and James Hanan. Extensions to the graphical interpre-
tation of l-systems based on turtle geometry. Technical Report 97/599/01, University of Calgary,
Dept of Computer Science, 1997.

[3] Radomı́r Měch. Modeling and Simulation of Interaction of Plants with the Environment using
L-systems and Their Extensions. Phd thesis, University of Calgary, 1997.

[4] Przemyslaw Prusinkiewicz, Mark James, and Radomı́r Měch. Synthetic topiary. In Computer
Graphics, volume 38, pages 351–358. Proceedings of SIGGRAPH ’94, 1994.

[5] James S. Hanan. Parametric L-systems. Phd thesis, University of Regina, 1992.

[6] Przemyslaw Prusinkiewicz and James Hanan. L-systems: From formalism to programming lan-
guages. In G. Rozenberg and A Salomaa, editors, Lindenmayer systems: Impact on theoretical
computer science, computer graphics, and developmental biology, pages 193–211. Springer-Verlag,
1992.

[7] Craig Kolb. Rayshade. URL http://www.graphics.stanford.edu/∼cek/rayshade/rayshade.html.

40


