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ABSTRACT

Rapid progress in the modeling of biological structures and
simulation of their development has occurred over the last
few years. It has been coupled with the visualization of
simulation results, which has lead to a better understanding
of morphogenesis and given rise to new procedural tech-
niques for realistic image synthesis. This paper characterizes
selected models of morphogenesis with a significant visual
component.
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How far mathematics will suffice to describe,
and physics to explain, the fabric of the body,
no man can forsee.

D’Arcy Thompson, On Growth and Form [40]

INTRODUCTION

In the landmark 1984 paper Plants, fractals, and formal lan-
guages [37], Smith coined the term database amplification to
denote the synthesis of complex images from small data sets.
A generalization of this notion, called emergence, became a
central notion of artificial life. According to Taylor [39, page
31], emergence is a process in which a collection of interact-
ing units acquires qualitatively new properties that cannot be
reduced to a simple superposition of individual contributions.

Morphogenesis, or the development of complex forms and
patterns found in living organisms, provides many striking
examples of emergence. Consequently, its models often dis-
play an astonishing contrast between the simplicity of the
rules expressing the behavior of individual components, and
the intricacy of the resulting developmental processes, pat-
terns, and forms.

Simulation plays an essential role in the study of morphogen-
esis. This was anticipated as early as 1952 by Turing, who
wrote [42]:

The difficulties are such that one cannot hope
to have any very embracing theory of such pro-
cesses, beyond the statement of equations. It might
be possible, however, to treat a few particular cases
in detail with the aid of a digital computer. This
method has the advantage that is is not so neces-
sary to make simplifying assumptions as it is when
doing a more theoretical type of analysis.

Visualization of simulation results facilitates their interpreta-
tion, and is used as a method for evaluating models. Lacking
a formal measure of what makes two patterns or forms (such
as trees) look alike, we rely on visual inspection while com-
paring the models with the reality. For example, Plate 1
shows a photograph and a model of the shell Natica enzona,
juxtaposed to facilitate visual evaluation of the model. The
natural and synthetic pigmentation patterns differ in details,
yet we perceive them as fairly similar. This observation con-
tributes to the plausibility of the model, although it does not
constitute its definitive validation.

Photorealistic presentation of the models aids in their com-
parisons with the natural structures, and makes models useful
for image synthesis applications, such as computer anima-
tion, landscape design, and computer art. For example, Plate
2 shows a rendering of the Pelican’s Foot shell (Aporrhais
pespelecani), generated by a mathematical model of shell
shape, and placed in an artificial context that blurs the dis-
tinction between biological and architectural forms.

This paper reviews mathematical models of morphogenesis
capable of producing realistic images of modeled patterns and
forms. Our motivation is to expose the relationships between
models that may eventually lead to a better understanding
of morphogenesis, and to collect together those suitable for
computer imagery purposes. Models that capture biologi-
cal forms without simulating developmental processes, such



as [3, 46] are not considered. The paper is concluded by
a reflection on the role of computer science in the study of
biological pattterns and forms.

FEATURES OF MODELS OF MORPHOGENESIS
Historically, the study of morphogenesis has been approached
from two directions. The first one consists of viewing form
as a derivative of growth, and was formulated by d’Arcy
Thompson [40, page 79]:

It is obvious that the form of an organism is deter-
mined by its rate of growth in various directions;
hence rate of growth deserves to be studied as a
necessary preliminary to the theoretical study of
form.

The second direction focuses on the flow of substances
through a tissue and was initiated by Turing [42, page 38]:

The systems considered consist of masses of tissues
which are not growing, but within which certain
substances are reacting chemically, and through
which they are diffusing. These substances are
called morphogens, the word being intended to con-
vey the idea of a form producer.

The distinction between these two directions is captured as
the first characteristic of the models of morphogenesis on
the list given below. This list also includes other features
that I have found useful in describing models of biological
development from a computer scientist’s point of view.

1. Models may be structure-oriented, focusing on the com-
ponents of the developing structure, or space-oriented,
capturing the whole space that embeds this structure.
A model in the first category typically describes where
each component of the structure is located. A model in
the second category describes what is located at (or what
is the state of) each point of space.

2. The developing structure and the space that embeds it
may be continuous or discrete. The state characterizing
each point or cell in space may be chosen from a con-
tinuous or discrete domain. The model may operate in
continuous or discrete time.

3. Models may have different topologies, such as a non-
branching filament (sequence of discrete components,
or modules), a branching structure, a network (graph
with cycles), a 2D surface, or a 3D solid object.

4. The model may occupy constant space or may expand
(and contract) over time. In the latter case, the expansion
may be limited to the boundary of the structure, or may
take place in the interior as well.

5. The neighborhood relations between modules may be
fixed at the time of their creation (determined by the divi-
sion pattern of modules), or the modules may be mobile.
In the continuous case, the developmental processes may
be viewed as taking place in an elastic medium or in a
fluid.

6. Communication between the modules may have the form
of lineage (information transfer from the parent mod-
ule to its offspring) or interaction (information transfer
between coexisting modules). In the latter case, the in-
formation flow may be endogenous (between adjacent
components of the model) or exogenous (through the
space embedding the model).

We will now use these characteristics to survey selected mod-
els of morphogenesis that include a significant visual compo-
nent.

SPACE-ORIENTED MODELS

Reaction-diffusion pattern models
Reaction-diffusion models were developed by Turing to ex-
plain the “breakdown of symmetry and homogeneity,” lead-
ing to the emergence of patterns in initially homogeneous,
continuous media [42]. The patterns result from the inter-
action between two or more morphogens that diffuse in the
medium and enter into chemical reactions with each other.
Mathematically, this process is captured by a system of par-
tial differential equations. For properly chosen equations and
parameter values the uniform distribution of morphogens is
unstable. Random fluctuations are amplified and produce a
stable pattern of high and low concentrations, which can be
represented using different colors in the final image.

Reaction-diffusion models have been extensively studied in
theoretical biology, where they provide plausible explana-
tions of many observed phenomena [17, 25, 28]. Ouyang and
Swinney recently validated the basic assumptions of these
models by realizing reaction-diffusion processes in chemical
experiments [29]. In computer graphics,Turk [43] applied the
original Turing equations to generate spot patterns, and a five-
morphogen system proposed by Meinhardt [25, Chapter 12]
to generate stripe patterns covering three-dimensional models
of animals. Fowler et al. [8] synthesized realistic images of
shells (Plate 1) using the model of pigmentation developed by
Meinhardt and Klinger [26]. Witkin and Kass [48] extended
the application of reaction-diffusion models to non-organic
textures.



Figure 1: A venation pattern generated using Meinhardt’s
model of net-like structures on a hexagonal grid

Reaction-diffusion models may be also suitable for generat-
ing the visually attractive patterns found in butterfly wings
and flower petals. Unfortunately, the biological literature fo-
cuses on models describing small elements of these patterns,
such as an eyespot in a butterfly wing. This is not sufficient
in image synthesis applications, where we need to reproduce
the appearance of the whole structure.

A reaction-diffusion model of differentiation
Meinhardt [24] (see also [25, Chapter 15]) extended reaction-
diffusion models to capture differentiation of net-like struc-
tures from an undifferentiated medium. Figure 1 shows a
venation pattern produced using his model. The reaction-
diffusion equations are solved on a hexagonal grid (in this
case). The state of each cell is characterized by concentra-
tions of four morphogens, one of which determines whether
a cell is in a differentiated state and belongs to the structure,
or in a nondifferentiated state and belongs to the medium.
The simulation begins with the creation of a filamentous suc-
cession of differentiated cells, extending at the growing tip
of the filament. During the development the tip may split,
creating dichotomous branches. At a sufficient distance from
the tip (monitored by decreasing concentration of another
morphogen, the inhibitor, produced by the tip), the filament
initiates lateral branches. Next-order branches are formed in
a similar way, if no growing tips are nearby.

This model combines continuous and discrete components.
On the one hand, the morphogens diffuse in a continuous
medium. On the other hand, differentiation is described at
the level of discrete cells.

Figure 2: A model of the sponge Haliclona occulata, devel-
oped by Kaandorp

Diffusion-limited accretive growth

In many developmental processes there is an obvious distinc-
tion between the structure and the surrounding medium. The
focus of the model is then on the gradual expansion of the
structure at its border, termed accretive growth [20].

Eden [6] simulated the accretive growth of a cell cluster
in a square lattice by sequentially adjoining randomly se-
lected cells to the structure formed during previous steps.
Meakin [23] (see also [45]) improved this model by assum-
ing that the growth rate (the probability of adjoining a new
cell) depends on the local concentration of nutrients that dif-
fuse from a surrounding exterior source and are consumed
by the growing structure. Kaandorp [20] applied a three-
dimensional variant of this diffusion-limited growth process to
simulate and visualize the development of corals and sponges.
In the first approximation, they expand in the direction of the
largest concentration of nutrients (Figure 2). The branching
topology is an emerging property of these models, resulting
from the higher gradient of nutrient concentration near the
tips of the branches than near the origin of the structure.

Diffusion-limited aggregation

Witten and Sander proposed a discrete counterpart of
diffusion-limited growth, called diffusion-limited aggrega-
tion (DLA) [49] (see also [45]), which captures diffusion of
nutrients by simulating random movement of particles in a
grid. The growing structure originates with a single cell.
Free particles move in the grid, with the displacement di-
rection chosen at random at each simulation step. Once a
moving particle touches the structure formed up to this stage,
it sticks to it rigidly.



Figure 3: Patterns generated using a discrete counterpart of
the reaction-diffusion model, proposed by Young

Diffusion-limited aggregation has attracted considerable re-
search interest, due in part to the fractal character of the
emerging branching structures. It is a faithful model of many
physical phenomena, such as the deposition of metallic ions
on an electrode. It neglects, however, the active role of the
organism using nutrients to build its body, and therefore has
limited application as a model of growing living structures.

Cellular automata
Cellular automata [41] can be considered a discrete-space
counterpart of reaction-diffusion models. The space is repre-
sented by a uniform grid, with each site or cell characterized
by a state chosen from a finite set. Time advances in dis-
crete steps, and all cells change their states according to the
same rule, which describes the next state as a function of the
previous state of a cell and its close neighbors.

Young [50] proposed a cellular-automaton model of animal
coat patterns using only two cell states: pigmented or not
(Figure 3). The resulting patterns are similar to those obtained
using continuous reaction-diffusion equations.

In general, the next-state function need not be related to the
diffusion of morphogens. Ulam pioneered the application
of cellular automata to the simulation of the development of
branching structures [44], where the discrete space provides a
medium for detecting collisions between branches. Figure 4
shows a pattern he termed Maltese crosses. The structure
differentiates from a (conceptually infinite) square grid of au-
tomata beginning with a single seed cell. In each iteration,
the pattern expands to the adjacent cells, unless the resulting
branches would collide. Figure 5 illustrates the same princi-
ple on a triangular grid. A slice of this pattern contained in a
60� wedge is reminiscent of a tree; as noticed by Stevens [38,
pages 127–131], this appearance can be reinforced by modi-
fying branching angles while preserving the topology of the
model.

Figure 4: A branching structure generated by Ulam’s cellular
automaton operating on a square grid

Figure 5: Branching structures generated by Ulam’s cellular
automaton operating on a triangular grid. Lines connect the
centers of cells occupied by the growing structure.

Voxel automata

Three-dimensional extensions of cellular automata, called
voxel automata [13], have been used in computer graphics to
model aspects of plant development strongly affected by the
environment. Arvo and Kirk [2], and Greene [12] applied
them to simulate the growth of climbing plants, attaching
themselves to predefined objects in space. Subsequently,
Greene [13] extended this technique to capture variations in
the diameter of branches and roots of a tree, and applied it
to simulate the growth of roots searching their path through
rocks in the ground, as shown in Figure 6. In this case,
the voxels do not represent elements of the structure on the
“all or nothing” basis, but hold information about the run
of the individual strands that compose branches and roots of
the tree. This information is used to keep groups of strands
together and guide their development between obstacles in
the environment.



Figure 6: A model of a tree trunk with roots, developed by
Greene

Development in expanding space

The models discussed so far can grow only on their boundary.
The rigidity of the underlying space, whether continuous or
discrete, prevents growth in the interior. Gottlieb [11] pro-
posed a geometric model of development, in which the space
expands uniformly. A predefined starting structure is placed
in a small square grid (for example, consisting of 2� 2 cells).
New branches are created by connecting the centers of grid
cells to the structure, provided that the Euclidean distance
between a particular center point and the structure exceeds
a given threshold. The structure and the cellular space are
then scaled twofold, the cells are subdivided, and connec-
tions to the centers of the new cells are made in the same
way. This process is equivalent to the subdivision of the grid,
combined with the reduction of the threshold distance. The
above construction is repeated until the desired level of detail
is reached, as shown in the left side of Figure 7. The right side
of this figure shows the result of applying Gottlieb’s method
to model leaf venation. This application has a clear biological
justification: as a leaf grows, its vascular system is develop-
ing in order to maintain the capacity for translocating water,
nutrients and products of photosynthesis to and from all parts
of the blade. The model exhibits a hierarchical organization
of the veins, but there is still a discrepancy between their
layout and patterns observed in nature. Faithful modeling of
leaf venation remains an open problem.

STRUCTURE-ORIENTED MODELS

In contrast to space-oriented models, which describe the en-
tire space including the modeled structure, structure-oriented
models focus on the development of components that consti-
tute the structure.

Figure 7: Principle of Gottlieb’s method for pattern genera-
tion, and a venation pattern modeled using this method

L-systems

L-systems simulate the development of linear and branching
structures built from discrete modules [21]. The development
can be controlled by lineage (in context-free, or 0L-systems)
and by endogenous interaction (in context-sensitive, or IL-
systems). The modules represent individual cells of simple
multicellular organisms, or larger modules of higher plants
(for example, such a internodes, apices, leaves, and branches).
L-systems were originally limited to the specification of the
topology of branching structures, but subsequent geometric
interpretations have made it possible to visualize simulation
results [33, 32]. For example, Plate 3 shows a simulated
development of the herbaceous plant Mycelis muralis.

Although L-systems were introduced as a purely discrete
model, practical applications revealed the need for shifting
their various aspects to the continuous domain. Parametric L-
systems [32] have made it possible to express concentrations
of substances propagating in the modeled structure. Differ-
ential L-systems extended L-systems to the continuous time
domain, facilitating computer animation of developmental
processes [30].

L-system can capture changes of shape that take place dur-
ing development. The modeled structures may expand at the
extremities (subapical growth) as well as in the internal parts
(elongation of internodes). Unfortunately, the changes of
the relative positions of modules make it difficult to incorpo-
rate exogenous control mechanisms, which rely on informa-
tion flow through the space embedding the model. Prelimi-
nary results include detection of collisions between branches



Figure 8: Development of a branching structure, confined to
a square box with an incomplete edge. This model was gener-
ated using an “environmentally sensitive” L-system inspired
by Kaandorp [19].

themselves and between branches and the environment (Fig-
ure 8), and the removal of leaves shaded by other leaves and
branches.

Although this example demonstrates the possibility of in-
corporating exogenous control mechanisms into models ex-
pressed using L-systems, many practical problems remain
open. For example, the existing “environmentally-sensitive”
extensions of L-systems are not specified within the frame-
work of an L-system-based modeling language [16, 31] and
require the incorporation of model-specific software modules
into the simulation program.

L-systems are related to several other plant models. As shown
in [32, Chapter 2], parametric L-systems can reproduce the
tree models developed by Aono and Kunii [1], which in turn
were based on models by Honda [18]. Françon [10] observed
that L-systems can also capture the models of tree architec-
ture classified by Hallé et al. [15], and the AMAP models
originated by de Reffye [5]. Stochastic L-systems can emu-
late grass models described in terms of particle systems by
Reeves and Blau [34] (Plate 4). Further analysis is needed to
establish detailed relationships between these classes.

Map L-systems

Map L-systems [22] extend the expressive power of L-systems
beyond branching structures to graphs with cycles, called
maps, representing cellular layers. Their geometrical inter-
pretation is more difficult than that of branching structures,
because the presence of cycles makes it impossible to assign
metric properties to the model using local rules. For example,
the angles between the edges of a quadrilateral cycle must sum
to 360�, and therefore cannot be specified independently from

each other. Fracchia et al. [9] (see also [32, Chapter 7]) pro-
posed a physically-based solution to this problem. The cells
are assumed to have physical properties, osmotic pressure and
wall tension, and form a final configuration by mechanically
pushing each other until an equilibrium is reached.

Map L-systems have been successfully applied to model fern
gametophytes [4, 32]. For example, Plate 5 compares a mi-
crophotograph and a computer generated image of the fern
thallus Microsorium linguaeforme. The natural and the sim-
ulated shapes look alike, which supports the hypothesis that
the timing and orientation of cell divisions are the dominant
factors determining the global thallus shape.

Map L-systems with geometric interpretation operate by first
establishing the neighborhood relations between the cells,
then assigning geometric parameters to the resulting graph.
This approach is biologically justified in multicellular plant
structures, since plant cells are tightly cemented together,
but is inappropriate in models of animal tissues, since ani-
mal cells can move with respect to each other. A model of
morphogenesis addressing this problem is described next.

Mobile cells in a continuous medium

Fleischer and Barr [7] proposed an extensible simulation
framework for studying morphogenesis that focused on the
generation of connectivity patterns during neural develop-
ment. Their model consists of discrete cells embedded in
a continuous substrate. The actions of the cells are divided
into continuous processes (grow, move) and discrete events
(divide, create a dendrite, die). The cells move in response to
physical forces and interact with other cells and the substrate
through mechanical, chemical, and electrical means. Inter-
nally, the activity of each cell is governed by a set of con-
ditional differential equations that depend on the cell’s state
and the local environment. These equations represent the
“genetic information” of the cell and describe the changes to
an array of variables controlling cell’s behavior (movements,
growth, divisions). The substrate acts as a medium in which
chemical substances diffuse, dissipate, and enter into reac-
tions. A sample frame from a simulation carried out in this
environment is shown in Plate 6. The yellow cells appear
first, then some of them differentiate into blue cells. The blue
cells grow and gradually form a connected skeleton.

Map L-systems and the Fleischer-Barr model present oppo-
site approaches to the definition of multicellular structures.
In map L-systems, grammar-based rules specify a model’s
topology, which subsequently determines its geometry. The
cells cannot move with respect to each other. On the other
hand, in the FB-model cell movements determine their rel-
ative positions; the resulting clusters of adjacent cells indi-



rectly specify topological properties of the emerging struc-
ture. The work of Mjolsness et al. [27] presents a step towards
a synthesis of both approaches: a model in which spatial rela-
tionships between the cells and grammar-based productions
can be combined to specify dynamic changes in system con-
figuration.

Although the FB-model is directed at the study of morphogen-
esis, it may also provide a unifying framework for considering
other phenomena in which autonomous agents move in space
and interact. In the computer graphics context, these include
behavioral animation, exemplified by Reynolds’ model of
flocks, herds, and schools [35], and Wejchert and Haumann’s
model of leaves flying in the air [47].

CONCLUSIONS
We have surveyed and characterized selected visual mod-
els of morphogenesis suitable for image synthesis purposes.
The models were divided into two main classes, space-
oriented and structure-oriented. We have shown that the
space-oriented models capture the flow of information in the
medium, but usually have only limited capability to describe
expansion of the medium and of the structure embedded in
it: growth is limited to the boundary. The structure-oriented
models, on the other hand, can simulate the expansion of
the whole structure, but often do not capture the information
flow through the medium. The selection of the appropri-
ate paradigm is an inherent part of modeling a given phe-
nomenon, as described by Segel [36, page xi],

A good mathematical model — though dis-
torted and hence “wrong”, like any simplified rep-
resentation of reality — will reveal some essential
components of complex phenomenon. The process
of modeling makes one concentrate on separating
the essential from the inessential.

In same cases, similar patterns or developmental sequences
can be generated by fundamentally different models. For
example, the Maltese crosses shown in Figure 4 were gener-
ated using a cellular automaton that explicitly detected and
eliminated collisions between branches, but exactly the same
pattern can be generated using a context-free L-system. The
pigmentation pattern of an Oliva shell shown in Figure 9
was generated using a reaction-diffusion model, but similar
patterns can be generated using cellular automata and context-
sensitive L-systems. Lindenmayer proposed to address such
equivalences in a formal way [21]:

In view of the large number of possible mod-
els which give rise to similar morphogenetic pat-

Figure 9: Pigmentation pattern of Oliva porphyria, generated
using a reaction-diffusion model proposed by Meinhardt and
Klinger [26].

terns, the most important problem is that of nar-
rowing down the set of possibilities. This can be
ultimately done on the basis of experimental evi-
dence only. But a better theoretical understanding
of equivalence relationships among models of dif-
ferent types would help considerably to sharpen the
questions asked in the experiments.

A formal theory of pattern complexity would be an important
step in this direction. Traditional measures of complexity,
such as the time and space needed by a Turing machine to
execute an algorithm, fail to quantify the flow of information
between components of a developing pattern or structure. A
more specialized theory is therefore needed to formally eval-
uate the alternatives, and provide measurable criteria for se-
lecting the most plausible model of an observed phenomenon.
An interesting feature of this methodology is that computer
science is being applied to study processes taking place in
nature. Gruska and Jürgensen comment [14]:

“Computer science” should be considered as
a science with aims similar to those of physics.
The information processing world is as rich and as
important as the physical world for mankind.
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L’Arbre. Biologie et Développement. Naturalia Mon-
speliensia, 1991. No

¯
hors série.
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