
Synthetic Topiary

Przemyslaw Prusinkiewicz, Mark James and Radomı́r Měch
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ABSTRACT

The paper extends Lindenmayer systems in a manner suitable for
simulating the interaction between a developing plant and its envi-
ronment. The formalism is illustrated by modeling the response of
trees to pruning, which yields synthetic images of sculptured plants
found in topiary gardens.
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1 INTRODUCTION

One classification of visual plant models introduces a distinction
between structure-oriented and space-oriented models [26]. The
first class is characterized by the assumption that the developmental
process and the resulting structure are under the control of endoge-
nous mechanisms, inherent in the growing structure and internal to
it. Lineage, or the transfer of information from mother to daughter
modules (components of the model) at the time of daughter cre-
ation, is the most frequently simulated form of endogenous control,
although many models have been formulated without referring to
this term explicitly. For example, tree models proposed by Aono
and Kunii [1], Bloomenthal [5], Reeves and Blau [32], Oppen-
heimer [25], and de Reffye and his collaborators [10, 19] are all
controlled by lineage. In contrast, interactive mechanisms involve
information flow between coexisting adjacent components of the de-
veloping structure. In a growing plant, this information may be rep-
resented by phytohormones, nutrients, or water. Context-sensitive
L-systems [22] provide a formally defined framework for simulat-
ing interactive control mechanisms, and have been used for image
synthesis purposes by Smith [33] and Prusinkiewicz et al. [28, 29].
Outside the domain of L-systems, models of interactive endogenous
control have been investigated by Borchert and Honda [6].

In contrast to structure-oriented models, space-oriented models cap-
ture the entire environment of a growing plant, and emphasize ex-
ogenous control, in which information is transferred through the
environment enclosing the modeled structure. This class includes
the models of climbing plants introduced by Arvo and Kirk [2]
and Greene [12], as well as the models of roots growing around
obstacles, also created by Greene [13].

The dichotomy between the structure-oriented and space-oriented
models makes it difficult to faithfully capture plants in which the in-
ternally controlled development is modified by environmental fac-
tors. Such a combination of endogenous and exogenous mecha-
nisms is manifested, for instance, in plant responses to collisions
with obstacles, presence or absence of light, pruning, and attacks by
insects. Several techniques were proposed to simulate these phe-
nomena. For example, Honda et al. [18] used proximity of branches
as a factor inhibiting their further growth and bifurcation. Kanamaru
et al. [21] devised a convincing model of tree architecture in which
the development of individual branches is controlled by the amount
and direction of incoming light. A variety of factors, including the
availability of light and the presence of mechanical obstacles, was
assumed by Dabadie [9]. Mechanical obstacles to the development
of branching patterns were also considered by Kaandorp [20].

In spite of these results, the problem of specifying and construct-
ing plant models that integrate endogenous and exogenous mech-
anisms has not yet been completely resolved, because the re-
ported techniques do not combine exogenous and interactive en-
dogenous control. We address this limitation by introducing an
environmentally-sensitive extension of L-systems, based on earlier
results by Prusinkiewicz and McFadzean [30], and MacKenzie [24].
According to this extension, selected modules of a growing struc-
ture may access information about their position and orientation in
space. We illustrate the operation of environmentally-sensitive L-
systems by modeling plant response to the extensive pruning found
in topiary and knot gardens. This application is motivated by the
visual appeal of the resulting forms and their potential relevance to
computer-assisted landscape design.

The paper is organized as follows. Background information regard-
ing L-systems is presented in Section 2. On this basis, environmen-
tally sensitive L-systems are defined and illustrated using simple
examples in Section 3. Section 4 introduces a more realistic tree
model, needed to create synthetic topiary forms. A mechanism that
governs the response to pruning is incorporated into this model in
Section 5. The resulting topiary forms are presented in Section 6.
Section 7 contains conclusions, and lists directions for future work.



2 L-SYSTEMS

As the point of departure, we use parametric L-systems with turtle
interpretation, described in detail in [16, 27, 28]. The essential
aspects of this formalism relevant to the environmentally-sensitive
extension are summarized below.

An L-system is a parallel rewriting system operating on branching
structures represented as bracketed strings of modules. Matching
pairs of square brackets enclose branches. Simulation begins with an
initial string called the axiom, and proceeds in a sequence of discrete
derivation steps. In each step, rewriting rules or productions replace
all modules in the predecessor string by successor modules. The
applicability of a production depends on a predecessor’s context (in
context-sensitive L-systems), values of parameters (in productions
guarded by conditions), and on random factors (in stochastic L-
systems). In the most extensive case, a production has the format:

id : lc < pred > rc : cond! succ : prob

where id is the production identifier (label), lc, pred, and rc are
the left context, the strict predecessor, and the right context, cond is
the condition, succ is the successor, and prob is the probability of
production application. The strict predecessor and the successor are
the only mandatory fields. For example, the L-system given below
consists of axiom ! and three non-identity productions p1, p2, and
p3.

L-system 1

! : A(1)B(3)A(5)

p1 : A(x)! A(x+ 1) : 0:4

p2 : A(x)! B(x� 1) : 0:6

p3 : A(x) < B(y) > A(z) : y < 4! B(x+ z)[A(y)]

The stochastic productions p1 and p2 replace module A(x) either
by A(x + 1) or by B(x � 1), with probabilities equal to 0.4 and
0.6, respectively. The context-sensitive production p3 replaces a
module B(y) with left context A(x) and right context A(z) by
module B(x+ z) supporting branch A(y). The application of this
production is guarded by condition y < 4. Consequently, the first
derivation step may have the form:

A(1)B(3)A(5) =) A(2)B(6)[A(3)]B(4)

It was assumed that, as a result of random choice, production p1
was applied to the module A(1), and production p2 to the module
A(5). Production p3 was applied to the module B(3), because it
occurred with the required left and right context, and the condition
3 < 4 was true.
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Figure 1: Controlling
the turtle in three di-
mensions

In contrast to the parallel applica-
tion of productions in each deriva-
tion step, the interpretation of the
resulting strings proceeds sequen-
tially, with the reserved modules
acting as commands to a LOGO-
style turtle [27, 28, 29]. At any
time, the turtle is characterized by
a position vector ~P and three mutu-
ally perpendicular orientation vec-
tors ~H, ~U , and ~L, indicating the

turtle’s heading, the up direction, and the direction to the left. Mod-
ule F causes the turtle to draw a line in the current direction. Mod-
ules +, �, &, ^, = and n rotate the turtle around one of the vectors

~H; ~U , or ~L, as shown in Figure 1. The length of the line and the
magnitude of the rotation angle can be given globally or specified
as parameters of individual modules. During the interpretation of
branches, the opening square bracket pushes the current position and
orientation of the turtle on a stack, and the closing bracket restores
the turtle to the position and orientation popped from the stack. A
two-symbol module @o draws a sphere at the current position. A
special interpretation is reserved for the module %, which cuts a
branch by erasing all symbols in the string from the point of its
occurrence to the end of the branch. The meaning of many symbols
depends on the context in which they occur; for example, + and �
denote arithmetic operators as well as modules that rotate the turtle.

3 ENVIRONMENTALLY-SENSITIVE L-SYSTEMS

The turtle interpretation of L-systems described above was designed
to visualize models in a postprocessing step, with no effect on the
L-system operation. Position and orientation of the turtle are impor-
tant, however, while considering environmental phenomena, such
as collisions with obstacles and exposure to light. Consequently,
the environmentally-sensitive extension of L-systems makes these
attributes accessible during the rewriting process. To this end, the
generated string is interpreted after each derivation step, and turtle
attributes found during the interpretation are returned as parame-
ters to reserved query modules in the string. Each derivation step
is performed as in parametric L-systems, except that the parame-
ters associated with the query modules remain undefined. During
the interpretation, these modules are assigned values that depend
on the turtle’s position and orientation in space. Syntactically, the
query modules have the from ?X(x; y; z), where X = P;H;U; or
L. Depending on the actual symbol X , the values of parameters
x, y, and z represent a position or an orientation vector. In the
two-dimensional case, the coordinate z may be omitted.

The operation of the query module is illustrated by a simple
environmentally-sensitive L-system, given below.

L-system 2

! : A

p1 : A ! F (1)?P (x; y)�A

p2 : F (k) ! F (k + 1)

The following strings are produced during the first three derivation
steps.

�0

0 : A

�0 : A

�0

1 : F (1)?P (?; ?)�A

�1 : F (1)?P (0; 1)�A

�0

2 : F (2)?P (?; ?)� F (1)?P (?; ?)�A

�2 : F (2)?P (0; 2)� F (1)?P (1; 2)�A

�0

3 : F (3)?P (?; ?)� F (2)?P (?; ?)� F (1)?P (?; ?)�A

�3 : F (3)?P (0; 3)� F (2)?P (2; 3)� F (1)?P (2; 2) �A

Strings �0

0, �0

1, �0

2, and �0

3 represent the axiom and the results of
production application before the interpretation steps. Symbol ?
indicates an undefined parameter value in a query module. Strings
�1, �2, and �3 represent the corresponding strings after interpre-
tation. It has been assumed that the turtle is initially placed at the
origin of the coordinate system, vector ~H is aligned with the y axis,
vector ~L points in the negative direction of the x axis, and the angle



µ
1

(0,1)

0

1

2

3

10 2

x

y

µ
2

(0,2) (1,2)

0

1

2

3

10 2

x

y

µ
3

(0,3) (2,3)

(2,2)

0

1

2

3

10 2

x

y

Figure 2: Assignment of values to query modules

of rotation associated with module “�” is equal to 90
�. Parameters

of the query modules have values representing the positions of the
turtle shown in Figure 2.

The next example illustrates an abstract developmental process in-
fluenced by the environment.

L-system 3

! : A

p1 : A ! [+B][�B]F ?P (x; y)A

p2 : B ! F ?P (x; y)@oB

p3 : ?P (x; y) : 4x2 + (y � 10)
2 > 10

2

! [+(2y)F ][�(2y)F ]%

Module F represents a line of unit length, and modules + and �
without parameters represent left and right turns of 60�.

Figure 3: A branch-
ing structure pruned
to an ellipse

The development begins with module
A, which creates a sequence of oppo-
site branches [+B][�B] separated by
internodes (branch segments) F (pro-
duction p1). The branches elongate by
addition of segments F , delimited by
markers @o (production p2). Both the
main apex A and the lateral apices B
create query modules ?P (x; y), which
return the corresponding turtle posi-
tions. If a query module is placed be-
yond the ellipse 4x2+(y�10)

2
= 10

2,
production p3 creates a pair of “ten-
tacles,” represented by the substring
[+(2y)F ][�(2y)F ]. The angle 4y be-
tween these tentacles depends on the
vertical position y of the query mod-

ule. Production p3 also inserts cutting symbol %, which terminates
branch growth by removing its apex. In summary, L-system 3 pro-
duces a branching structure confined to an ellipse, with tentacles
placed at the boundary of the structure, and the angle between the
tentacles depending on the turtle’s position in space, as shown in
Figure 3.

The final example of this section presents a simple two-dimensional
model of tree response to pruning. As described, for example, by
Hallé et al. [15, Chapter 4] and Bell [3, page 298], during the nor-
mal development of a tree many buds do not produce new branches
and remain dormant. These buds may be subsequently activated
by the removal of leading buds from the branch system (traumatic
reiteration), which results in an environmentally-adjusted tree ar-

chitecture. The model given below represents the extreme case of
this process, where buds are activated only as a result of pruning.

L-system 4

! : FA?P (x; y)

p1 : A > ?P (x; y) : !prune(x; y)! @oF=(180)A

p2 : A > ?P (x; y) : prune(x; y)! T%

p3 : F > T ! S

p4 : F > S ! SF

p5 : S ! �

p6 : @o > S ! [+FA?P (x; y)]

The user defined function

prune(x; y) = (x < �L=2)k(x > L=2)k(y < 0)k(y > L);

where k stands for the logical OR operator, defines a square clip-
ping box of dimensions L � L that bounds the growing structure.
According to axiom !, the development begins with an internode F
supporting apexA and query module ?P (x; y). The initial develop-
ment of the structure is described by production p1. In each step, the
apex A creates a dormant bud @o and an internode F . The module
=(180) rotates the turtle around its own axis (the heading vector ~H),
thus laying a foundation for an alternating branching pattern. The
query module ?P (x; y), placed by the axiom, is the right context
for production p1 and returns the current position of apex A. When
a branch extends beyond the clipping box, production p2 removes
apexA, cuts off the query module ?P (x; y), and generates the prun-
ing signal T . In presence of this signal, production p3 removes the
last internode of the branch that extends beyond the clipping box
and creates bud-activating signal S. Productions p4 and p5 propa-
gate this signal basipetally (downwards), until it reaches a dormant
bud @o. Production p6 induces this bud to initiate a lateral branch
consisting of internode F and apex A followed by query module
?P (x; y). According to production p1, this branch develops in the
same manner as the main axis. When its apex extends beyond the
clipping box, it is removed by production p2, and signal S is gener-
ated again. This process may continue until all dormant buds have
been activated.

Selected phases of the described developmental sequence are illus-
trated in Figure 4. In derivation step 6 the apex of the main axis
grows out of the clipping box. In step 7 this apex and the last
internode are removed from the structure, and the bud-activating
signal S is generated. As a result of bud activation, a lateral branch
is created in step 8. As it also extends beyond the bounding box, it
is removed in step 9 (not shown). Signal S is generated again, and
in step 10 it reaches a dormant bud. The subsequent development
of the lateral branches, shown in the middle and bottom rows of
Figure 4, follows a similar pattern.

L-system 4 simulates the response of a tree to pruning using a
schematic branching structure. A more realistic model is needed to
synthesize visually convincing images of pruned trees. A suitable
model of free-standing trees is presented in the next section, and
applied to simulate the response to pruning in Sections 5 and 6.

4 A STOCHASTIC TREE MODEL

As a first approximation, the development of a free-standing woody
plant — a tree or a shrub — can be described as a process in which
new branches are successively added to the structure. Early tree



Figure 4: A simple model of a tree’s response to pruning. Top row:
derivation steps 6,7,8, and 10; middle row: steps 12, 13, 14, and 17;
bottom row: steps 20, 40, 75, and 94. Small black circles indicate
dormant buds, the larger circles indicate the position of signal S.

models emphasized the repetitive character of this process. For
example, Honda [17] described a tree as a recursive branching
structure, in which the bifurcation ratio (the number of branches
originating at the mother branch), the branching angles, and the pro-
portions between the lengths of the mother branch and the daughter
branches do not depend on the position of the branches in the crown
nor on the age of the simulated tree. Tree models of Aono and
Kunii [1] and Oppenheimer [25] satisfy similar assumptions. The
resulting structures are self-similar, which implies that the number
of branches increases exponentially with the age of the structure.

Using morphometric data of young cottonwood (Populus deltoides)
and observations of the tropical tree Tabebuia rosea, Borchert and
Slade [7] showed that the exponential growth of the number of
terminal branches yields unnaturally dense crowns in models of
older trees. In reality, as soon as trees surpass a certain, relatively
small size, the rate of branching decreases. Based on the analysis
of this phenomenon presented by Borchert and Slade, we present
here a model of trees suitable for computer graphics purposes. It is
constructed to meet the following botanically justifiable postulates:

� The development begins in season k = 1 with the forma-
tion of a single nonbranching shoot (branch segment bearing
leaves).

� In each subsequent growth season, new shoots grow from
the buds situated near the distal ends of last year’s segments.
There is a constant, bmax > 1, that determines the maximum
bifurcation ratio.

� All branch segments have approximately the same length l,
independent of their position and the age of the tree, and reach
out forming a hemispherical crown.

� Leaves are produced on the terminal (current year) branch
segments, thus forming a hemispherical layer of leaves near
the perimeter of the crown. There is a constant, �min, that
determines the minimum area of leaves that must be exposed
to light coming from the outside in order to create a viable
shoot.

According to these postulates, the radius of a tree crown after k � 1

growth seasons is limited by Rk = lk. A hemispherical crown
of this radius has surface area Sk = 2�R2

k
= 2�l2k2, and this

value determines the upper bound on the crown area exposed to
direct light. The number Nk+1 of branch segments added to the
tree in year k+ 1 is limited, on the one hand, by the number of last
year’s segments Nk multiplied by the maximum bifurcation ratio
bmax, and on the other hand, by the maximum number vk+1 =

Sk+1=�min of shoots that may be produced without excessively
obscuring each other. Thus,

Nk+1 = minfbmaxNk; vk+1g = minfbmaxNk;
2�l2

�min

(k + 1)
2
g:

Let us assume that the minimum leaf area exposed to light per shoot
is small compared to the crown area, �min � 2�l2. In a young
tree (during the first few growth seasons), the maximum number
of new shoots does not suffice to cover the available crown surface
(bmaxNk < vk+1), and the number of new shoots will increase
exponentially with the age of the tree: Nk+1 = bmaxNk = bk

max
.

Since the crown area is proportional only to the square of the age
of the tree, at some age t the potential number of new shoots will
exceed the number that can be sufficiently exposed to direct light:
bmaxNt � vt. From then on, branching will be limited by the
crown area, with the average bifurcation ratio bk at age k � t equal
to:

bk =
Nk+1

Nk

=
2�l2(k + 1)

2=�min

2�l2k2=�min

= 1 +
2k + 1

k2
:

Different branching patterns may satisfy this general formula. For
example, if each segment from the previous year gives rise either to
one or to two new shoots, the fraction of segments supporting two
shoots will be equal to:

Nk+1 �Nk

Nk

=
2k + 1

k2
: (1)

The stochastic L-system below has been constructed to satisfy this
equation.

L-system 5

! : FA(1)

p1 : A(k)! =(�)[+(�)FA(k+ 1)]� (�)FA(k+ 1) :

minf1; (2k + 1)=k2g

p2 : A(k)! =(�)B � (�)FA(k+ 1) :

maxf0; 1� (2k + 1)=k2g

The generation of the tree begins with a single internode F termi-
nated by apex A(1). The parameter of the apex acts as a counter of
derivation steps. Production p1 describes the creation of two new
branches, while production p2 describes the production of a branch
segment and a dormant bud B. Probabilities of these events are
equal to p = minf1; (2k + 1)=k2g, and q = 1 � p, respectively.
This corresponds to the assumption that the departure from expo-
nential bifurcation occurs in step k = 3, and in subsequent steps
the probability of bifurcation is determined by Equation 1. Figure 5
shows side views of three sample trees after 18 derivation steps.
The branching angles, equal to � = 90

�; � = 32
�, and � = 20

�,
yield a sympodial branching structure (new shoots do not continue
the growth direction of the preceding segments). This structure is



Figure 5: Sample tree structures generated using L-system 5

representative to the Leeuwenberg’s model of tree architecture iden-
tified by Hallé et al. [15], although no attempt to capture a particular
tree species was made. The same values of branching angles can be
found in all the tree models shown in this paper.

5 SIMULATION OF PRUNING

L-system 5 generates structures with many dormant buds, and there-
fore can be used to simulate tree response to pruning in a manner
similar to that implemented in L-system 4. The resulting integrated
model is given below.

L-system 6

! : FA(1)?P (x; y; z)

p1 : A(k) > ?P (x; y; z) : !prune(x; y; z)!
=(�)[+(�)FA(k+ 1)?P (x; y; z)]� (�)FA(k+ 1) :

minf1; (2k + 1)=k2g

p2 : A(k) > ?P (x; y; z) : !prune(x; y; z)!
=(�)B(k + 1; k + 1)� (�)FA(k + 1) :

maxf0; 1 � (2k + 1)=k2g

p3 : A(k) > ?P (x; y; z) : prune(x; y; z)! T%

p4 : F > T ! S

p5 : F > S ! SF

p6 : S ! �

p7 : B(m;n) > S ! [+(�)FA(am+ bn+ c)?P (x; y; z)]

p8 : B(m;n) > F ! B(m+ 1; n)

According to axiom !, the development begins with a single intern-
ode F supporting apex A(1) and query module ?P (x; y; z). Pro-
ductions p1 and p2 are similar to those in L-system 5 and describe
the spontaneous growth of the tree within the volume characterized
by a user-defined clipping function prune(x; y; z). Productions p3
to p7 are similar to productions p2 to p6 in L-system 4. Specifi-
cally, production p3 removes the apex A() after it has crossed the
clipping surface, cuts off the query module ?P (x; y; z), and creates
pruning signal T . Next, p4 removes the last internode of the pruned
branch and initiates bud-activating signal S, which is propagated
basipetally by productions p5 and p6. When S reaches a dormant
bud B(), production p7 transforms it into a branch consisting of an
internode F , apex A(), and query module ?P(x,y,z).

The parameter value assigned by production p7 to apex A() is
derived as follows. According to production p2, both parameters
associated with a newly created bud B() are set to the age of the tree
at the time of bud creation (expressed as the the number of derivation
steps). Production p8 updates the value of the first parameter (m),
so that it always indicates the actual age of the tree. The second
parameter (n) remains unchanged. The initial biological age [3,
page 315] of the activated apex A() in production p7 is a linear
combination of parametersm and n, calculated using the expression

am+ bn+ c. Since rule p1 is more likely to be applied for young
apices (for small values of parameter k), by manipulating constants
a, b, and c it is possible to control the bifurcation frequency of
branches created as a result of traumatic reiteration. This is an
important feature of the model, because in nature the reiterated
branches tend to be more juvenile and vigorous than the remainder
of the tree [3, page 298].

The operation of this model is illustrated in Figure 6. The clipping
form is a cube with an edge length 12 times longer than the internode
lengh. The constant values used in production p7 are a = 0, b = 1,
and c = �5. The structures shown have been generated in 3, 6, 9,
13, 21, and 27 steps. Leaves were defined using Bézier surfaces, as
described in [28, Section 5.1].

The impact of constants a, b, and c on tree structures is further
illustrated in Figure 7. All trees have been generated in 31 steps. In
the pair of trees shown on the left-hand side, the initial age of the
activated apices is equal to the actual age of the tree minus 5 (a = 1,
b = 0, and c = �5). In the middle pair, the initial age is equal
to the time of bud creation minus 5 (a = 0, b = 1, and c = �5).
Finally, in the rightmost pair the reiterated branches are assigned
an initial age of 1 (a = 0; b = 0; c = 1). In all cases, the density
of the branches is increased near the boundary of the clipping box,
compared to a non-pruned tree. As a result, a pruned tree acquires
a shape that closely resembles that of its bounding volume, defined
by the clipping function. This effect is most pronounced when the
reiterated branches are assigned an initial age of 1, which results in
the most vigorous branching.

By changing the clipping function, one can shape plant models
generated by L-system 6 to a variety of artificial forms. Selected
examples are presented in the next section. In all cases the initial age
of activated apices is calculated using the set of parameters a = 0,
b = 1, and c = �5.

6 EXAMPLES OF SYNTHETIC TOPIARY

The term topiary denotes the art (or craft) of clipping suitable trees
and shrubs into elaborate ornamental shapes, most frequently free-
standing [23, pages 132, 183]. These shapes range from purely
geometric ones, such as spheres, cones, or spirals, to depictions of
“hunting scenes, fleets of ships, and imitations of real objects.” [14,
page 11]. Related to topiary is the ornamental use of hedges, which
includes tall structures intended to obscure the view in labyrinths,
and intricate patterns of low shrubs designed to be viewed from
above in knot gardens or parterres.

Given a flexible model of tree response to pruning, the main re-
maining issue is the specification of the clipping surface. Implicit
surfaces [4, 36] are particularly suitable for this purpose, since they
provide a simple method for checking whether a query point lies
inside or outside the defined surface. The clipping forms can be
blended together and combined using constructive solid geometry
operations [35].

The Levens Hall garden in England, laid out at the beginning of the
18th century, is considered the most famous topiary garden in the
world [8, pages 52–57]. It contains many geometric forms, two of
which have been reproduced in Figures 8 and 9. Specifically, Fig-
ure 8 illustrates the use of constructive solid geometry operations to
define the clipping form, in this case, the union of a parallelepiped
and a cylinder. The spirals shown in Figure 9 have been obtained
by pruning a tree to the shape of a seashell. An implicit repre-



Figure 6: Simulation of tree response to pruning

Figure 7: Impact of vigor of reiterated branches (shown in red) on
the appearance of a pruned tree

sentation of the seashell was obtained by converting the parametric
representation described by Fowler et al. [11].

Another application of implicit surface definition is shown in Fig-
ures 10 and 11. In this case, the clipping form of a “topiary dinosaur”
was obtained as an implicit surface defined by a skeleton of lines and
ellipsoids. Two trees were used to facilitate the growth of branches
into the elongated shapes of neck and tail.

The large number of primitives representing individual plants makes

Figure 8: A tree pruned to a union of a parallelepiped and a cylinder

Figure 9: Trees pruned to a spiral shape

it difficult to combine them into complex scenes. The reuse (instan-
tiation) of models provides a simple solution in the case of repetitive
designs. For example, the hedges shown in Figure 12 have been
composed of rectangular and circular segments, replicated to create
the complete scene. The images are relatively faithful synthetic rep-
resentations of the knot garden at Moseley Old Hall, reconstructed
in England in 1960 from a seventeenth-century design [34, page 50]
(see also [23, page 122]).



Figure 10: An implicit surface defined by a skeleton of lines and
ellipsoids

Figure 11: Topiary dinosaur

7 DISCUSSION

In this paper, we extended L-systems with a mechanism for simu-
lating the impact of the environment on plant development. The re-
sulting formalism was explained using simple geometric examples,
then applied to simulate plant response to pruning. A biologically-
motivated tree model incorporating this mechanism served as a basis
for creating models of sculptured plants found in topiary gardens.
One prospective application of such models is in computer-assisted
landscape design.

We have not found much published information characterizing the
impact of pruning on tree architecture. More data would be nec-
essary to construct faithful models of particular tree species. As
described in [31], construction of visual models of plants provides
a valuable guideline for collecting field data. Consequently, the
mathematical framework introduced in the present paper may assist
in biological studies of the effects of pruning on plant development.

Pruning is only one of a range of phenomena that can be modeled
using environmentally-sensitive L-systems. The values returned by
the query modules may not only indicate whether a query point is
inside or outside a clipping volume, but also to return, through prop-
erly defined field functions, other values characterizing the space in
which the plant develops. For example, in a model of roots, the

Figure 12: A model of the knot garden at Moseley Old Hall

field values may represent concentrations of nutrients and water in
soil. This field may be assumed to be stationary, or change dynam-
ically to reflect the absorption of substances by the growing plant.
Above the ground, a dynamically changing field may be used to
distinguish areas exposed to light from those in shade, and specify
areas occupied by other objects for collision detection purposes.
We hope that such simulations will lead to a better understanding
of the underlying phenomena, increase the predictive value of plant
models, and result in more realistic synthetic images of plants.
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