
L−system description of subdivision curves
Przemyslaw Prusinkiewicz, Faramarz Samavati, Colin Smith, and Radoslaw Karwowski
Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4
{pwp|samavati|smithco|radekk}@cpsc.ucalgary.ca

Abstract

In recent years, subdivision has emerged as a major geometric modeling technique.
Algorithms for generating subdivision curves are often specified in terms of iterated matrix
multiplication. Each multiplication maps a globally indexed sequence of points that represents
a coarser approximation of the curve onto a longer sequence that represents a finer
approximation. Unfortunately, this use of matrices and indices obscure the local and
stationary character of typical subdivision rules.

We introduce parametric context−sensitive L−systems with affine geometry interpretation as
an alternative technique for specifying and generating subdivision curves. This technique is
illustrated using Chaikin, cubic B−spline, and Dyn−Levin−Gregory (4−point) subdivision
schemes as examples. L−systems formalize subdivision algorithms in an intuitive, concise,
index−free manner, reflecting the parallel and local character of these algorithms.
Furthermore, L−system specification of subdivision algorithms directly leads to their
computer implementation.

Reference

P. Prusinkiewicz, F. Samavati, C. Smith, R. Karwowski: L−system description of subdivision curves.
International Journal of Shape Modeling 9 (1), pp. 41−59.

International Journal of Shape Modeling
c© World Scientific Publishing Company

L-SYSTEM DESCRIPTION OF SUBDIVISION CURVES

PRZEMYSLAW PRUSINKIEWICZ, FARAMARZ SAMAVATI,
COLIN SMITH and RADOSLAW KARWOWSKI

Department of Computer Science, University of Calgary,
2500 University Drive N.W.

Calgary, Alberta T2N 1N4, Canada
[pwp/samavati/smithco/radekk] @cpsc.ucalgary.ca

http://www.cpsc.ucalgary.ca

In recent years, subdivision has emerged as a major geometric modeling technique. Al-
gorithms for generating subdivision curves are often specified in terms of iterated matrix
multiplication. Each multiplication maps a globally indexed sequence of points that rep-
resents a coarser approximation of the curve onto a longer sequence that represents a
finer approximation. Unfortunately, this use of matrices and indices obscure the local
and stationary character of typical subdivision rules.

We introduce parametric context-sensitive L-systems with affine geometry interpre-
tation as an alternative technique for specifying and generating subdivision curves. This
technique is illustrated using Chaikin, cubic B-spline, and Dyn-Levin-Gregory (4-point)
subdivision schemes as examples. L-systems formalize subdivision algorithms in an in-
tuitive, concise, index-free manner, reflecting the parallel and local character of these
algorithms. Furthermore, L-system specification of subdivision algorithms directly leads
to their computer implementation.

1. Introduction

The definition and generation of smooth curves and surfaces specified by a small

set of control points is a fundamental problem of geometric modeling. One class of

solutions is based on the concept of subdivision: an iterative replacement of coarser

representations of a curve or surface by finer representations. The first subdivision

algorithm for curves was described almost thirty years ago 5, and algorithms for

surfaces soon followed 4,11. Nevertheless, subdivision was not recognized as a prac-

tical modeling technique until the late 1990’s, when is was successfully applied to

character animation 10. This development coincided with the explosion of research

interest in subdivision curves and surfaces, which continues until now.

One appealing aspect of subdivision is that, at the intuitive level, it is easy

to describe and understand. Unfortunately, this simplicity is not reflected in the

index- and matrix-based notation often used to formalize subdivision algorithms.

In this paper we propose context-sensitive parametric L-systems 21,29 as an alter-

native formalism, rooted in formal language theory. L-systems make it possible to

effectively specify growing sequences of symbols (words) without the use of indices.

We extend this capability to polygonal approximations of subdivision curves. The

41

42 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

a) b)

c) d) e)

Fig. 1. Curve generation using Chaikin’s algorithm. a) A sample user-specified control polygon. b)
The replacement of old vertices by pairs of new vertices in the first step of the algorithm. Shaded

areas represent the cut-off corners. c–e) Illustration of the subsequent three subdivision steps.

L-system notation captures the local nature of subdivision algorithms in a formal

yet intuitive manner, and leads directly to a computer implementation of these

algorithms. This, in turn, is useful in practical applications, such as experimenta-

tion with different subdivision schemes, and expository presentation of subdivision

algorithms.

2. Background

Let us consider the original Chaikin algorithm 5 to review the main concept of

subdivision and its usual formalization. For simplicity, we will apply it to generate

a closed curve, thus avoiding special-case rules that would be needed near the end-

points of an open curve. The initial approximation of the curve under construction

is specified by a (circular) list of user-defined control points. Figure 1a shows a

sample arrangement of these points, connected to form a polygon. The next ap-

proximation is obtained by cutting the corners of this polygon (Figure 1b). Each

“old” vertex is replaced with a pair of “new” vertices, where each new vertex is

situated one quarter of the distance from its parent point to one of its neighbors

(Figure 1b). The subsequent approximations of the curve are obtained by iterating

the same corner-cutting scheme (Figure 1c–e).

L-system Description of Subdivision Curves 43

Fig. 2. Example of the labeling of points in the first step of Chaikin’s algorithm

In the standard formalization of the subdivision process, points are globally

enumerated and assigned unique labels. A possible labeling scheme is shown in

Figure 2. The superscript k indicates the iteration step at which point P k
i has been

created. The subscript i is the ordering number of this point within the sequence

of points created in the same step.

The positions of new points are expressed as affine combinations of the positions

of old points. An affine combination of n points P1, P2, . . . , Pn is an expression of

the form

α1P1 + α2P2 + · · · + αnPn, (1)

where the scalar coefficients αi add up to 1:

α1 + α2 + · · · + αn = 1. (2)

The meaning of the affine combination (1) is derived from its transformation to the

form

P = P1 + α2(P2 − P1) + · · · + αn(Pn − P1), (3)

which is a well-defined expression of vector algebra. Specifically, for two points we

obtain:

P = α1P1 + α2P2 = P1 + α2(P2 − P1) = P2 + α1(P1 − P2). (4)

Thus, point P divides line P1P2 in the ratio of α2 : α1 (Figure 3). Affine geom-

etry and its applications to computer graphics have been described in detail by

DeRose 8,9; for further insights see 17,19.

Returning to Figure 2, the new point positions are related to the old point

positions by affine combinations, such as:

P 2
1 =

3

4
P 1

1 +
1

4
P 1

4 , (5)

P 2
2 =

3

4
P 1

1 +
1

4
P 1

2 , (6)

44 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Fig. 3. Definition of point P as an affine combination of points P1 and P2.

In matrix notation,




































P 2
1

P 2
2

P 2
3

P 2
4

P 2
5

P 2
6

P 2
7

P 2
8





































=





































3

4
0 0 1

4

3

4

1

4
0 0

1

4

3

4
0 0

0 3

4

1

4
0

0 1

4

3

4
0

0 0 3

4

1

4

0 0 1

4

3

4

1

4
0 0 3

4



















































P 1
1

P 1
2

P 1
3

P 1
4















. (7)

This equation is generalized to arbitrary control polygons and arbitrary derivation

steps by writing:
















































P k+1
1

P k+1
2

P k+1
3

P k+1
4

P k+1
5

P k+1
6

...

P k+1
2n−2

P k+1
2n−1

P k+1
2n

















































=

















































3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

















































·

































P k
1

P k
2

P k
3

P k
4

...

P k
n−1

P k
n

































(8)

Subdivision schemes other than Chaikin’s can be specified in a similar way, using

different subdivision matrices 2,32,35,36.

Related to the use of matrices is the use of indices to identify and order the

points. Unfortunately, the index notation is not well attuned to the needs of sub-

division. Due to the local character of subdivision, the creation of a pair of new

points is based on the information about their parent old point and its neighbors.

L-system Description of Subdivision Curves 45

Fig. 4. A stencil for Chaikin subdivision algorithm

Indexing makes it possible to access this information only in a circular way, by first

globally assigning consecutive numbers to all points, then referring to the neigh-

bors of point P k
i using index arithmetic: i − 1 and i + 1. This is more complicated

than the verbal description, in which we would use terms such as “previous” and

“next” (or “left” and “right”) to refer to the neighbors of a given point. At the

same time, the index notation is too powerful: by providing a unique label to each

point it makes it possible to access points at random, in violation of the algorithm’s

locality. This is true in both the spatial and temporal domains: in the latter case,

the use of indices makes it potentially possible to refer to points from arbitrary

iteration steps, whereas only the information from the previous step is available

and needed.

3. From stencils and masks to productions

One alternative to the index-based notation is the representation of subdivision

rules using stencils. Sabin 31 defines them as follows:

Stencil. The weights due to various old vertices in computing

a given new one. Also the pattern of relative positions of the old

vertices around the new one.

Stencils (and the related notion of masks) are usually represented as graphs that

depict short subsequences of old and new points. These points are connected by

arrows labeled by coefficients α in the affine geometry combinations (Equation 1)

that take the old points to the new ones. For instance, a stencil for the Chaikin

subdivision algorithm is shown in Figure 4. For other examples see 14,37.

Stencils provide an intuitive, index-free representation of subdivision rules. Un-

fortunately, this is not a precise representation. For example, Figure 4 shows that

three old points are involved in creating a pair of new points. It does not explicitly

specify, however, whether the same old points may also be involved in the produc-

tion of other new points. Looking at the same problem from a different perspective,

it is not clear to what extent the stencils may overlap when applied to various

subsequences of old points.

We address this imprecision by recasting the notion of a stencil into the frame-

work of formal language theory (Figure 5). A sequence of points is viewed as a word

over some alphabet. A circular sequence of points approximating a closed curve is

46 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Fig. 5. Chaikin’s subdivision as a production

represented by a circular word 30,34. The stencil is a grammar production, with

the predecessor representing a finite subsequence of old points, and the successor

representing a subsequence of new points. The predecessor is partitioned into the

strict predecessor, left context, and right context. The strict predecessor represents

the old point that is rewritten or “consumed” by the production application, which

means that it cannot be used anymore. In Chaikin’s construction, it is the vertex of

a corner being cut off. The context consists of the neighbors of the strict predeces-

sor that provide the additional information needed to specify the successor points.

When rewriting a sequence of old points, production predecessors may overlap, as

long as no point is used more than once as a strict predecessor.

The Chaikin construction requires that each old point be replaced by two new

ones in every iteration of the algorithm. This corresponds to the notion of parallel

rewriting as defined for L-systems 21,22, as opposed to the sequential rewriting

defined for Chomsky grammars 7.

4. L-systems

L-systems were originally introduced as a rewriting mechanism acting on words

over a finite alphabet 21,22. Soon afterward, however, they were extended to

strings of symbols with numerical attributes 1,23. This concept was formalized as

parametrized 6 and parametric 18,29 L-systems. Here we use an extension of the

latter formalism. For its more detailed presentation see 25,29.

Parametric L-systems operate on strings of modules. A module is a letter from

a finite alphabet V with optional numerical parameters. For example, the string

A(1.5)B(2.0, 3.0)A(4.5) (9)

is a parametric word over the alphabet V = {A,B}.

Starting with an explicitly defined initial word, or axiom, an L-system generates

a developmental sequence of words using a finite set of productions that operate

L-system Description of Subdivision Curves 47

on limited-length subwords. The actual parameters in each word correspond to the

formal parameters in the productions. Arithmetic expressions in the successor of a

production determine new parameter values. In the case of context-sensitive pro-

ductions, the left and right contexts are separated from the strict predecessor by the

metasymbols (i.e., symbols that do not represent modules) < and >, respectively.

A developmental sequence of words results from a sequence of derivation steps.

In each step, productions are applied in parallel to all modules of the predecessor

word, so that each module is the strict predecessor of some production. For example,

by applying the production set

A(x) → A(2x + 1) (10)

A(w) < B(x, y) > A(x) → A(w + x)A(y + x) (11)

to the parametric word (9), we obtain after one derivation step:

A(4)A(3.5)A(7.5)A(10). (12)

Recent extensions of parametric L-systems 13,20 make it possible to use not only

numbers, but also compound data structures as parameters. We use this feature

to represent points as vectors of coordinates, and we overload standard arithmetic

operators to specify affine combinations of points. With this convention, the L-

system production that specifies Chaikin’s subdivision is:

P (vl) < P (v) > P (vr) → P (
1

4
· vl +

3

4
· v)P (

3

4
· v +

1

4
· vr) (13)

This mathematical notation is closely reflected in the programming language

L+C, which combines features of L-systems and the C++ programming language 20.

L+C programs constitute an input to the graphical modeling program lpfg 20, which

we have used to implement the algorithms presented in this paper. For example, the

following L+C program generates the picture (curve with dots) shown in Figure 1d:

1 #include <lpfgall.h>

2 V2f v1(0, 0), v2(0, 1), v3(1, 1), v4(1, 0);

3 module P(V2f);

4

5 ring L-system: 1;

6 derivation length: 3;

7

8 Axiom: P(v1) P(v2) P(v3) P(v4) ;

9 P(vl) < P(v) > P(vr) :

10 { produce P(0.25*vl+0.75*v) P(0.75*v+0.25*vr); }

11

12 interpretation:

13 P(v) : { produce LineTo2f(v) Circle(0.01) ; }

48 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Line 1 is a reference to the file lpfgall.h that contains predefined constants and

structure declarations. Specifically, our program makes use of coordinate pairs V2f.

Line 2 defines four points that will be used in line 8 as the vertices of the control

polygon. Line 3 declares module type P as being associated with one parameter of

type V2f. Line 5 specifies that the L-system will operate on circular words, and

line 6 determines the required derivation length. Lines 9 and 10 are the essence of

this program and contain the production responsible for the Chaikin subdivision.

Finally, Line 13, preceded by the keyword in line 12, defines the homomorphism

that will be applied at the end of the derivation (c.f. 27). According to it, each point

is represented as a small circle, connected by a line to its predecessor.

For compactness, in the following sections we will mainly use the mathematical

notation exemplified by Equation 13, rather than complete program listings.

5. Inferring L-systems from subdivision matrices

Since subdivision curves are often defined using matrix notation 2,32,35,36, the infer-

ence of L-systems from the subdivision matrices is an important practical problem.

Unfortunately, it cannot entirely be resolved by algorithmic means, because dots in

the general subdivision matrices, e.g. (8), require an interpretation. Furthermore,

as we are going to see, many equivalent L-systems can be inferred from the same

matrix, thus the inference process involves an element of decision.

As described in Section 2, the subdivision matrix globally maps an old sequence

of points onto a new sequence. In contrast, an L-system production replaces an

individual old point by a subsequence of new points. We must therefore partition

the sequence of new points into subsequences, and establish a one-to-one mapping

between the old points and these subsequences. For example, a mapping for the

Chaikin subdivision (Equation 8) may take point P k
i to points P k+1

2i−1
and P k+1

2i ,

where i = 1, 2, . . . , n. An instance of this mapping for i = 3 is illustrated below:

















































P k+1
1

P k+1
2

P k+1
3

P k+1
4

P k+1
5

P k+1
6

...

P k+1
2n−2

P k+1
2n−1

P k+1
2n

















































=

















































3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

















































































P k
1

P k
2

P k
3

P k
4

...

P k
n−1

P k
n

































(14)

L-system Description of Subdivision Curves 49

The encircled points in the column matrices show that old point P k
3 will be

replaced by new points P k+1
5 and P k+1

6 . In the subdivision matrix, the same re-

placement is indicated by encircling column 3, which represents the contribution of

point P k
3 to the matrix multiplication, and rows 5 and 6, which yield points P k+1

5

and P k+1
6 of the result. The shaded area includes non-zero elements of these rows,

and thus identifies the production predecessor and the coefficients of the affine com-

binations that will yield the successor points. The position of the encircled column

with respect to this area partitions the predecessor into left context, strict prede-

cessor, and right context. The replacement of point P k
3 by points P k+1

5 and P k+1
6

can therefore be written as a production,

P k
i−1(vl) < P k

i (v) > P k
i+1(vr) → P k+1

2i−1
(
1

4
· vl +

3

4
· v)P k+1

2i (
3

4
· v +

1

4
· vr), (15)

where i = 3. The regular form of the subdivision matrix in Equation 14 suggests

that production (15) applies for any values i, k = 1, 2, This observation leads to

the general L-system production for Chaikin subdivision in Equation 13.

The decision to replace point P k
i with the points P k+1

2i−1
and P k+1

2i was an arbi-

trary one. In general, there is an equivalent one-production L-system that generates

the same Chaikin curve (up to a cyclical permutation of points) by taking point P k
i

to a pair of consecutive points P k+1

j−1
P k+1

j (i = 1, 2, . . . , n; j ≡ 2i + d mod 2n) for

any integer d. The mapping performed by production 13 and illustrated by Equa-

tion 14 corresponds to d = 0. Two other mappings, corresponding to d = −1 and

d = 1, are indicated below:

















































3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

















































,

















































3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

















































.

(16)

The resulting L-system productions are, respectively:

P (vl) < P (v) → P (3

4
· vl + 1

4
· v)P (1

4
· vl + 3

4
· v), (17)

P (v) > P (vr) → P (3

4
· v + 1

4
· vr)P (1

4
· v + 3

4
· vr). (18)

50 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Productions 17 and 18 lack the symmetry of production 13, but are shorter and in

this sense simpler than production 13. Other values of constant d yield productions

that are also asymmetric, but relatively longer. For example, for d = 3 we obtain:

















































3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

















































,

(19)

P (v) > P (vr)P (vrr)P (vrrr) → P (
3

4
· vrr +

1

4
· vrrr)P (

1

4
· vrr +

3

4
· vrrr). (20)

This production, along with other productions obtained for |d| > 1, appears to be

of limited interest, because new points are increasingly distant from the old points

they replace, contrary to the intuition of the Chaikin algorithm.

L-system productions for other subdivision algorithms can be inferred in a sim-

ilar way. For example, below we present two views of the subdivision matrix for the

cubic B-spline subdivision (c.f. 15,32):























































1

2
0 0 0 · · · 0 0 1

2

3

4

1

8
0 0 · · · 0 0 1

8

1

2

1

2
0 0 · · · 0 0 0

1

8

3

4

1

8
0 · · · 0 0 0

0 1

2

1

2
0 · · · 0 0 0

0 1

8

3

4

1

8
· · · 0 0 0

0 0 1

2

1

2
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 1

2

1

2
· · · 1

8

3

4

1

8

0 0 1

2

1

2
· · · 0 1

2

1

2

1

8
0 1

2

1

2
· · · 0 1

8

3

4























































,























































1

2
0 0 0 · · · 0 0 1

2

3

4

1

8
0 0 · · · 0 0 1

8

1

2

1

2
0 0 · · · 0 0 0

1

8

3

4

1

8
0 · · · 0 0 0

0 1

2

1

2
0 · · · 0 0 0

0 1

8

3

4

1

8
· · · 0 0 0

0 0 1

2

1

2
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 1

2

1

2
· · · 1

8

3

4

1

8

0 0 1

2

1

2
· · · 0 1

2

1

2

1

8
0 1

2

1

2
· · · 0 1

8

3

4























































.

(21)

L-system Description of Subdivision Curves 51

a) b) c)
Fig. 6. A comparison of curves generated with (a) Chaikin, (b) cubic B-spline, and (c) Dyn-Levin-
Gregory subdivision algorithms, using the same control polygon.

The corresponding L-system productions are, respectively:

P (vl) < P (v) > P (vr) → P (1

8
· vl + 3

4
· v + 1

8
· vr)P (1

2
· v + 1

2
· vr), (22)

P (vl) < P (v) > P (vr) → P (1

2
· vl + 1

2
· v)P (1

8
· vl + 3

4
· v + 1

8
· vr). (23)

Figure 6b shows a sample curve generated using either of these productions.

Similar to Chaikin subdivision (Figure 6a), the cubic B-spline subdivision yields

a curve that approximates the control polygon. In contrast, Dyn-Levin-Gregory

4-point subdivision 12 (see also 32) generates an interpolating curve (Figure 6c).

Its subdivision matrix, complemented with one of the possible mappings of an old

point to new points, is given below:









































































9

16
− 1

16
0 0 0 · · · 0 − 1

16

9

16

1 0 0 0 0 · · · 0 0 0

9

16

9

16
− 1

16
0 0 · · · 0 0 0

0 1 0 0 0 · · · 0 0 0

− 1

16

9

16

9

16
− 1

16
0 · · · 0 0 0

0 0 1 0 0 · · · 0 0 0

0 − 1

16

9

16

9

16
− 1

16
· · · 0 0 0

0 0 0 1 0 · · · 0 0 0

0 0 − 1

16

9

16

9

16
· · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 9

16

9

16
− 1

16

0 0 0 0 0 · · · 0 1 0

− 1

16
0 0 0 0 · · · − 1

16

9

16

9

16

0 0 0 0 0 · · · 0 0 1









































































.

(24)

52 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Fig. 7. Five steps of a curve generation using the Dyn-Levin-Gregory algorithm

The resulting L-system production is:

P (vl) < P (v) > P (vr)P (vrr) → P (v)P (− 1

16
· vl + 9

16
· v + 9

16
· vr −

1

16
· vrr). (25)

According to this production, the predecessor old point will be replaced by a copy

of itself, followed by a newly inserted point. A different choice for mapping of old

and new points results in an alternative production, in which the newly inserted

point precedes the copy of the old point:

P (vll)P (vl) < P (v) > P (vr) → P (− 1

16
· vll + 9

16
· vl + 9

16
· v − 1

16
· vr)P (v). (26)

The interpolating character of this subdivision scheme is illustrated in Figure 7,

which shows that points from the previous step are preserved in the next step.

Descriptions of subdivision schemes are often expressed in terms of “even” and

“odd” points 37. Odd points are newly created in the given algorithm step, whereas

even points are the old points. The position of even points is preserved in the

interpolating schemes, or adjusted in the approximating schemes. The L-system

expression of subdivision rules makes the distinction between odd and even points

unnecessary.

6. Subdividing open curves

Subdivision of open curves proceeds in a manner similar to the subdivision of closed

curves, except that special subdivision rules must be applied near the curve end-

points. For example, let us consider the inference of an L-system for the Chaikin

L-system Description of Subdivision Curves 53

subdivision of an open curve, given the following subdivision matrix 32:






















































1 0 0 0 · · · 0 0 0

1

2

1

2
0 0 · · · 0 0 0

0 3

4

1

4
0 · · · 0 0 0

0 1

4

3

4
0 · · · 0 0 0

0 0 3

4

1

4
· · · 0 0 0

0 0 1

4

3

4
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 3

4

1

4
0

0 0 0 0 · · · 1

4

3

4
0

0 0 0 0 · · · 0 1

2

1

2

0 0 0 0 · · · 0 0 1























































(27)

Unlike previously considered matrices, which had n columns and 2n rows, this

matrix has only 2n − 2 rows. Thus, it is no longer possible to substitute two new

points for each old point. We address this problem assuming that the first and last

old point will be replaced by single points, and the remaining old points will be

replaced by pairs of new points. This leads to the following L-system productions:

< P (v) → P (v) (28)

#P (vl) < P (v) > P (vr) → P (
1

2
· vl +

1

2
· v)P (

3

4
· v +

1

4
· vr) (29)

P (vll)P (vl) < P (v) > P (vr)P (vrr) → P (
1

4
· vl +

3

4
· v)P (

3

4
· v +

1

4
· vr) (30)

P (vl) < P (v) > P (vr)# → P (
1

4
· vl +

3

4
· v)P (

1

2
· v +

1

2
· vr) (31)

P (v) > # → P (v) (32)

→ # (33)

We assume that the control polygon is represented by a sequence of at least

four modules P (v), delimited by modules #. Productions 28 and 32 state that the

first and the last point of the curve will be rewritten by themselves, as specified

by the first and the last row of subdivision matrix 27. Production 29 is associated

with the second and third point of the subdivision matrix, and production 31 is

associated with the third and second last row of that matrix in a symmetric way.

Production 30 captures subdivision away from the endpoints. In essence, it is the

same production as production 13 for the Chaikin subdivision of closed curves. The

additional context terms, P (vll) and P (vrr), assure that production 30 will not be

applied too close to the endpoints of the curve. Finally, production 33 rewrites the

endmarkers by themselves.

The above L-system can be simplified using the following conventions 25,29:

54 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Fig. 8. An open control polygon and the resulting Chaikin subdivision curve obtained using L-
system productions 28 – 33 or 34 – 36.

• if no production for rewriting a particular module is explicitly listed, this

module will be rewritten into itself;

• if more than one production could be used to rewrite the same module, the

production that appears first in the ordered production list will be applied.

Under these conventions, the open-curve Chaikin subdivision can be defined using

the following L-system productions:

#P (vl) < P (v) > P (vr) → P (
1

2
· vl +

1

2
· v)P (

3

4
· v +

1

4
· vr) (34)

P (vl) < P (v) > P (vr)# → P (
1

4
· vl +

3

4
· v)P (

1

2
· v +

1

2
· vr) (35)

P (vl) < P (v) > P (vr) → P (
1

4
· vl +

3

4
· v)P (

3

4
· v +

1

4
· vr) (36)

Both L-systems provide a complete and compact specification of the Chaikin

subdivision algorithm for open curves, and directly lead to its computer implemen-

tation (c.f. Section 4). An application example is given in Figure 8. The reference

to the curve endpoints using context and markers is less error-prone than the use

of numerical limits for index values. The same methodology can be used to specify

L-systems for other subdivision schemes.

7. Reverse subdivision

Bartels and Samavati introduced the notion of reverse subdivision, in which the

number of points representing a curve or surface is gradually reduced, while the

resulting approximations are kept within tolerable error bounds 2,32. Specifically,

local reverse subdivision 2 inverts the paradigm of the forward subdivision: instead

of replacing individual old points by subsequences of new points, it replaces subse-

quences of old points by individual new points. Bartels and Samavati specify this

process using reverse subdivision matrices. For example, the matrix for the reverse

L-system Description of Subdivision Curves 55

a) b) c)

Fig. 9. Reverse subdivision of a scanned ivy leaf contour. a) The input contour with 1925 points. b,
c) Two approximations of the input contour obtained using production 38. Both approximations
consist of 122 points, and have been obtained after four reverse subdivision steps using different
circular permutations of the input string.

Chaikin subdivision of a closed curve is 2:



























3

4
− 1

4
0 0 0 · · · 0 0 0 − 1

4

3

4

− 1

4

3

4

3

4
− 1

4
0 · · · 0 0 0 0 0

0 0 − 1

4

3

4

3

4
· · · − 1

4
0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 − 1

4
· · · 3

4

3

4
− 1

4
0 0

0 0 0 0 0 · · · 0 − 1

4

3

4

3

4
− 1

4



























(37)

This matrix has 2n columns and n rows, which implies that pairs of predecessor

points will be replaced by individual points. Using the grouping indicated by the

encircled row, columns, and the shaded area, we obtain the following production:

P (vl) < P (va)P (vb) > P (vr) → P (−
1

4
· vl +

3

4
· va +

3

4
· vb −

1

4
· vr) (38)

Formally, this production is not consistent with the definition of L-systems, be-

cause its strict predecessor is not a single module. Nevertheless, an extension called

pseudo-L-systems 24 makes it possible to use such productions. In a pseudo-L-

system derivation step, strict predecessors are assumed to partition the predecessor

string without overlaps. This is a source of nondeterminism, since different parti-

tions may exist, leading to different results. For example, a circular word of length

2n can be partitioned into pairs (1, 2), (3, 4), . . . , (n−1, n) or (2, 3), (4, 5), . . . , (n, 1).

The existence of different results of a reverse subdivision step implies that the same

original curve may be approximated in more than one way.

56 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

Fig. 10. A Sierpinski space-filling curve (a) and its smooth version obtained using subdivision (b).

Reverse subdivision can be used, for example, to reduce the number of points

approximating a measured curve. An example of such an application is shown in

Figure 9.

8. Conclusions

We proposed context-sensitive parametric L-systems with affine geometry inter-

pretation as a formal method for specifying subdivision algorithms for curves. L-

systems formalize the notion of stencils and provide an intuitive yet compact and

complete description of subdivision algorithms.

L-systems capture the local character of subdivision rules and the dynamic char-

acter of the subdivision process. This compatibility is closely related to the biolog-

ical motivation of L-systems. They were originally proposed to describe the growth

of linear structures made of locally communicating discrete elements. Subdivision

can obviously be seen as an instance of such growth.

An important feature of L-system notation is that it identifies a module by

its state and neighborhood. This stands in a contrast to standard mathematical

notation, in which elements of a sequence are identified by indices. The index-free

notation simplifies the specification and implementation of algorithms operating on

strings with a dynamically changing length. Indices, if present, must be recalculated

each time the number or configuration of components change, and thus do not

provide convenient, stable identifiers of system elements. In addition, the use of

indices obscures the local character of subdivision rules.

We have considered the inference of L-systems, given subdivision matrices. We

illustrated this inference using Chaikin, cubic B-spline, and Dyn-Levin-Gregory

4-point subdivision schemes as examples. In addition to closed curves, discussed

in more detail, we presented an example of an open curve subdivision, based on

Chaikin’s scheme. We have also shown that an extension of L-systems can be used

to specify and implement local reverse subdivision algorithms.

L-system Description of Subdivision Curves 57

Fig. 11. A branching structure (a) and the result of its smoothing (b).

We have implemented the programming language L+C, which makes it possi-

ble to specify L-systems as input to the modeling program, lpfg. This facilitates

experimentation with various subdivision schemes, because not only the subdivi-

sion parameters, but also the entire subdivision algorithms, can easily be specified

and modified. This makes L-systems particularly useful in research and teaching of

subdivision curves.

Several problems relating L-systems to subdivision remain open for further re-

search. For example, we observed that L-systems with affine geometry interpreta-

tion can also be used to generate fractals. This echoes the relation between subdi-

vision curves and fractals pointed out by Warren and Weimer 36. The possibility

of integrating fractals and subdivision curves using the same L-system formalism

is interesting from the theoretical perspective and may have useful applications.

For instance, Figure 10 shows a finite approximation of the Sierpinski space-filling

curve 33, and the result of its smoothing using Chaikin subdivision. The resulting

curve is a kolam pattern, a representative of patterns that were developed as folk

art in India and have attracted mathematical attention because of their self-similar

structure 16,26,28.

Another open problem is the extension of subdivision algorithms to branching

structures. An example of such a structure is shown in Figure 11a, and the result of

its smoothing using Chaikin’s algorithm is shown in Figure 11b. As pointed out by

Bloomenthal 3, the use of curved lines increases the perception of realism in many

models of organic forms. The formalism of L-systems is useful in describing branch-

ing forms, and therefore may provide a convenient general basis for subdividing

branching curves as well.

Acknowledgement

We thank Lynn Mercer for editorial help. The support of the Natural Sciences

and Engineering Research Council of Canada is gratefully acknowledged.

58 P. Prusinkiewicz, F. Samavati, C. Smith and R. Karwowski

References

1. R. Baker and G. T. Herman. Simulation of organisms using a developmental model,
parts I and II. International Journal of Bio-Medical Computing, 3:201–215 and 251–
267, 1972.

2. R. H. Bartels and F. F. Samavati. Reversing subdivision rule: local linear conditions
and observations on inner products. Journal of Computational and Applied Mathe-

matics, 119:29–67, 2000.
3. J. Bloomenthal. Skeletal design of natural forms. PhD thesis, University of Calgary,

January 1995.
4. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topo-

logical meshes. Computer Aided Design, 10(6):350–355, 1978.
5. G. Chaikin. An algorithm for high speed curve generation. Computer Graphics and

Image Processing, 3:346–349, 1974.
6. T. W. Chien and H. Jürgensen. Parameterized L systems for modelling: Potential and

limitations. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts

on theoretical computer science, computer graphics, and developmental biology, pages
213–229. Springer-Verlag, Berlin, 1992.

7. N. Chomsky. Three models for the description of language. IRE Trans. on Information

Theory, 2(3):113–124, 1956.
8. T. DeRose. Three-dimensional computer graphics. A coordinate-free approach. Ma-

nuscript, University of Washington, 1992. http://grail.cs.washington.edu/pub/.
9. T. DeRose. A coordinate-free approach to geomeric programming. In W. Strasser

and H.-P. Seidel, editors, Theory and practice of geometric modeling, pages 291–305.
Springer-Verlag, Berlin, 1989.

10. T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character animation.
Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998), pages 85–94,
ACM SIGGRAPH, New York, 1998.

11. D. Doo and M. Sabin. Analysis of the behaviour of recursive division surfaces near
extraordinary points. Computer Aided Design, 10(6):356–360, 1978.

12. N. Dyn, J. Gregory, and D. Levin. A four-point interpolatory subdivision scheme for
curve design. Computer Aided Geometric Design, 4:257–268, 1987.

13. K. A. Erstad. L-systems, twining plants, Lisp. Master’s thesis, University of Bergen,
Norway, January 2002. http://www.ii.uib.no/~ knute/lsystems/.

14. K. Joy et. al. On-line geometric modeling notes. Computer Science Department, Uni-
versity of California, Davis. http://graphics.cs.ucdavis.edu/CAGDNotes.

15. G. Farin. Curves and surfaces for CAGD. A practical guide. Fifth edition. Morgan
Kaufmann, San Francisco, 2002.

16. P. Gerdes. Reconstruction and extension of lost symmetries: examples from the Tamil
of South India. Computers Math. Applic., 17(4–6):791–813, 1989.

17. R. Goldman. On the algebraic and geometric foundations of computer graphics. ACM

Transactions on Graphics, 21(1):52–86, January 2002.
18. J. S. Hanan. Parametric L-systems and their application to the modelling and visual-

ization of plants. PhD thesis, University of Regina, June 1992.
19. M. Hausner. A vector space approach to geometry. Dover Publications, Mineola, 1998.
20. R. Karwowski. Improving the process of plant modeling: The L+C modeling language.

PhD thesis, University of Calgary, September 2002.
21. A. Lindenmayer. Mathematical models for cellular interaction in development, Parts

I and II. Journal of Theoretical Biology, 18:280–315, 1968.
22. A. Lindenmayer. Developmental systems without cellular interaction, their languages

and grammars. Journal of Theoretical Biology, 30:455–484, 1971.

L-system Description of Subdivision Curves 59

23. A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg and
A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages 53–68.
Springer-Verlag, Berlin, 1974.

24. P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics

Interface ’86 — Vision Interface ’86, pages 247–253, 1986.
25. P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of plant de-

velopment. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages,

Vol. III: Beyond words, pages 535–597. Springer, Berlin, 1997.
26. P. Prusinkiewicz and J. Hanan. Lindenmayer systems, fractals, and plants, volume 79

of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1989 (second printing
1992).

27. P. Prusinkiewicz, J. Hanan, and R. Měch. An L-system-based plant modeling lan-
guage. In M. Nagl, A. Schürr, and M. Münch, editors, Applications of graph trans-

formations with industrial relevance, Lecture Notes in Computer Science 1779, pages
395–410. Springer-Verlag, Berlin, 2000.

28. P. Prusinkiewicz, K. Krithivasan, and M. G. Vijayanarayana. Application of L-systems
to algorithmic generation of South Indian folk art patterns and karnatic music. In
R. Narasimhan, editor, A perspective in theoretical computer science — commemo-

rative volume for Gift Siromoney, pages 229–247. World Scientific, Singapore, 1989.
Series in Computer Science Vol. 16.

29. P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-Ver-
lag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de
Boer, and L. Mercer.

30. A. Rosenfeld. A note on cycle grammars. Information and Control, 27:374–377, 1975.
31. M. Sabin. Subdivision surfaces. Tutorial notes, Shape Modeling International 2002

(Banff, Canada, May 18, 2002), 25 pp.
32. F. F. Samavati and R. Bartels. Multiresolution curve and surface representation:

reversing subdivision rules by least-squares data fitting. Computer Graphics Forum,
18(2):97–119, June 1999.

33. W Sierpiński. Sur une nouvelle courbe qui remplit tout une aire plaine. Bull. Acad.

Sci. Cracovie, Série A, pages 462–478, 1912. Reprinted in W. Sierpiński, Oeuvres

choisies, S. Hartman et al., editors, pages 52–66, PWN – Éditions Scientifiques de
Pologne, Warsaw, 1975.

34. G. Siromoney, R. Siromoney, and T. Robinson. Kambi kolam and cycle grammars. In
R. Narasimhan, editor, A perspective in theoretical computer science. Commemorative

volume for Gift Siromoney, pages 267–300. World Scientific, Singapore, 1989.
35. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. Wavelets for computer graphics:

theory and applications. Morgan Kaufman, San Francisco, CA, 1996.
36. J. Warren and H. Weimer. Subdivision methods for geometric design. Morgan Kauf-

man, San Francisco, CA, 2002.
37. D. Zorin, P. Schröder, A. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. Subdivision

for modeling and animation. SIGGRAPH 2000 Course Notes.

