
BioSystems 91 (2008) 458–472

Available online at www.sciencedirect.com

Stochastic P systems and the simulation of biochemical
processes with dynamic compartments

Antoine Spicher a,∗, Olivier Michel a,1, Mikolaj Cieslak b,
Jean-Louis Giavitto a, Przemyslaw Prusinkiewicz b

a IBISC-FRE 2873 CNRS & Université d’Évry, Genopole Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France
b Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada

Received 12 May 2006; received in revised form 19 October 2006; accepted 23 December 2006

Abstract
We introduce a sequential rewriting strategy for P systems based on Gillespie’s stochastic simulation algorithm, and show that the
resulting formalism of stochastic P systems makes it possible to simulate biochemical processes in dynamically changing, nested
compartments. Stochastic P systems have been implemented using the spatially explicit programming language MGS. Implementation
examples include models of the Lotka–Volterra auto-catalytic system, and the life cycle of the Semliki Forest virus.
© 2007 Elsevier Ireland Ltd. All rights reserved.

ments;
Keywords: Stochastic simulation algorithm (SSA); Dynamic compart

1. Introduction

Numerous natural processes have been proposed
as unconventional paradigms of computation. Biology
has been a particularly rich source of ideas, inspir-
ing such notions as neural networks (McCulloch and
Pitts, 1943), genetic algorithms (Holland, 1973), cellular
automata (Ulam, 1962; Von Neumann, 1966), L-systems
(Lindenmayer, 1968; Prusinkiewicz and Lindenmayer,
1990), and membrane computing (Păun, 2001; Cardelli,

2004).

The synergy between biology and computer science
is well illustrated by the formalism of Lindenmayer

∗ Corresponding author.
E-mail addresses: aspicher@ibisc.fr (A. Spicher), michel@ibisc.fr

(O. Michel), cieslak@cpsc.ucalgary.ca (M. Cieslak), giavitto@ibisc.fr
(J.-L. Giavitto), pwp@cpsc.ucalgary.ca (P. Prusinkiewicz).

1 On sabbatical leave at the Department of Computer Science, Uni-
versity of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N
1N4, Canada.

0303-2647/$ – see front matter © 2007 Elsevier Ireland Ltd. All rights reserv
doi:10.1016/j.biosystems.2006.12.009
Biochemical processes; P systems; SP systems

systems. Introduced as a mathematical model of the
development of multicellular organisms (Lindenmayer,
1968), L-systems gave rise to a branch of formal lan-
guage theory (Herman and Rozenberg, 1975; Rozenberg
and Salomaa, 1980), before being reapplied to biology
and computer graphics as a method for simulat-
ing and visualizing plant development (Prusinkiewicz
and Lindenmayer, 1990; Prusinkiewicz, 1999). Further
applications of L-systems include the generation of
space-filling curves (Prusinkiewicz et al., 1991), and
geometric modeling (Prusinkiewicz et al., 2003).

In this paper, we present a formalism for stochastic
simulation of biochemical processes taking place in com-
partmentalized structures. Examples of such structures
include living cells enclosing the nucleus, the mitochon-
dria, the Golgi complex, and other organelles, or – at a
larger scale – tissues and organs comprising individual

cells. The formalism combines:

• Gillespie’s stochastic simulation algorithm (SSA)
(Gillespie, 1977), which makes it possible to simulate

ed.

mailto:aspicher@ibisc.fr
mailto:michel@ibisc.fr
mailto:cieslak@cpsc.ucalgary.ca
mailto:giavitto@ibisc.fr
mailto:pwp@cpsc.ucalgary.ca
dx.doi.org/10.1016/j.biosystems.2006.12.009

System

•

o
P
l
s
o
t
(
a
t
t
G

r
a
o
a
n
(
l
T
t
P
i
e

s
A
T
s
l
e
s
a
P
l
2

w
r
d
A
f
2
i

A. Spicher et al. / Bio

reactions in well-mixed chemical systems using the
discrete-event simulation paradigm (Kreutzer, 1986)
and
Păun systems (P systems) (Păun, 2001), which make
it possible to represent processes that take place in
nested, dynamic (changing over time) compartments.

Stochastic P systems preserve the definition of atomic
perations (application rules) previously defined for

systems, but the commonly used maximum paral-
el application strategy is replaced with a stochastic
equential strategy. According to this strategy, atomic
perations are chosen at random and applied one at a
ime. A related strategy was introduced by Obtułowicz
2003), who assumed that the application rules are
ssigned fixed probabilities. In contrast, we assume that
he probabilities may change in the course of simula-
ion. This feature is essential to the implementation of
illespie’s algorithm.
The idea of incorporating stochastic strategies into

ewriting systems has a relatively long history. Stochastic
nd probabilistic L-systems were introduced to the the-
ry of formal languages by Jürgensen (1976); Eichhorst
nd Savitch (1980), and Yokomori (1980). Related
otions were applied by Nishida (1980); Prusinkiewicz
1987), and Prusinkiewicz and Hanan (1989) to simu-
ate variations in the development of modeled plants.
he concept of dynamically computing the probabili-

ies of rule application in L-systems was introduced in
rusinkiewicz (1987). A recent extension of L-systems

ncorporates a stochastic application strategy based
xplicitly on Gillespie’s algorithm (Cieslak, 2006).

In addition to Obtułowicz (2003), stochastic exten-
ions of P systems were proposed by Madhu (2003);
rdelean and Cavaliere (2003), and Pescini et al. (2006).
hat work was primarily devoted to a theoretical analy-
is of variants of P systems, expressed in terms of formal
anguage theory. One exception is the paper by Pescini
t al. (2006), which was devoted to the modeling and
imulation of biochemical processes. We compare their
pproach to our own in the conclusion. Furthermore, the
hD thesis by Bernardini (2005) has led to recently pub-

ished results that largely parallel ours (Bernardini et al.,
005; Cazzaniga et al., 2006a, b).

Mechanisms for the probabilistic application of rules
ere also introduced into general rewriting system envi-

onments. In Maude (Koushik et al., 2003), the authors
efine the notion of probabilistic rewriting theories.
probabilistic rewriting strategy was also proposed
or the Elan rewriting system (Bournez and Kirchner,
002; Bournez and Hoyrup, 2003). In both cases, rewrit-
ng strategies can be specified by the user. Gillespie’s
s 91 (2008) 458–472 459

algorithm could thus presumably be coded using these
systems, although no example has been given so far.

Gillespie-based stochastic simulation of biochemical
systems with static compartments has previously been
supported by selected systems biology packages, such as
E-cell (Tomita et al., 1999) and StochSim (Novère and
Shimizu, 2001). Dynamic compartments have been sup-
ported less frequently; a notable exception is the process
algebra of BioAmbients (Regev et al., 2004). In contrast
to that work, we are able to eliminate a compartment
and all its contents in one primitive operation, dissolve a
compartment and merge its contents with the parent com-
partment, create several identical sibling compartments
from a single one, and split the contents of a compartment
into several siblings.

Our paper is organized as follows. In Sections 2 and
3 we review the two foundations of our work: P systems
and Gillespie’s stochastic simulation algorithm. These
notions are combined into the definition of stochastic
P systems (SP systems) in Section 4. In Section 5 we
outline an implementation of SP systems in the MGS
programming language. A systematic translation of SP
system rules into MGS is described. The resulting imple-
mentation makes it possible to simulate biochemical
processes that take place in a well-mixed solution or
are dynamically compartmentalized. Two examples are
given in Section 6. The first example, the Lotka–Volterra
auto-catalytic system, only requires a single static
compartment. Dynamic compartments are used in the
second example, a model of a viral infection. In Sec-
tion 7 we present conclusions and directions for future
work.

2. P Systems

Păun systems, also called P systems or membrane sys-
tems, are a biologically motivated formalism describing
parallel distributed computation (Păun, 2000, 2001). P
systems are inspired by the organization and functioning
of a biological cell.

A cell is considered in an abstract way as a hierarchy
of compartments enclosed by membranes. Each com-
partment may include elementary objects (molecules)
as well as other compartments. Processes in a cell
are viewed as sequences of discrete events. Examples
of events are: a chemical reaction between molecules
within a compartment, transport of molecules outside
of, or into a compartment, and creation and dissolution

of compartments.

In the following sections, we give a formal definition
of the P system formalism. In contrast to the standard
approach, we do not represent membranes explicitly,

System
460 A. Spicher et al. / Bio

but consider them as a consequence of the nesting of
multisets.

2.1. Compartments and Multisets

Let O = {a, b, c, . . .} be the set of elementary objects
on which a P system will operate. These objects can
be contained in compartments, which are represented as
multisets: sets in which repetitions of the same element
are allowed. By analogy to set notation, the brackets
{|and|} are used to enclose the elements of a multiset
m. The empty multiset is written as {||}.

An elementary compartment contains only elemen-
tary objects. To represent the content of several nested
compartments, we consider multisets with elements that
are either elementary objects or, recursively, multisets.
For example,

m = {|{|a|}, b, b, c, {|a, b, {|c|}|}|}
is a multiset that contains three elementary objects (two
elements b and one element c), and two multisets: m1 =
{|a|} and m2. The multiset m2 contains one element a,
one element b and a singleton multiset containing one
element c. Several representations of this multiset are
shown in Fig. 1. When required, we assign types to com-
partments and indicate these types using labels (Fig. 1,
III).

We use the cons operator :: to add an element to a
multiset. For example, if m1 = {|1, {|1|}, 2|} and m2 =
{|2, 2, 3|}, then 2 :: m1 is equal to {|2, 1, {|1|}, 2|}, and
m1 :: m2 is equal to {|{|1, {|1|}, 2|}, 2, 2, 3|}. Further-
more, we use the comma operator to merge the content of
two (possibly nested) multisets. For example, m1, m2 =
{|1, {|1|}, 2, 2, 2, 3|}. Finally, we overload the comma
operator to allow one or both of its arguments to be
elementary objects. For example, if a and b are ele-

mentary objects and m is a multiset, then a, m = a :: m

and a, b = {|a, b|}. With this notation, the expressions
(a :: (b :: (c :: {||}))) and a, b, c denote the same multiset
{|a, b, c|}.

Fig. 1. Equivalent representations of a multiset: Venn diagram (I), tree
(II), and parenthesised expression (III). In the latter case, labels have
been added to indicate the type of each compartment.
s 91 (2008) 458–472

2.2. Evolution of a P System State

The state of a P system is represented by a multi-
set, which may change over time in a discrete fashion.
These changes are specified using sets of rules associ-
ated with compartment types. A rule α → (β, �) consists
of the left-hand side α and the right-hand side (β, �). The
left-hand side α (the predecessor) is a pattern intended
to match a sub-multiset of objects that belong to some
compartment m. The right-hand side consists of a mul-
tiset of objects β (the successor or result) and a target
location �. When a rule is applied, the multiset matching
α is replaced by the multiset β at location �. The location
� is specified by one of the following expressions:

• here: the result remains in the same compartment m
from which α was taken,

• inm′ : the result is transported to a compartment m′,
included in compartment m (this rule can only be
applied if m′ is (directly) nested in m),

• out: the result is transported out of compartment m
and added to the parent multiset,

• δ: after replacing α by β as in the case here, the
boundary surrounding compartment m is removed
(compartment m is dissolved and all the elements of
m are added to its parent compartment).

To shorten the notation, especially when dealing only
with elementary objects, we drop the outside brackets
enclosing multisets α and β. We also omit the here
location. Thus a rule {|a, b, c|} → {|c, d, d|}, here is
written as a, b, c → c, d, d. This notation is consistent
with the definition of comma as an operator that merges
elementary objects or multisets into a nested multiset.

Examples of P system rules are given below and
illustrated in Fig. 2 under the assumption that each rule
applies to compartment m1:

a, b → c a and b react to create c

a → {||} a vanishes

a → a, out a is released into the enclosing

compartment

a → a, inm2 a is transported tom2

a → {|a|}m3
a is isolated in a newly created

compartment

a → a, δ the boundary surrounding a is dissolved
2.3. P System Rule Application Strategy

When a rule is applied to a multiset m, the predecessor
objects are consumed and deleted from m. Consequently,

A. Spicher et al. / BioSystems 91 (2008) 458–472 461

partme

t
o
s
a
t
A
o
m
c
T
t
o
a
1

m
p
c
o
t
d
t
c

o
o
e

tion R , for instance A + B → C, may occur when the
Fig. 2. Example of a rule application in com

wo or more rules cannot apply concurrently to the same
bjects, and one rule has to be chosen. In rewriting
ystems, the policy for deciding which rule(s) will be
pplied is called the application strategy. For P sys-
ems, the maximal parallel strategy is commonly used.
ccording to this strategy, rules are applied simultane-
usly to as many elements as possible, so that no rule
atches the remaining elements of the multiset m. In the

ase of conflicts, rules are selected non-deterministically.
he motivation for parallel rewriting in P systems is that

he passing time affects simultaneously all the elements
f the multiset m. The same motivation underlies parallel
pplication of productions in L-systems (Lindenmayer,
968).

The maximal parallel strategy is well suited to the
odeling of discrete dynamic systems in which com-

onents operate synchronously. It is less well suited to
apture events that occur asynchronously in continu-
us time (Lindenmayer and Jürgensen, 1992), since, as
he time interval �t corresponding to a derivation step
ecreases, the probability that two events will occur in
he same interval decreases as well. This is the case when
onsidering chemical reactions at an atomic scale.
One can consider such situations from the perspective
f discrete-event simulation, assuming that events occur
ne at a time (the probability that two asynchronous
vents will occur exactly at the same time is equal
nt m1. See text for additional explanations.

to zero). This idea underlies Gillespie’s algorithm dis-
cussed below and leads to an alternative, sequential, rule
application strategy for P systems.

3. Stochastic Simulation of Chemical Reactions

Gillespie (1977) developed a stochastic method for
simulating well-mixed chemical systems. This method,
along with its subsequent improvements and extensions
(Gillespie, 2000; Gibson and Bruck, 2000; Gillespie,
2001), has recently found many applications in the area
of systems biology. This is due to its suitability for
simulating biochemical systems with small numbers of
molecules. Such systems cannot be adequately charac-
terized with classical continuous mathematical models
of chemical reaction kinetics, because the underlying
notion of concentration loses its meaning when the num-
ber of molecules is small.

From the computer science point of view, Gillespie’s
method relies on a discrete-event simulation (Kreutzer,
1986) of reactions between individual molecules. A reac-
μ

reacting molecules (A and B) collide with sufficient
energy to yield the product (molecule C). The proba-
bility P(μ, dτ) that reaction Rμ will take place over an
infinitesimal time interval dτ is proportional to

System
462 A. Spicher et al. / Bio

• the stochastic reaction constant cμ, which depends on
the type of reaction and temperature;

• the number hμ of distinct combinations of react-
ing molecules (for example, if the total number of
molecules of type A is equal to [A], and the total num-
ber of molecules of type B is equal to [B], the number
of combinations hμ is equal to [A][B]; see Gillespie
(1976) for further discussion); and

• the length of the time interval dτ.

We thus have:

P(μ, dτ) = hμcμ dτ = aμ dτ, (1)

where the product aμ = hμcμ is called the propensity of
reaction Rμ.

Let X(t) denote the state of the considered system at
time t. We will characterize this state in terms of N multi-
sets Xi of molecules of different species i = 1, 2, . . . , N.
Gillespie (1977) showed that the probability p̃(τ, μ)dτ,
with which next reaction Rμ will occur in the infinitesi-
mal time interval (t + τ, t + τ + dτ), is equal to

p̃(τ, μ)dτ = aμ e−aμτ dτ, (2)

Eq. (2) differs from Eq. (1) by the term e−aμτ , which
captures the probability that no reaction Rμ will take
place in the interval (t, t + τ). If the total number of dif-
ferent reaction types is M, the probability that the next
reaction will be of type μ and will occur in the time
interval (t + τ, t + τ + dτ) is

p(τ, μ)dτ = aμ e−a0τdτ, (3)

where a0 = �M
ν=1aν is the combined propensity of all M

reactions (Gillespie, 1977). Adding up the probabilities
expressed by Eq. (3) for all reaction types, we obtain the
probability p1(τ)dτ that the first reaction of an arbitrary
type will occur in the time interval (t + τ, t + τ + dτ):

p1(τ)dτ =
M∑

μ=1

p(τ, μ)dτ

=
M∑

μ=1

aμ e−a0τ dτ = a0 e−a0τdτ. (4)
The evolution of the system state over time is simu-
lated by iterating the following steps:

• given system state X(t), determine the type μ of the
next reaction and the inter-reaction time τ before this
reaction takes place,
s 91 (2008) 458–472

• modify the state X(t), taking into account the reactants
removed from the system and products added to the
system by reaction Rμ, and

• advance simulation time t by τ.

Gillespie proposed two methods to determine the
reaction type μ and the inter-reaction time τ in a man-
ner consistent with the distribution of probabilities given
by Eq. (3). They are called the direct method and the
first-reaction method. In the direct method, the time of
the next reaction is chosen using Eq. (4), considering
all reaction types at once. A particular reaction is then
chosen on the basis of the reaction propensities. In the
first reaction method, on the other hand, the time of the
first reaction of each type μ is chosen using Eq. (2). The
earliest reaction (with the smallest reaction time) is then
applied to update the system state, and the simulation
time is advanced accordingly.

Specifically, the direct method is based on the condi-
tional probability formula (Gillespie, 1977, p. 418):

p(τ, μ)dτ = p1(τ)dτP2(μ|τ), (5)

where p1(τ)dτ is the probability that the next reaction
will occur in the time interval (t + τ, t + τ + dτ), as
given by Eq. (4), and P2(μ|τ) is the conditional prob-
ability that the next reaction will be Rμ, if the time of
the next reaction is t + τ. This conditional probability is
obtained by dividing Eq. (3) by Eq. (4):

P2(μ|τ) = p(τ, μ)

p1(τ)
= aμ

a0
. (6)

The inter-reaction time τ and the next reaction Rμ are
chosen according to the probabilities given by Eqs. (4)
and (6) using the inversion method (Ross, 1989, p. 564).
Specifically, given two independent random numbers r1
and r2 generated with uniform distribution in the inter-
val [0, 1], the inter-reaction time is obtained using the
formula:

τ = 1

a0
ln

1

r1
, (7)

and the reaction index μ is determined by solving the
equation:

μ−1∑

ν=1

aν < r2a0 ≤
μ∑

ν=1

aν. (8)

In the first reaction method, the time τ of the first reac-
ν

tion of type ν is chosen independently of other reactions
for each ν = 1, 2, . . . , M with the inversion method
applied to Eq. (2). To this end, M independent random
numbers rν are generated with uniform distribution in

System

t
(

τ

T
t
s

4
S

4
S

r
s
o
D
e
r
r
l

c
c
t
s
t
C
1
m
t
o
s

4

s
d
i
c

•

•

A. Spicher et al. / Bio

he interval [0, 1], and times τν are calculated using Eq.
9), similar to Eq. (7):

ν = 1

aν

ln
1

rν
for ν = 1, 2, . . . , M. (9)

he smallest value τν is then chosen as the inter-reaction
ime, and the system state X is updated using the corre-
ponding reaction Rν.

. Compartmentalized SSA and Stochastic P
ystems

.1. Gillespie’s Algorithm as a Multiset Rewriting
trategy

Gillespie’s algorithm makes it possible to simulate
eactions in a well-mixed chemical solution. If such a
olution is represented by a multiset whose elementary
bjects are molecules (Banâtre and Le Métayer, 1986;
ittrich et al., 2001), then chemical reactions can be

xpressed as multiset rewriting rules. Gillespie’s algo-
ithm leads to a sequential application strategy for these
ules: only one rule is applied in each derivation (simu-
ation) step.

The sequential application strategy represents a
onsiderable departure from the maximal parallel appli-
ation strategy usually considered for P systems. In
he theory of formal languages, the distinction between
equential and parallel rewriting plays a fundamen-
al role, leading to different hierarchies of languages:
homsky versus Lindenmayer (Herman and Rozenberg,
975; Rozenberg and Salomaa, 1980). This distinction
ay also be relevant to the formal properties of P sys-

ems and deserves a further study. Nevertheless, here we
nly consider the modeling applications of stochastic P
ystems.

.2. Handling Compartments

The potential presence of nested compartments in P
ystems violates the assumption of homogeneous spatial
istribution of molecules on which Gillespie’s algorithm
s based. Nevertheless, the SSA can be extended to nested
ompartments as follows:

Reactions taking place within compartments are sim-
ulated by considering each compartment individually
(we assume here that molecules within each compart-

ment are distributed homogeneously);
P system rules involving transport of molecules
and creation and dissolution of membranes are
assigned their own propensities and treated as reac-
s 91 (2008) 458–472 463

tions, although they may affect two compartments at
a time.

Our extension preserves the discrete-event simulation
character of Gillespie’s method and treats reactions and
transport events as occuring instantaneously.

We define a derivation step in a stochastic P system
by analogy to the direct or first reaction method. In the
direct method, reactions of the same type, but associ-
ated with different compartments, are formally treated
as distinct reactions with their own propensities. This
distinction is achieved by renaming identical molecules,
and their associated reactions, that appear in different
compartments. After this renaming, the next reaction is
selected, and the simulation time advanced, as in the
single compartment situation.

In the first reaction method, the SSA is applied to
each compartment c separately, yielding reaction Rc and
reaction time τc for each compartment. The compartment
with the smallest reaction time is then selected and the
corresponding reaction is applied. A detailed algorithm
for the first reaction method is given below.

Let split() be the function that divides a nested
multiset m into two parts: the multiset of elementary
objects belonging to O and the multiset of the remaining
multisets:

split(m) = 〈m′;m′′〉
where m′ = {|x, x ∈ m and x 	= ∈O|},

m′′ = {|x, x ∈ m and x /∈ O|}.

Furthermore, let Rm denote the set of rules applicable
to m, and 〈τ; p〉 = SSA(m) be the result of the appli-
cation of one of these rules according to the original
Gillespie’s algorithm. In the pair 〈τ; p〉, τ is the time
increment related to the application of the selected rule
to m, and p is the new multiset. A simulation step of
a stochastic P system is then given by the following
recursive function:

function nestedSSA (m: nested multiset)
〈m′; m′′〉 := split(m)
〈τ0; n0〉 := SSA(m′)
let N = size (m′′)
for i = 1 to N do

〈τi; ni〉 := nestedSSA(m′′
i)

let j such that τj = min(0≤i≤N) τi

if j = 0 then return 〈τ0; (n0, m
′′)〉
else return 〈τj ; m′ :: m′′
1 :: . . . :: m′′

j−1 :: nj :: m′′
j+1 :: . . . :: m′′

N 〉

The above pseudo-code can be implemented in vari-
ous programming environments. An example is given in
the next section.

System
464 A. Spicher et al. / Bio

5. Implementation of Stochastic P Systems in MGS

MGS is a domain-specific programming language
supporting the modeling and simulation of dynami-
cal systems with a dynamical structure (Giavitto et al.,
2003). Numerous examples of such systems are found
in the area of biology. Computation in MGS consists
of the application of rewriting rules to dynamic data
structures. The rules and data structures are defined in
local terms, using the notion of neighborhood rather than
global coordinates or indexing schemes. Different types
of neighborhood (Giavitto and Michel, 2002) can be
specified within MGS, leading to a unified treatment of
collections of objects with different topologies (called
topological collections).

Below we present the features of MGS that are relevant
to the implementation of stochastic P systems.

5.1. Representation of P Systems States

As defined in Section 2, the state of a P system is a
nested multiset, called bag in the context of MGS. Each
element of a bag is a neighbor of all other elements.
Elements of bags can be any values supported by MGS
including numbers and symbols. Symbols are denoted
by back-quoted identifiers as ‘X.

The empty bag is written bag : (). The operations on
bags include cons (::) and comma, as defined in Sec-
tion 2. For example, the nested multiset of Fig. 1 can
be specified using the following MGS expression:

‘c :: #2 ‘b :: (‘a :: +bag : ())

:: (‘a :: ‘b :: (‘c :: bag : ()) :: bag : ()) :: bag : ().

The nesting of compartments is specified by the paren-
theses. The syntax #2 ‘X :: m is an abbreviation for ‘X ::
‘X :: m.

To handle P systems with typed compartments (cf.
Figs. 1 and 2), we rely on the notion of sub-typing pro-
vided by MGS. Sub-typing in MGS associates different
sub-types to various instances of objects of the same
type. For example, the following statements create bags
of two sub-types A and B:

collection A = bag; ;

collection B = bag; ;

The expressions A:() and B:() refer to empty bags of
different sub-types within the common type bag.
5.2. Transformations

To manipulate topological collections, MGS provides a
unifying construct, called transformation. A transforma-
s 91 (2008) 458–472

tion is a function defined by cases. Each case corresponds
to a specific rewriting rule. AnMGS rewriting rule consists
of the left-hand side, a rule qualifier, and the right-hand
side. The left-hand side is a pattern that specifies a sub-
collection to which the rule may be applied. The qualifier
characterizes conditions of rule application. The right-
hand side evaluates to the sub-collection that will replace
the sub-collection matched by the left-hand side.

The pattern syntax follows the grammar:

Atom ::= l|id|id : t,

Pattern ::= Atom|Atom,Pattern|Atom \ /Pattern

An Atom matches a literal value (l) or a pattern variable
bound to an element and used in the right-hand side of
the rule (id). The construct id:t matches a variable id of
type t. A Pattern is a finite sequence of Atoms.

The comma operator in the left-hand side of a rule
denotes the neighborhood relationship. For example, the
pattern x, y matches two elements that are neighbors. In
the context of bags, in which each element is a neighbor
of any other element, x, y matches any pair of elements.

The \/ construct, termed down, is used to descend into
a multiset nested within the current one. For example, if
m = {|a, {|b|}, {|c, d|}, e|}, the pattern a,n \ /(c,d) will
match the sub-collection {|a, {|c, d|}|} of m.

As a simple example of MGS code, let us consider a
variant of the sieve of Eratosthenes that computes the
bag of all prime numbers between 2 and n, given the bag
that contains all integers from 2 to n. The idea is to iterate
the transformation that substitutes y for a pair x, y such
that y divides x:

trans prime = {x,y⇒ if (x%y) == 0 then

y else x, y fi}

The prime transformation consists of only one rule. The
operator % computes the remainder from the division of
x by y. If any two values x and y in the bag are such that
y divides x then x is removed. If y does not divide x then
the pair x, y is replaced by itself.

Once defined, this transformation can be applied in
several ways:

(1) only once, like an ordinary function: prime(M);
(2) n times, using the iter option: prime[iter=n](M);
(3) until some predicate P holds: prime[iter = P](M)
(the argument of the predicate P is the result returned
by the last application of the transformation); and

(4) until the fixed point has been reached:
prime[iter = ‘fixpoint](M).

System

t
a
s
2
s

5

q

(

(

t
i
\
e

‘

i
n
b

s
[

T

a
t
r
t
a
m

T
T

R

α

α

α

α

α

A. Spicher et al. / Bio

By default, MGS transformations are applied using
he maximal parallel rewriting strategy. However, MGS
lso supports a parameterized sequential application
trategy (Spicher et al., 2006; Spicher and Michel,
006), which is suitable for implementing stochastic P
ystems.

.3. Gillespie’s SSA in MGS

A sequential stochastic rule is specified using arrow
ualifiers. The following two forms are available:

1) = {C = cμ} ⇒ to explicitly give the stochastic reac-
tion constant cμ for the rule;

2) = {A = \self.f(self)} ⇒ to specify the propen-
sity of the rule.

In the second case, f(self) is a function of the mul-
iset to which the transformation applies. This function
s specified using a notation based on lambda-calculus,
x.exp is a function of argument x with body exp. For
xample, the propensity of the rule:

X,‘Y = {A = \self.count(self,‘X)

∗count(self,‘Y)} ⇒ ‘Z

s computed by evaluating the function that returns the
umber of symbols ‘X multiplied by the number of sym-
ols ‘Y in the current bag self.

The use of the stochastic sequential application
trategy is indicated by the transformation option
strategy = ‘gillespie]. For example,

[strategy = ‘gillespie](m)

pplies transformation T to the bag m. It is assumed
hat each rule of T is qualified by either a stochastic

eaction constant or a propensity function. The elapsed
ime is available through a global variable ‘tau. The
pplied reacting rule is chosen using the first reaction
ethod.

able 1
ranslation for stochastic P system rules into an MGS transformation

ule in M Corresponding MGS rule

→cμβ, here α = {C = cμ} ⇒ β

→cμβ, in′
M m : M′, α = {C = cμ} ⇒ β :: m

→cμβ, out m : M \ /α = {A = \x.cμ ∗ co
→cμβ, δ m : M \ /α = {A = \x.cμ ∗ co
→cμ {|β|}M′ α = {C = cμ} => β :: M ′
s 91 (2008) 458–472 465

5.4. Stochastic P Systems in MGS

The full implementation of stochastic P systems that
operate on nested multisets with dynamic membranes
is based on the nestedSSA algorithm presented in Sec-
tion 4.1. The translation of a stochastic P system into
MGS raises two problems: (1) P system rules can be
constrained to specific compartments while MGS trans-
formations are defined globally, and (2) there are no MGS
transformations that correspond directly to the P system
transport, compartment creation and dissolution rules.
In other words, only P system rules of type here are
supported in MGS.

The first problem is solved by considering as many
bag types as there are rule sets attached to specific
compartments. Thus, for each rule set M, there is an
associated bag type M and an associated MGS transfor-
mation TM . The MGS implementation of the nestedSSA
algorithm is then modified so that for a bag of type M
only the transformation TM applies.

The second problem is properly addressed by coding
the P system rules that transport into a compartment, out
of a compartment, or dissolve a compartment. This is
achieved by including out and δ rules in each transfor-
mation T. Table 1 gives the translation of all possible
stochastic P system rules.

The first case is obvious. For the in rule, we match
a bag m of type M′ (the destination of the result) and the
pattern α, then we replace the matched elements by the
bag m with β added. For the out rule, we match a bag m
of type M containing an occurrence of α, and we replace m
by β and m with α removed (cf. the previous description
of the down pattern \/). The propensity of the translated
rule is explicitly computed by counting the number of
occurrences of α in bag m. This rule is added in each
transformation. The rule for the dissolution makes use
of the flat qualifier (Giavitto and Michel, 2001): the
elements of the collection β that appears on the right-

hand side are added to the current collection, instead
of being nested into the current collection as a single
element. Using the flat feature, it is easy to translate a
dissolution rule: we match a bag m of type M that contains

Appears in

TM only
TM only

unt(m,α)} ⇒ β :: m Each T
unt(m,α)flat} ⇒ β :: m Each T

TM only

466 A. Spicher et al. / BioSystems 91 (2008) 458–472

ions usi
Fig. 3. Results of two simulat

an occurrence of α, and we replace it by inserting the
elements of the bag m with α removed and β added. The
propensity of the translated rule is explicitly computed
by counting the occurrences of α in bag m. This rule is
added in each transformation. Finally, the last rule builds
a new collection of type M′ with elements β within the
current collection.

6. Examples

Below we present two examples of stochastic P sys-
tems and their MGS implementations. The first example
is an application of the Gillespie’s algorithm coded in
MGS. The second example illustrates the use of dynamic
compartments.

6.1. A model of the Lotka–Volterra Process

The Lotka–Volterra process was introduced by Lotka
as a model of coupled auto-catalytic chemical reactions,
and was investigated by Volterra as a model for studying
an ecosystem of predators and prey (Edelstein-Keshet,
1988). The reaction rules are as follows:

X + Y1 → X + Y1 + Y1,

Y1 + Y2 → Y2 + Y2, Y2 → Z

The dynamics of these reactions is conveniently charac-
terized using the predator–prey interpretation. The first
rule states that a prey Y1 reproduces after feeding on
a food resource X; this resource is renewable and thus
its concentration does not change as a result of feed-
ing. The second rule states that a predator Y2 reproduces
after feeding on prey Y1. Finally, the last rule specifies
that predators Y die of natural causes.
2

In the MGS expression of these rules, the members of
(ecological or chemical) species are represented by sym-
bols in a bag. Stochastic reaction constants are specified
as the C qualifiers of the rules. In the example below we
ng the Lotka–Volterra model.

assumed that these constants are equal to 0.001, 0.01 and
10, respectively:

A simulation of the Lotka–Volterra system consists
of an iterative application of the lotka volterra trans-
formation, beginning with the initial state of the system.
Such an application can be specified by the following
MGS code:

lotka volterra[iter\ = x.(tau >= tmax),

strategy = ‘gillespie]

(#10000 ‘X,#1000 ‘Y1,#1000 ‘Y2,bag : ()); ;

We assumed here that the iteration will proceed until
the elapsed time ’tau reaches tmax = 10. The ini-
tial state of the system consists of 10,000 members
of species X, 1000 members of species Y1, and 1000
members of species Y2. Traces of two stochastic simu-
lations, generated using different seeds for the random
number generator, are shown in Fig. 3. The simulations
reveal oscillations in the populations of both species Y1
and Y2, which is consistent with the dynamics of the
Lotka–Volterra model (Edelstein-Keshet, 1988). The use
of stochastic simulations reveals random variation in the
process, which is absent from deterministic simulations
based on differential equations.

6.2. A Model of Viral Infection

We present a high-level model of a viral infection

that follows the process outlined by Alberts et al. (1994,
pp. 273–280). The example involves the formation and
dissolution of membranes, as well as the transport of
individual molecules and entire compartments. This pro-

A. Spicher et al. / BioSystems 91 (2008) 458–472 467

F the Sem

c
(
m
c
r

6

c
o
S
s
c
s
i
p

c
v
c
a
w
b
c
t
(
p
(
t
6
m
o
c
(

ig. 4. Rough sketch of the seven steps describing a viral infection of

ess has previously been modeled using brane calculi
Cardelli, 2004), which treats dynamic nested compart-
ents in a manner similar to P systems. However, brane

alculi do not capture the stochastic aspect of molecular
eactions.

.2.1. Biological Background
Viruses are genetic elements enclosed in a protein

oat, which makes it possible for them to move from
ne cell to another. The structure and life cycle of the
emliki Forest virus are shown in Fig. 4. The virus con-
ists of a single strand of viral RNA surrounded by a shell
alled capsid. The capsid is composed of many virus is
urrounded by a second shell called the envelope. An
nfection is initiated when the virus binds to a receptor
rotein in the membrane of the host cell (Phase 1 in Fig. 4.

opies of the same C protein. Outside a cell, the The
irus then enters a healthy cell following a standard
ellular endocytosis pathway. Upon entering, the virus
cquires an additional membrane, called a vesicle,
hich is derived from the cell membrane. Subsequently,
oth the vesicle and the envelope dissolve, releasing the
apsid (Phase 2). The capsid is then disassembled into
he viral RNA and the C proteins that formed the capsid
Phase 3). The viral RNA is translated into the structural
roteins of the virus (Phase 4), and it is replicated
Phase 5). The old and the newly synthesized C proteins
hen bind to the viral RNA to form new capsids (Phase
). When a capsid comes into contact with the cellular

embrane, it is lined with the viral envelope and buds

ut to recreate the initial virus structure outside of the
ell. This virus may now infect another healthy cell
Phase 7).
liki Forest virus. The description of each step is given in the text.

6.2.2. Stochastic P Systems Model
We model infection by the Semliki Forest virus in

the following way. A multiset of type Universe repre-
sents the whole system comprised of cells and viruses.
A healthy cell is an empty multiset of type Cell (we
ignore the internal structure of the healthy cell, as it does
not play a role in our model). In contrast, an infected
cell contains viruses and their components. A virus out-
side of a cell is a multiset of type Envelope, which
contains a single multiset of type Capsid. The capsid,
in turn, contains one RNA molecule. Inside a cell, an
Envelope multiset may be further contained in a Vesicle
multiset.

With the multiset representation of the biological
compartments involved in the model, endocytosis
(Phase 1) corresponds to an in rule:

This is the only rule associated with the Universe mul-
tiset. The stochastic reaction constant C1 is proportional
to the probability that a virus will encounter a cell in the
universe. This probability has the form:

c1[Envelope][Cell]

where c1 is a constant coefficient.
The dissolution of the vesicle and the envelope (Phase

2), as well as the disassembly of the capsid (Phase 3), are
captured by the P system dissolution rules. The trans-
lation (Phase 4) and replication (Phase 5) of RNA are
reactions taking place inside a cell. The assembly of a

new capsid (Phase 6) is a multiset creation rule, and
the release of the virus (Phase 7) is an out rule. The
entire set of rules associated with a cell thus has the
form:

System
468 A. Spicher et al. / Bio

We assume here that a capsid consists of five C pro-
teins. Now that the stochastic P systems rules have been
defined, we can implement them in MGS.

6.2.3. MGS Implementation
We represent compartments involved in this model as

bag collections of different types:

collection Universe = bag; ;

collection Capsid = bag; ;

collection Envelope = bag; ;

collection Cell = bag; ;

collection Vesicle = bag; ;

A virus outside a cell is defined as:

(‘RNA :: Capsid : ()) :: Envelope : (); ;

The processes describing the viral infection take place
in two compartments: the Universe, where the virus
enters or leaves a cell, and a Cell. The first MGS
transformation describes the activities in the Universe:

The numbering of the rules corresponds to the

numbering of phases in Fig. 4. The virus enter-
ing a cell is described by the in rule P1. The
virus exiting a cell is described by the out rule P7.
The propensities are computed explicitly. The func-
tion countAll(Cell,Capsid,x) counts all the capsids
present in all the cells within the universe x. A comma
operator is used in the right-hand side of rule P7 to
incorporate a virus that has left a cell into the universe.
s 91 (2008) 458–472

The second MGS transformation describes processes
taking place in a cell:

In rule P2, the \/ operator has been used twice to
match a Vesicle that contains an Envelope contain-
ing a Capsid. The propensities of the first two rules are
computed explicitly. The propensities of the remaining
three rules are computed automatically by MGS, given the
stochastic reaction constants.

6.2.4. A Simulation Example
Fig. 5 shows the result of four simulations that began

with 20 healthy cells and 1, 10 or 100 viruse molecules.
The initial state was specified by the expression:

initial state := (#n(‘RNA :: Capside : ()) ::

Envelope : ()) :: #20 Cell : () :: Universe : (); ;

where #n is the number of viruses. In the absence of
quantitative data, all stochastic reaction constants were
set to the same value of 1.0. Fig. 5(a) highlights the
discrete-event nature of the stochastic simulation algo-
rithm, with the infrequent events separated in time for
small virus molecule numbers. Individual runs signif-
icantly differ from each other in this case. Fig. 5(b)
and (c) show two typical runs beginning with 10 virus
molecules. These simulations differ in details, but gener-
ally proceed in a similar manner. The variance between
runs is further reduced for larger initial numbers of
molecules (Fig. 5(d)). The mean time between con-

secutive events decreases as the number of molecules
grows.

As expected, the simulations show that the total num-
bers of RNA molecules, vesicles, capsids, and viruses

A. Spicher et al. / BioSystems 91 (2008) 458–472 469

F n. Simulation begins with 20 healthy cells and (a) 1, (b and c) 10, or (d) 100
v tructures.

i
i
t
i
f
s
r

6

t
e
t
a
1
L

c
e
i
r
i
e
n

a

ig. 5. Sample simulation results for the Semliki Forest virus infectio
irus molecules. Each curve shows the total number of molecules or s

ncrease exponentially with time. In contrast, after an
nitial increase, the number of free C proteins appears
o saturate. We interpret this as the effect of almost
mmediate reincorporation of free C proteins into newly
ormed capsids. More in-depth applications of the pre-
ented model will be possible once experimental data
elated to the reaction times become available.

.2.5. Performance Analysis
Simulation times for the Semliki Forest virus infec-

ion model are shown in Fig. 6. The model was
xpressed in the MGS language and implemented using
he MGSsystem.1 All simulations were performed on

Dell GX 260 computer with the Intel Pentium IV
800 MHz processor and 1 GB of RAM, running under
inux Debian Sarge (Debian, 2006) with kernel 2.4.26.

Simulations of up to several thousand events are exe-
uted in a few seconds, which makes it possible to
xplore the model interactively. As the number of events
ncreases, the simulation times grow exponentially. This

eflects the linear relation between the exponentially
ncreasing number of molecules in the Semliki For-
st virus infection model and the search time for the
ext reaction (Eq. (8)). The simulation times could

1 The source code and executables for the MGS system are freely
vailable at http://mgs.ibisc.univ-evry.fr.
Fig. 6. Performance analysis of the simulation of the Semliki For-
est virus infection. The plot represents mean values and variance of
execution times for 20 runs.

be reduced using binary search to determine the next
reaction (Gibson and Bruck, 2000), or using further
extensions of Gillespie’s algorithm, such as τ-leaping
(Gillespie, 2001) or R-leaping (Auger et al., 2006).

7. Conclusions
In this paper we presented stochastic P systems as a
formalism for modeling and simulating biochemical pro-
cesses that take place in dynamic, nested compartments.

http://mgs.ibisc.univ-evry.fr

System
470 A. Spicher et al. / Bio

We also proposed an implementation of stochastic P
systems in MGS, an experimental programming lan-
guage designed to support computing in topological
spaces.

Our objectives are related to those of Pescini et al.
(2006), who simulated chemical reactions using proba-
bilistic P systems. While their approach preserves the
maximal parallel rule application strategy originally
proposed for P systems, our method is based on the
sequential application of stochastic rules introduced
by Obtułowicz (2003). In contrast to that work, we
assumed, as does Bernardini (2005), that the rules may
have dynamically computed probabilities. This made
it possible to relate the resulting formalism to Gille-
spie’s stochastic simulation algorithm, the fundamental
algorithm for stochastic simulation of chemical reac-
tions. We also applied stochastic P systems to model
biochemical systems with dynamic and nested compart-
ments. The results are illustrated using two examples:
a simulation of the Lotka–Volterra process, based on
a straightforward application of Gillespie’s algorithm,
and a simulation of a virus infection, which involves
dynamic nested compartments. Our results show that
P systems are relevant not only as a biologically
motivated theoretical model of computation, but also
as a basis for modeling and simulation in systems
biology.

Many problems are open for further work. One
direction is the acceleration of computation. A straight-
forward approach is the replacement of Gillespie’s
algorithm by its computationally more efficient coun-
terpart, proposed by Gibson and Bruck (2000).
Furthermore, in a multiprocessing environment, the
simulation of biochemical reactions that take place
simultaneously in different compartments can be viewed
as an instance of parallel discrete-event simulation. The
effectiveness of such simulations can be improved using
the notions of virtual time (Jefferson, 1985) and time
warp (Jefferson et al., 1987).

The second direction is the addition of geomet-
ric features to stochastic P systems. The modeling
and simulation of systems in which compartments can
expand and contract represents a theoretical challenge
with important practical ramifications (Takahashi et al.,
2005; Lemerle et al., 2005). For example, such models
may represent fundamental processes in a cell, such as
cytokinesis and mitosis. As these processes take place
over an extended period of time, a further extension

of the model may be needed, lifting the assumption
of instantaneous reactions. In addition, inclusion of
geometry may provide a basis for considering the
impact of the volume of compartments on the propen-
s 91 (2008) 458–472

sities of reactions. Stochastic P systems may represent
a potentially useful point of departure for modeling
and simulating such processes within a well-founded
formalism.

Acknowledgements

We thank Brendan Lane for editorial assistance,
and the anonymous referees for insightful and help-
ful comments. The support of the Centre National de
la Recherche Scientifique ACI grant “NANOPROG”
to O.M., and the Natural Sciences and Engineering
Research Council of Canada Discovery Grant RGP
130084 to P.P. is gratefully acknowledged.

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J., 1994.
Molecular Biology of the Cell, 3rd ed. Garland, New York.

Ardelean, I., Cavaliere, M., 2003. Modelling biological processes
by using a probabilistic P system software. Nat. Comput. 2 (2),
173–197.

Auger, A., Chatelain, P., Koumoutsakosa, P., 2006. R-leaping: accel-
erating the stochastic simulation algorithm by reaction leaps. J.
Chem. Phys. 125, 084103-1-084103-13.

Banâtre, J.P., Le Métayer, D., 1986. A new computational model and
its discipline of programming. Technical Report RR-0566, INRIA.

Bernardini, F., 2005. Membrane systems for molecular computing
and biological modelling. Ph.D. thesis, University of Sheffield,
Sheffield, UK.

Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Pérez-
Jiménez, M.J., Romero-Campero, F.J., 2005. On P systems as a
modelling tool for biological systems. In: Freund, R., Păun, Gh.,
Rozenberg, G., Salomaa, A. (Eds.), Workshop on Membrane Com-
puting, vol. 3850. Lecture Notes in Computer Science. Springer,
pp. 114–133.

Bournez, O., Hoyrup, M., pp. 61–75 2003. Rewriting logic and
probabilities. In: Nieuwenhuis, R. (Ed.), Proceedings of the 14th
International Conference on Rewriting Techniques and Applica-
tions (RTA’03), vol. 2706. Lecture Notes in Computer Science.
Springer, Berlin.

Bournez, O., Kirchner, C., pp. 252–266 2002. Probabilistic rewrite
strategies. applications to ELAN. In: Tison, S. (Ed.), Proceedings of
Rewriting Techniques and Applications, 13th International Confer-
ence, vol. 2378. Lecture Notes in Computer Science. Copenhagen,
Denmark, Springer.

Cardelli, L., 2004. Brane calculi. In: Danos, V., Schächter, V. (Eds.),
Computational Methods in Systems Biology, vol. 3082. Lecture
Notes in Computer Science. Springer, Berlin, pp. 257–278.

Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G., 2006a. Tau leaping
stochastic simulation method in P systems. In: Pre-Proceedings of
the 7th Workshop on Membrane Computing, WMC7, Leiden, The
Netherlands.

Cazzaniga, P., Pescini, D., Romero-Campero, F.J., Besozzi, D., Mauri,

G., pp. 145–164 2006b. Stochastic approaches in P systems for
simulating biological systems. In: Gutiérrez-Naranjo, M.A., Păun,
Gh., Riscos-Núñez, A., Romero-Campero, F.J. (Eds.), Proceedings
of the 4th Brainstorming Week on Membrane Computing, vol. I.
Fénix Editora. Sevilla, Spain.

System

C

D
D

E

E

G

G

G

G

G

G

G

G

H

H

J

J

J

K

K

L

L

L

A. Spicher et al. / Bio

ieslak, M., 2006. Stochastic simulation of pattern formation: an appli-
cation of L-systems. Master’s thesis, University of Calgary.

ebian, 2006. The Debian project web site. http://www.debian.org.
ittrich, P., Ziegler, J., Banzhaf, W., 2001. Artificial chemistries—a

review. Artif. Life 7 (3), 225–275.
delstein-Keshet, L., 1988. Mathematical Models in Biology. Random

House, New York.
ichhorst, P., Savitch, W.J., 1980. Growth functions of stochastic Lin-

denmayer systems. Inform. Control 45 (3), 217–228.
iavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P., 2003. Mod-

eling and simulation of biological processes in the context of
genomics. In: Hermes, Dieppe, Ch. (Eds.), Computational Models
for Integrative and Developmental Biology.

iavitto, J.-L., Michel, O., 2001. MGS: a rule-based programming lan-
guage for complex objects and collections. Electr. Notes Theor.
Comput. Sci. 4, 59.

iavitto, J.-L., Michel, O., 2002. The topological structures of mem-
brane computing. Fund. Inform. 49 (1–3), 107–129.

ibson, M.A., Bruck, J., 2000. Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Chem.
Phys. 104, 1876–1889.

illespie, D.T., 1976. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Comput.
Phys. 22, 403–434.

illespie, D.T., 1977. Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem. 81 (25), 2340–2361.

illespie, D.T., 2000. Chemical Langevin equation. J. Chem. Phys.
113, 297–306.

illespie, D.T., 2001. Approximate ¡!–¡query¿Please check the dele-
tion of reference Gillespie (2001b) which was the repetition of
reference Gillespie (2001a).¡/query¿–¿accelerated stochastic sim-
ulation of chemically reacting systems. J. Chem. Phys. 115,
1716–1733.

erman, G.T., Rozenberg, G., 1975. Developmental Systems and Lan-
guages. North-Holland, Amsterdam.

olland, J.H., 1973. Genetic algorithms and the optimal allocation of
trials. SIAM J. Comput. 2 (2), 88–105.

efferson, D.R., 1985. Virtual time. ACM Trans. Program. Lang. Syst.
7 (3), 404–425.

efferson, D.R., Beckman, B., Wieland, F., Blume, L., 1987. Dis-
tributed simulation and the time warp operating system. Oper. Syst.
Rev. 21, 77–93.

ürgensen, H., 1976. Probabilistic L-systems. In: Lindenmayer, A.,
Rozenberg, G. (Eds.), Automata, Languages, Development. North-
Holland, Amsterdam, pp. 211–225.

oushik, S., Kumar, N., Meseguer, J., Agha, G., 2003. Probabilistic
rewrite theories. Technical Report 2343, University of Illinois at
Urbana Champaign.

reutzer, W., 1986. System Simulation Programming Styles and Lan-
guages. Addison-Wesley Publishing Co., Reading, MA.

emerle, C., Di Ventura, B., Serrano, L., 2005. Space as the final fron-
tier in stochastic simulations of biological systems. FEBS Lett.
579, 1789–1794.

indenmayer, A., 1968. Mathematical models for cellular interac-
tion in development. Parts I and II. J. Theor. Biol. 18, 280–
315.

indenmayer, A., Jürgensen, H., 1992. Grammars of development:

discrete-state models for growth, differentiation, and gene expres-
sion in modular organisms. In: Ronzenberg, G., Salomaa, A. (Eds.),
Lindenmayer Systems, Impacts on Theoretical Computer Science,
Computer Graphics and Developmental Biology. Springer, pp.
3–21.
s 91 (2008) 458–472 471

Madhu, M., 2003. Probabilistic rewriting P systems. Int. J. Found.
Comput. Sci. 14 (1), 157–166.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of ideas immanent
in nervous activity. Bull. Math. Biophys. 5, 115–133.

Nishida, T., 1980. K0L-systems simulating almost but not exactly the
same development—the case of Japanese cypress. Memoirs Fac.
Sci., Kyoto University, Ser. Biol. 8, 97–122.

Novère, N.L., Shimizu, T.S., 2001. STOCHSIM: modelling
of stochastic biomolecular processes. Bioinformatics 17 (6),
575–576.

Obtułowicz, A., 2003. Probabilistic P systems. In: Păun, Gh.,
Rozenberg, G., Salomaa, A., Zandron, C. (Eds.), Membrane
Computing, International Workshop, Curtea de Arges, Romanai,
vol. 2597. Lecture Notes in Computer Science. Springer, Berlin,
pp. 377–387.

Păun, Gh., 2000. The P system web page: http://psystems.
disco.unimib.it/.

Păun, Gh., 2001. From cells to computers: computing with membranes
(P systems). Biosystems 59 (3), 139–158.

Pescini, D., Besozzi, D., Mauri, G., Zandron, C., 2006. Dynami-
cal probabilistic P systems. Int. J. Found. Comput. Sci. 17 (1),
183–204.

Prusinkiewicz, P., pp. 534–548 1987. Applications of L-systems to
computer imagery. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozen-
berg, G. (Eds.), Proceedings of the 3rd International Workshop on
Graph Grammars and their Application to Computer Science, vol.
291. Lecture Notes in Computer Science. Springer, Berlin.

Prusinkiewicz, P., 1999. A look at the visual modeling of plants using
L-systems. Agronomie 29, 211–224.

Prusinkiewicz, P., Hanan, J., 1989. Lindenmayer Systems, Fractals and
Plants. Springer, Berlin.

Prusinkiewicz, P., Lindenmayer, A., Hanan, J.S., Fracchia, F.D.,
Fowler, D.R., de Boer, M.J.M., Mercer, L., 1990. The Algorithmic
Beauty of Plants. Springer, New York.

Prusinkiewicz, P., Lindenmayer, A., Fracchia, F.D., 1991. Synthe-
sis of space-filling curves on the square grid. In: Peitgen, H.-O.,
Henriques, J.M., Penedo, L.F. (Eds.), Fractals in the Fundamen-
tal and Applied Sciences. North-Holland, Amsterdam, pp. 341–
366.

Prusinkiewicz, P., Samavati, F.F., Smith, C., Karwowski, R., 2003. L-
system description of subdivision curves. Int. J. Shape Model. 9
(1), 41–59.

Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E., 2004.
Bioambients: an abstraction for biological compartments. Theor.
Comput. Sci. 325 (1), 141–167.

Ross, S.M., 1989. Introduction to Probability Models, 4th ed. Aca-
demic Press.

Rozenberg, G., Salomaa, A., 1980. The Mathematical Theory of L-
systems. Academic Press, New York.

Spicher, A., Michel, O., 2006. Stratgie d’application stochastique de
rgles de rcritures dans le langage MGS. In: Michel, O. (Ed.),
Journes Francophones des Langages Applicatifs. INRIA, Roc-
quencourt.

Spicher, A., Michel, O., Giavitto, J.-L., 2006. Rewriting and
Simulation—Application to the Modeling of the Lambda Phage
Switch. No. 5 in Modlisation de systmes biologiques complexes
dans le contexte de la gnomique. Genopole, Evry.
Takahashi, K., Arjunan, S.N.V., Tomita, M., 2005. Space in systems
biology of signaling pathways–towards intracellular molecular
crowding in silico. FEBS Lett. 579, 1783–1788.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Mat-
suzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter

http://www.debian.org
http://psystems.disco.unimib.it/
http://psystems.disco.unimib.it/

System
472 A. Spicher et al. / Bio
III, J.C.C.A.H., 1999. E-cell: software environment for whole-cell
simulation. Bioinformatics 15 (1), 72–84.

Ulam, S.M., 1962. On some mathematical problems connected with
patterns of growth of figures. Proc. Symp. Appl. Math. 14,
215–224.
s 91 (2008) 458–472
Von Neumann, J., 1966. Theory of Self-Reproducing Automata. Uni-
versity of Illinois Press, Urbana and Chicago.

Yokomori, T., 1980. Stochastic characterizations of EOL languages.
Inform. Control 45 (1), 26–33.

	Stochastic P systems and the simulation of biochemical processes with dynamic compartments
	Introduction
	P Systems
	Compartments and Multisets
	Evolution of a P System State
	P System Rule Application Strategy

	Stochastic Simulation of Chemical Reactions
	Compartmentalized SSA and Stochastic P Systems
	Gillespie's Algorithm as a Multiset Rewriting Strategy
	Handling Compartments

	Implementation of Stochastic P Systems in MGS
	Representation of P Systems States
	Transformations
	Gillespie's SSA in MGS
	Stochastic P Systems in MGS

	Examples
	A model of the Lotka-Volterra Process
	A Model of Viral Infection
	Biological Background
	Stochastic P Systems Model
	MGS Implementation
	A Simulation Example
	Performance Analysis

	Conclusions
	Acknowledgements
	References

