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Abstract
Self-similarity of plants has attracted the attention of biologists for at least 50 years, yet its
formal treatment is rare, and no measure for quantifying the degree of self-similarity currently
exists. We propose a formal definition and measures of self-similarity, tailored to branching
plant structures. To evaluate self-similarity, we make use of an algorithm for computing topo-
logical distances between branching systems, developed in computer science. The formalism is
illustrated using theoretical branching systems, and applied to analyze self-similarity in two
sample plant structures: inflorescences of Syringa vulgaris (lilac) and shoots of Oryza sativa
(rice).
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1. INTRODUCTION

Repetitive patterns are readily noticeable in the
growth and structure of many living organisms. In
particular, modular organization is an essential ele-
ment of the development and structure of plants.1–5

This is essential to the understanding of plant biol-
ogy, and plays an important role in the formal
analysis6 and simulation7,8 of plants.

In some cases, the modules are arranged into
compound, recursively nested, fractal-like struc-
tures, with similar patterns appearing at differ-
ent scales9 (Fig. 1). In botany, an early study of
such structures is due to Arber.10 Troll11 defined
a compound inflorescence as a system consisting
of the main florescence and paracladia (term intro-
duced originally by Schultz12) that repeat the struc-
ture of the main florescence. This concept was
later formalized by Fritjers and Lindemayer,13 who
defined paracladia as “branches which repeat the
florescence of the main axis and which on their
turn can give rise to paracladia of their own.”
Prusinkiewicz et al.14 introduced a related concept
of branch mapping, according to which, “given two
branches of the same order, the shorter branch
is identical [. . .] to the top portion of the longer
branch.” Mündermann15 further studied these con-
cepts as a basis for constructing three-dimensional
plant models. More recently, Prusinkiewicz16 intro-
duced the notion of topological self-similarity,
which relates plant self-similarity to the theory of
L-systems.8,17,18

In comparison to inflorescences, self-similar orga-
nization is less obvious in trees, which develop
over a longer period of time, and therefore are
more prone to the influences of the environment.
Nevertheless, the branching systems of trees also
result from repetitive processes, in which vari-
ous meristems follow similar sequences of states
and produce similar structures as a result. These
sequences have been characterized by biologists in
such terms as age state,19 morphogenetic program,20

and physiological age.21 This last notion made it
possible, for example, to exploit similarities in
the development and structure of Zelkova serrata
(Japanese elm) in the construction of a simula-
tion model,22 where the sequence of physiological
ages of a typical meristem in the plant served as
a template (called the reference axis) for all plant
meristems.

Self-similarity, like symmetry, is not easily quan-
tifiable: it is usually considered to be either absent
or present. Real plants, however, may be self-similar
only to some degree. In this paper, we propose a def-
inition of self-similarity in branching structures, and
describe a procedure for quantifying it in measured
or simulated plants. This procedure is based on
a method for comparing tree-like structures intro-
duced by Zhang23 and extended to the problem
of comparing plants.24,25 We first analyze the self-
similarity measures using branching structures with
controlled, algorithmically generated topology. We
then apply these measures to analyze self-similarity

Fig. 1 Examples of plants showing remarkably self-similar branching structures: A fern leaf, a compound inflorescence (lilac),
and a romanesco broccoli.
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in two real plant structures obtained from field
measurements.

2. THEORETICAL CONCEPTS

2.1. Self-Similarity of Axial Trees

A plant is viewed as an assembly of adjacent botani-
cal components such as internodes or annual growth
increments.26 Such a structure can be formally
described by defining a set of vertices V that repre-
sent the plant components (each vertex correspond-
ing to a plant part: internode, growth unit, etc.),
and a list E of pairs of vertices that describes the
adjacency of these components.6 We assume that
each component v is physically attached to the
plant body through at most one parent component,
denoted parent (v). The resulting topological struc-
ture is called a rooted tree graph T = (V,E). In
such a graph, every vertex except one (the root r)
has exactly one parent vertex: the root has no par-
ent. In the following, a tree graph rooted in r will
be denoted by T [r], and the empty tree graph will
be denoted by θ = (∅, ∅). In order to identify the
different axes on a given plant, two types of rela-
tions between entities are distinguished: an entity
can either precede (symbol <) or bear (symbol +)
another entity. An axial tree8 is then defined as a
rooted tree in which an entity can be attached to at
most one other entity by a < connection. Formally,
we have:

Definition 1 (Axial tree). An axial tree is a
graph T = (V,E, α), where V is a finite vertex set,

E is a finite set of ordered vertex pairs, and α is a
mapping of E into {<,+}, provided that:

• T = (V,E) is a rooted tree, and
• the edge type function α satisfies the condition

if α(x, y) = α(x, z) = ‘‘<’’ then y = z

for all (x, y) ∈ E and (x, z) ∈ E.

We define the axis of v as the set of vertices that
are connected to the given vertex v through paths
consisting only of ‘‘<’’-edges. The second property
of Definition 1 implies that this axis is always a lin-
ear sequence of vertices. We denote this sequence
by A(v):

A(v) = {v1, v2, . . . , vn} if v1 = v and
α(vi, vi+1) = ‘‘<’’ for all i = 1, 2, . . . , n − 1.

(1)

We call the axis A(r) of the root r of T the trunk
of T . For any vertex v, rank(v) is the number of
vertices in A(v). These definitions are illustrated in
Figs. 2a and 2b.

Definition 2 (Axial tree isomorphism). Let us
consider two axial trees, T1 = (V1, E1, α1) and T2 =
(V2, E2, α2). A bijection φ from V1 to V2 is an axial
tree isomorphism if:

• for each (x, y) ∈ E1, (φ(x), φ(y)) ∈ E2, and
• α2(φ(x), φ(y)) = α1(x, y).

Two structures T1 and T2 are thus isomorphic
(denoted T1 ≡ T2) if they are identical except for
the labels of their components. We can now formal-
ize the notion of paracladia:

(a) (b) (c)

Fig. 2 Different sub-structures and sets in an axial tree. (a) Visualization using a schematic plant representation.
(b) Visualization using the equivalent axial tree representation. (c) Definition of the set B(r) for an axial tree T [r].
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Definition 3 (Paracladium). Let v be a vertex
of T . T [v] is a paracladium of T if there exists a
vertex w in the trunk of T such that T [v] ≡ T [w].

The notion of paracladium enables us to define
a notion of self-similarity which captures the main
features of nested structures discussed in the
introduction.

Definition 4 (Self-similarity). An axial tree T
is self-similar if all of its sub-branching systems
are paracladia, i.e. ∀v ∈ V , T [v] is a paracladium
of T .

In a self-similar axial tree, the trunk provides
a template for the branching pattern of the entire
structure. A small branching system is isomorphic
to a distal part of the trunk branching system,
while a large branching structure is isomorphic to a
larger distal part of the trunk branching system.
Figure 3 illustrates this definition using different
self-similar branching structures as examples. We
note that self-similar structures may have different
degrees of apparent structural complexity, related
to their maximum branching order.

Now, let us consider the question of deciding
whether a given axial tree structure is self-similar. A
naive approach based on Definition 4 would consist
of checking, for each vertex v of the tree, whether
there is a corresponding vertex w of the trunk such
that T [v] ≡ T [w]. However, the following proposi-
tion enables us to greatly simplify this approach by
making use of the recursive character of self-similar
branching structures.

For any vertex v ∈ V, let us call B(v) the
set of vertices x ∈ V , such that x �∈ A(v) and
parent (x) ∈ A(v). B(r), for example, is the set of
root vertices of all first-order branches of the tree
T [r] (Fig. 2c).

Proposition 5. An axial tree T [r] is self-similar if
and only if for every vertex v ∈ B(r), the branch
T [v] is a paracladium of T [r].

The proof is given in the appendix. Its intuition
is as follows. Suppose that all of the first-order
branches have been proved to be paracladial. This
means that any such branch B1 is isomorphic to
some distal part T1 of the trunk (Figs. 4a and 4b).
Any second-order branch B2 of B1 is then isomor-
phic to a branch T2 of T1. However, a branch of T1

is a first-order branch; hence, by hypothesis, T2 is a
paracladium, and so must be B2. By applying this
argument recursively we show that any branch Bn

is a paracladium, because branch Bn of order n is
isomorphic to some branch Bn−1 of order n − 1,
which in turn is isomorphic to some branch Bn−2 of
order n − 2, and this chain of equalities will even-
tually stop at some distal portion of order 0 of the
trunk branching system.

Proposition 5 has two major implications. First,
it shows that the isomorphism between first-order
branches of a tree T and distal portions of the trunk
of T is a necessary and sufficient condition for the
self-similarity of T . Second, it reveals that nesting
of paracladial structures is an inherent feature of
self-similarity as specified by Definition 4: the sub-
branches of larger paracladial branches must them-
selves be paracladial branches. We will make use of
these properties in the following sections.

2.2. Comparing Branching Systems
to Assess Self-Similarity

Let us now consider the computational aspect of
verifying whether two axial trees are isomorphic.
For simple trees, this problem can be solved by
recursively comparing the branching systems borne

(a) (b) (c) (d) (e)

Fig. 3 Perfectly self-similar branching structures with different maximum branching orders (equal to 1, 2, 3, 4 and 1, for a
to e) and different apparent complexity.
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(a) (b)

Fig. 4 The recursive principle of self-similarity in plants. (a) A visualization using a single branching structure. (b) A
visualization using a general representation of branching structures.

by the trunk, starting at the root. In general, how-
ever, each node may bear several branches, which
makes deciding whether two structures are isomor-
phic a difficult combinatorial problem.

Fortunately, this problem turns out to have
an efficient algorithmic solution. In this approach,
verifying whether two branching structures are
identical comes down to counting the minimum
number of atomic operations required to transform
one structure into the other. If this number turns
out to be 0, then the two structures are isomorphic.
The method thus relies on the computation of edit
distances between tree structures.23,24 In this sec-
tion, we sketch the basic principle underlying the
definition of this distance, which will subsequently
be used as the main mathematical tool for the def-
inition of a measure of self-similarity.

The evaluation of similarity between branching
structures has been studied in computer science and
is known as the tree-to-tree comparison problem.27

The distance between two tree graphs is defined as
the minimum cost of a sequence of edit operations
which transforms one tree graph into the other. We
consider three kinds of atomic edit operations on a
tree graph T : substituting one vertex for another

(note that this changes their labels), deleting a ver-
tex, and inserting a vertex.23 A constraint is added
to the definition of insertions and deletions:a if a
node is inserted between a parent node and its chil-
dren, the new node must become the parent vertex
of all the children (and not only of a subset of them);
deletions are similarly constrained.

A cost function is defined for each edit opera-
tion s which assigns a non-negative real number c(s)
to s as follows: c(s) = dsub(v,w) if s is a substitution
of v by w; and c(s) = dindel(v) if s is an insertion or a
deletion of vertex v. We assume, for any pair of ver-
tices v and w, that dsub(v,w) ≤ dindel(v) + dindel(w).

In this work, we use a purely topological elemen-
tary distance,24 which captures differences in the
arrangement of plant components without taking
their properties (such as type or geometry) into
account. Formally, dsub(v,w) = 0 and dindel(v) = 1
for any pair (v,w) of vertices of the tree graph.
Using this elementary distance restricts the eval-
uation of self-similarity to the topology of plant
architecture.

Let S = (s1, s2, . . . , sn) be a sequence of n edit
operations that transforms a tree graph T1 into
another tree graph T2. The cost C(S) of S is defined

aZhang and Jiang28 have shown that the computation of distance between tree graphs using unconstrained edit operations is a
MAX SNP-hard problem, i.e. there is no polynomial-time solution or approximation scheme for this problem. The introduction
of constraints makes it possible to find a solution in polynomial time.
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by summing up the cost of the edit operations that
compose S: C(S) =

∑
s∈S c(si). The dissimilarity

measure D(T1, T2) between a tree graph T1 and a
tree graph T2 is then defined as the minimum cost
of any sequence that transforms T1 into T2. If this
distance is 0, then no operations are required to
transform T1 into T2; this only happens if T1 is iso-
morphic to T2. It can be shown23 that this dissim-
ilarity measure is actually a distance.b Due to the
definition of this distance, the larger D(T1, T2), the
more different the structures T1 and T2.

The computed distance strongly depends on the
size of the compared tree graphs. In order to make
the comparison results size-independent, we create
the normalized dissimilarity measure D̃ by divid-
ing the distance by the total number of vertices in
compared tree graphs:

D̃(T1, T2) =
D(T1, T2)
|T1| + |T2| .

Since D(T1, T2) is a distance, D(T1, T2) ≤
D(T1, θ) + D(θ, T2) = |T1| + |T2|, which implies
that D̃(T1, T2) is a non-negative real number less
than 1. D̃(T1, T2) asymptotically approaches 1 when
T1 and T2 each have a large number of vertices
and represent completely different structures (see
Fig. 5a). D̃(T1, T2) = 0 if and only if D(T1, T2) = 0,
i.e. T1 ≡ T2. Unlike D(T1, T2), however, the nor-
malized dissimilarity measure does not always sat-
isfy the inequality D̃(T,U) ≤ D̃(T,X) + D̃(X,U)
required for it to be a distance.

2.2.1. Distance between axial trees

We adapt the notion of dissimilarity measure
to quantify self-similarity between axial trees by

constraining edit operations so that they maintain
the integrity of axes. The need for this constraint
is illustrated in Fig. 5b, which shows two structures
would be isomorphic if the axial information is not
taken into account, but are not isomorphic if the
mapping between nodes respects the macroscopic
axis structure. Formally, if v1 and w1 are two ver-
tices of an axial tree T1 that are transformed respec-
tively into vertices v2 and w2 in the axial tree T2,
then the transformation should be such that:

v1 ∈ A(w1) ⇔ v2 ∈ A(w2). (2)

In other words, if v1 and w1 belong to the same
axis in T1, then their images v2 and w2 should
also belong to the same axis in T2. An algorithm
for computing distances associated with such con-
strained transformations between quotiented treesc

was described by Ferraro and Godin.25 Since axial
trees are special cases of quotiented trees, this
approach enables us to define a distance DA(T1, T2)
between axial trees. As for the distance between
simple trees, a corresponding normalized dissimilar-
ity measure D̃A(T1, T2) between axial trees T1 and
T2 can be defined such that:

0 ≤ D̃A(T1, T2) ≤ 1, (3)
D̃A(T1, T2) = 0 ⇔ T1 ≡ T2. (4)

Here T1 ≡ T2 denotes an axial tree isomorphism, i.e.
an isomorphism respecting the axis organization in
both trees. This latter property and the existence of
an algorithm for computing the measure D̃A(T1, T2)
provides us with an algorithmic tool for addressing
the original question of verifying whether two axial
trees are isomorphic.

(a) (b)

Fig. 5 (a) Two tree structures of the same size with maximum topological distance. (b) Two different tree structures that
are isomorphic if axial information is not taken into account, but non-isomorphic otherwise.

bThat is, that D(T, T ) = 0; D(T, U) > 0 if T �≡ U ; D(T, U) = D(U, T ); and D(T, U) ≤ D(T, X) + D(X, U).
cA quotiented tree is a tree on which clusters of vertices have been defined, for which the corresponding cluster structure is
also a tree.
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2.2.2. Paracladial coefficient of v

Let T be an axial tree. For any v in T , let us define
ι(v), the paracladial image of v, as the vertex on the
trunk such that rank(ι(v)) = rank(v).

Now, for a given vertex v of T , let us define the
paracladial coefficient γ(v) as:

γ(v) = 1 − D̃A(T [v], T [ι(v)]). (5)

Note that the value of γ(v) is in the interval [0, 1]:
it is close to 0 if the branch structure is very differ-
ent from the trunk structure, and close to 1 when
the branch T [v] is similar to the trunk. In partic-
ular, γ(v) is equal to 1 when the branch T [v] is
isomorphic to the distal part of the trunk branch-
ing structure; that is, when it is a paracladium. We
can thus restate Proposition 5 using the notion of
the paracladial coefficient:

Corollary 6. The axial tree T is self-similar if and
only if γ(v) = 1 for all v ∈ B(r).

This corollary states that self-similarity can be
detected in an axial tree by computing |B(r)| = l · b
numbers, where l = rank(r) is the length of the
trunk and b is the branching ratio on the trunk, i.e.
the mean number of lateral branches per node of the
trunk. Each number γ(v) can be computed in a time
proportional to the square of the size of the branch-
ing system T [v] using the algorithm described by
Ferraro and Godin.25 If m = maxv∈B(r) |T [v]|, the
self-similarity of the structure T [r] can be tested in
time m2 · l · b in the worst case.

2.3. Approximate Self-Similarity

As mentioned in the introduction, real plants are
usually self-similar only to some degree, if at all. It
is thus necessary to study how the definition of pure
self-similarity introduced above can be extended to
account for approximate self-similarity.

Since the measure D̃A(T1, T2) reflects a structural
dissimilarity between the two axial trees T1 and T2,
it also reflects how far the two structures are
from being isomorphic. More precisely, this measure
defines the percentage of changes (with respect to
the size of the compared tree structures) that must
be made to transform one structure into the other.
This property of D̃A can be used to introduce a
coefficient reflecting the average self-similar quality
of a tree structure.

Definition 7 (Mean self-similarity coefficient,
MSC). Let T be an axial tree rooted in r. The mean

self-similarity coefficient γ̄(r) is the mean value of
the paracladial coefficients γ(v), where v ranges
over all the first-order branches of T [r]:

γ̄(r) =
1

|B(r)|
∑

v∈B(r)

γ(v). (6)

For simplicity, we write γ̄(T ), or simply γ̄, when
the argument T [r] is clear from the context. Note
that the MSC γ̄(r) is equal to 1 if the tree T [r] is
perfectly self-similar, and it is close to 0 if the tree
is weakly self-similar (Fig. 6c). Thus, the MSC can
be used as a measure of self-similarity of plants.

Plants may have branches that vary greatly in
size. For example, monopodial plants frequently
have short axes at the top of the trunk and
longer axes at the bottom. The probability that a
branch resembles a distal part of the whole tree is
higher for a short branch than for a long branch.
Consequently, short branches tend to have high par-
acladial coefficients, which introduces a bias in the
estimation of the degree of self-similarity (MSC)
of the whole tree. To compensate for this bias, we
define weighted mean self-similarity, which assigns
a higher weight to the longer branches.

Let L(r) be the length of all the axes borne by
the trunk of T [r]:

L(r) =
∑

v∈B(r)

rank(v). (7)

For each branch borne by the trunk of T [r], rooted
in v ∈ B(r), we define weight α(v) as

α(v) =
rank(v)

L(r)
. (8)

Obviously,
∑

v∈B(r)

α(v) = 1. (9)

We then define the weighted paracladial coefficient
at node v as

γ′(v) = α(v)γ(v). (10)

Definition 8 (Weighted mean self-similarity
coefficient, WMSC). Let T be an axial tree
rooted in r. The weighted mean self-similarity coef-
ficient γ̃(r) is the mean value of the weighted para-
cladial coefficients γ′(v), where v ranges over all the
first-order branches of T [r]:

γ̃(r) =
∑

v∈B(r)

γ′(v) =
∑

v∈B(r)

α(v)γ(v). (11)
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The notion of weighted mean self-similarity is
consistent with Proposition 5, according to which a
large, compound branch of a self-similar structure
includes smaller paracladia as its parts. When eval-
uating the degree of self-similarity of a whole plant,
the paracladial coefficients of the larger branches
are thus more representative than the coefficients
of the smaller branches, and therefore should carry
more weight.

The mean self-similarity coefficient MSC and
the weighted mean self-similarity coefficient WMSC
characterize the average self-similarity of an entire
plant. These characteristics can be complemented
with the values of variance of the paracladial coef-
ficients γ(v) and their weighted counterparts γ′(v),
where v spans all the first-order branches of the
plant. The resulting parameters, varv∈B(r)γ(v) and
varv∈B(r)γ

′(v), quantify how homogeneous a plant’s
structure is from the viewpoint of its self-similarity.

An even more detailed characterization can be
obtained by listing paracladial coefficients of indi-
vidual branches. The need for such a characteriza-
tion is illustrated in Figs. 6a and 6b, which contrasts
two very different structures with a similar overall
values of paracladial coefficients and their variances.
In the structure of Fig. 6a, the paracladial coef-
ficients of the distal branches are equal to 1 (the
branches are paracladial), whereas the paracladial
coefficients of the basal branches are close to 0. The
structure of Fig. 6b has an opposite organization: its
apical branches are not paracladial while its basal
branches are. To discriminate between these cases,
we need to analyze not only the average values of
coefficients, but also their distribution along the
plant axis. In general, if a quantity q(v) is defined for

all positions v along the trunk, we call the data set
(rank(v), q(v)) the profile of q(v) along the trunk.
For example, a profile of γ(v) may show high values
of γ near the apex and low values near the bottom
of the trunk in a non-homogeneous case. Applica-
tions of the numerical parameters and profiles to
the analysis of plant structures are described the
next section.

3. APPLICATION TO
THEORETICAL
SELF-SIMILAR PLANTS

3.1. Theoretical Plants

To evaluate the usefulness of the self-similarity
parameters, we computed them for three families
of algorithmically generated plant-like branching
structures. The use of synthetic plants allowed us to
precisely control the character of each structure and
verify whether its self-similarity aspects are prop-
erly discriminated by our parameters.

The plants were generated using the L-system-
based modeling program cpfg,29 incorporated into
the plant modeling software L-studio and vlab.30

Structure generation begins with a single shoot
apical meristem and proceeds in a sequence of simu-
lated developmental steps. In every step, the meris-
tem adds a growth unit to the plant axis and
recreates itself. Each growth unit supports a lat-
eral apex, which may give rise to a next-order
lateral axis. This process repeats for higher-order
axes, resulting in the formation of a branching
structure.

Following the notion of physiological age
reviewed in the “Introduction” section, we assumed

(a) (b) (c)

Fig. 6 Examples of non-self-similar structures. (a) The upper part is perfectly self-similar and the basal part is not. (b) The
basal part is perfectly self-similar and the upper part is not. (c) An extremely non-self-similar structure. The paracladial coef-
ficient γ(v) of each comb-like branch is equal to 2

n+2 , where n is the number of components in the branch. The self-similarity
coefficient of the whole plant tends to 0 as n becomes large.
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that the apical meristem of the main axis progresses
through a sequence of morphological differentiation
states, from germination to the flowering state. The
set of states is ordered, with the next state of an
apical meristem in state s greater than or equal
to s. The state of the apical meristem thus grad-
ually increases until the apex reaches the final state
and becomes a terminal organ (a flower). The lat-
eral meristems follow a similar progression of states,
with the initial state of each lateral meristem equal
to or greater than the state of the apical meristem
that has created it. See Godin et al.31 for comple-
mentary details.

We visualize the above process using differentia-
tion graphs that show the set of states and two types
of possible transitions between them (Fig. 7). Col-
ored circles represent differentiation states. Solid
arrows represent possible state changes of the api-
cal meristem during the apical growth of an axis.
The meristem stays in the same state for the num-
ber of steps indicated by the label associated with a
loop, then progresses to the next state. For example,
the differentiation graph of Fig. 7a corresponds to
the axis shown in Fig. 7b. The dashed arrows indi-
cate state changes associated with the production of
branches. The state transitions represented by these
arrows relate the state s of the apical meristem with
the state s′ of the lateral meristem. Differences in
these transitions are the key feature distinguishing

the three families of generated branching structures,
M1, M2 and M3, discussed next.

The differentiation graph of each plant has seven
states, with 1 denoting the initial state and 7 denot-
ing the terminal (flowering) state. A family Mi con-
sists of a deterministic model Mi and five derived
models. The differentiation graphs of the determin-
istic models M1,M2 and M3 are shown in Fig. 7. In
model M1, the lateral meristems that are generated
by an apical meristem in state s have state s + 1.
The state of the apical meristem remains unchanged
for the given number of steps, then advances by 1
(except for the final state). Model M2 differs from
M1 in that some lateral meristems produced by
the apical meristem in state s may assume state s′
greater than s+1. For example, the apical meristem
in state 1 produces a lateral meristems in state 3.
In model M3, a meristem in state s produces lat-
eral meristems in state s′ = s + 1, but there is no
gradual progression of states along either the main
or the lateral axes. Instead, after remaining in the
same state for a number of steps, an apical meristem
differentiates directly into a flower.

For each deterministic plant Mi, we generated
a set of five derived plants, labeled Mi − 0.8,
Mi − 0.6, . . . ,Mi − 0.0, by randomizing the func-
tioning of the lateral meristems. With probability
p, a lateral apex of order greater than 2 gave rise to
a branch; otherwise, the branch was aborted. This

Fig. 7 Differentiation graphs used for defining theoretical plants. (a) The differentiation graph of non-branching growth.
(b) The resulting axis structure, where component colors correspond to the differentiation graph states in which these com-
ponents were created. The numbers attached to each loop indicate the number of steps a meristem stays in the corresponding
state. (M1 to M3) The differentiation graphs of models M1, M2 and M3. Solid arrows correspond to possible transitions of
the apical meristem states. Dashed arrows correspond to possible transitions from the apical meristem state to the axillary
meristem states.
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probability p is indicated in the plant name: p = 0.8
in Mi − 0.8, p = 0.4 in Mi − 0.4, and so on. First-
order branching was not affected by this probability.

According to this design, the lateral branches
of models M1 and M2 repeat parts of the main
shoot structure; thus, structures M1 and M2 are
self-similar in the sense of Definition 4 (Fig. 8).
The random removal of branches in these struc-
tures introduces variation that is expected to reduce
their degree of self-similarity. In contrast, the lateral
branches of M3 are not copies of the main struc-
ture; thus, M3 is not self-similar, and its random
variations are also not expected to be self-similar.
Below we show how these qualitative characteri-
zations are captured and quantified by the self-
similarity parameters.

3.2. Analyzing and Comparing
Self-Similarity of Theoretical
Plants

The data were analyzed using the AMAPmod mod-
ule for plant architecture analysis,32 which incor-
porates algorithms for comparing tree graphs.24

AMAPmod is a part of the ALEA modeling
platform.33

The unweighted and weighted mean self-
similarity coefficients, and the variance of unweigh-
ted and weighted paracladial coefficients, were
computed for each plant of the three families M1,
M2 and M3. The results are given in Table 1.

We observe that the mean self-similarity coeffi-
cient (MSC) of plants M1 and M2 is equal to 1.
This indicates perfect self-similarity, which is con-
sistent with the manner in which these plants were
generated. In contrast, the MSC of plant M3 is
equal to 0.4, which means that for each branch
borne by the trunk, an average of 60% of its com-
ponents should be added, removed, or rearranged
to achieve the self-similarity condition of Proposi-
tion 5. This low value of the MSC is again consistent
with the manner in which plant M3 was generated,
since its simulation algorithm explicitly prevented
the lateral branches from following the structure of
their parent.

Within the randomized plant families M1
and M2, the reduction of the branching probability
p is followed by a reduction in the value of MSC.
This is consistent with our expectation that remov-
ing branches at random from an initially self-similar
structure will decrease its self-similarity. In the fam-
ily M3, in contrast, the overall decrease of the MSC

Table 1 Self-similarity coefficients and their stan-
dard deviation for plant families M1, M2 and M3.

M1 MSC s.d.(MSC) WMSC s.d.(WMSC)

M1 1.00 0.00 1.00 0.00
M1 − 0.8 0.84 0.12 0.79 0.12
M1 − 0.6 0.74 0.19 0.66 0.18
M1 − 0.4 0.63 0.25 0.52 0.23
M1 − 0.2 0.58 0.28 0.44 0.26
M1 − 0.0 0.52 0.25 0.39 0.20

M2
M2 1.00 0.00 1.00 0.00

M2 − 0.8 0.85 0.12 0.82 0.12
M2 − 0.6 0.77 0.18 0.71 0.16
M2 − 0.4 0.68 0.19 0.61 0.16
M2 − 0.2 0.66 0.21 0.58 0.16
M2 − 0.0 0.55 0.22 0.45 0.17

M3
M3 0.40 0.00 0.40 0.00

M3 − 0.8 0.40 0.09 0.40 0.09
M3 − 0.6 0.39 0.07 0.39 0.07
M3 − 0.4 0.32 0.17 0.32 0.16
M3 − 0.2 0.30 0.13 0.30 0.13
M3 − 0.0 0.33 0.00 0.33 0.00

from 0.4 for plant M3 to 0.3 for plant M3 − 0.0 is
not monotonic. This suggests that randomly remov-
ing branches in a non-self-similar plant may either
increase or decrease its self-similarity.

Profile curves provide an additional character-
ization of plant architecture. The profile of the
paracladial coefficients γ(v) for the reference plant
M1 (top curve in Fig. 9a) shows that its branches
are strictly paracladial: γ(v) = 1 for all posi-
tions v. This is consistent with the definition of
M1 as a perfectly self-similar plant. In the ran-
domized plants M1 − 0.8, . . . ,M1 − 0.0, the edit
distance between branches and the trunk tends
to increase for branches positioned lower on the
trunk. Although in Fig. 9a, this trend is obscured
by the random variation of the paracladial coef-
ficients γ(v), it is clearly visible in Fig. 9b, which
shows the self-similarity coefficients γ̄(r). The grad-
ual decrease in the values of the paracladial coef-
ficient and the self-similarity coefficient as rank(v)
increases reflects the dependence of both coeffi-
cients on the size of branches: the lower branches
in the plant family M1 are larger than the upper
branches (Fig. 8, first row), and therefore more
likely to depart from the trunk structure.

The weighted paracladial coefficients γ′(v) were
introduced to compensate for this apparent over-
emphasis of the self-similarity of small branches.
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(a) (b)

(c) (d)

Fig. 9 Profiles of PC, WPC ·N, MSC and α · N for theoretical plants M1. Both WPC and α profiles have been multiplied
by the number of branches in the plant, denoted by N .

The values of γ′(v) for the plant family M1 are
shown in Fig. 9c; the lengths of branches that serve
as weights are plotted in Fig. 9d. As expected, we
observe an increase in the value of γ′(v) propor-
tional to the size of branches in the self-similar
plant M1. This increase is less pronounced in the
randomized plants.

The corresponding profiles for the plant fam-
ily M2 are shown in Fig. 10. We observe that the
paracladial coefficient γ(v) reaches a minimum for
the longest lateral branches with the rank(v) =
10, 11, 12, but the weighted paracladial coefficient
γ′(v) reaches its maximum for the same branches.
The use of weights can thus qualitatively affect
our assessment of the contribution of individual
branches to the self-similarity of the whole plant
structure.

The profiles for family M3 (Fig. 11) have a
distinctly different character from the profiles of

families M1 and M2, which reflects the non-self-
similar character of plants in M3.

4. APPLICATION TO
REAL PLANTS

4.1. Plant Material

We considered branching structures of two plant
parts with marked self-similar organization: lilac
inflorescences and rice shoots.

Five Syringa vulgaris (common lilac) inflores-
cences were collected and measured in Calgary
Canada, in the spring of 2001. In addition to the
topological structure (map) of these inflorescences,
the length and the diameter of each internode, and
the length and diameter of each flower were mea-
sured using a digital caliper connected to a com-
puterized data collection system.15 This made it
possible to reconstruct these inflorescences with
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Fig. 10 Profiles of PC, WPC ·N , MSC and α · N for theoretical plants M2.

Fig. 11 Profiles of PC, WPC ·N , MSC and α · N for theoretical plants M3.
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Fig. 12 One of the lilac inflorescences used in the analysis
of self-similarity and its 3D reconstruction.14

great accuracy (Fig. 12). In the present study, we
only used topological data. Since lilac inflorescences
have two branches at each node, we averaged the
paracladial coefficients of both branches to define
a single value at each node on the paracladial
coefficient profiles.

The second plant was an Oryza sativa (rice) cv
“Nippon Bare” plant, which has more complex lat-
eral structures (reiterated systems34) than the lilac
inflorescences. The topological structure of an indi-
vidual plant was completely mapped, including veg-
etative and floral parts.35 Figure 13 shows a picture
of this individual and its corresponding schematic
representation. The structure is made of a main axis
bearing a main inflorescence (panicle) and four lat-
eral reiterated systems (called tillers), each com-
posed of a vegetative part and one inflorescence.
The tillers themselves bear lateral axes, some of
them bearing inflorescences. This gave us the oppor-
tunity to evaluate the self-similarity of both the
inflorescences and the vegetative parts.

4.2. Results

4.2.1. Lilac

Lilac inflorescences have high coefficients of self-
similarity (average 0.92, Table 2). This MSC value
is comparable to that of the randomized theoret-
ical plants in families M1 and M2, though it is
higher than even that of the least randomized plants
M1 − 0.8 and M2 − 0.8.

(a) (b)

Fig. 13 (a) Oryza sativa cv “Nippon Bare” (rice) individual (Photo: Cloé Paul Victor). (b) Schematic representation of the
individual topological structure, showing one main axis and four lateral tillers. Vegetative parts are in green and inflorescences
are in red. Flowers are represented as ovoid black shapes. Leaves are not represented. Labels identify the different analyzed
branching structures and are located at the base of the corresponding structures.
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Table 2 Self-similarity coefficients and their
standard deviation for lilac inflorescences.

MSC s.d.(MSC) WMSC s.d.(WMSC)

A1 0.89 0.13 0.82 0.10
A2 0.94 0.08 0.82 0.06
A3 0.89 0.12 0.83 0.09
A4 0.93 0.10 0.88 0.07
A5 0.92 0.09 0.86 0.07

For all inflorescences, the paracladial coefficients
of the first-order branches up to rank 6 (from the
tip) are very close to one. The coefficients then
slowly decrease to 0.6 (Fig. 14a). The mean values
of these coefficients range between 0.89 and 0.94
over the five inflorescences, with a low standard
deviation (close to 10% on average, Table 2). This
reveals a very homogeneous self-similar nature of
these inflorescences, as confirmed by the almost per-
fectly superimposed MSC profiles (Fig. 14b).

The weighted paracladial coefficients relate
the paracladial coefficients to the complexity of
branches. As shown in Fig. 14c, the values of WPC
tend to increase up to rank 9, where they stabilize

around a constant value. From rank 9 on, the
decrease in the value of (unweighted) paracladial
coefficients is thus compensated by the fact that
the structures become more complex.

To visualize these results in a more intuitive man-
ner, we colored the branches of the reconstructed
lilac inflorescences according to the values of their
unweighted or weighted paracladial coefficients. If
the unweighted paracladial coefficients are used
(Fig. 15), the most self-similar part of each inflores-
cence is situated near its top, where the branches
are short. Weighted paracladial coefficients compen-
sate for this bias toward the short branches, giving
a different perspective of the distribution of self-
similarity within the inflorescences (Fig. 16). Con-
tribution to self-similarity is now low at the tips,
while the branches that most contribute to self-
similarity are located in the medial and basal parts
of the inflorescences.

In summary:

• The degree of self-similarity of the five lilac inflo-
rescences is high (average 0.92).

• The self-similar nature of these inflorescences is
very homogeneous.

Fig. 14 Profiles of PC, WPC ·N , MSC and α · N for lilac inflorescences.
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Fig. 15 False-color illustrations of lilac inflorescences showing the value of the paracladial coefficient (PC).

Fig. 16 False-color illustrations of lilac inflorescences showing the value of the weighted paracladial coefficient (WPC).

• A stable trade-off between paracladial quality
and complexity of lateral inflorescences is re-
ached in the basal part of these plants (after
rank 9).

• The 3D representation of paracladial coefficients
gives a very intuitive visual indication of the con-
tribution of each branch to the plant’s overall
self-similarity.

4.2.2. Rice

The topology of rice is rather complex since it con-
tains inflorescences (panicles), vegetative parts and

reiterated systems. This gave us the opportunity
to compare the self-similarity of both inflorescences
and vegetative parts.

We first analyze the self-similarity of plant
panicles P1 − P5 (Fig. 17, ranks 1–11). Their self-
similarity coefficients show that the two basal pan-
icles are highly self-similar (MSC equal to 0.96 and
0.97), whereas the two intermediate panicles have
lower coefficients (0.90 and 0.83) (Table 3). The
main stem panicle has a much lower MSC (0.69),
because its axis carries long branches with relatively
low paracladial coefficients, located near the tip of
this panicle (Fig. 17a).
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Fig. 17 Profiles of PC, WPC ·N , MSC and α · N for rice.

Table 3 Self-similarity coefficients and their stan-
dard deviation for rice panicles, the whole main
axis V 1, and tillers V 2 − V 5.

Panicle MSC s.d.(MSC) WMSC s.d.(WMSC)

P1 0.69 0.24 0.59 0.19
P2 0.96 0.07 0.93 0.08
P3 0.97 0.05 0.93 0.06
P4 0.83 0.18 0.76 0.18
P5 0.90 0.12 0.84 0.12

Axis/tillers
V 1 0.69 0.20 0.65 0.14
V 2 0.88 0.16 0.81 0.20
V 3 0.89 0.18 0.79 0.23
V 4 0.84 0.17 0.77 0.17
V 5 0.88 0.12 0.84 0.12

The panicles have relatively lower paracladial
coefficients in their medial parts. At the base
of the panicles the paracladial coefficients of P2,
P4 and P5 become much higher (Fig. 17a). The
length of the lateral branches in the panicles
tends, however, to vary in the opposite way: it is

high in the medial part, and lower at the base
(Fig. 17d). The superposition of these trends results
in high and relatively constant weighted paracla-
dial coefficients for all branches up to rank 11
(Fig. 17c).

Now let us take into account the vegetative parts
of the plants in the evaluation of self-similarity.
On Fig. 17a, ranks 1–21, we observe that the par-
acladial coefficients of all axes tend to decrease
in proximal positions with respect to the panicle
base, except for the main axis (V 1), for which the
opposite tendency is observed. Due to the impor-
tant length of tillers, this phenomenon is even
more marked on the weighted paracladial coeffi-
cients (Fig. 17c).

The tillers themselves vary in their self-similar
nature. V 2, V 4 and V 5 have similar structure for
their distal part (up to rank 15) (Fig. 17c). How-
ever, unlike V 4 and V 5, V 2 bears a secondary tiller,
which makes it more similar to the trunk and thus
greatly increases its overall weighted paracladial
coefficient on the basal part, to the level of V 3.
This leads V 2 and V 3 to exhibit nearly identical
coefficients of self-similarity.
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From this analysis, we conclude that:

• The tiller panicles are more self-similar than the
apical panicle (Fig. 17b).

• The degree of self-similarity of the tiller panicles
is high (average 0.92).

• The degree of self-similarity of the whole tillers is
also high (average 0.87).

• The degree of self-similarity of the entire plant is
relatively lower (0.69). This is mainly due to the
lack of self-similarity in the main stem panicle.

• Nevertheless, the tillers are highly similar to the
main stem structure (Fig. 17c). This supports the
idea that tillers can be viewed as reiterated com-
plexes of the plant.

5. CONCLUSION

This paper addressed the problem of quantify-
ing the degree of self-similarity in branching plant
structures. To this end, we introduced the notions
of paracladial coefficient and mean self-similarity
coefficient for axial trees. The paracladial coefficient
characterizes the similarity between an individual
branch and the main stem of the structure, whereas
the mean self-similarity coefficient provides a global
measure of the self-similarity of the entire struc-
ture. Weighted coefficients were also introduced to
take into account the size of branches while quan-
tifying self-similarity. These definitions have been
applied to both simulated branching structures and
real plants. The simulated structures were used to
illustrate main characteristics of the proposed mea-
sures. Real plants were used to show that these mea-
sures are appropriate for interpreting experimental
data.

For over 50 years, botanists have postulated that
describing a plant as an assembly of similar parts
plays a key role in the understanding of plant struc-
ture and development. The formalization and quan-
tification of self-similarity of plant structure may
contribute to this understanding. Insights from the
study of self-similarity may also assist in the con-
struction of simulation plant models, by expos-
ing the repetitive elements of plant architecture.
Furthermore, the use of self-similarity may lead
to significant simplifications of plant mapping and
measurement techniques, since parts known to be
similar to other parts need not be measured.

The definition of self-similarity proposed in this
paper is well adapted to the analysis of monopo-
dial plants (with a clearly defined main axis or
trunk). Its extensions to sympodial plants, and to

alternative definitions of plant self-similarity15,16

need to be further investigated.

ACKNOWLEDGMENTS

The authors thank Lars Mündermann for collecting
the data on lilac inflorescences, Yves Caraglio and
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21. D. Barthélémy, Y. Caraglio and E. Costes,
Architecture, gradients morphogénétiques et âge
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APPENDIX

Proof of Proposition 5. An axial tree T =
(V,E, α) rooted in r is self-similar if and only if
∀v ∈ B(r), T [v] is a paracladium.

The “if” part of the proof. We assume that any
branch B1 with the base v originating at the axis
A(r) (i.e. with the parent of v belonging to the main
axis of T ) is isomorphic with some distal portion T1

of T (Fig. 4). We want to show that for every ver-
tex w of T , the branch T [w] rooted in w is also
isomorphic with some distal portion of T . Proof by
induction on the order n of vertex w.

(1) Initial step. If n = 0, the vertex w lies on the
main axis of T , and the subtree T [w] is the dis-
tal portion of T rooted in w.

(2) Inductive step. Assume that the proposition
holds for some n ≥ 0, and consider a vertex
w of order n + 1. The branch T [w] rooted in w
is included in some branch T [v], where v is a
vertex of order n. From the inductive assump-
tion it follows that T [v] is isomorphic with some
distal portion T1 of T . The image of T [w] under
this isomorphism is a (distal portion of) some
first-order branch B1, which, according to the
assumption of the “if” part of the proof, is iso-
morphic with some distal portion T2 of T . By
transitivity of isomorphisms, T [w] is also iso-
morphic with T2.

The “only if” part of the proof. We assume that any
branch B rooted in some vertex w in T is isomorphic
with some distal portion T1 of T . In particular, any
branch B1 with the base v originating at the axis is
then also isomorphic with some distal portion T1.




