
Generating subdivision curves with L-systems on a GPU∗

Radomı́r Měch† Przemyslaw Prusinkiewicz†

SGI University of Calgary

Abstract

The introduction of floating-point pixel shaders has initiated
a trend of moving algorithms from CPUs to graphics cards.
The first algorithms were in the rendering domain, but re-
cently we have witnessed increased interest in modeling al-
gorithms as well.

In this paper we present techniques for generating subdi-
vision curves on a modern Graphics Processing Unit (GPU).
We use an existing method for generating subdivision curves
with L-systems, we extend these L-systems to implement
adaptive subdivision, and we show how these L-systems can
be implemented on a GPU.

We chose L-systems because they can express many mod-
eling algorithms in a compact way and are parallel in na-
ture, making them an attractive paradigm for programming
a GPU.

1 Introduction

In recent years subdivision curves became an important al-
ternative to parametric curves in computer aided design. For
a modeler they are very attractive because a complex curve
can be defined using a small number of control points.

The new programmable graphics hardware with capabil-
ities of executing a set of instructions during the vertex or
fragment processing has proven to be capable of solving dif-
ficult processing tasks. Various algorithms have been imple-
mented on these Graphics Processing Units (GPUs), rang-
ing from ray-tracing [6] to solving differential equations [2].
Considering the parallel nature of subdivision algorithms the
new graphics hardware is a suitable candidate for implement-
ing them.

In this note we review L-systems that capture differ-
ent subdivision scheme, we extend the L-systems presented
in [5] with support for adaptive subdivision of curves, and
we show how to implement these L-systems on a GPU1.

GPUs can be programmed using assembler level lan-
guages or higher level languages, such as Cg [3] or Direct
X 9.0 HLSL2. We chose to implement L-systems using the
assembler level language.

∗This is an extended version of a sketch to be presented at SIGGRAPH
2003.

†rmech@sgi.com, pwp@cpsc.ucalgary.ca
1Our implementation and description are based on the ATI Radeon 9700

card (http://www.ati.com/developer).
2http://msdn.microsoft.com/directx/

2 Generating subdivision curves

Subdivision curves can be described using context-sensitive
parametric L-systems [5]. Control points of the curve are
stored as symbols in the initial string, with parameters spec-
ifying point locations3. L-system productions are used to re-
place each point with new points according to a given subdi-
vision scheme. For example, Chaikin subdivision of a closed
curve is captured by a single production [5],

L-system 1:
P (vl) < P (v) > P (vr) → P (1

4
vl + 3

4
v)P (3

4
v + 1

4
vr),

which replaces one point, the strict predecessor, with two
new points, forming the successor. The location of each new
point is an affine combination of the locations v, vl and vr of
the predecessor point and its context (neighbors).

It is easy to modify L-system 1 to express different subdi-
vision schemes. Each scheme is using different affine com-
bination of the neighbors. Some schemes presented in [5] are
using more than one neighbor on each side of the point, but
not more than two. Thus we can combine these L-systems in
a single scheme:

L-system 2:
P (v0)P (v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=0
a[i].vi)P (

∑4

i=0
b[i].vi),

where arrays a and b store parameters of the affine com-
bination for each new symbol. L-system 2 can express
Chaikin subdivision scheme using values a = {0, 1

4
, 3

4
, 0, 0}

and b = {0, 0, 3

4
, 1

4
, 0}, cubic B-spline subdivision using

a = {0, 1

8
, 3

4
, 1

8
, 0} and b = {0, 0, 1

2
, 1

2
, 0}, and Dyn-Levin-

Gregory (4-point) subdivision using a = {0, 0, 1, 0, 0} and
b = {0,− 1

16
, 9

16
, 9

16
,− 1

16
}.

In the case of open subdivision curves, end points of the
curve do not change location and the rules for creating new
points in their neighborhood are different from those operat-
ing farther from the endpoints. If we denote the endpoints
by symbol E, we can expand L-system 1 to open curves as
follows [5]:
L-system 3:
p1: E(vl) < P (v) > P (vr) → P (1

2
vl + 1

2
v)P (3

4
v + 1

4
vr)

p2: P (vl) < P (v) > E(vr) → P (1

4
vl + 3

4
v)P (1

2
v + 1

2
vr)

p3: P (vl) < P (v) > P (vr) → P (1

4
vl + 3

4
v)P (3

4
v + 1

4
vr)

p4: E(v) → E(v)

L-system 3 can be generalized in a similar manner to L-
system 1. To this end, we extend L-system 3 with two new
productions, in which the symbol E is two symbols away

3We make here a distinction between the location of a point (three coor-
dinates) and its position in the string (an index value).

smithco
4-15

Figure 1: Operation of L-system 5. Points of type 0 are
marked as R.

from the predecessor, and we define arrays a and b for each
production:

L-system 4:
p1: E(v0)P (v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=0
a[0][i].vi)P (

∑4

i=0
b[0][i].vi)

p2: E(v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=1
a[1][i].vi)P (

∑4

i=1
b[1][i].vi)

p3: P (v0)P (v1) < P (v2) > P (v3)E(v4)

→ P (
∑4

i=0
a[2][i].vi)P (

∑4

i=0
b[2][i].vi)

p4: P (v0)P (v1) < P (v2) > E(v3)

→ P (
∑3

i=0
a[3][i].vi)P (

∑3

i=0
b[3][i].vi)

p5: P (v0)P (v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=0
a[4][i].vi)P (

∑4

i=0
b[4][i].vi)

p6: E(v) → E(v)

L-systems provide a compact way of defining subdivision
curves and they are easy to modify. For example, let us
expand L-system 3 to support adaptive subdivision of open
curves (see L-system 5). For this purpose, we add a second
parameter t specifying the type of a point to each symbol
P . This parameter is equal to 1 (the default) if the point is
to be subdivided and 0 if it should not be subdivided any
further. We also extend L-system 3 with three new produc-
tions. Productions p1 and p2 make sure that the point of type
0 next to a point of type 1 creates only one new point and
not two. Production p3 tests whether the point is close to the
midpoint between its neighbors, in which case the newly cre-
ated points are of type 0. Our approach is similar to the one
described by Xu et al. [7]. Here is the resulting L-system:

L-system 5:
p1: P (vl, tl) < P (v, t): t = 0 & tl = 1 → P (1

4
vl + 3

4
v, 0)

p2: P (v, t) > P (vr, tr): tr = 1 & t = 0 → P (3

4
v + 1

4
vr, 0)

p3: P (vl, tl) < P (v, t) > P (vr, tr): |v − vl+vr

2
| < T

→ P (1

4
vl + 3

4
v, 0)P (3

4
v + 1

4
vr, 0)

p4: E(vl) < P (v, t) > P (vr, tr)
→ P (1

2
vl + 1

2
v, t)P (3

4
v + 1

4
vr, t)

p5: P (vl, t + l) < P (v, t) > E(vr)
→ P (1

4
vl + 3

4
v, t)P (1

2
v + 1

2
vr, t)

p6: P (vl, tl) < P (v, t) > P (vr, tr)
→ P (1

4
vl + 3

4
v, 1)P (3

4
v + 1

4
vr, 1)

p7: E(v) → E(v)

In this L-system we are taking advantage of the assumption
that if more than one production can be used to rewrite the
predecessor, the one that appears first in the production list
is chosen. For example, the third production is applied only
to symbols to which the first or second production cannot be

Figure 2: An L-system on GPU, algorithm 1: each symbol is
replaced by two new symbols.

applied. Figure 1 illustrates the operation of L-system 5.
In the next section we implement these L-systems directly

on a GPU.

3 L-systems on a GPU

Algorithm 1. An L-system in which each symbol is replaced
by a constant number of k symbols (for example, L-system 1
or L-system 2) is easy to implement on graphics hardware
that supports floating-point fragment programs (also known
as pixel shaders) (Figure 2). We store the initial string in
one line of a texture4. The letter symbol of each point is
in the alpha channel, and the coordinates are in the RGB
channels. Given an input string of length n, we draw a line
of length kn into a P-buffer, off-screen memory located on
the graphics card. A pixel of the line at position i represents
the i%k-th point of the successor of the i/k-th symbol in the
input string. As the line is rendered, the fragment program
reads texel values at positions (i/k − 1)%n, (i/k)%n and
(i/k + 1)%n (the left context, the strict predecessor, and the
right context), and sets the value of pixel i as defined for the
i%k-th point of the production successor. The positions of
the predecessor and neighbors are deduced from three sets of
texture coordinates. The texture coordinates of neighbors are
shifted to the left and right from the predecessor coordinates.
The value of i used to determine the symbol of the successor
is set using a 1D texture coordinate with values of 0 and kn
assigned with the two vertices of the line.

Once the symbol of the successor is identified, the frag-
ment program has to compute symbol’s parameters. If the
computations for all successor’s symbols are similar, such
as in case of L-system 2, they can be performed by a single
fragment program. This program uses a set of local fragment
program parameters or an input texture to specify different
parameters for each computation (equivalent to arrays a and
b in L-system 2). The correct set of parameters is selected
based on the symbol’s position i in the final string. If the
computations vary significantly, they cannot be expressed by
a single formula that uses different parameters for different
symbols of the successor. In this case we can apply a frag-
ment program that computes all symbols of the successor

4If one line is not enough, we modify the neighbor selection process in
order to store the string in a 2D texture.

smithco
4-16

and selects the one identified by the position i. If these com-
putations do not fit into a single fragment program, we can
use a set of fragment programs applied one after another,
each setting only a particular symbol of the successor. This
will be less of an issue in the future, because the maximum
length of a fragment program will be significantly larger.

In each subsequent iteration of the algorithm, we bind the
P-buffer as the input texture and use another P-buffer as the
output. Finally, we read the final string using glReadPix-
els, and render the vertices. In the near future, the drivers
will support rendering into a vertex array, which will make it
possible to avoid the readback.

Algorithm 2. If an L-system has more than one produc-
tion, and they have successors of different length (for exam-
ple, L-system 3) there are two issues: to find a production
for each symbol, and to position the successor in the output
string. There are two approaches to finding the production.
If the productions are of a similar form and the coefficients
used to compute the successor’s parameters can be tabulated,
such as in L-system 3, 4 or 5, two fragment programs can be
used, one to find an applicable production and one to ap-
ply it. These programs use textures that specify the corre-
spondence between a specific predecessor and its successor,
given the predecessor’s context (see below for more details).
If L-system productions vary significantly, it is necessary to
represent each production or a group of similar productions
using a separate fragment program.

The first approach is more desirable because it is easy for
a user to modify the L-system by changing texture data with-
out any changes to fragment programs. All productions are
specified using two textures, the predecessor texture and the
successor texture. Each row of the predecessor texture stores
information on the context of all productions with the same
strict predecessor. The productions are specified one after
another, each production is specified by its four neighbors,
the successor length and the index of the first symbol of the
successor in the successor texture (see Figure 3). Optionally,
for each production, the row can also store coefficients used
to evaluate the production’s condition. Each column of the
successor texture stores the symbols and affine combination
coefficients for one successor symbol of one production.

Figure 3 illustrates the operation of an L-system using tex-
tures organized as described above. Fragment program 1
finds the matching production for each point in the predeces-
sor string, and outputs the successor length l and the index
s of the first symbol of the successor, stored in the succes-
sor texture. Since the program tests one set of neighbors at
a time, this takes up to M passes, where M is the maximum
number of productions with the same strict predecessor.

To determine the position of each successor in the out-
put string, we simulate the scan-add operation defined as
foolows [4]: if y =scan-add(x), then y[i] =

∑i−1

j=0
x[j] (and

y[0] = 0)5. Before the productions are applied we run frag-
ment program 2, which sums the lengths of all successors to

5We use the version of the scan-add operation, in which we do not add
the value at the given position to the sum.

Figure 3: An L-system on GPU, algorithm 2: productions
specified using textures, successor lengths vary. Texture data
correspond to L-system 3.

the left of a given symbol. This can be done in blog2(n)c
passes. These sums are read with glReadPixels and used to
create a set of line segments on a CPU, each starting at the
pixel given by a sum. Again, the readback can be avoided
once rendering into vertex arrays is supported in drivers.

The 1D texture coordinates at vertices of each line seg-
ment are set to s and s + l. Fragment program 3, executed
for each pixel of each line segment, accesses the successor
texture column identified by the 1D texture coordinate. It
retrieves the symbol and its affine combination coefficients
from the texture, computes the affine combination of the pre-
decessor point and its neighbors, and sets the new symbol
and the computed value.

If we have a set of productions whose successors have the
same length, the scan-add step can be skipped. A single line
of length kn is drawn as in algorithm 1 and the position i is
used to determine the symbol of the successor in fragment
program 3. Sometimes we can determine the successor from
the position i even if the productions have successors of dif-
ferent length. In L-system 3, for example, only the first and
last symbol in the string produce one new symbol, all other
symbols produce two, and therefore the position of each suc-
cessor can be determined in advance.

In the subsequent iteration of the subdivision process, the
P-buffer is used as a input texture for the fragment programs.
The final string is read with glReadPixels, and the vertices
are rendered as in the closed curve case.

4 Results

Figures 4 and 5 show sample subdivision curves gener-
ated using L-systems 2, 3 and 4 implemented on the ATI’s

smithco
4-17

Figure 4: Closed and open subdivision curves generated in
3 steps using L-system 2 and L-system 3 implemented on a
GPU.

Figure 5: Adaptive subdivision curves generated in 5 steps
using L-system 5 implemented on a GPU. T = 0.025 and
0.05.

Radeon 9700.
In the case of the closed curve in Figure 4, we used al-

gorithm 1. A single fragment program generates both new
points of the successor in a single rendering pass. The ar-
rays a and b (L-system 2) are set using local parameters of
the fragment program. The program has 15 instructions (12
arithmetic instructions and 3 texture reads). It took 0.4 ms
to generate the closed curve in Figure 4, out of which 0.3
ms were spent in switching the rendering context from one
P-buffer to another6. One context switch took about 0.1 ms,
but the future drivers should significantly reduce this unnec-
essary overhead [1]. The overhead of context switches is
also reduced if several curves are evaluated at once. Subdi-
viding a curve defined by 4 control points 8 times (subdivi-
sion level 8) resulted in 1024 points and took (8*0.1 + 0.2)
ms. These times do not include the final readback, which for
1024 points takes about 0.17ms.

Using a software implementation on a 2.4 GHz Pentium
4 CPU to generate three levels of subdivision took about
the same time (0.1 ms), but at higher subdivision levels the
GPU implementation became faster (if we ignore the context
switch overhead). At subdivision level 8, the GPU was about
twice as fast as the CPU.

In the case of open curves we used algorithm 2. The L-
system is automatically converted into the predecessor tex-
ture and successor texture. Fragment program 1 has 45 in-

6We have to alternate between two P-buffers because a single P-buffer
cannot be used both as an input and output.

structions (35 arithmetic instructions + 10 texture reads),
fragment program 2 has 24 instructions (16+8)7, and frag-
ment program 3 has 18 instructions (15+3). It took 2.1 ms
to generate the open curve in Figure 4, out of which 1.35
ms were spent on 11 context switches and 0.3 ms on 3 read-
backs after each scan-add operation. The overall time of 2.1
ms can be reduced by 0.9 ms (5 context switches + 0.4 ms)
by skipping the scan-add operation, because in L-system 3
the position of each production successor can easily be de-
termined (see Section 3). The timings for the two adaptive
curves in Figure 5 are 3.8 ms (2.4 ms for 20 context switches,
0.5 ms for 5 scan-add readbacks) and 3.7 ms (2.3 ms for 19
context switches, 0.5 ms for 5 scan-add readbacks). In this
case we cannot skip the scan-add step.

The software implementation of open subdivision curves
is faster than the GPU implementation for a small number of
control points. Subdividing a non-adaptive open curve from
Figure 4 up to level 8 was 4 times faster in software (ignor-
ing the cost of context switches). The GPU disadvantage is
caused by having to perform several rendering passes to find
a production, and several passes to perform scan-add opera-
tion, while dealing with a relatively small number of pixels.
Once we increase the number of pixels by evaluating several
curves in parallel the GPU algorithm becomes faster. Evalu-
ating 16 non-adaptive open curves (8 subdivision levels) took
about the same time on the CPU and the GPU, and for 32
curves the GPU was about 50% faster. Consequently, using
the GPU for evaluating subdivision curves is better only if
one needs to evaluate many of them at once.

5 Conclusions

We created a set of fragment programs on ATI’s Radeon
9700 that implement L-systems capable of generating sub-
division curves. We implemented not only selected basic
schemes, but also an adaptive scheme.

We chose L-systems as a conceptual basis for our imple-
mentation because they compactly express many subdivision
schemes and they can easily be modified by changing few pa-
rameters or adding a few new productions. Our approach is
similar to the implementation of L-systems on the Connec-
tion Machine by Ortiz et al. [4]. In contrast to Ortiz et al.,
however, our implementation supports parametric L-systems
and uses different data structures, more suitable for fast ac-
cess by a GPU.

As the results indicate, if we have to perform more than
one rendering pass for a single subdivision step the GPU
implementation becomes faster compared to a CPU imple-
mentation when many curves are evaluated at once. An ad-
ditional problem is the fact that current drivers do not imple-
ment switches of rendering context very efficiently and that
the API for rendering to vertex arrays has not been finalized
yet and thus the drivers lack the support for this functionality.

7We observed that it is faster to use a longer fragment program 2 that
sums 8 values at once and reduce the number of passes needed for the scan-
add operation than to use a shorter program in more passes (even if we
ignore the cost of context switches).

smithco
4-18

An intriguing problem for further research is an extension
of this work to subdivision surfaces, where the advantage
of a GPU implementation is likely to be more significant,
because we are dealing with larger numbers of points.

Acknowledgemens

We would like to thank Sylvain Lefebvre for helpful com-
ments on this note.

References
[1] J. Bolz and P. Schröder. Evaluation of subdivi-

sion surfaces on programmable graphics hardware.
http://www.multires.caltech.edu/pubs/GPUSubD.pdf.
Submitted for publication.

[2] N. Goodnight, G. Lewin, D. Luebke, and K. Skadron.
A multigrid solver for boundary-value problems using
programmable graphics hardware. Technical Report CS-
2003-02, Univ. of Virginia Dept. of Computer Science.,
January 2003.

[3] W. R. Mark, S. Glanville, and K. Akeley. Cg: A System
for Programming Graphics Hardware in a C-like Lanu-
age. ACM Transactions on Graphics, 22(3), July 2003.
To appear.

[4] L.F. Ortiz, R.Y. Pinter, and S.S. Pinter. An array lan-
guage for data parallelism: Definition, compilation, and
applications. The Journal of Supercomputing, (5):7–29,
1991.

[5] P. Prusinkiewicz, F. Samavati, C. Smith, and R. Kar-
wowski. L-system description of subdivision curves. In-
ternational Journal of Shape Modeling. To appear..

[6] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan.
Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics, 21(3):703–712, July 2002.

[7] Z. Xu and K. Kondo. Local Subdivision Process with
Doo-Sabin Subdivision Surfaces. SMI 2002:Interna-
tional Conference on Shape Modelling and Applications,
May 2002.

smithco
4-19

