

4-1

Design and implementation
of the L+C modeling language

Radoslaw Karwowski and Przemyslaw Prusinkiewicz

Department of Computer Science
University of Calgary

Abstract

L-systems are parallel grammars that provide a theoretical foundation for a class of programs
used in procedural image synthesis and simulation of plant development. In particular, the
formalism of L-systems guides the construction of declarative languages for specifying input
to these programs. We outline key factors that have motivated the development of L-system-
based languages in the past, and introduce a new language, L+C, that addresses the shortcom-
ings of its predecessors. We also describe the implementation of L+C, in which an existing
language, C++, was extended with constructs specific to L-systems. This implementation
methodology made it possible to develop a powerful modeling system in a relatively short pe-
riod of time.

1. Background
L-systems were conceived as a rule-based formalism for reasoning on developing
multicellular organisms that form linear or branching filaments [Lindenmayer, 1968].
Soon after their introduction, L-systems also began to be used as a foundation of visual
modeling and simulation programs, and computer languages for specifying the models
[Baker and Herman, 1972]. Subsequently they also found applications in the generation
of fractals [Szilard and Quinton, 1979; Prusinkiewicz, 1986] and geometric modeling
[Prusinkiewicz et al., 2003]. A common factor uniting these diverse applications is the
treatment of structure and form as a result of development. A historical perspective of
the L-system-based software and its practical applications is presented in [Prusinkiewicz,
1997].
According to the L-system approach, a developing structure is represented by a string of
symbols over a predefined alphabet V. These symbols represent different components of
the structure (e.g., points and lines of a geometric figure, cells of a bacterium, apices and
internodes of a plant). The process of development is characterized in a declarative man-
ner using a set of productions over the alphabet V. During the simulation of development,
these productions are applied in parallel steps to all symbols of the string, thus capturing
the development in discrete time slices.
Lindenmayer [1971] observed that L-system productions can be specified using standard
notation of formal language theory. In the simplest, context-free case, productions have
the form:

predecessor successor
where predecessor is a letter of alphabet V and successor is a (possibly empty) word over
V. For example, the division of a cell A into cells B and C can be written as A BC. In
the context-sensitive case, productions are often written as

4-2

lc < predecessor > rc successor ,
where symbols < and > separate the strict predecessor from the left context lc and the
right context rc [Prusinkiewicz and Hanan,1989]. Both contexts are words over V. For
example, the production pair:

Y < A > O LYS
O < A > Y SYL

describes asymmetric division of a mother cell A into a short daughter cell S and long
daughter cell L, separated by a cell wall Y. The sequence of these cells in the filament is
guided by the state of the walls that delimit the mother cell, which may be young (Y) or
old (O). Obviously, a complete description of the filament's development would also re-
quire productions that characterize the growth of cells and walls over time.
Early L-system-based programming languages closely followed the above notation
[Baker and Herman, 1982; Prusinkiewicz and Hanan, 1989]. The needs for expressing
increasingly complex models led, however, to the addition of constructs found in other
programming languages. A pivotal moment in this evolution was the introduction of pa-
rametric L-systems [Prusinkiewicz and Hanan, 1990; Hanan, 1992] and related constructs
[Chien and Jurgensen, 1992], which associated numerical attributes to L-system symbols,
similar to those found in attribute grammars [Knuth, 1968]. This created a need for cal-
culating new parameter values (in the production successor) on the basis of old ones
(found in the predecessor and its context). According to the original definition of para-
metric L-systems [Prusinkiewicz and Hanan, 1990; Hanan, 1992], these calculations were
specified as arithmetic operations on the argument parameters, e.g.

A(x) < B(y) > C(z) D(x+y) E(y+z) .
In modeling practice, however, entire procedures soon became needed to calculate new
parameter values. Recognizing this need, Hanan [1992] introduced the following syntax
for L-system productions:

lc < predecessor > rc {α} : cond {β} successor .

Here α and β are C-like compound statements, and cond is a logical expression that
guards production application. A production is applied in stages. First, it is determined
whether production predecessor pred, surrounded by the left context lc and the right con-
text rc, matches the given symbol in the string. If this is the case, the compound state-
ment α is executed, and condition cond is evaluated. If the result of this evaluation is
non-zero (‘true’), the second compound statement β is executed. On this basis, parame-
ters values in the production successor are then determined, and the successor is inserted
into the resulting string. For example, the following is a valid production:

A(x) < B(y) > C(z) {r =x*x+ y*y+z*z;} : r> 2 {t = x+y+z;} D(t) E(2*t).

At the top level, an L-system with productions in the above form operates in a declarative
fashion, by rewriting elements of a string according to their type, context, and the associ-
ated parameters. Within each production, however, calculations are performed sequen-
tially, using constructs borrowed from an imperative language. This combination of
paradigms suggests two strategies for translating L-system-based languages into a repre-
sentation directly used by simulation programs [Prusinkiewicz and Hanan, 1992]:

4-3

• extend the formal notation for productions with constructs borrowed from an im-
perative language, or

• extend an existing imperative language with constructs inherent in L-systems.
The modeling program cpfg [Hanan, 1992] and its modeling language [Prusinkiewicz et
al., 2000] are representative of the first approach. The interpreter of the cpfg language
was constructed following the standard steps of lexical analysis, parsing, and object code
generation. Nevertheless, in spite of well-developed methodology for translator construc-
tion (e.g. [Aho et al, 1986]), construction of a compiler for a comprehensive language is a
large task. Consequently, the cpfg language only includes a limited subset of C-like
statements; for example, it does not support user-definable functions and typed parame-
ters associated with the modules. As a result, while simple L-system models can be ex-
pressed using cpfg language in an elegant, compact manner, specification and mainte-
nance of larger models becomes difficult.
An alternative approach, first suggested in [Prusinkiewicz and Hannan 1992], is to create
an L-system-based programming environment by extending an existing language with
support (classes, libraries) specific to L-systems. Using this approach, Hammel [1996]
implemented differential L-systems [Prusinkiewicz et al., 1993] in SIMULA, and Erstad
[2002] implemented an L-system-based programming environment in LISP. Both im-
plementations preserve the syntax of the underlying languages (SIMULA and LISP). In
contrast, Karwowski [2002] implemented the L-system-based programming language
L+C by extending the syntax of C++ [Sievanen]. We describe here the design and im-
plementation of this language.

2. The L+C modeling language
The key new elements introduced in the L+C modeling language are:

• typed module parameters, including all primitive and compound data types (struc-
tures) supported by C++

• productions with multiple successors
• extension of the notion of context-sensitivity with the ‘new context’ constructs,

which speed up information transfer across simulated structures.
In addition, by virtue of being based on the C++ language, L+C has the full expressive
power of C++. In particular, user-defined functions are supported as in C++.
At the top level, an L+C program is a set of declarations for:

• Structures and classes,
• Global variables,
• Functions,
• Modules,
• The axiom,
• The derivation length,
• Productions,
• Decomposition rules,
• Interpretation rules,
• Control statements.

The declarations of structures, classes, variables and functions have exactly the same syn-
tax and meaning as in C++. The remaining declarations are specific to L+C, and are de-
scribed below.

2.1. Module declarations
Modules are the elements of the L-system string. A module consist of an identifier
(which must follow the C++ syntax [Stroustroup, 1991]) and an optional list of parame-
ters. In L+C modules have to be declared before they can be used. Declaration specifies
the number and types of parameters that are associated with the given module type using
the following syntax:

module identifier (parameter-listopt);
Examples of valid module declarations are:

module A(); // module A with no parameters
module N(float); // module N with one parameter of type float
module Metamer(int, MetamerData); // module Metamer with a

 // parameter of type int and
 // a user-defined type MetamerData

2.2. Axiom declaration
The axiom declaration specifies the initial L-system string using the following syntax:

axiom: parametric-string;
where the parametric-string must be non-empty. Assuming that the modules have been
declared as in Section 2.1, and s_init is a structure of type MetamerData, the following
is a valid axiom declaration:

axiom: Metamer(1,s_init) N(0.25) A();

2.3. Derivation length specification
Derivation length is the number of derivation steps for the simulation. It is specified us-
ing the syntax:

derivation length: integer-expression;

2.4. Specification of productions
The syntax of productions is a combination of the formal L-system notation and the C++
syntax for function definition. In general, it has the syntax:

predecessor:
{

 production body
}

The predecessor has one of the following forms:
new-left-context << left-context < strict-predecessor > right-context :
left-context < strict-predecessor > right-context >> new-right context:

4-4

The strict predecessor specifies the part of the string being rewritten by the production. It
can be a single module, as assumed in the usual definition of L-systems, or a string of
several modules, as defined for pseudo-L-systems [Prusinkiewicz, 1986]. The optional
left and right contexts are strings of modules that need to be in the neighborhood of the
strict predecessor in order for the production to apply. The new contexts specify the
modules that must be present in the neighborhood of the production successor, in the
string being derived. This information is easily available if the string is being rewritten
in a particular direction: from left to right in the case of new left context, and from right
to left in the case of new right context (Figure 1). In theory, two-sided new context could
also be defined, but its implementation is more difficult and, therefore, it is not supported
by L+C.

Left context

*

A CB

G F …

Left new
context

String

New string

… … D

Left context

*

A C B… … D

G F

Current module

…

Current module’s
successor to-be

Right context

Right new
context

String

New string

Current module

Right context

Current module’s
successor to-be

Figure 1. Context of L-system productions. Left new context is available if the successor string is
built left-to-right (left figure). Right new context is available if the successor string is built right
to left (right figure).

The parameters that appear in the production predecessor are formal parameters. All the
formal parameters of every module in a production predecessor must be listed, even if
they are not used in the production body. An example of a valid production predecessor
that uses the modules declared in Section 2.1 is:

Metamer(i_l, d_l) N(w) < Metamer(i, d) > A()
Formal parameters have types determined by the declarations of the respective modules.
They are bound to the actual parameters in the string during production application [Prus-
inkiewicz and Hanan, 1990]. The scope of the formal parameters is the same as the
scope of formal parameters in C++ functions.
The production body is a compound statement that may contain any code allowed inside
a C++ function. In addition, the production body may include one or more produce
statements, which specify possible successors of the production. The produce statement
has the syntax:

produce parameteric-stringopt;
where parameteric-string is defined as in the axiom (Section 2.2). Each produce state-
ment is implicitly followed by a return statement. Thus, if several produce statements
are present in the production body, the first statement executed terminates the production
application. Typically, the choice of alternative successors is controlled by C++ condi-
tional statements.

4-5

4-6

2.5. Decomposition rules
As defined by Lindenmayer [1968], L-systems operate in discrete derivation steps. Each
step consists of a (conceptually) parallel application of suitable productions to all sym-
bols in the predecessor string. This parallelism is intended to capture progression of time
by a given interval, the same for all components of the modeled structure. Thus, for ex-
ample, the L-system production A BC expresses the idea “module A develops into
modules B and C over a given time interval.” In practice, it is also often necessary to ex-
press the idea that a given module is a compound module, consisting of several elements.
A logical analysis of the notions “develops over time” and “consists of” was presented by
Woodeger [1937]. Prusinkiewicz et al. [2000, 2001] showed that, in a grammar setting,
these notions correspond to L-system productions and Chomsky context-free productions,
respectively. In L+C, Chomsky productions are called decomposition rules. They are
specified using the same syntax as context-free L-system productions, and are identified
using the keyword decomposition, as in the following example:

decomposition:
Metamer(i, d) : { produce Internode(i, d) Leaf(d) Bud();}

This production characterizes a Metamer as a compound module consisting of an In-
ternode, a Leaf, and a Bud. Obviously, all modules must have been declared earlier in
the L+C program.
The integration of decomposition rules into the L-system framework affects the way in
which a derivation step is performed [Prusinkiewicz et al., 2000]. In L+C, decomposition
rules are applied recursively, after the definition of the initial string by the axiom state-
ment (Section 2.2) and after each step of standard L-system production applications (Sec-
tion 2.4).

2.6. Interpretation rules
Structures generated with L-systems may be visualized by assigning a graphical interpre-
tation to a predefined set of modules [Szilard and Quinton, 1979; Prusinkiewicz, 1986,
Prusinkiewicz et al., 2003]. For example, in L+C, a predefined module F(float) draws
a line of a given length in the current direction (as defined in the turtle geometry [Abel-
son and diSessa, 1982]); Line2D (point2D, point2D) draws a line between two
given points, and SetColor(int) assigns a color to geometric primitives. From the
user perspective, however, it is often more convenient to express the model in terms of
modules inherent in the modeling domain (e.g., apices, internodes, and leaves in the case
of plant models) rather than directly in terms of modules with a geometric interpretation
(e.g., points, lines, and polygons). In order to separate these conceptual and visual as-
pects of model specification, Kurth [1994] introduced the notion of interpretation rules.
Interpretation rules are similar to decomposition rules in that they are context-free Chom-
sky productions, and are applied recursively, after each derivations step (specifically, af-
ter the decomposition rules have been applied). In contrast to decomposition rules, how-
ever, interpretation rules do not affect the outcome of the following derivation steps. In-
stead, they are applied “on the side”, producing modules that are passed to the graphical
part of the modeling program, and discarded once they have been interpreted (Figure 2).

4-7

ω
G*
⇒ µ0

L
⇒ µ'1

G*
⇒ µ1

L
⇒ µ'2

G*
⇒ …

 ⇓I* ⇓I*
 v0 v1 ...

Figure 2. Generation of a developmental sequence using an L-system with decomposition and in-
terpretation rules. Beginning with the axiom ω, the progressions of strings µ1, µ2, µ3,… results
from the interleaved application of decomposition rules G and L-system derivation steps L. The
interpretation rules I map strings µi into strings νi , which are interpreted graphically.

In L+C, interpretation rules are identified using the keyword interpretation, as in
the following example:

interpretation:
Internode(i, d) : { produce SetColor(1) F(d.length); }

The above production specifies that module Internode will be represented graphically
as a straight line, (F) drawn using color with index 1. The line length is specified by field
length in data structure d.

2.7. Control statements
Control statements were introduced by Hanan [1992] (see also Prusinkiewicz et al.,
2000]) to specify procedures that are executed at specific points during an L-system-
based derivation. In L+C, they are specified using the syntax:

Start|StartEach|EndEach|End:
{

 compound statement
}

The control statements are executed as follows:

• Start is executed at the beginning of the program,
• StartEach is executed before every derivation step,
• EndEach is executed after every derivation step,
• End is executed after the last derivation step.

Any code that is allowed inside a C++ function can be specified as the compound state-
ment. Typical uses of the control statements include initialization of global variables,
opening and closing of I/O streams, and reporting of simulation statistics after each simu-
lation step.

2.8. Example
A sample L+C program that generates a branching structure is presented below:

1
2
3
4
5
6
7
8

#include <lpfgall.h>
#include <math.h>

const int Delay = 1;
const float BranchingAngle = 45.0;
const float LengthGrowthRate = 1.33;

derivation length: 17;

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

struct InternodeData
{ float length, area; };

module A(int,float);
module Metamer(float);
module Internode(InternodeData);

Start: { Backward(); }
ignore: Right;

axiom: A(0,BranchingAngle);

A(t,angle) :
{
 if (t<0) // young apex
 produce A(t+1,angle);
 else // mature apex
 produce Metamer(angle) A(0,-angle);
}

Internode(id) >> SB() Internode(id2) EB() Internode(id3) :
{
 id.area = id2.area + id3.area;
 id.length *= LengthGrowthRate;
 produce Internode(id);
}

Internode(id) >> Internode(idr) :
{
 id.area = idr.area;
 id.length *= LengthGrowthRate;
 produce Internode(id);
}

Internode(id) >> A(t,angle):
{
 id.length *= LengthGrowthRate;
 produce Internode(id);
}

decomposition:
Metamer(angle) :
{
 InternodeData id = {1, 1};
 produce
 Internode(id)
 SB() Right(angle) A(-Delay,angle) EB()
 Internode(id);
}

interpretation:
Internode(id) :
{
 produce SetColor(2) SetWidth(pow(id.area,.5)) F(id.length);
}

The modeled structure consists of three types of modules, which are given biologicaly
meaningful names A, Metamer, and Internode (lines 13-15). The process of string
derivation is performed backward (from right to left) as indicated in the Start statement
(line 17). In the process of context matching module Right (used to specify the branching
angle in line 56) is ignored (line 18). The initial structure defined by the axiom is a single

4-8

apex. Its parameters characterize the developmental stage and the branching angle of the
next branch that will be produced by this apex. According to the first production (lines
22-28), an immature apex will grow older, and a mature apex will produce a metamer,
over the time interval associated with a derivation step. The decomposition rule (lines
51-58) specifies that the metamer consists of two internode segments, and a lateral branch
delimited by the language-predefined modules SB() (start branch) and EB() (end
branch). The branch initially consists of a lateral apex, placed at a given angle with
respect to its supporting internode. The development of internodes is described by the
three productions in lines 30 to 48. These productions specifies that an internode will
grow in length by factor LengthGrowthRate per derivation step. They also determine
the cross-section area of each internode as the sum of the cross-sections of internodes
supported by it. Specifically, the new context construct is used to accumulate the cross-
section of branches when moving from the apices toward the base of the structure.
Finally, the interpretation rule (lines 61-64) specifies that each internode will be
visualized as a line of length and width determined by the internode parameters. The
structure generated by this L-system is shown in Figure 3.

Figure 3. Example of a structure generated by the sample L-system.

3. Implementation of the L+C translator
The main difference between L+C and C++ is not at the level of syntax, but at the level
of the programming paradigm: L+C is a declarative language, whereas C++ is an impera-
tive language. Furthermore, L+C programs operate in a specific topological space [Gia-
vitto and Michel, 2001, 2002] of a linear or branching string, whereas C++ does not pre-
suppose any such space. Despite these differences, most of the L+C grammar is the C++
grammar. Given that, the process of compiling and executing an L+C program consists of
translating some specific L+C constructs into C++, while leaving other constructs are left
intact. This leads to the modeling system design shown in Figure 4.

4-9

4-10

L+C

Translated
code

Generator

Unmodified
C++ code

L+C to C++
translator

Compiled DLL C++

compiler

DLL-generator
interface

Figure 4. Components of our modeling system

Based on this design, the translator divides the input L+C code into two categories: the
constructs specific to L+C are translated into C++ code, while the remaining C++ code is
passed verbatim to the compiler. The resulting C++ code is then compiled using a stan-
dard C++ compiled as a DLL (dynamic link library). The actual execution of the L+C
program is performed by a fixed component of a modeling program, called the generator
(Figure 4). For the user’s convenience, modified L+C program can be translated, com-
piled and ran without a need for restarting the modeling program. Consequently, the L-
system string derivation is performed based only on the information that can be provided
by the DLL at run-time (since the generator is a fixed component and is not recompiled
for every L+C program).
The DLL includes the interfacing information that makes the generator and the compiled
L+C program communicate. We present this interface from the perspective of string
derivation by the generator. The core of the generator is the Execute() function:

void Execute()
{

 Start();
 Axiom();
 DecomposeString();
 for (int i=0; i<DerivationLength(); ++i)
 {
 StartEach();
 Derive();
 DecomposeString();
 EndEach();
 }
 End();

}

where the functions written in boldface are defined in the process of translating the L+C
program to C++ as follows:

• Start(), StartEach(), EndEach() and End() execute the compound state-
ments specified in the corresponding L+C control statements (Section 2.7);

• Axiom() creates the initial L-system string (Section 2.2),
• DerivationLength() returns the value specified in the L-system derivation

length statement (Section 2.3).

4-11

The translation of the L+C control statements into C++ functions is straightforward. For
example, the L+C Start statement is translated as follows:

Original code Translated code
Start:
{
 …
}

void Start()
{
 …
}

Analogous substitutions are made for the other L+C control statements. To process the
derivation length statement, the translator replaces the L+C keyword with a C++
function prototype:

Original code Translated code
derivation length: 3; int DerivationLength() { return 3; }

In order to present the translation of productions, let us consider the following L+C pro-
duction as an example:

 module A(data, float);
 module B(int, float);

A(dl, xl) < B(n, a) :
{

 if (a>xl)
 produce B(n+1, xl);
 else
 produce B(n-1, xl);

}
Elements of the production typical for L+C are highlighted in boldface. The process of
translation is based on the fact that productions are similar to functions in imperative pro-
gramming languages. The similarities can be summarized into the following:

• A production is a piece of code to be executed,
• Its input is its predecessor and optionally, parameters of the predecessor’s mod-

ules, and

• Its output is the successor.
The differences between productions and functions are as follows:

• L-system programs do not call productions explicitly. The general mechanism of
matching productions determines which production should be applied and when.

• Productions do not return a value in the traditional sense. Instead, their output
modifies the contents of the L-system string.

The first step in translating a production into a C++ function is to declare a function pro-
totype, using the types declared in the relevant modules. For example, the following sub-
stitution is made:

Original code: Translated code:
A(dl, xl) < B(n, a) void P1(data dl, float xl, int n, float a)

Another element in the production code that needs to be translated is the produce state-
ment. The code resulting from the translation of this statement must add the successor to
the new string, and terminate the production. In our example, the produce statement is
translated into code similar to this:

Original code: Translated code:
produce B(n+1, x); {App(B_id); App(n+1); App(x); return;}

It should be noted that the translation process, as so far described, does not retain all the
necessary information. In particular, the modules in the strict predecessor and the context
information are not present in the generated code. It is then necessary to add information
that bridges the generator and the translated L+C code. However, as this is of a purely
technical concern of program implementation, the additional code is not further discussed
here.

4. Conclusions
We have described a modeling language L+C, which incorporates C++ into the frame-
work of L-systems. We have also implemented a modeling system that uses L+C pro-
grams as input. To implement the L+C translator, we have introduced a methodology
based on the separation of the constructs specific to L-systems from the C++ code. This
methodology made it possible for a single person to implement the L+C translator in one
month. The L-system-specific code is translated into C++ and combined with the C++
code taken verbatim from the L+C programs. The resulting code is translated into a DLL
module using a standard C++ compiler. This module is linked with the generator that
executes the L-systems. In practice, the DLL module is small in size compared to the
generator and the graphical interpreter associated with it. Consequently, the DLL module
compiles and links fast (of the order of one second on the current Windows and Linux
workstations), which allows for interactive manipulation and modification of the models.
The increased expressiveness of L+C, compared to the previous L-system based lan-
guages, makes it possible to create models of a relatively greater complexity. L+C is
currently being used to model aspects of plant genetics, physiology, and biomechanics.

References
Abelson, H. and diSessa, A. [1982]: Turtle geometry. M.I.T. Press, Cambridge.
Aho 1986: Aho, A., Sethi, R. and Ullman, J. [1986], Compilers: Principles, techniques

and tools. Addison-Wesley, Reading.
Baker R. and Herman G. T. [1970]: Simulation of organisms using a developmental

model, parts I and II. International Journal of Bio-Medical Computing 3, pp. 201-215
and 251-267.

Chien, T. and Jurgensen, H. [1992]: Parameterized L systems for modelling: Potential
and limitations. In: G. Rozenberg and A. Salomaa (Eds.): Lindenmayer systems: Im-

4-12

pacts on theoretical computer science, computer graphics, and developmental biol-
ogy. Springer, Berlin, pp. 213—229.

Erstad, K. [2002]: L-systems, twining plants, Lisp. M. Sc. thesis, University of Bergen.
Giavitto, J.-L. and Michel, O. [2001]: MGS: A programming language for the transfor-

mation of topological collections. Research Report, 61-2001, CNRS – Universite
d’Evry Val d’Esonne.

Giavitto, J.-L. and Michel, O. [2002]: Data structures as topological spaces. Proceedings
of the 3rd International Conference on Unconventional Models of Computation
UMC02, Lecture Notes in Computer Science 2509, pp. 137-150.

Hammel, M. [1996]: Differential L-systems and their application to the simulation and
visualization of plant development. Ph. D. thesis, University of Calgary.

Hanan, J. [1992]: Parametric L-systems. Ph. D. thesis, University of Regina.
Karwowski, R. [2002]: Improving the process of plant modeling: The L+C modeling lan-

guage. Ph. D. thesis, University of Calgary.
Knuth, D. [1968]: Semantics of context-free languages. Mathematical Systems Theory 2,

pp. 191-220.
Kurth, W. [1994]: Growth grammar interpreter (GROGRA 2.4): A software tool for the

3-dimensional interpretation of stochastic, sensitive growth grammars in the context
of plant modeling. Introduction and reference manual. Forschungszentrum Waldoko-
systeme der Universitat Gottingen.

Lindenmayer, A. [1968]: Mathematical models for cellular interaction in development.
Journal of Theoretical Biology 18, pp. 280-315.

Lindenmayer, A. [1971]: Developmental systems without cellular interaction, their lan-
guages and grammars. Journal of Theoretical Biology 30, pp. 455-494

Prusinkiewicz, P. [1986]: Graphical applications of L-systems. Proceedings of Graphics
Interface ’86 – Vision Interface ’86, pp. 247-253.

Prusinkiewicz, P. and Hanan, J. [1989]: Lindenmayer systems, fractals and plants. Lec-
ture Notes in Biomathematics 79, Springer, Berlin.

Prusinkiewicz, P. and Hanan, J. [1990]: Visualization of botanical structures and proc-
esses using parametric L-systems. In: D. Thalmann (Ed.), Scientific visualization and
graphics simulation, J. Wiley & Sons, Chichester, pp. 183-201.

Prusinkiewicz, P. and Hanan, J. [1992]: L-systems: From formalism to programming lan-
guages. In: G. Rozenberg and A. Salomaa (Eds.), Lindenmayer systems: Impacts on
theoretical computer science, computer graphics and developmental biology.
Springer, Berlin, pp. 193-211.

P. Prusinkiewicz, P., Hammel, M. and Mjolsness, E. [1993]: Animation of plant devel-
opment. Proceedings of SIGGRAPH 93, pp. 351-360.

Prusinkiewicz, P. [1997]: A look at the visual modeling of plants using {{L}-systems. In
R. Hofestadt and T. Lengauer and M. Loffler and D. Schomburg (Eds.): Bioinformat-
ics. Lecture Notes in Computer Science 1278, Springer, Berlin, pp.11-29.

4-13

4-14

Prusinkiewicz, P., Hanan, J., and Mech, R. [2000]: An L-system-based plant modeling
language. In M. Nagl, A. Schuerr and M. Muench (Eds.): Applications of graph
transformation with industrial relevance. Lecture Notes in Computer Science 1779,
Springer, Berlin, pp. 395-410.

Prusinkiewicz, P., Muendermann, L., Karwowski, R. and Lane, B. [2001]: The use of po-
sitional information in the modeling of plants. Proceedings of SIGGRAPH 2001, pp.
289-300.

Prusinkiewicz, P., Samavati, F., Smith, C. and Karwowski, R. [2003]: L-system descrip-
tion of subdivision curves. To appear in the International Journal of Shape Model-
ing.

Sievanen R., Perttunen J., Prusinkiewicz P., Karwowski R., Modeling language L, unpub-
lished report.

Stroustroup, B. [1991]: The C++ Programming Language, Addison-Wesley, Reading.
Szilard, A. and Quinton, R. [1979]: An interpretation for D0L systems by computer

graphics. The Science Terrapin 4, pp. 8-13.
Woodger J. [1937]: The axiomatic method in biology, University Press, Cambridge.

	Abstract
	1. Background
	2. The L+C modeling language
	2.1. Module declarations
	2.2. Axiom declaration
	2.3. Derivation length specification
	2.4. Specification of productions
	2.5. Decomposition rules
	2.6. Interpretation rules
	2.7. Control statements
	2.8. Example

	3. Implementation of the L+C translator
	4. Conclusions
	
	
	References

