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Abstract 

 
L-systems are parallel grammars that provide a theoretical foundation for a class of programs 
used in procedural image synthesis and simulation of plant development.   In particular, the 
formalism of L-systems guides the construction of declarative languages for specifying input 
to these programs.  We outline key factors that have motivated the development of L-system-
based languages in the past, and introduce a new language, L+C, that addresses the shortcom-
ings of its predecessors.  We also describe the implementation of L+C, in which an existing 
language, C++, was extended with constructs specific to L-systems.  This implementation 
methodology made it possible to develop a powerful modeling system in a relatively short pe-
riod of time. 

1. Background 
L-systems were conceived as a rule-based formalism for reasoning on developing 
multicellular organisms that form linear or branching filaments [Lindenmayer, 1968].  
Soon after their introduction, L-systems also began to be used as a foundation of visual 
modeling and simulation programs, and computer languages for specifying the models 
[Baker and Herman, 1972].   Subsequently they also found applications in the generation 
of fractals [Szilard and Quinton, 1979; Prusinkiewicz, 1986] and geometric modeling 
[Prusinkiewicz et al., 2003].  A common factor uniting these diverse applications is the 
treatment of structure and form as a result of development. A historical perspective of  
the L-system-based software and its practical applications is presented in [Prusinkiewicz, 
1997]. 
According to the L-system approach, a developing structure is represented by a string of 
symbols over a predefined alphabet V.  These symbols represent different components of 
the structure (e.g., points and lines of a geometric figure, cells of a bacterium, apices and 
internodes of a plant).  The process of development is characterized in a declarative man-
ner using a set of productions over the alphabet V. During the simulation of development, 
these productions are applied in parallel steps to all symbols of the string, thus capturing 
the development in discrete time slices.   
Lindenmayer [1971] observed that L-system productions can be specified using standard 
notation of formal language theory. In the simplest, context-free case, productions have 
the form:  

predecessor  successor  
where predecessor is a letter of alphabet V and successor is a (possibly empty) word over 
V. For example, the division of a cell A into cells B and C can be written as A  BC. In 
the context-sensitive case, productions are often written as 
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lc < predecessor > rc  successor , 
where symbols < and > separate the strict predecessor from the left context lc and the 
right context rc [Prusinkiewicz and Hanan,1989].  Both contexts are words over V.  For 
example, the production pair: 

Y < A > O  LYS 
O < A > Y  SYL 

describes asymmetric division of a mother cell A into a short daughter cell S and long 
daughter cell L, separated by a cell wall Y.  The sequence of these cells in the filament is 
guided by the state of the walls that delimit the mother cell, which may be young (Y) or 
old (O). Obviously, a complete description of the filament's development would also re-
quire productions that characterize the growth of cells and walls over time. 
Early L-system-based programming languages closely followed the above notation 
[Baker and Herman, 1982; Prusinkiewicz and Hanan, 1989].  The needs for expressing 
increasingly complex models led, however, to the addition of constructs found in other 
programming languages.  A pivotal moment in this evolution was the introduction of pa-
rametric L-systems [Prusinkiewicz and Hanan, 1990; Hanan, 1992] and related constructs 
[Chien and Jurgensen, 1992], which associated numerical attributes to L-system symbols, 
similar to those found in attribute grammars [Knuth, 1968].  This created a need for cal-
culating new parameter values (in the production successor) on the basis of old ones 
(found in the predecessor and its context).  According to the original definition of para-
metric L-systems [Prusinkiewicz and Hanan, 1990; Hanan, 1992], these calculations were 
specified as arithmetic operations on the argument parameters, e.g. 

A(x) < B(y) > C(z)   D(x+y) E(y+z) . 
In modeling practice, however, entire procedures soon became needed to calculate new 
parameter values.  Recognizing this need, Hanan [1992] introduced the following syntax 
for L-system productions: 

lc < predecessor > rc {α} : cond {β}  successor . 

Here α and β are C-like compound statements, and cond is a logical expression that 
guards production application. A production is applied in stages.  First, it is determined 
whether production predecessor pred, surrounded by the left context lc and the right con-
text rc, matches the given symbol in the string. If this is the case, the compound state-
ment α is executed, and condition cond is evaluated.  If the result of this evaluation is 
non-zero (‘true’), the second compound statement β is executed. On this basis, parame-
ters values in the production successor are then determined, and the successor is inserted 
into the resulting string. For example, the following is a valid production: 

A(x) < B(y) > C(z)  {r =x*x+ y*y+z*z;} : r> 2 {t = x+y+z;}  D(t) E(2*t). 

At the top level, an L-system with productions in the above form operates in a declarative 
fashion, by rewriting elements of a string according to their type, context, and the associ-
ated parameters. Within each production, however, calculations are performed sequen-
tially, using constructs borrowed from an imperative language.  This combination of 
paradigms suggests two strategies for translating L-system-based languages into a repre-
sentation directly used by simulation programs [Prusinkiewicz and Hanan, 1992]: 
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• extend the formal notation for productions with constructs borrowed from an im-
perative language, or 

• extend an existing imperative language with constructs inherent in L-systems. 
The modeling program cpfg [Hanan, 1992] and its modeling language [Prusinkiewicz et 
al., 2000] are representative of the first approach.  The interpreter of the cpfg language 
was constructed following the standard steps of lexical analysis, parsing, and object code 
generation. Nevertheless, in spite of well-developed methodology for translator construc-
tion (e.g. [Aho et al, 1986]), construction of a compiler for a comprehensive language is a 
large task. Consequently, the cpfg language only includes a limited subset of C-like 
statements; for example, it does not support user-definable functions and typed parame-
ters associated with the modules. As a result, while simple L-system models can be ex-
pressed using cpfg language in an elegant, compact manner, specification and mainte-
nance of larger models becomes difficult. 
An alternative approach, first suggested in [Prusinkiewicz and Hannan 1992], is to create 
an L-system-based programming environment by extending an existing language with 
support (classes, libraries) specific to L-systems.  Using this approach, Hammel [1996] 
implemented differential L-systems [Prusinkiewicz et al., 1993] in SIMULA, and Erstad 
[2002] implemented an L-system-based programming environment in LISP.  Both im-
plementations preserve the syntax of the underlying languages (SIMULA and LISP).  In 
contrast, Karwowski [2002] implemented the L-system-based programming language 
L+C by extending the syntax of C++ [Sievanen].  We describe here the design and im-
plementation of this language.   

2.  The L+C modeling language 
The key new elements introduced in the L+C modeling language are: 

• typed module parameters, including all primitive and compound data types (struc-
tures) supported by C++ 

• productions with multiple successors 
• extension of the notion of context-sensitivity with the ‘new context’ constructs, 

which speed up information transfer across simulated structures. 
In addition, by virtue of being based on the C++ language, L+C has the full expressive 
power of C++.  In particular, user-defined functions are supported as in C++. 
At the top level, an L+C program is a set of declarations for: 

• Structures and classes, 
• Global variables, 
• Functions, 
• Modules, 
• The axiom, 
• The derivation length, 
• Productions, 
• Decomposition rules, 
• Interpretation rules, 
• Control statements. 



 

The declarations of structures, classes, variables and functions have exactly the same syn-
tax and meaning as in C++.  The remaining declarations are specific to L+C, and are de-
scribed below. 

2.1. Module declarations 
Modules are the elements of the L-system string.  A module consist of an identifier 
(which must follow the C++ syntax [Stroustroup, 1991]) and an optional list of parame-
ters.   In L+C modules have to be declared before they can be used.  Declaration specifies 
the number and types of parameters that are associated with the given module type using 
the following syntax: 

module identifier (parameter-listopt); 
Examples of valid module declarations are: 

module A(); // module A with no parameters 
module N(float); // module N with one parameter of type float 
module Metamer(int, MetamerData); // module Metamer with a   

                             // parameter of type int and  
                             // a user-defined type MetamerData 

2.2. Axiom declaration 
The axiom declaration specifies the initial L-system string using the following syntax: 

axiom: parametric-string; 
where the parametric-string must be non-empty.  Assuming that the modules have been 
declared as in Section 2.1, and s_init is a structure of type MetamerData, the following 
is a valid axiom declaration: 

axiom: Metamer(1,s_init) N(0.25) A(); 

2.3. Derivation length specification 
Derivation length is the number of derivation steps for the simulation.  It is specified us-
ing the syntax: 

derivation length: integer-expression; 

2.4. Specification of productions 
The syntax of productions is a combination of the formal L-system notation and the C++ 
syntax for function definition.  In general, it has the syntax: 

predecessor: 
{ 

  production body 
} 

The predecessor has one of the following forms: 
new-left-context << left-context < strict-predecessor > right-context : 
left-context < strict-predecessor > right-context  >> new-right context: 
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The strict predecessor specifies the part of the string being rewritten by the production.  It 
can be a single module, as assumed in the usual definition of L-systems, or a string of 
several modules, as defined for pseudo-L-systems [Prusinkiewicz, 1986].  The optional 
left and right contexts are strings of modules that need to be in the neighborhood of the 
strict predecessor in order for the production to apply.  The new contexts specify the 
modules that must be present in the neighborhood of the production successor, in the 
string being derived.   This information is easily available if the string is being rewritten 
in a particular direction: from left to right in the case of new left context, and from right 
to left in the case of new right context (Figure 1).  In theory, two-sided new context could 
also be defined, but its implementation is more difficult and, therefore, it is not supported 
by L+C.   
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Figure 1.  Context of L-system productions.  Left new context is available if the successor string is 
built left-to-right (left figure).  Right new context is available if the successor string is built right 
to left (right figure). 

 
The parameters that appear in the production predecessor are formal parameters.  All the 
formal parameters of every module in a production predecessor must be listed, even if 
they are not used in the production body.  An example of a valid production predecessor 
that uses the modules declared in Section 2.1 is: 

Metamer(i_l, d_l) N(w) < Metamer(i, d) > A() 
Formal parameters have types determined by the declarations of the respective modules. 
They are bound to the actual parameters in the string during production application [Prus-
inkiewicz and Hanan, 1990].   The scope of the formal parameters is the same as the 
scope of formal parameters in C++ functions. 
The production body is a compound statement that may contain any code allowed inside 
a C++ function. In addition, the production body may include one or more produce 
statements, which specify possible successors of the production.  The produce statement 
has the syntax: 

produce parameteric-stringopt; 
where parameteric-string is defined as in the axiom (Section 2.2).  Each produce state-
ment is implicitly followed by a return statement.  Thus, if several produce statements 
are present in the production body, the first statement executed terminates the production 
application.  Typically, the choice of alternative successors is controlled by C++ condi-
tional statements. 
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2.5.  Decomposition rules 
As defined by Lindenmayer [1968], L-systems operate in discrete derivation steps.  Each 
step consists of a (conceptually) parallel application of suitable productions to all sym-
bols in the predecessor string.  This parallelism is intended to capture progression of time 
by a given interval, the same for all components of the modeled structure.  Thus, for ex-
ample, the L-system production A  BC expresses the idea “module A develops into 
modules B and C over a given time interval.”  In practice, it is also often necessary to ex-
press the idea that a given module is a compound module, consisting of several elements.  
A logical analysis of the notions “develops over time” and “consists of” was presented by 
Woodeger [1937].  Prusinkiewicz et al. [2000, 2001] showed that, in a grammar setting, 
these notions correspond to L-system productions and Chomsky context-free productions, 
respectively.  In L+C, Chomsky productions are called decomposition rules.  They are 
specified using the same syntax as context-free L-system productions, and are identified 
using the keyword decomposition, as in the following example: 

decomposition: 
Metamer(i, d) : { produce Internode(i, d) Leaf(d) Bud();} 

This production characterizes a Metamer as a compound module consisting of an In-
ternode, a Leaf, and a Bud. Obviously, all modules must have been declared earlier in 
the L+C program. 
The integration of decomposition rules into the L-system framework affects the way in 
which a derivation step is performed [Prusinkiewicz et al., 2000].  In L+C, decomposition 
rules are applied recursively, after the definition of the initial string by the axiom state-
ment (Section 2.2) and after each step of standard L-system production applications (Sec-
tion 2.4).  

2.6. Interpretation rules 
Structures generated with L-systems may be visualized by assigning a graphical interpre-
tation to a predefined set of modules [Szilard and Quinton, 1979; Prusinkiewicz, 1986, 
Prusinkiewicz et al., 2003].  For example, in L+C, a predefined module F(float) draws 
a line of a given length in the current direction (as defined in the turtle geometry [Abel-
son and diSessa, 1982]); Line2D (point2D, point2D) draws a line between two 
given points, and SetColor(int) assigns a color to geometric primitives.  From the 
user perspective, however, it is often more convenient to express the model in terms of 
modules inherent in the modeling domain (e.g., apices, internodes, and leaves in the case 
of plant models) rather than directly in terms of modules with a geometric interpretation 
(e.g., points, lines, and polygons).  In order to separate these conceptual and visual as-
pects of model specification, Kurth [1994] introduced the notion of interpretation rules.  
Interpretation rules are similar to decomposition rules in that they are context-free Chom-
sky productions, and are applied recursively, after each derivations step (specifically, af-
ter the decomposition rules have been applied).   In contrast to decomposition rules, how-
ever, interpretation rules do not affect the outcome of the following derivation steps.  In-
stead, they are applied “on the side”, producing modules that are passed to the graphical 
part of the modeling program, and discarded once they have been interpreted (Figure 2).  
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Figure 2.  Generation of a developmental sequence using an L-system with decomposition and in-
terpretation rules.  Beginning with the axiom ω, the progressions of strings µ1, µ2, µ3,… results 
from the interleaved application of decomposition rules G and L-system derivation steps L.  The 
interpretation rules I map strings µi into strings νi , which are interpreted graphically.   

 
In L+C, interpretation rules are identified using the keyword interpretation, as in 
the following example: 

interpretation: 
Internode(i, d) : { produce SetColor(1) F(d.length); } 

The above production specifies that module Internode will be represented graphically 
as a straight line, (F) drawn using color with index 1.  The line length is specified by field 
length in data structure d.  

2.7. Control statements 
Control statements were introduced by Hanan [1992] (see also Prusinkiewicz et al., 
2000]) to specify procedures that are executed at specific points during an L-system-
based derivation.    In L+C, they are specified using the syntax: 

Start|StartEach|EndEach|End:  
{ 

    compound statement 
} 

The control statements are executed as follows: 

• Start is executed at the beginning of the program, 
• StartEach is executed before every derivation step, 
• EndEach is executed after every derivation step, 
• End is executed after the last derivation step. 

Any code that is allowed inside a C++ function can be specified as the compound state-
ment.  Typical uses of the control statements include initialization of global variables, 
opening and closing of I/O streams, and reporting of simulation statistics after each simu-
lation step. 

2.8. Example 
A sample L+C program that generates a branching structure is presented below: 

1 
2 
3 
4 
5 
6 
7 
8 

#include <lpfgall.h> 
#include <math.h> 
 
const int Delay = 1; 
const float BranchingAngle = 45.0; 
const float LengthGrowthRate = 1.33; 
 
derivation length: 17; 



 

9 
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21 
22 
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33 
34 
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40 
41 
42 
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struct InternodeData 
{ float length, area; }; 
 
module A(int,float); 
module Metamer(float); 
module Internode(InternodeData); 
 
Start: { Backward(); } 
ignore: Right; 
 
axiom: A(0,BranchingAngle); 
 
A(t,angle) : 
{ 
  if (t<0) // young apex 
    produce A(t+1,angle);   
  else     // mature apex 
    produce Metamer(angle) A(0,-angle); 
} 
 
Internode(id) >> SB() Internode(id2) EB() Internode(id3) : 
{ 
  id.area = id2.area + id3.area; 
  id.length *= LengthGrowthRate; 
  produce Internode(id); 
} 
 
Internode(id) >> Internode(idr) : 
{ 
  id.area = idr.area; 
  id.length *= LengthGrowthRate; 
  produce Internode(id); 
} 
 
Internode(id) >> A(t,angle): 
{ 
  id.length *= LengthGrowthRate; 
  produce Internode(id); 
} 
 
decomposition: 
Metamer(angle) : 
{ 
  InternodeData id = {1, 1}; 
  produce  
      Internode(id)  
      SB() Right(angle) A(-Delay,angle) EB() 
      Internode(id); 
} 
 
interpretation: 
Internode(id) : 
{ 
  produce SetColor(2) SetWidth(pow(id.area,.5)) F(id.length);  
} 

 
The modeled structure consists of three types of modules, which are given biologicaly 
meaningful names A, Metamer, and Internode (lines 13-15).  The process of string 
derivation is performed backward (from right to left) as indicated in the Start statement 
(line 17). In the process of context matching module Right (used to specify the branching 
angle in line 56) is ignored (line 18). The initial structure defined by the axiom is a single 
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apex.  Its parameters characterize the developmental stage and the branching angle of the 
next branch that will be produced by this apex.  According to the first production (lines 
22-28), an immature apex will grow older, and a mature apex will produce a metamer, 
over the time interval associated with a derivation step.  The decomposition rule (lines 
51-58) specifies that the metamer consists of two internode segments, and a lateral branch 
delimited by the language-predefined modules SB() (start branch) and EB() (end 
branch).  The branch initially consists of a lateral apex, placed at a given angle with 
respect to its supporting internode.  The development of internodes is described by the 
three productions in lines 30 to 48.  These productions specifies that an internode will 
grow in length by factor LengthGrowthRate per derivation step.  They also determine 
the cross-section area of each  internode as the sum of the cross-sections of internodes 
supported by it.  Specifically, the new context construct is used to accumulate the cross-
section of branches when moving from the apices toward the base of the structure.  
Finally, the interpretation rule (lines 61-64) specifies that each internode will be 
visualized as a line of  length and width determined by the internode parameters.   The  
structure generated by this L-system is shown in Figure 3. 
 

 

 
    
 

Figure 3.  Example of a structure generated by the sample L-system.   

3. Implementation of the L+C translator 
The main difference between L+C and C++ is not at the level of syntax, but at the level 
of the programming paradigm: L+C is a declarative language, whereas C++ is an impera-
tive language.  Furthermore, L+C programs operate in a specific topological space [Gia-
vitto and Michel, 2001, 2002] of a linear or branching string, whereas C++ does not pre-
suppose any such space.  Despite these differences, most of the L+C grammar is the C++ 
grammar. Given that, the process of compiling and executing an L+C program consists of 
translating some specific L+C constructs into C++, while leaving other constructs are left 
intact. This leads to the modeling system design shown in Figure 4. 
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Figure 4.  Components of our modeling system 

Based on this design, the translator divides the input L+C code into two categories: the 
constructs specific to L+C are translated into C++ code, while the remaining C++ code is 
passed verbatim to the compiler. The resulting C++ code is then compiled using a stan-
dard C++ compiled as a DLL (dynamic link library). The actual execution of the L+C 
program is performed by a fixed component of a modeling program, called the generator 
(Figure 4). For the user’s convenience, modified L+C program can be translated, com-
piled and ran without a need for restarting the modeling program. Consequently, the L-
system string derivation is performed based only on the information that can be provided 
by the DLL at run-time (since the generator is a fixed component and is not recompiled 
for every L+C program).  
The DLL includes the interfacing information that makes the generator and the compiled 
L+C program communicate.  We present this interface from the perspective of string 
derivation by the generator. The core of the generator is the Execute() function: 

void Execute() 
{ 

      Start(); 
      Axiom(); 
      DecomposeString(); 
      for (int i=0; i<DerivationLength(); ++i) 
      { 
        StartEach(); 
         Derive(); 
        DecomposeString(); 
         EndEach(); 
      } 
      End(); 

} 
 
where the functions written in boldface are defined in the process of translating the L+C 
program to C++ as follows:  

• Start(), StartEach(), EndEach() and End() execute the compound state-
ments specified in the corresponding L+C control statements (Section 2.7); 

• Axiom() creates the initial L-system string (Section 2.2), 
• DerivationLength() returns the value specified in the L-system derivation 

length statement (Section 2.3). 
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The translation of the L+C control statements into C++  functions is straightforward.  For 
example, the L+C  Start statement is translated as follows: 
 
Original code Translated code 
Start: 
{ 
  … 
} 

void Start() 
{ 
  … 
} 

 
Analogous substitutions are made for the other L+C control statements. To process the 
derivation length statement, the translator replaces the L+C keyword with a C++ 
function prototype: 
 
Original code Translated code 
derivation length: 3;  int DerivationLength() { return 3; } 
 
In order to present the translation of productions, let us consider the following L+C pro-
duction as an example: 
 
 module A(data, float); 
 module B(int, float); 
 
 

A(dl, xl) < B(n, a) : 
{ 

      if (a>xl) 
           produce B(n+1, xl); 
      else 
           produce B(n-1, xl); 

} 
Elements of the production typical for L+C are highlighted in boldface. The process of 
translation is based on the fact that productions are similar to functions in imperative pro-
gramming languages. The similarities can be summarized into the following: 

• A production is a piece of code to be executed, 
• Its input is its predecessor and optionally, parameters of the predecessor’s mod-

ules, and 

• Its output is the successor. 
The differences between productions and functions are as follows: 

• L-system programs do not call productions explicitly. The general mechanism of 
matching productions determines which production should be applied and when. 

• Productions do not return a value in the traditional sense. Instead, their output 
modifies the contents of the L-system string. 

The first step in translating a production into a C++ function is to declare a function pro-
totype, using the types declared in the relevant modules. For example, the following sub-
stitution is made: 



 

 
Original code: Translated code: 
A(dl, xl) < B(n, a) void P1(data dl, float xl, int n, float a) 
 
Another element in the production code that needs to be translated is the produce state-
ment. The code resulting from the translation of this statement must add the successor to 
the new string, and terminate the production.  In our example, the produce statement is 
translated into code similar to this: 
 
Original code: Translated code: 
produce B(n+1, x); {App(B_id); App(n+1); App(x); return;} 
 
It should be noted that the translation process, as so far described, does not retain all the 
necessary information.  In particular, the modules in the strict predecessor and the context 
information are not present in the generated code.  It is then necessary to add information 
that bridges the generator and the translated L+C code.  However, as this is of a purely 
technical concern of program implementation, the additional code is not further discussed 
here. 

4.  Conclusions 
We have described a modeling language L+C, which incorporates C++ into the frame-
work of L-systems. We have also implemented a modeling system that uses L+C pro-
grams as input.  To implement the L+C translator, we have introduced a methodology 
based on the separation of the constructs specific to L-systems from the C++ code.  This 
methodology made it possible for a single person to implement the L+C translator in one 
month.  The L-system-specific code is translated into C++ and combined with the C++ 
code taken verbatim from the L+C programs.  The resulting code is translated into a DLL 
module using a standard C++ compiler.  This module is linked with the generator that 
executes the L-systems.  In practice, the DLL module is small in size compared to the 
generator and the graphical interpreter associated with it.  Consequently, the DLL module 
compiles and links fast (of the order of one second on the current Windows and Linux 
workstations), which allows for interactive manipulation and modification of the models.     
The increased expressiveness of L+C, compared to the previous L-system based lan-
guages, makes it possible to create models of a relatively greater complexity.   L+C is 
currently being used to model aspects of plant genetics, physiology, and biomechanics.   
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