Relational Specification
of Surface Subdivision Algorithms

Colin Smith, Przemyslaw Prusinkiewicz, and Faramarz Samavati
Department of Computer Science
University of Calgary

Abstract

Many polygon mesh algorithms operate in a local manner, yet are
formally specified using global indexing schemes. We address this dis-
crepancy by defining a set of local operations on polygon meshes in
relational, index-free terms. We also introduce the vv programming
language to express these operations in a machine-readable form. We
then apply vv to specify several surface subdivision algorithms. These
specifications can be directly executed by the corresponding modeling
software.

1 Introduction

Ideally, a problem description should clearly reflect its nature. The data
should be organized to reflect the relations inherent in the problem, and the
language used to describe the solution should focus on its essence. Superflu-
ous elements should be avoided, as they obfuscate the nature of the problem
and its solution. When the data and relations are elegantly organized, the
solution often becomes simple and easy to understand and implement.

The particular problem that we address in this paper is that of dealing
with local properties and local transformations of polygon meshes. Locality
is one of the most fundamental characteristics of systems. It means that:
(a) a neighborhood relation is defined on the elements of the system, and (b)
each element of the system changes its state according to its own state and
the state of its neighbors, to the exclusion the elements positioned farther
away. The search for, and study of, local mechanisms that underpin observed
phenomena has been one of the central and fruitful directions in natural
sciences, from physics to biology.

3-31

Many computer graphics algorithms also have local character. A good
example is given by subdivision algorithms in geometric modeling. Their
locality is intuitively captured when subdivision algorithms are described in
terms of masks [31] (also referred to as stencils [27]). The prevalent formal
definitions of subdivision algorithms, however, do not take advantage of
the simplicity and locality of the masks, but rely on a global enumeration
(indexing) of the polygon mesh elements. The appeal of indices is that they
are a standard mathematical notation, and are closely coupled with the array
data structures supported by most programming languages. Unfortunately,
they are deficient in several respects:

e The use of indices does not adhere to the philosophy of describing local
processes in local terms. For example, one can write the expressions
i — 1 or ¢ + 1, which refer to the immediate neighbors in a linear
structure, as easily as ¢ — 100 or 2¢, which do not.

e The indexed elements are often not arranged into a regular grid. This
complicates the indexing scheme and index arithmetic, and makes
them error-prone.

e The indexed elements must be dynamically renumbered as their num-
ber and arrangement change.

e Indexed notation has questionable value from the viewpoint of algo-
rithm implementation, which may use a different indexing scheme than
that used to specify the algorithm, or rely on pointers rather than in-
dex arithmetic when identifying neighbors.

e Index-heavy notation is hard to read.

We address these deficiencies by introducing the vertez-vertex polygon
mesh representation, and the corresponding set of operations, the vertez-
vertex algebra, which make it possible to describe local operations on poly-
gon meshes in relational terms. This means that we identify elements of the
structure with respect to each other, avoiding absolute identifiers such as
coordinates or indices. We also introduce vv, an extension of the C+4 pro-
gramming language, for expressing these operations in a machine-readable
form. This results in the language + engine modeling paradigm, which
simplifies the implementation of individual algorithms by treating them as
input to a multi-purpose modeling program. We demonstrate the usefulness
of this paradigm by presenting concise vv specifications of several subdivision
algorithms.

3-32

2 Background

Local modifications to structured objects are the essence of development.
Consequently, the problem of referring to the neighbors often occurs in
biologically-motivated models of computation. In cellular automata, for
example, the neighbors of a given cell may be specified using index arith-
metic, or in a relational manner, using the directions north, south, east
and west. Giavitto and Michel [10] explored the advantages of the rela-
tional approach and generalized it to arbitrary regular tessellations (group-
based fields). They have also proposed a programming language to capture
locally defined structures that, unlike cellular automata and group-based-
fields, may grow and dynamically reconfigure [11].

Growing geometric structures with linear and branching topology, have
been constructed since the late 1960s as models of multicellular organisms,
in particular plants. The relational approach to the identification of the
elements of these structures is exemplified by the formalism of L-systems [19,
24]. A structure is represented by a sequence of symbols. This sequential
arrangement automatically determines the neighborhood relations between
the elements.

L-systems with affine geometry interpretation have recently been shown
to provide a compact formal specifications of subdivision algorithms for
curves [25]. For example, Chaikin’s corner-cutting algorithm [6] is given
by the production:

P(v;) < P(v) > P(v,) — P (v + 3v) P (3v+ 1v,). (1)

Here P(z) denotes a point at location z; symbols <, > and — separate the
left context, the strict predecessor, the right context, and the successor of
the production; and the arithmetic operators specify the affine combinations
of the argument points. In a process akin to cell division in a developing or-
ganism, this production replaces the parent point by two descendant points,
with the locations dependent on the context (Figure 1).

The simplicity, clarity, and compactness of the L-system specification
of subdivision curves, combined with the possibility of executing them us-
ing an L-system-based modeling software [25], have motivated our quest for
an extension that could be applied to polygon meshes as well. Unfortu-
nately, the existing grammar-based formalisms fall short of this goal. Map
L-systems [20, 24] can generate the topology of some polygon meshes, but
do not offer flexible control over the resulting geometry and are difficult
to specify. Similarly, graph grammars [26] extend formal grammars from

3-33

P(v) P(v,)

PGrt3v)e—9P(3v+iv,)

a) P(v) b) c)

Figure 1: Chaikin subdivision process described by an L-system produc-
tion (Equation 1). a) The initial polygon. Labels refer to an arbitrarily
chosen point P(v). b) The result of the first iteration of the algorithm. c)
The curve after several subdivision steps.

strings to graphs. However, the development of graph theory has been fo-
cused on the context-free case, and more general formulations are difficult
to use.

We attribute the deficiencies of graph grammars to the loss of informa-
tion that occurs during production application. The predecessor is removed
from the structure before the successor is inserted into it, and thus details
of the predecessor’s connections are not available for reconnecting the suc-
cessor. To address this problem, we propose to operate in a more gradual
manner, possibly adding new nodes and edges before the old ones have been
removed. The old elements may thus serve as a scaffolding for introduc-
ing the new ones. This technique preserves the purely local operation of
the grammar-based approaches, but departs from their declarative charac-
ter, because modifications to structures are now specified as sequences of
imperative operations.

The ease of performing local operations on polygon meshes depends on
the mesh representation, which should be conducive to relational informa-
tion gathering and mesh transformations. Well known examples of such
representations include the winged-edge [4], and quad-edge [12] representa-
tions. Pursuing objectives closer to ours, Egli and Stewart [9] applied cel-
lular complexes [23] to specify Catmull-Clark [5] subdivision in a relational
manner. Lienhardt [18] showed that local operations involved in subdivision
algorithms can be defined using G-maps [16, 17]. More recently, Velho [29]
developed a method for describing subdivision algorithms using stellar op-
erators [15] that act on a half-edge structure [22].

We have selected yet another representation, based on the mathematical
notion of graph rotation systems [8, 30]. A rotation system associates each
vertex of a polygon mesh with an oriented circular list of its neighboring
vertices. A set of these lists, defined for each vertex, completely represents

3-34

the topology of a 2-manifold mesh [30]. Graph rotation systems have been
introduced to computer graphics by Akleman, Chen and Srinivasan [1, 2, 3]
as a formal basis for the doubly linked face list representation of 2-manifold
meshes. Akleman et al. have also defined a set of operations on this repre-
sentation, which they used to implement interactive polygon mesh modeling
tools. Below we introduce vertez-vertex systems as a different data structure
related to the graph rotation systems. It makes it possible to implement a
set of graph manipulation operations in an intuitive and efficient manner.

3 Vertex-vertex systems

3.1 Definitions

Let U be an enumerable set, or the universe, of ele-

) ments called abstract vertices. We assume that U is
W

ordered by a relation <; this assumption simplifies the

z implementation of many algorithms (Section 4). Next,

let N : U +— 2V be a function that takes every ver-
tex v € U to a finite subset v* C U of other vertices
(v &€ v*). We call the set v* the neighborhood, and its
elements the neighbors' of v. Finally, let the vertex set
S C U be a finite subset of the universe U, and Ng be
the restriction of the neighborhood function N to the
domain S; thus Ng(v) = v* if N(v) = v* and v € S (the elements of v* may
lay outside S). We call the pair (S, Ng) a vertez-vertex structure over the
set S with neighborhood Ng.

An wundirected graph over a vertex set S is a vertex-vertex structure
over S, in which: (a) all neighborhoods are included in S (the vertex set
S is closed with respect to the function N), and (b) vertex w is in the
neighborhood of v if an only if vertex v is in the neighborhood of u (u € v*
if and only if u € v*, the symmetry condition). The pairs (u,v) of vertices
that are in the neighborhood of each other are called edges of the graph. An
edge is oriented if the pair (u,v) is considered different from (v, u).

A wvertex-vertex rotation system, or vertex-vertex system for short, is a
vertex-vertex structure in which the vertices in each neighborhood form a
cyclic permutation (i.e., are arranged into a circular list). A graph rotation
system is a vertex-vertex system that is both a graph and a vertex-vertex

Figure 2: A poly-
gon identification
in a graph rota-
tion system.

LOur terminology is motivated by the practice of referring to adjacent cells in a grid
as neighbors. It should not be confused with the definition of neighborhood in topology.

3-35

rotation system.

A polygon mesh is a collections of vertices, edges bound by vertex pairs,
and polygons bound by sequences of edges and vertices. A mesh is a closed
2-manifold if it is everywhere locally homeomorphic to an open disk, and
a 2-manifold with boubdary if it is everywhere locally homeomorphic to an
open disk or half-disk. A manifold is orientable if it has two sides [30].

A polygonal interpretation of a vertex-vertex

. system maps it into a polygon mesh. The interpre-
fe'g;'e[}?:f;m tations that we consider in this paper are variants
[vertex-vertex structure | of the Edmonds’ permutation technique [8, 30, 2],

neighborhoods neigth;hoodS which is defined for connected graph rotation sys-
symmetry e tems. It defines polygons of the mesh using the

vertex-vertex following algorithm (Figure 2). Given an oriented
FERL | rotation systems | edge (u,v) in S, we find the oriented edge (v, w)

and X such that w immediately follows w in the cyclic

neighborhood of v. Next, we find the oriented

| graph rotation systems | edge (w, z) such that z immediately follows v in the

l, polygonal neighborhood of w. We continue this process until
interpretational K K K

[polygon mesh (topology) | we .return .to the start.mg point u. The resulting

geometric orbit (cyclic permutation) of vertices u, v, w, z, . ..

interpretation

and the edges that connect them are the bound-
aries of a polygon. By considering all such orbits
in S, we obtain a polygon mesh with polygons on
both sides of each (unoriented) edge. From this
construction it immediately follows that the result-
ing mesh is a uniquely defined, orientable, closed
2-manifold (see [30] for a formal proof).

A function f defined on a vertex set S assigns
a property f(v) to each vertex v € S. In addition to the neighborhoods
defined above, vertex properties may include for example a label (drawn
from a finite or an infinite set), position, normal vector, and color.

Vertex positions are a crucial aspect of the geometric interpretation of
vertex-vertex systems. We will consider geometric interpretations in which
edges are drawn as straight lines between vertices, and polygons are properly
defined if their vertices and edges are coplanar.

The above progression of notions is summarized in Figure 3. It suggests
that polygon meshes can be manipulated using operations defined on sets
(set-theoretic operations), vertex-vertex systems and graphs (topological op-
erations), and polygon meshes (geometric operations). The crucial problem
is the manipulation of topology. We address it by introducing a set of op-

| polygon mesh (geometry) |

Figure 3: Relations
between notions perti-
nent to vertex-vertex
systems

3-36

erations that modify at most one neighborhood at a time, and transform a
vertex-vertex system into another vertex-vertex system. The individual op-
erations do not necessarily transform graphs into graphs, because they may
create incomplete neighbors that violate the symmetry condition (u € v*
but v & u*).

3.2 The vertex-vertex algebra

The vertez-vertex algebra is the class of vertex-vertex rotation systems with
a set of operations defined on them. We introduce these operations using
a mathematical notation that combines standard and new mathematical
symbols. We also present the equivalent expressions and statements of the
vv language. A further description of this language and its implementation
is given in Section 3.3.

3.2.1 Set-theoretic operations

In the vv language, vertex sets are a predefined data type. A set S is created
using the declaration mesh S, and is in existence according to the standard
scoping rules of C++. The vv language supports a subset of the standard
set operations, listed in Table 1. In addition to operations that return a set
as the result, vv includes iteration operators for flow control in vv programs.

‘ Name ‘ Math. notation ‘ vv statement ‘
set creation let SCU mesh S
assignment S=T S=T
union S=5uUT merge S with T
addition of an element | S =SU{v} add v to S
removal of an element | S =S5 — {v} remove v from S
iteration over a set Yve S forall v in S
iteration over neighbors | Vo € v* forall z in v

Table 1: Set-theoretic operations supported by the vv language

3.2.2 Topological operations

Topological operations are the core of the vertex-vertex algebra. They are
divided into three groups: query, selection, and editing operations. Query
operations return information about vertices. Selection operations return
an element of a vertex neighborhood. Editing operations modify a vertex-

3-37

vertex system. Definition of these operations are given in Table 2. The last
column in this table refer to the illustrations in Figure 4.

b\\{:/'f b\ﬁ/# b-\aIV-f b\.j/-f
c//l\\oe c/l\oe c/l\oe co/l\oe
a) *d by Y o 4 a)
b

v* ={a,b,c,d,e, f} =v*Ta f=v"]la v'=0v"—a

a Xactd as-gx
N AN 5%
c/l\e c/l\.e c/l\.e
e) d f) d g) d

vi=v"—b+x v'=v'4+zr>a v'=v'+zx<a
Figure 4: Examples of operations in the vertex-vertex algebra. a) Setting
the initial neighborhood of vertex v. b-g) The results of selection and editing
operations applied to v.

3.2.3 Geometric operations

We use the standard functional notation f(v) or vv expression v$f to asso-
ciate property f with a vertex v. A special case is the position of a vertex,
denoted T or v$pos. Positions can be assigned explicitly, by referring to an
underlying coordinate system, or result from affine geometry combinations
and vector operations applied to the previously defined points. We use the
standard C++4 operator overloading mechanism to extend arithmetic oper-
ators to positions and vectors.

3.2.4 Coordination operations

Operations of the vertex-vertex algebra are commonly iterated over vertex
sets. This raises important questions concerning the sequencing of these in-
dividual operations. For example, if the same operation is to be performed
on a pair of neighboring vertices v and v, the results may be different de-
pending on whether u is modified first, v is modified first, or both vertices
are modified simultaneously. To eliminate the unwanted dependence on the
execution sequence, we introduce the coordination operation synchronize S,
which creates a copy ‘v of each vertex v in the set S. All subsequent op-
erations on the vertices v € S (until the next synchronize statement) do
not affect the vertices ‘v, which continue to store the “old” values of vertex

3-38

Name

Math. notation | vv statement

Description

| Note | Fig

Query operations

membership

order

valence

v Ex*

r<wv

]

isxinwv

x<wv

valence v

true iff vertex x
is in the neigh-
borhood of v
true iff vertex x
precedes vertex
v in the uni-
verse U

returns the
number of
neighbors of
vertex v

Selection operations

any

next

previous

let v € a*

v* Tz

v* | x

any in v

nextto x in v

prevto = in v

returns a ran-
dom neighbor
of v

returns vertex
that follows =z
in the neigh-
borhood of v
returns
that precedes x
in the neigh-
borhood of v

vertex

Editing operations

create
set neighborhood

erase

replace

splice after

splice before

v +zx<a

vertex v

make {a, b, ¢} nb_of v

erase = from v

replace a with z in v

splice = after a in v

splice = before a in v

create vertex
set the neigh-
borhood of v to
the given circu-
lar list

remove z from
the neighbor-
hood of wv if
v Ex*
substitute x for
a in the neigh-
borhood of v
insert & imme-
diately after a
in the neigh-
borhood of v
insert x imme-
diately before a
in the neigh-
borhood of v

1
2
3

4

no effect if v € a*.

) returns the null vertex if v* is empty.

) returns the null vertex if = ¢ v*.

) not defined (error reported) if v appears in the list, or the same vertex in listed twice.
)

)

5) no effect if v & a*; not defined (error reported) if z = v or v € z*.

Table 2: Topological operations of the vertex-vertex algebra

3-39

attributes. For example, ‘v$pos denotes the position of vertex v at the time
when the synchronize statement was last issued, whereas v$pos denotes the
current position of v. Similarly, ‘v* and v* denote the old and current neigh-
borhoods of v. The use of old attributes instead of the current ones makes it
possible to iterate over the elements of a set in any order without affecting
the iteration results.

3.3 Implementation of vertex-vertex systems

The software implementation of vertex-vertex systems is a set of programs
and libraries collectively called the vv environment. The central component
of this environment is wvlib, a C++ library containing data structures and
functions implementing the vertex-vertex polygon mesh representation and
algebra. The user can refer to these structures and functions directly from
a program written in C++, or from a program written in the vv language.

The vv language extends C++ with keywords and expressions specific
to the vertex-vertex algebra. In order to be executed, a vv program is first
translated to a C++ program, with the keywords and expressions specific
to vv translated into calls to the wvlib library. This C++ program is then
compiled into a dynamically linked library (DLL). The modeling program,
called vvinterpreter, loads this DLL, runs, and produces the graphical output.
This whole processing sequence is automated: from the user’s perspective,
the vvinterpreter treats the vv program as an input and runs accordingly. The
methodology that we have used to implement the vv language closely follows
that developed for L4+C, an extension of C++ with programing constructs
based on L-systems [13].

4 Subdivision algorithms

To illustrate the usefulness of the vertex-vertex algebra, we provide com-
pact descriptions of several subdivision algorithms. These descriptions are
expressed in the vv language and can be directly executed by vvinterpreter.

4.1 Insertion of a Vertex

One particularly simple routine that also happens to be of mush use in
writing subdivision algorithms is the insertion of a new vertex between two
neighbouring vertices. So, we first define a function that creates a new vertex
x and inserts it between two given vertices p and ¢ (Algorithm 1).

3-40

1 vertex insert(vertex p, vertex q) {
2 vertex X;
3 make {p, q} nb_of x;

P, q . . A\ / \ X /
4 replace p with x in q; /D g\ 7p ¢ q\
5 replace q with x in p;

6 return Xx;

7}

Algorithm 1: Code and illustration of the insertion of a vertex x between
vertices p and q. Vertex x replaces p as the neighbor of ¢ and ¢ as the
neighbor of p; vertices p and ¢ become neighbors of x.

4.2 Polyhedral Subdivision

One of the simplest possible subdivision schemes is polyhedral subdivi-
sion [28] for triangular meshes. The scheme simply inserts a new vertex
at the midpoint of each edge such that each triangle in the mesh is subdi-
vided into four co-planar triangles. While the geometry of the polygon mesh
does not change, the topology is subdivided.

The program (Algorithm 2) that implements polyhedral subdivision con-
sists of two loops. The first loop (lines 5 to 12) considers iterates over the
existing pairs of neighbouring vertices in the set S and inserts a new vertex
between them (Figure 5a). The new vertices are added to the set NV and
are assigned a position at the midpoint of the pair of vertices.

The second loop (lines 13 to 18) inserts new edges by redefining the
neighborhoods of the new points. The intervening neighborhoods and the
result of insertion are shown in Figure 5b,c.

' £t B4

v x /p SN %
a*lv\o O/b*fv

c) d)

Figure 5: Illustration of the polyhedral subdivision algorithm implemented
using vertex-vertex systems. a) The vv identification of points involved in
the application of the mask to a new vertex z. b) The vv identification of
vertices that will become neighbors of v. ¢) The mesh with all the new edges
of v added.

3-41

void polyhedral (mesh& S) {
synchronize S;
mesh NV;

forall p in ‘v {
if (p < v) continue;
vertex x = insert(v, p);

1
2
3
4
5 forall v in S {
6
7
8
9 x$pos = (p$pos + v$pos) / 2.0;

10 add x to NV;

11 }

12 }

13 forall v in NV {

14 vertex a = any in v;

15 vertex b = nextto a in v;

16 make {nextto v in b, b, prevto v in b,
17 nextto v in a, a, prevto v in a} nb_of v;
18 }

19 merge S with NV;

20 }

Algorithm 2: The polyhedral subdivision algorithm.

4.3 Loop algorithm

The Loop subdivision scheme [21] is topologically equivalent to the polyhe-
dral subdivision scheme, in the sense that both operate on triangular meshes
and subdivide a triangle into four triangles in an iteration step. The vertex-
vertex implementations of both schemes have, therefore, a similar structure.
The difference is in the placement of vertices. The Loop uses a mask to place
new vertices and uses another mask to adjust the positions of old vertices
(Figure 6). The implementation of the Loop subdivision algorithm is given
by Algorithm 3.

4.4 Butterfly algorithm

The butterfly subdivision scheme for surfaces [7] is an interpolating scheme
for triangular polygon meshes. The complete vv program that implements
it for closed surfaces is given by Algorithm 4.

The algorithm for butterfly subdivision, like that for Loop subdivision,

3-42

1 void loop(mesh& S) {

2 double pi2 = 6.2832;

3 synchronize S;

4 mesh NV;

5

6 forall v in S {

7 double n = valence vVv;

8 double w = (0.625-pow(0.325 + 0.25%cos(pi2/n),2.0))/n;
9 v$pos *= (1.0 - (double(n) * w));

10 forall p in ‘v {

11 v$pos += w * ‘p$pos;

12 if (p < v) continue;

13 vertex x = insert(v, p);

14 x$pos = 3.0/8.0 * ‘v$pos + 3.0/8.0 * ‘p$pos
15 +1.0/8.0 * ‘(nextto p in ‘v)$pos
16 + 1.0/8.0 * ‘(prevto p in ‘v)$pos;
17 add x to NV;

18 }

19 }
20 forall v in NV {
21 vertex a = any in v;
22 vertex b = nextto a in v;
23 make {nextto v in b, b, prevto v in b,
24 nextto v in a, a, prevto v in a} nb_of v;
25 3}
26 merge S with NV;
27 }

Algorithm 3: The Loop subdivision algorithm.

is topologicaly similar to the polyhedral subdivision. However, unlike Loop
subdivision, the mask for the placement of new vertices requires the posi-
tions of vertices beyond the 1-ring. This mask and the corresponding vv
identification of the intervening vertices are shown in Figure 7a,b.

4.5 +/3 algorithm

Kobbelt’s v/3-subdivision [14] changes the topology of a triangular mesh in
a manner different from the butterfly and Loop schemes (Figure 9). The
corresponding vv implementation is given by Algorithm 5. In the first loop

3-43

|
o]

(1- nw)
a) ¥ b) Vip ¢)

Figure 6: a) The Loop mask for a new vertex. b) The vv identification of
points involved in the application of the mask to a new vertex z. c) The
Loop mask for old vertices.

N Vetp) o VP ety
6 T AN
L L v —)oc— P
% 1 % V(D) / Pty
a) T b) Vilp

Figure 7: Illustration of the butterfly algorithm implemented using vertex-
vertex systems. a) The mask. b) The vv identification of points involved in
the application of the mask to a new vertex x.

of the algorithm, a new vertex c is created at the centroid of each triangle
(lines 11 to 15). The neighborhoods are then updated such that each triangle
is divided into three, that is each vertex wv,x,y of the original triangle is
connected to ¢, and the vertices v, z,y form the neighborhood of ¢ (lines 16
to 19, c.f. Figure 9b). In the second loop (lines 23 to 31, Figure 9c), the
topology is updated by flipping all the edges between pairs of old vertices.

5 Conclusions

We have addressed the problem of specifying polygon mesh algorithms in a
concise and intuitive manner. To this end, we introduced a set of operations
for locally changing the topology of a mesh, and we defined these operations
in terms of relations between mesh elements. We have focused on subdivision
algorithms as an application area, and we have shown that the resulting
vertex-vertex algebra leads to a very compact and intuitive specifications of
some of the best known algorithms.

3-44

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

void butterfly(mesh& S) {

double k = 1.0/16.0, 1 = 1.0/8.0, m = 1.0/2.0;
synchronize §;
mesh NV;

forall v in S {
forall p in ‘v {
if (p < v) continue;
vertex x = insert(v, p);

x$pos = m * ‘vepos + m * ‘p$pos
+ 1 *x ‘(prevto p in ‘v)$pos
+ 1 * ‘(nextto p in ‘v)$pos
- k * ‘(nextto (nextto p in ‘v) in ‘v)$pos
- k * ‘(nextto (nextto v in ‘p) in ‘p)$pos
- k * ‘(prevto (prevto p in ‘v) in ‘v)$pos
- k * ‘(prevto (prevto v in ‘p) in ‘p)$pos;

add x to NV;

}
}

forall v in NV {
vertex a = any in v;
vertex b = nextto a in v;
make {nextto v in b, b, prevto v in b,
nextto v in a, a, prevto v in a} nb_of v;
}
merge S with NV;

Algorithm 4: The butterfly subdivision algorithm.

a a=1{bc d e}
b={a, e f c}
b g <=labfd
d={a,c f e}
\(e=1{adfb)

a) 7 feledeby b)

Figure 8: The butterfly algorithm in action. (a) An initial polyhedron and
the vertex-vertex specification of its topology. (b) The polyhedron after
three subdivision steps.

3-45

a)

Figure 9: Mesh topology changes in the v/3 scheme. a) A portion of the orig-
inal mesh. b) The mesh after the insertion of central points, and subdivision
of triangles. ¢) The mesh after the flip operation.

We have also designed vv, a programming language based on the vertex-
vertex algebra, and we implemented a modeling environment in which vv
programs can be executed. In addition to the subdivision algorithms de-
scribed in this paper, we used vv to generate fractals and aperiodic tilings,
simulate growth of multicellular biological structures, and create procedural
textures on non-regular meshes. In these tests, we found vv programs ex-
tremely conducive to rapid prototyping and experimentation with polygon
mesh algorithms.

Our implementation of the vertex-vertex algebra was guided by the el-
egance of programming constructs, rather than performance. For example,
profiling of vv programs showed that approximately 50% of the algorithm
execution time is spent on dynamic memory management. It is an inter-
esting open question, if vertex-vertex systems could reach the speed of the
fastest implementations of polygon mesh algorithms.

Another interesting class of problem is related to the temporal coordina-
tion of vertex-vertex operations. The synchronization mechanism introduced
in Section 3.2.4 is in fact a method for simulating parallelism on a sequential
machine. This suggests that it may be useful to extended vv with constructs
for explicitly specifying parallel rather than sequential execution of opera-
tions. Such an extension could further clarify vv programs, and lead to their
effective implementation on parallel processors with a suitable architecture.

References

[1] E. Akleman and J. Chen. Guaranteeing the 2-manifold property for
meshes with doubly linked face list. International Journal of Shape
Modeling, 5(2):149-177, 2000.

3-46

void sqrt3(mesh& S) {
synchronize S;
mesh NV;

double pi2 = 6.28;
double n = valence ‘v;
double w = (4.0 - 2.0 * cos(pi2 / n)) / 9.0;

1
2
3
4
5 forall v in S {
6
7
8
9 vépos *= (1.0 - w);

10 forall x in ‘v {

11 v$pos += ‘x$pos * w / n;

12 vertex y = nextto x in ‘v;

13 if (x < v || y < v) continue;
14 vertex c;

15 c$pos = (‘v$pos + ‘x$pos + ‘y$pos) / 3.0;
16 make {v, x, y} nb_of c;

17 splice c after x in v;

18 splice c after y in x;

19 splice c after v in y;

20 add c to NV;

21 }

22}

23 forall v in S {

24 forall p in ‘v {

25 if (p < v) continue;

26 vertex x = nextto p in v;

27 vertex y = prevto p in v;

28 splice y after v in x; splice x after p in y;
29 erase p from v; erase v from p;
30 }

31}

32 merge S with NV;

33}

Algorithm 5: The algorithm for /3 subdivision.

[2] E. Akleman, J. Chen, and V. Srinivasan. A new paradigm for changing
topology during subdivision modeling. In Pacific Graphics 2000, pages
192-201, October 2000.

3-47

3]

E. Akleman, J. Chen, and V. Srinivasan. A prototype system for robust,
interactive and user-friendly modeling of orientable 2-manifold meshes.
In Proceedings of Shape Modeling International 2002, pages 4350, May
2002.

B. Baumgart. Winged edge polyhedron representation. Technical Re-
port STAN-CS-320, Stanford University, 1972.

E. Catmull and J. Clark. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer Aided Design, 10(6):350-355,
1978.

G. Chaikin. An algorithm of high speed curve generation. Computer
Graphics and Image Processing, 3:346-349, 1974.

N. Dyn, D. Levin, and J. Gregory. A butterfly subdivision scheme
for surface interpolation with tension control. ACM Transactions on
Graphics, 9(2):160-169, 1990.

J. Edmonds. A combinatorial representation of polyhedral surfaces
(abstract). Notices of the American Mathematical Society, 7:646, 1960.

R. Egli and N. F. Stewart. A framework for system specification using
chains on cell complexes. Computer-Aided Design, 32:447-459, 2000.

J.-L. Giavitto and O. Michel. Declarative definition of group indexed
data structures and approximations of their domains. In Proceedings
of the 8rd ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming PPDP-01, 2001.

J.-L. Giavitto and O. Michel. MGS: A programming language for the
transformation of topological collections. Research Report 61-2001,
CNRS - Université d’Evry Val d’Esonne, Evry, France, 2001.

L. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams. ACM Transactions
on Graphics, 4(2):74-123, 1985.

R. Karwowski. Improving the process of plant modeling: the L+C mod-
eling language. PhD thesis, University of Calgary, August 2002.

L. Kobbelt. v/3-subdivision. In Computer Graphics, 2000.

W. Lickorish. Simplicial moves on complexes and manifolds. In Pro-
ceedings of the Kirbyfest, volume 2, pages 299-320, 1999.

3-48

[16]

[17]

21]

[22]

[23]

[24]

P. Lienhardt. Subdivisions de surfaces et cartes généralisées de dimen-
sion 2. Informatique Théorique et Applications, 25(2):171-202, 1991.

P. Lienhardt. Topological models for boundary representation: a com-

parison with n-dimensional generalized maps. Computer-aided Design,
23(1):59-82, 1991.

P. Lienhardt. Subdivision par opérations locales, 2001. Manuscript,
Université de Poitiers, November 2001.

A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and I1. Journal of Theoretical Biology, 18:280-315,
1968.

A. Lindenmayer and G. Rozenberg. Parallel generation of maps: Devel-
opmental systems for cell layers. In V. Claus, H. Ehrig, and G. Rozen-
berg, editors, Graph grammars and their application to computer sci-
ence; First International Workshop, Lecture Notes in Computer Science
73, pages 301-316. Springer-Verlag, Berlin, 1979.

C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, The University of Utah, August 1987.

M. Mantyla. An Introduction to Solid Modeling. Computer Science
Press, Rockville, Maryland, 1988.

R. Palmer and V. Shapiro. Chain models of physical behavior for engi-
neering analysis and design. Research in Engineering Design, 5:161-184,
1993.

P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.
Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia,
D. R. Fowler, M. J. M. de Boer, and L. Mercer.

P. Prusinkiewicz, F. Samavati, C. Smith, and R. Karwowski. L-system
description of subdivision curves. Submitted, June 2002.

G. Rozenberg, editor. Handbook of graph grammars and computing by
graph transformation. World Scientific, Singapore, 1997.

M. Sabin. Subdivision surfaces, 2002. Shape Modeling International
2002 Tutorial Notes, 25 pp.

E. Stollnitz, T. DeRose, and D. Salesin. Wawelets for Computer Graph-
ics. Morgan Kaufman Publishers, Inc., 1996.

3-49

[29] L. Velho. Stellar subdivision grammars. Submitted, January 2003.

[30] A. White. Graphs, groups and surfaces. North-Holland, Amsterdam,
1973.

[31] D. Zorin, P. Schroder, A. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. Subdivision for modeling and animation, 2000. SIG-
GRAPH 2000 Course Notes 23.

3-50

