
L-system Implementation of Multiresolution Curves Based on Cubic
B-Spline Subdivision

K. Poon∗, L. Bateman, R. Karwowski, P. Prusinkiewicz and F. Samavati
University of Calgary

Abstract

It has been previously shown that L-systems can be used to gener-
ate subdivision and reverse subdivision curves [Prusinkiewicz et al.
2003]. In this paper we show that L-systems can also be used to
generate multiresolution curves. The L-system description captures
the locality of the concept of multiresolution curves.

1 Introduction

Finkelstein and Salesin [1994] introduced multiresolution curves
as a curve representation method. The multiresolution representa-
tion supports the ability to change the overall “sweep” of a curve
while maintaining its fine details, or “character”. Finkelstein and
Salesin used a wavelet-based notation, which uses “filters”, which
are represented as large matrices. Bartels and Samavati [2000] in-
troduced a general approach to generate local filters of multiresolu-
tion curves based on reverse subdivision. In this paper, we present
context-sensitive parametric L-systems as an alternative method for
representing the local filters. This idea is an extension of the L-
system based method for generating subdivision curves presented
by Prusinkiewicz et al [2003]. The L-system notation for multires-
olution curves leads to a simpler, more intuitive implementation of
multiresolution curves by eliminating the need for index and matrix
notation used in the traditional approach.

2 Multiresolution Curves

Multiresolution curves, introduced in [Finkelstein and Salesin
1994] allow editing of a curve’s character without affecting its
sweep (Figure 1) and the editing of a curve’s sweep without af-
fecting its character (Figure 2).

Figure 1: Editing a curve’s character without affecting its sweep
(from [Finkelstein and Salesin 1994]).

Multiresolution analysis can be broken into two parts: analysis
and synthesis. During analysis, the original curve is coarsened. De-
tail information lost in this coarsening is stored. During synthesis
the curve is rebuilt by performing subdivision on the coarse curve,
then adding the stored detail information.

∗e-mail: klpoon@cpsc.ucalgary.ca

Figure 2: Editing a curve’s sweep without affecting its character
(from [Finkelstein and Salesin 1994]).

2.1 Matrix Notation

In matrix notation, the original curve,Cn, is represented as a vector
of m points:

Cn = [Cn
1,Cn

2,Cn
3, ...,Cn

m]T . (1)
After one step of analysis the coarse curve,Cn−1, is a vector ofm′

points:
Cn−1 = [Cn−1

1 ,Cn−1
2 ,Cn−1

3 , ...,Cn−1
m′]T . (2)

The stored detail information,Dn−1, is a vector ofm−m′ points:

Dn−1 = [Dn−1
1 ,Dn−1

2 ,Dn−1
3 , ...,Dn−1

m−m′]T . (3)

Analysis can be represented as two matrix multiplications:

Cn−1 = AnCn (4)

Dn−1 = BnCn. (5)
Synthesis can be represented with the matrix equation:

Cn = PnCn−1 +QnDn−1, (6)

wherePn is the subdivision matrix andQn is the detail-restoring
matrix, as determined by B-spline wavelets.An andBn must satisfy
biorthogonality condition:[

An

Bn

]
= [Pn|Qn]−1. (7)

Pn is a known banded matrix for most curve schemes, however,
it is not easy to compute theAn, Bn andQn matrices. Finkelstein
and Salesin focus on the cubic B-spline subdivision scheme. A
banded but complicatedQn is computed using B-spline wavelets.
Consequently,Qn is a local filter.An andBn in that setting are full
matrices, i.e., they are global filters. In order to have linear time
analysis operations in equations 4 and 5, two banded linear systems
are solved.

Analysis and synthesis can be carried out recursively (Figures 3
and 4).

2.2 Multiresolution Based on Reverse Subdivision

Samavati and Bartels [1999] introduced a general technique for
generating multiresolution filters by reversing subdivision. This
technique works for any subdivision scheme, andQn is a very sim-
ple matrix. However,An andBn are still full matrices, i.e., global
filters. In a subsequent work [Bartels and Samavati 2000], several
sets of local multiresolution filters are generated based on reversing

Figure 3: Applying analysis recursively (from [Finkelstein and
Salesin 1994]).

Figure 4: Applying synthesis recursively.

of subdivision schemes. We use here some of these filters. There
are different filters for points near or at the endpoints of an open
curve. For simplicity, we only discuss the general, not endpoint fil-
ters, although our implementation includes endpoint filters as well.

Analysis for a cubic B-spline multiresolution representation of a
small, closed curve is given by the equations:

Cn−1 = AnCn (8)


Cn−1

1
Cn−1

2
Cn−1

3
Cn−1

4

=


− 1

2 2 − 1
2 0 0 0 0 0

0 0 − 1
2 2 − 1

2 0 0 0
0 0 0 0 − 1

2 2 − 1
2 0

− 1
2 0 0 0 0 0 − 1

2 2




Cn
1

Cn
2

Cn
3

Cn
4
...

Cn
8



and

Dn−1 = BnCn (9)


Dn−1

1
Dn−1

2
Dn−1

3
Dn−1

4

=


3
2 −1 1

4 0 0 0 1
4 −1

1
4 −1 3

2 −1 1
4 0 0 0

0 0 1
4 −1 3

2 −1 1
4 0

1
4 0 0 0 1

4 −1 3
2 −1




Cn
1

Cn
2

Cn
3

Cn
4
...

Cn
8



The corresponding synthesis equation is:

Cn = PnCn−1 +QnDn−1 (10)



Cn
1

Cn
2

Cn
3

Cn
4
...

Cn
8

 =



1
2

1
2 0 0

1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8

0 0 1
2

1
2

1
8 0 1

8
3
4

1
2 0 0 1

2
3
4

1
8 0 1

8




Cn−1

1
Cn−1

2
Cn−1

3
Cn−1

4



+



1 0 0 0
1
4

1
4 0 0

0 1 0 0
0 1

4
1
4 0

0 0 1 0
0 0 1

4
1
4

0 0 0 1
1
4 0 0 1

4




Dn−1

1
Dn−1

2
Dn−1

3
Dn−1

4



This matrix notation implies a global mapping of old points to
new points at each step, but as we can see from the sparse, banded
structure of the multiresolution matrices, it is possible to describe
both the synthesis and analysis in local terms.

In the local approach, A, B, P and Q are filters that are applied
only in the immediate neighborhood of the target points. At each
iteration the filters remain the same. This contrasts the local ap-
proach from the global approach, in which the matrices change size
at each analysis and synthesis iteration because they must operate
on a different number of points at each iteration.

L-systems are consistent with the notion of a local algorithm.
They directly capture the locality of the multiresolution algorithm.

3 L-systems

L-systems [Lindenmayer 1968] are string-rewriting systems. An
L-system consists of analphabet, V, an axiom, ω, and a set of
productions, P, defined overV. Each production inP replaces one
or more letters ofV with zero or more letters inV. A word, x,
in the system is a sequence of letters inV. The system’s current
state is represented by a word. The axiom,ω, is a special word,
which represents the system’s initial state. At each time step, the
production rules are applied in parallel to each of the letters in the
current word to produce a new word.

Parametric L-systems [Prusinkiewicz and Lindenmayer 1990]
extend the basic concept of L-systems by assigning additional at-
tributes (parameters) to L-system symbols. A parameter can be
a number, or a C++ structure [Karwowski 2002]. Amodulein a
parametric L-system consists of a letter inV and zero or more pa-
rameters. In parametric L-systems, a word consists of a sequence
of modules.

We implemented multiresolution curves in the language L+C,
which adds L-system constructs to C++ [Karwowski 2002]. In
L+C, the syntax for declaring a module with parameters is:

module identifier(list of parameter types).

The following code declares a module,C, which represents a point.
C has a parameter of typeV2f, which is a pre-defined L+C type that
represents a 2D point or vector:

module C(V2f);

L+C supports context-sensitive productions. A context sensi-
tive production replaces a module, called the strict predecessor, us-
ing information from neighboring modules, called the left and right
context. The syntax for a context sensitive production is

lcontext < strict predecessor > rcontext:
{

...
}

The following code replaces each point with two points, each of
which is a linear combination of the point being replaced and its
left or right neighbor.

P(vl) < P(v) > P(vr):
{

produce P(0.25vl+0.75v) P(0.75v+0.25vr);
}

It is possible in L+C to look to the new string for context. The
<< and>> symbols means look to the left and right, respectively,
in the produced string.

L+C also supports table L-systems [Rozenberg 1973]. This al-
lows us to divide productions into groups. We specify which group
of productions should be used at each derivation step. For example,
the following L+C code segment applies the productionA→AB in
even steps andA→AC in odd steps.

int step = 0;
StartEach:{

if(step%2 == 0) UseGroup(0);
else UseGroup(1);
step++;

}
group 0:
A(): {

produce A() B()
};
group 1:
A(): {

produce A()C()
};
endgroup

4 Implementing Cubic B-spline Multireso-
lution Curves in L+C

4.1 Topology

During multiresolution analysis, detail information accumulates.
We keep detail information associated with those points it will be
used to restore, but after each iteration of analysis the amount of de-
tail we need to store for each point will more than double. To solve
this problem we use a tree data structure on which L+C operates.

Tree structures can be represented within an L-system string us-
ing special branch symbols[and]. The symbol[denotes the start
of a branch and the symbol] denotes the end of a branch. The
branches can be nested to create trees. For example, we interpret
the stringA [[B] C [D]] as the tree in Figure 5.

Figure 5: The tree represented by the string A [[B] C [D]].

Below we present, step-by-step, the operation of an L-system
that performs the topological changes that occur during multireso-
lution analysis. The L-system converts a string of modules which

represent points into a string in which every other module repre-
sents detail information. It then associates each piece of detail in-
formation with a point and repeats the process, storing detail infor-
mation in a tree structure. During synthesis, we need to strips off
layers of branching in order to access the detail information that is
associated with each point.

Figure 6 shows changes in a string and the topological changes it
represents.C is a point andD is detail information. The downward
arrow shows the topology changes during analysis. The upward
arrow shows the topology changes during the synthesis.

Figure 6: Topology changes during synthesis and analysis. (a) The
original points. (b) and (d) Every other point is converted to detail
information. (c) and (e) Each piece of detail information is asso-
ciated with a point. Detail information from the previous steps is
stored as branches of the detail trees. (f) Original string at start of
synthesis. (g) and (i) Outer branches are stripped away. (h) and (j)
Detail information is converted back into points.

4.2 L-systems Rules for Multiresolution

In this section we present our L+C implementation of multiresolu-
tion curves. This implementation is limited to closed curves. The
full code listing for closed curves is given in Appendix A.

4.3 Analysis

During analysis the symbolC represents a point. The symbolDt
represents a point that is about to become a detail vector. The sym-
bol D represents a detail vector.

We begin with a sequence of points that represents the original
curve:

C C C C C C C ... C C

During analysis, even points become detail information and odd
points become a point on the coarsened curve. There are two sepa-
rate analysis phases.

During phase zero, we change the type of every other point to
a type that represents detail information. The L+C production that
changes every other point,C, into a point that is about to be con-
verted into detail information,Dt, is:

C(vl)<< C(v) : {
produce Dt(v);

}

If the module to the left of the strict predecessor in the produced
string is aC, this rule replaces the strict predecessor with aDt. After
this phase, the string has the form:

C Dt C Dt C Dt C Dt...

In phase one we calculate the positions of the coarse points and
the value of the detail vectors. The two main rules are the reverse
subdivision rule, corresponding to the application of filter A, and
the detail-storage rule, corresponding to the application of filter B.
The reverse subdivision rule coarsens a set of fine points. An L-
system implementation of reverse subdivision has been presented
in [Prusinkiewicz et al. 2003]. This implementation replaces a pair
of points with a single point. Our implementation replaces a single
point with a point. This difference arises because we convert every
other point to detail information, whereas in plain reverse subdivi-
sion, we do not need to store the detail information. Our L+C code
to perform reverse subdivision is:

Dt(vl) < C(v) > Dt(vr):{
produce EB() C(-0.5*vl + 2*v + -0.5*vr) SB() H();

}

This production calculates the new location of a point, based on the
reverse subdivision coefficients given by the A matrix in equation
8. An end branch module is inserted before the new coarse point
and a start branch module is inserted after the new coarse point.
This puts the detail information to the right of each point into a
tree associated with that point. AnH module is placed after each
start branch module as a block that prevents modules within the
tree from “seeing” modules outside the tree.

The detail information lost in the reverse subdivision process is
stored within theD modules. The following L+C production imple-
ments the detail storage filter B:

Dt(vll) C(vl) < Dt(v) > C(vr) Dt(vrr) :{
produce
D(0.25*vll + -1*vl + 1.5*v + -1*vr + 0.25*vrr);

}

This production calculates the detail information to store based on
coefficients given by the B matrix in equation 9.

For example, after the first iteration of analysis, the string has the
form:

C [D] C [D] C [D] C [D]... ,

and after three iterations of analysis the string has the form:

C [[[D] D [D]] D [[D] D [D]]]... .

4.4 Synthesis

There are two synthesis phases. In phase zero, the productions strip
away one layer of bracketing. In phase one, detail information is
used to replace each coarse point by one of its two original fine
points. The corresponding detail vector is replaced with the other
fine point.

The production rule that strips away the start brackets is:

C(v) < SB() H() : {
produce ;}

This production rule removes all starting brackets that are directly
to the right of a point. Only the outer brackets are removed.

The production rule that strips away the end brackets is:

EB() > C(v) : {
produce ;}

This production rule removes all end brackets that are to the left of
a point. Again, only the outer brackets are removed.

For example, the string with the form:

C [[[D] D [D]] D [[D] D [D]]] C...

will have the form:

C [[D] D [D]] D [[D] D [D]] C...

after one iteration of phase zero. Notice that only the outer brackets
have been removed. Now the leftmostC can “see” the fourthD from
the left.

In phase one, subdivision is performed on the coarse points,C.
Detail information stored in adjacentD vectors are added to the sub-
divided points to restore the original fine points. The two produc-
tions for this phase calculate the new location of a fine point using
coefficients from the P and Q matrices given in equation 10.

This is the rule that replaces each coarse point with one of the
restored fine points:

C(vll) D(vl) < C(v) > D(vr) C(vrr) : {
produce C(0.125*vll + 0.75*v + 0.125*vrr

+ 0.25*vl + 0.25*vr);}

The fine point is a combination of a point created by subdivision:
0.125∗ vll + 0.75∗ v+ 0.125∗ vrr, and detail information, 0.25∗
vl +0.25∗vr.

This is the rule that replaces each module representing detail
with a module representing a restored fine point

C(vl) < D(v) > C(vr): {
produce C(0.5*vl + 0.5*vr + v);}

The fine point is a combination of a point created by subdivision,
0.5∗vl +0.5∗vr, and detail information,v.

After one iteration of phase one, the string has the form:

C [[D] D [D]] C [[D] D [D]] C... .

Once synthesis has been performed the same number of times anal-
ysis was performed, the original fine curve is restored.

The productions we discussed above deal with closed curves (we
assume the required left and right context is always present). The
complete listing of the L+C code for multiresolution representation
of closed curves based on the above productions is given in Ap-
pendix A.

5 Extensions

5.1 Open Curves

We have also implemented multiresolution for open curves. The
difference between the code for the open curve case and the closed
curve case is that there are special endpoint rules for the open curve
case. These special endpoint rules are included in Appendix B.

5.2 Aligning Detail with Normal

When we restore detail during synthesis, it has the same x-y orien-
tation as the detail in the original curve. If the modified curve has a
different slope than the original curve, the detail will look incorrect.
To address this problem, Finkelstein and Salesin [finkelstein:multi]
also introduced the idea of aligning the detail with the normal of the
curve.

We approximate the normal,~N at a given point,v, by finding
the vector perpendicular to an approximated tangent vector,~T. We
approximate~T by taking the difference of the two points adjacent
to v:

~T = vr −vl (11)

During synthesis, instead of adding the detail directly back into the
curve, we multiply the signed magnitude of the detail by the normal
vector and add this aligned detail to the curve.

We have included the modified synthesis rules for aligning detail
with the normal in Appendix C.

6 Results

Figure 7 shows a open curve which is coarsened, has its sweep mod-
ified, then is reconstructed. Figure 8 shows a branching structure
with a modified sweep. Figures 9 shows a leaf with two different
modified sweeps. Figure 10 compares the results of sweep modi-
fication of a curve (a). In 10 (b), the detail is not aligned with the
normal. In 10 (c), the detail is aligned with the normal.

Figure 7: (a) Original curve. (b) Coarsened curve. (c) Modified
coarse curve. (d) Reconstructed curve.

References

BARTELS, R. H., AND SAMAVATI , F. F. 2000. Reversing subdi-
vision rules: Local linear conditions and observations on inner
products. Journal of Computational and Applied Mathematics
119, 1–2, 29–67.

FINKELSTEIN, A., AND SALESIN, D. 1994. Multiresolution
curves. InProceedings of SIGGRAAPH ’94, 261–268.

Figure 8: A branching structure with modified sweep.

Figure 9: A scanned leaf with two modified sweeps.

Figure 10: (a) Original curve. (b) Curve with modified sweep and
detail not aligned with normal. (c) Curve with modified sweep and
detail aligned with normal.

KARWOWSKI, R. 2002. Improving the Process of Plant Model-
ing: The L+C Modeling Language. PhD thesis, University of
Calgary.

L INDENMAYER , A. 1968. Mathematical models for cellular in-
teraction in development, Parts I and II.Journal of Theoretical
Biology 18, 280–315.

PRUSINKIEWICZ, P., AND L INDENMAYER , A. 1990. The Algo-
rithmic Beauty of Plants. Springer, New York.

PRUSINKIEWICZ, P., SAMAVATI , F., SMITH , C., AND KAR-
WOWSKI, R. 2003. L-system description of subdivision curves.
To appear in the International Journal of Shape Modeling.

ROZENBERG, G. 1973. T0L systems and languages.Information
and Control 23, 357–381.

SAMAVATI , F. F., AND BARTELS, R. H. 1999. Multiresolution
curve and surface representation by reversing subdivision rules.
Computer Graphics Forum 18, 2, 97–120.

7 Appendix A - The L+C Code for Mul-
tiresolution B-spline Representation of
Closed Curves

#include <lpfgall.h>

//Step at which to switch between coarsing and
refinement
#define SWITCH 8
#define NUMSTEPS 16

// The phase types
#define ANALYSIS_0 0
#define ANALYSIS_1 1
#define SYNTHESIS_0 2
#define SYNTHESIS_1 3

// String end marker
module E();
// An obstacle for context-matching purposes
module H();

// A point module
module C(V2f);
// Detail information module
D(V2f);
// A point that is about to be converted to detail
Dt(V2f);

int step;

Start: { step = 0;} StartEach: {
// set the phase based on the step
if(step < SWITCH)

if(step%2==0) UseGroup(ANALYSIS_0);
else UseGroup(ANALYSIS_1);

else
if(step%2==0) UseGroup(SYNTHESIS_0);
else UseGroup(SYNTHESIS_1);

}

EndEach: { step++;}

derivation length: NUMSTEPS;

ring L-system: 1;

// axiom that defines initial curve goes here

/**
* Analysis (Reverse Subdivision)
***/

///
// ANALYSIS_0: change every other C into a D
///
group ANALYSIS_0:

C(vl) << C(v) : {
produce Dt(v) ;

}

///
//ANALYSIS_1: Analysis (Perform reverse
// subdivision)
// (Store coarse points in C’s and detail in D’s)
///
group ANALYSIS_1:

// C rule
Dt(vl) < C(v) > Dt(vr): {

produce EB() C(-0.5*vl + 2*v -0.5*vr) SB() H();
}

// D rule
Dt(vll) C(vl) < Dt(v) > C(vr) Dt(vrr) : {

produce D(0.25*vll -1*vl + 1.5*v -
1*vr + 0.25*vrr);

}

/**
* Synthesis (Subdivision)
***/

///
// SYNTHESIS_0: Eliminate outermost brackets
// [Branch] S [Branch]] --> [Branch] S [Branch]
///
group SYNTHESIS_0:

C(v) < SB() H() : {
produce ;

}

EB() > C(v) : {
produce ;

}

///
// SYNTHESIS_1: Synthesis (Perform subdivision)
// (Use information from coarse points, C, and
// details, D, to restore original points, C)
///
group SYNTHESIS_1:

// C rule
D(dl) C(vll) D(vl) < C(v) > D(vr) C(vrr) D(dr) : {

produce C(0.125*vll + 0.75*v + 0.125*vrr
+ 0.25*vl + 0.25*vr);

}

// D rule
D(dl) C(vl) < D(v) > C(vr) D(dr): {

produce C(0.5*vl + 0.5*vr + v);
}

endgroup

/***
* Drawing
***/

interpretation:

C(v) : {
produce SetColor(7) MoveTo2f(v) Circle(0.1) ;

}

Dt(v) : {
produce SetColor(4) MoveTo2f(v) Circle(0.1) ;

}

8 Appendix B - Special Rules for Multires-
olution B-spline Representation of Open
Curves

/**
* Analysis (Reverse Subdivision)
**

/* Left-most endpoint rules */

// C rules
E() < C(v) : {

produce C(v);
}

E() C(vl) < C(v): {
produce C(-1*vl + 2*v) SB() H();

}

// D rule

E() C(vll) C(vl) < Dt(v) > C(vr) Dt(vrr): {
produce D(0.75*vll -1.5*vl + 1.125*v -

0.5*vr + 0.125*vrr);
}

/* Right-most endpoint rules */

// C rules

C(v) > E(): {
produce C(v);

}

C(v) > C(vr) E(): {
produce EB() C(-1*vr + 2*v);

}

// D rule

Dt(vll) C(vl) < Dt(v) > C(vr) C(vrr) E(): {
produce D(0.75*vrr -1.5*vr + 1.125*v -

0.5*vl + 0.125*vll);
}

/**
* Synthesis (Subdivision)
**/

/* Left Endpoint Rules */

// C rules

E() < C(v): {
produce C(v);

}

E() C(vl) < C(v) : {
produce C(0.5*vl + 0.5*v);

}

E() C(d) C(vll) D(vl) < C(v) > D(vr) C(vrr): {
produce C(0.1875*vll + 0.6875*v + 0.125*vrr

+ 0.25*vl + 0.25*vr);
}

// D rule

E() C(d) C(vl) < D(v) > C(vr) : {
produce C(0.75*vl + 0.25*vr + v);

}

/* Right Endpoint Rules */

// C rules

C(v) > E(): {
produce C(v);

}

C(v) > C(vr) E(): {
produce C(0.5*vr + 0.5*v);

}

C(vll) D(vl) < C(v) > D(vr) C(vrr) C(d) E(): {
produce C(0.1875*vrr + 0.6875*v + 0.125*vll

+ 0.25*vr + 0.25*vl);
}

// D rule

C(vl) < D(v) > C(vr) C(d) E(): {
produce C(0.75*vr + 0.25*vl + v);

}

9 Appendix C - Synthesis Rules for Align-
ment of Detail with Normal Vectors

// returns the length of vec
double vecLength(V2f vec) {

double length = sqrt(vec.x*vec.x + vec.y*vec.y);
return length;

}

// calculate a normal vector given a tangent vector
V2f normalFromTangent(V2f tangent) {

// find the length of the tangent so we can
// normalize
double length = vecLength(tangent);

V2f normal;
if(length != 0){

// the normal is the normalized tangent
// rotated by pi/2
normal.x = -(1.0/length)*tangent.y;
normal.y = (1.0/length)*tangent.x;

} else{
normal.x = 0.0;
normal.y = 1.0;

}
return normal;

}

// calculate the point with detail restored in the
// normal direction
V2f getDetailAddedPoint(V2f point, V2f detail,

V2f vLeft, V2f vRight) {
// approximate the tangent based on
// neighboring points
V2f tangent = vRight - 1*vLeft;

// get the approximate normal vector
V2f normal = normalFromTangent(tangent);

// get the magnitude and direction of the
// detail vector
double length = vecLength(detail);
if(detail.y < 0) length = -length;

// produce the point
return (point + length*normal);

}

///
// Phase 1: Synthesis (Perform subdivision)
// (Use information from coarse points, C, and
// details, D, to restore original points, C)
///
group SYNTHESIS_1:

/* Main Rules */

// C rule

D(dl)
C(vll) D(vl) < C(v) > D(vr) C(vrr)

D(dr) : {
V2f point = 0.125*vll + 0.75*v + 0.125*vrr;
V2f detail = 0.25*vl + 0.25*vr;
V2f dPoint =

getDetailAddedPoint(point, detail, vll, vrr);
produce C(dPoint);

}

// D rule

D(dl)
C(vl) < D(v) > C(vr)

D(dr): {
V2f point = 0.5*vl + 0.5*vr;
V2f detail = v;
V2f dPoint =

getDetailAddedPoint(point, detail, vl, vr);
produce C(dPoint);

}

