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Abstract 

We present a method for incorporating the biomechanical model of the bend-
ing of branch axes introduced by Schaffer and Fournier et al. into devel-
opmental plant models expressed using L-systems. The models capture the 
impact of gravity, tropisms, contact between elements of a plant structure and 
contact with obstacles on the shape of branches. Sample plants modeled using 
this technique are compared with photographs of real plants. 

Introduction 

Plant architecture and its coupling with the environment play an essential role 
in the colonization of space by plants (see review in [9]). Consequently, 
comprehensive functional-structural plant models take into account physical, 
biological, and environmental processes that influence plant development.   
L-systems [14,15] provide a convenient theoretical and programming frame-
work for the architectural modeling of plants, and have been used to model a 
variety of interactions between plants and their environment. Examples in-
clude the effects of local light on the development of the aerial architecture of 
plants, and the effects of water availability on root growth [9]. Nevertheless, 
the effects of gravity, tropisms, and contacts between organs have been cap-
tured by L-system models only in a simple manner [15]. The objective of our 
current work is to improve the representation of branch shape in L-system 
models by including the combined effects of gravity and tropisms according 
to the current state of the biomechanical analysis of these phenomena. Our 
approach is based on the model of axis growth and reorientation introduced 
by Schaffer [16] and Fournier et al. [4]. This model predicts a sigmoidal 
shape of branch axes by combining the notion of the gravitropic set angle 
(GSA) [2] with the laws of the theory of elasticity [8] applied to longitudi-
nally and radially growing axes. In particular, it incorporates incremental 
changes in the amount of load-bearing material due to secondary growth, and 
captures the resulting “memorization” of  branch shape [4,16]. 
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A parallel technique for including biomechanical factors into architectural 
tree models has been proposed in the scope of the AMAP modeling system 
[3,5]. The biomechanical component of that model was implemented as an 
external module using the finite element method. In contrast, we incorporate 
the effects of weight and gravitropism on branch shape directly into the 
framework of L-systems. As a result, the system of equations that describes 
the biomechanical aspects of a plant becomes an inherent part of the model, 
and is automatically updated as the plant develops. Metaphorically speaking, 
the system of equations grows with the modeled plant. The proposed method 
makes it possible to address questions concerning plant axis shape that com-
bine biomechanics with biological regulatory mechanisms [4,5] and with the 
trade-offs between various functions of the axes [12].   

Mechanical model of a branch axis 

We conceptualize the branch axis as an inextensible elastic rod of length L, 
with natural parameter s ∈ [0,L] denoting the arc-length distance of a point P 

from the base of the rod. Each point P 
is associated with a local frame of 
reference defined by mutually or-
thogonal unit vectors H, L and U 
(heading, left, and up). We assume that 
vector H is tangent to the rod axis and 
vectors L and U are aligned with the 
principal axes of the cross-section of 
the rod (Figure 1). In a straight pris-
matic rod each local reference frame 
will be parallel to all others. In general, 
two successive reference frames sepa-
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      Figure 1.  Local HLU frames 
      of a sample rod 
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rated by an infinitesimal rod segment 
f length ds may be rotated through an infinitesimal angular vector dΦ, 
hich characterizes the curvature and twist at point P.  A rod, and specifi-

ally a growing plant axis, may possess curvature and twist in the unloaded 
tate [4]; we denote the corresponding angle of rotation at P by dΦ. We call 
 = dΦ/ds and  Ω = dΦ/ds  the rates of rotation of the reference frame HLU 

long the rod, although s is a spatial coordinate and not time.  
iven vectors H(0), L(0) and U(0) specifying the initial reference frame at 

=0,  the rate of rotation Ω determines the reference frame HLU at any point 
n the rod as the solution to the differential equations: 

 dH/ds = Ω × H,      dL/ds = Ω × L,      dU/ds = Ω × U .           (1-3) 
ince all vectors H(s) have unit length and are tangent to the axis at points 
(s),  s ∈ [0,L],  the axis shape is given by the integral: 
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To calculate the rates of rotation Ω that determine the shape of the rod at a 
static equilibrium, we compare the internal moments IM, resulting from the 
reaction of the material to deformation, and external moments M acting on all 
points P of the rod.  Let us consider the internal moments first.  The infini-
tesimal rotations are vectors, thus the rotation rates are vectors as well, and 
can be decomposed along the axes HLU: 

 ΩH  = Ω⋅H,   ΩL = Ω⋅L,    ΩU = Ω⋅U,                           (5) 
 ΩH  = Ω⋅H,   ΩL = Ω⋅L,    ΩU = Ω⋅U .                          (6)   

Since L and U are the principal axes of the cross-section of the rod, its elastic 
properties at P are captured by the torsional rigidity CH and the flexural ri-
gidities in the planes HU and HL, denoted CL and CU, respectively. The 
moment IM due to the local deformation of the rod at P is equal to 

IM =  IMH H + IML L + IMU U ,                                (7) 
where:  

IMH = CH (ΩH - ΩH ),    IML = CL (ΩL - ΩL ),    IMU = CU (ΩU - ΩU ) .    (8-10) 
By substituting equations (5-6) into (8-10) and then into (7), we obtain: 

IM = CH ((Ω - Ω)⋅H)H + CL ((Ω - Ω)⋅L)L + CU ((Ω - Ω)⋅U)U,         (11) 
or, in dyadic notation,  

IM  = (Ω - Ω)⋅S,  where  S = CH HH + CL LL + CU UU .      (12-13) 

Let us denote by K the external force per unit length, acting on the rod at P.  
The accumulated force F and the moment M caused by the  “overhanging” 
rod segment [s,L] acting on the rod at P satisfy the equations [8]: 

            dF/ds  =  - K      and      dM/ds =  F × H .               (14-15) 
At a static equilibrium, the equation   

                                  M + IM = 0                                               (16) 
must be satisfied at each point P of the rod.  
Differential equations (1-3,14-15), complemented with the algebraic equa-
tions (12,16), represent a two-point boundary problem with the unknown 
vectors H, L, U, Ω, IM, F, and M.  We solve these equations numerically 
using a simple relaxation technique.  To this end, we divide the rod into short 
segments of length ∆si, where index i ranges from 0 at the proximal (fixed) 
end of the rod to n at the distal (free) end, and apply the following algorithm: 
Input: Vectors H(0), L(0), and U(0) that define the orientation of the HLU 
frame at the proximal end of the rod, force F(L) = 0 and moment M(L) = 0 at 
the free end, external force densities Ki, rotation rates Ωi that define the shape 
of the rod in the unloaded state, and the initial values of the rotation rates Ωi

  

(for example, all equal to Ωi ). 
Output: The shape of the rod at a static equilibrium. 
Step 1. Compute the orientation of the frame HLU at each point of the rod 
using a discretized version of equations (1-3).  Since the orientation of the 
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frame at the proximal end of the rod is known, computation proceeds out-
wards from the proximal to the distal end, according to the formula: 

Hi+1
t   = Hi

t  +  Ωi
t × Hi

t ∆si ,             i = 0,…,n-1,       (17) 
and analogous formulae for Li+1

t  and Ui+1
t.   

Step 2.  Compute the distribution of the external forces and moments along 
the rod using a discretized version of equations (14-15).  Since the boundary 
values at the distal end of the rod are known, computation proceeds inwards 
from the distal to the proximal end according to the formulae: 

Fi-1
t   =  Fi

t  + Ki ∆si ,                          i = n,…,1,       (18) 
Mi-1

t   =  Mi
t  + Hi

t × Fi
t ∆si .               i = n,…,1.       (19) 

Step 3.  Compute the unbalanced moments at nodes i between segments ∆si 
and ∆si+1 using a combination of formulae (12,13,16): 

Ei
t = Mi

t  + IMi
t  = Mi

t + (Ωi  - Ωi
t )⋅ (CH HH + CL LL + CU UU),    (20) 

then adjust the rotation rates Ωi proportionally to these unbalanced moments: 

Ωi
t+1 = Ωi

t  + k Ei
t ,                   i = 0,…,n-1.       (21) 

The parameter k is an empirically chosen constant that controls the speed of 
convergence to the solution. 
Step 4.  Repeat steps 1-4 until the magnitude of  all unbalanced moments |Ei| 
decreases below a threshold value, then compute the shape of the rod using a 
discretized counterpart of equation (4): 

Pi+1  = Pi + Hi ∆si .    �                                       (22) 
The two-way information flow inherent in this algorithm has been described 
in the context of the analysis of chainlike robotic manipulators by Craig [1].  
It is the cornerstone of the integration of mechanical phenomena into devel-
opmental models of plant architecture. 

Model expression using L-systems 

We assume that the reader is familiar with the formalism of L-systems and its 
application to the modeling of plant architecture, as described, for example, 
in [14,15]. The concept of computing numerical solutions of differential 
equations using L-systems is further discussed in  [6]. 
An L-system captures the development of a plant using rewriting rules or 
productions.  For example, the rule A → IA may be used to specify that at 
given time intervals an apex A will produce a internode I and recreate itself at 
the distal end of this internode.  A repetitive application of this rule yields an 
axis composed of a sequence of internodes: 

A ⇒ IA ⇒ IIA ⇒ IIIA ⇒ IIIIA ⇒…                      (23) 
Plant modules, such as the apex and the internodes, can be characterized 
using numerical parameters. Let us consider a simple example of a develop-
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ing axis in which all internodes have the same length ∆s and are subject to the 
same force K per unit length.  We assume that the vectors H, U and K are co-
planar, thus the axis will bend in the plane HU perpendicular to L.  We also 
assume that the rigidity CL is constant.  An internode I is then completely 
specified by vector H, rotation rate Ω, external force F and external bending 
moment M.  If all these parameters are assigned the initial value of 0, the 
production A → IA will become A → I(0, 0, 0, 0)A.  The algorithm for com-
puting the shape of the rod in equilibrium can be then expressed as follows: 
Step 1.  The outward propagation of orientations in a sequence of internodes 
(equation 17) is implemented by production 
     I(Hl, Ωl, Fl, Ml) < I(H, Ω, F, M) →  I(Hl + Ωl  × Hl ∆s, Ω, F, M) ,  
where symbol < separates the left context from the strict predecessor of the 
production [14,15].  This production states that the header vector H in the 
module I(H, Ω, F,M) will acquire a new direction, calculated as a function of 
the header vector Hl and the rotation rate Ωl in the previous internode.  
Step 2.  The inward propagation of external forces and moments (equations 
18 and 19) is expressed by production 
     I(H, Ω, F, M) > I(Hr, Ωr, Fr, Mr) → I(H, Ω, Fr + Kr ∆s, Mr + Hr

 × Fr∆s), 
where symbol > separates the strict predecessor from the right context. 
Step 3.  The remaining computations (equations 20 and 21) are performed 
under the simplifying assumption of the planar deformation of the rod.  The 
unbalanced moment is then reduced to M + CL Ω, and the updated rotation 
rate Ω is captured by production: 
     I(H, Ω, F, M) → I(H, Ω + k (M + CL Ω), F, M) . 
In the complete L-system, these productions are guarded by conditions that 
ensure proper sequencing of the production applications (Step 4) and sched-
ule the addition of new segments by the apex.  Details are given in [7]. 
In general, the assignment of parameters to the internodes provides a mecha-
nism for automatically increasing the number of variables that describe the 
plant as it grows. Variables in the neighboring modules are accessed using 
context-sensitive productions. Since L-systems can capture the development 
of branching structures and the information flow between their modules, the 
described technique extends from individual axes to entire plants.   

Secondary growth, tropisms, and collisions 

Radial (secondary) growth is simulated according to the pipe model [17], 
which postulates that the vascular strands originating in a newly added seg-
ment contribute to the girth of previous segments. In other words, the addi-
tion of a distal internode of cross-section A causes the addition of external 
layers of the same area to all preceding segments. Together the primary and 
secondary growth modify [4,16]: 
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• The linear density of the external forces K.  For example, if the external 
forces are due exclusively to the axis weight, then K = Aρg, where A is 
the area of the cross-section of the stem at a given point P, ρ is the aver-
age density of the stem material at this cross-section, and g is the accel-
eration of gravity. 

• The torsional and flexural rigidities CH = GJ, CL = EIL and CU = EIU, 
where G is the shear modulus of the stem material, E is its Young’s 
modulus, J is the torsional constant, and IL and IU are the second moments 
of area of the stem’s cross-section.  The values of constants  J,  IL  and  IU  
for different cross-sectional geometries are listed in [12]. 

• The curvature and twist of the branch axis at rest Ω.  Assuming that the 
principal axes of the cross-section of a new annual layer are aligned with 
the principal axes of the previous cross-section, each component of the 
rate of rotation at rest Ω’  is calculated as a weighted average of the previ-
ous rotation at rest Ω  and the current rotation vector Ω, e.g.: 

Ω’L  = (CLΩL  + C’LΩL ) / (CL + C’L ).                      (24) 
The constants CL and C’L denote the rigidities of the previous branch axis 
and of the newly added layer, respectively.   

Equation (24) is based on the observation that a new layer added by secon-
dary growth is “molded” on the existing branch segment, and thus may have 
different rest curvature and twist than previous layers [4,16]. The new rate of 
rotation Ω’ (curvature and twist) of an axis segment at rest represents the 
auto-stress equilibrium between the new layer and the existing core within 
the segment’s cross-section. Thus, the rest shape of an axis after a step of 
secondary growth partially memorizes the actual shape of this axis under 
load.  A derivation of equation (24) is included in [7].  It is an alternative but 
equivalent formulation to that proposed in [4]. 
The secondary growth is incorporated into the model as follows.  After a step 
of longitudinal growth, the girth of all internodes is recalculated according to 
the pipe model.  The propagation of information from the distal to the proxi-
mal end, postulated by the pipe model, is implemented by right-context-sen-
sitive productions.  The rotation rates at rest and the rigidities of each inter-
node are computed using the formulae described above and incorporated into 
an L-system production.  The new mechanical equilibrium is then determined 
as discussed in the preceding sections for an axis without secondary growth.  
This cycle is repeated for each new internode produced by the apex.  
Further extensions of the model include tropisms and collisions.  Tropisms 
are simulated by rotating the frame of the newly inserted segment so that its 
tangent vector H becomes more closely aligned with the direction of a prede-
fined tropism vector T.  Contacts between structural elements (for example, 
grapes in a bunch) and between the structure and its environment (e.g., 
branches partially laying on the ground) are simulated under the assumption 
that the colliding elements are elastic, and act on each other with forces pro-
portional to the depth of penetration (penalty method [13].) This technique 
makes it possible to approximate the effect of contact on the deformation of 
the axes, although it is not precise enough to predict the local shape of the 
contact zone in the organs resting on each other.  



 

Results 

The described biomechanical model was applied to simulate the development 
and capture the structure of several plants. The simulations were carried out 
using the plant simulation software cpfg with open L-system support [9].  The 
open L-system extension was used to exchange forces between parts in con-
tact.  A complete implementation of the L-system models is presented in [7].   
Figure 2 compares the S-shaped branches of a tree with the results of a simu-
lation.  The branches in the model bend downward due to their weight, but 
the branch tips arch upward due to a vertically oriented tropism vector. Fig-
ure 3 shows the results of simulating a hanging plant using the same model 
with different parameters.  In the model of Spiraea sp. (Figure 4), twigs arch 
downward due to gravity, whereas the flower-bearing shoots stand upright 
due to a strong orthogravitropism. Figure 5 illustrates the effect of contact 
between fruits on the shape of fruit stems.  The stems were assumed to elon-
gate and increase in diameter uniformly throughout their length, with no new 
segments added during the simulation.  Two applications of this model are 
shown in Figure 6. Figure 7 illustrates schematically the effect of contact 
with the ground on the shape of a growing axis affected by tropism.  The 
same model without tropism was formally applied to recreate a cycad (Figure 
8), with the leaves prevented from penetrating the ground plane by the colli-
sion-detecting mechanism. 
 

 
Figure 2:  A photograph and a model of S-shaped tree branches.   The branches 
bend down due to gravity, but arch upward at the distal ends due to a tropism. 
 

Figure 3:  A photograph and two views of a model of a hanging plant.   Branches 
hang down due to gravity, but are also influenced by an upward tropism. 
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Figure 4:  A photograph, a model and a zoom into the modeled flower-bearing 
shoots of a Spiraea shrub.  The twigs arch downward due to gravity, the flower-
bearing shoots stand upright due to simulated orthogravitropism. 
 

 
Figure 5: Growing cher-
ries. The stems bend 
down as the fruits be-
come heavier. 
 

 
 
 
 
 
 
 

Figure 6:  Models of 
cherries and grapes. 
The individual fruits rest 
against each other. 
 

Figure 7:  A growing 
orthotropic axis collides 
with the ground. 
 

 
Figure 8:  A photograph and two views of a model of a cycad. The lower leaves lie 
on the ground plane. 
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In plants and organs without organized secondary growth (e.g., Figures 5 and 
8),  biomechanical effects of growth are manifested by diffuse primary radial 
expansion and secondary cell wall deposition, rather than the addition of 
external rings of cells. Nevertheless, processes of shape memorization have 
been reported in herbs [10] and the biomechanical principle involved is 
probably similar [11].  Therefore, we have applied equation (24) to qualita-
tively capture the shape memorization mechanism even in the absence of 
detailed information concerning the distribution of growth rates within the 
cross sections. 

Conclusions 

The described model makes it possible to visually capture the shape of 
branches resulting from the combined effect of weight, tropisms, and contact 
of organs with each other and with obstacles in the environment. The incor-
poration of biomechanics into L-systems makes it possible to explore differ-
ent branching architectures relatively easily. Prospective extensions and 
applications of the model include: (a) incorporation of a mechanistic model 
of tropisms that associates bending of branch axes to differential growth; (b) 
simulation of the biological regulation of reaction wood formation, and its 
mechanical effects; and (c) testing of biological hypotheses relating plant 
architecture to biomechanics, for instance the impact of stresses in the mother 
branch axis on the formation of lateral branches. 
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