
Solving Linear Algebraic and Differential Equations
with L-Systems.

1. Introduction

In the previous note it was shown how L-Systems can be used to numerically solve systems of partial differential
equations, for a constant or growing medium, and the method was applied to computer graphics purposes. The L-
System from the previous section employed a forward Euler method for finite differencing. Although simple to
implement, the forward Euler method is in many case inadequate, for example when the equations are stiff. In this
note we show how an implicit method for solving differential equations can be implemented within the framework of
L-Systems. At the heart of this method lies a technique for solving systems of banded linear equations. To present this
method, we use analogy between the processes involved in diffusion and the behavior of electric circuits.

We begin the discussion by describing the electric circuit in Section 2, for which we wish to find the voltages and
currents. Then we proceed to develop a set of continuous equations describing the relationship of currents and
voltages in the circuits. The continuous time in these equations is then discretized through a Crank-Nicholson implicit
finite differencing scheme, described in Section 3. The resulting discretized equations form a set of linear equations,
describing the changing state of voltages and currents during a time step. Such a set of equations needs to be then
solved at each time step. The set of linear equations can be represented by a 5-diagonal coefficient matrix. In Section
4 we show how such a banded system of linear equations can be effectively solved using L-Systems. In Section 5 we
combine the material presented in Sections 3 and 4 into a complete L-System, and in Section 6 we discuss the results.

2. The circuit

The circuit we wish to analyze consists of circuit segments
(Figure 2) connected in series (Figure 1). Each segment contains 3
resistors (horizontal, vertical and parallel) and a capacitor. The
resistances for the -th segment are labeled , and , and
the capacitance is labeled . The voltage on the capacitor,
or in short , is a function of time. The currents passing through
the horizontal, vertical and parallel resistors are , and

, respectively, while the current passing through the capacitor
is . All 4 currents are also functions of time, and will be
referred to using a short-hand notation as , , and ,
respectively.

At the right end of the circuit, the -th segment is left open. On
the left end, the initial segment is connected to a constant voltage source (with voltage) and a resistor (with
resistance).

Pavol Federl
University of Calgary

Przemyslaw Prusinkiewicz
University of Calgary

Figure 1: A circuit segment.

horizontal

vertical
resistor

parallel
resistor capacitor

n

k Rk
H Rk

V Rk
P

Ck vk t()
vk

ik t() ik
V t()

ik
P t()

ik
C t()

ik ik
V ik

H ik
C

n
VS

RS
2-50

2.1. Continuous equations

In order to analyze the relationship between the currents and voltages in the whole circuit, we consider the currents
and voltages from the perspective of a single segment. There are 3 cases to consider: the general case and 2 boundary
conditions. In the general case a segment is connect to other segments both on its left side and on its right side. In the
boundary cases, a segment is only connected to one other segment. Since the voltage source and the initial resistor are
present only on the left side of the circuit, the equations for the left and right boundary cases are derived separately.
The initial conditions for the circuit are trivial, i.e. for all .

The general case:

The general case applies to a segment when . In such cases the segment is connected to a segment
 on the left, and to segment on the right. We can express the voltage and current in terms of currents

 and , and the voltage as follows. The relationship between voltages and is established using
Kirchoff’s voltage law (KVL), i.e.:

Eq.1 .

From Kirchoff’s current law (KCL) we know that and . Substituting these into Eq. 1
results in:

, or

, or

Eq.2 .

The current passing through the capacitor is defined as a time derivative of the voltage on the capacitor, i.e.:

Eq.3 .

From KVL we know that and from KCL we know that and therefore .
Substituting these into Eq. 3 yields:

Eq.4 .

Equations 2 and 4 provide an implicit relationship between the voltages and currents of a segment , and the voltages
and currents of its immediate neighbors: segments and .

Ck 1–

Rk 1–
P

ik 1–
V

ik 1–
Cik 1–

R

ik
V

ik

Rk
H

ik 1+ik 1–

Rk 1–
V Rk

V

Ck

Rk
P

ik
Cik

R

vkvk 1–

i1
V

i1

R1
H

i2

RS R1
V

C1
R1

P

i1
Ci1

R

v1

VS

Cn 1–

Rn 1–
P

in 1–
V

in 1–
Cin 1–

R

in

Rn
H

in 1–

Rn 1–
V Rn

V

Cn
Rn

P

in
Cin

R

vnvn 1–

Figure 2: The overall circuit assembled from segments connected in series.n

ik 0() vk 0() 0= = k

k k 2 n 1–,[]∈ k
k 1– k 1+ vk ik

ik 1– ik 1+ vk 1– vk 1– vk

vk vk 1– Rk 1–
V ik 1–

V Rk
Hik– Rk

Vik
V–+=

ik 1–
V ik 1– ik–= ik

V ik ik 1+–=

vk vk 1– Rk 1–
V ik 1– ik–() Rk

Hik– Rk
V ik ik 1+–()–+=

vk vk 1– Rk 1–
V ik 1– Rk 1–

V ik– Rk
Hik– Rk

Vik Rk
Vik 1++–+=

Rk 1–
V ik 1– vk 1– Rk 1–

V Rk
H Rk

V+ +()ik– vk– Rk
Vik 1++ + 0=

Ck

dvk

dt
------- ik

C=

vk Rk
Pik

R– 0= ik
R ik

V ik
C–= ik

R ik ik 1+– ik
C–=

Rk
PCk

dvk

dt
------- Rk

P ik ik 1+–() vk–=

k
k 1– k 1+
2-51

The right boundary case:

The equations for the right boundary case can be derived by considering the current and voltage for segment .
Since the circuit to the right of segment is open, the equations for the right boundary case can be derived directly
from the general case by setting and . Eq. 2 then becomes:

Eq.5 ,

and Eq. 4 becomes:

Eq.6 .

The left boundary case:

The voltage can be derived again from KVL:

, or

, or

Eq.7 .

By following the same process for deriving Eq. 4, we arrive to the second equation for the first circuit segment:

Eq.8 .

3. Discretization of time

For a circuit with segments, coupled equations describe the relationships between currents and voltages. Of the
 equations, correspond to the left boundary case (Equations 7 and 8), equations come from the general

case (Equations 2 and 4), and equations correspond to the right boundary case (Equations 5 and 6). One half of
these equations is a set of regular algebraic equations, while the other half is a set of first order differential equations.
An analytical solution to such a system of equations is unfeasible even for moderate values of , and thus numerical
solution becomes a necessity.

We find a numerical solution to these equations through finite differencing. To this end, we discretize the time domain
into discrete time steps, each of size . The solution of current is approximated by , where the integer
represents the discretized time , i.e. . Similarly, the solution for voltage is approximated by . For
example, the initial condition corresponding to is expressed by setting

Eq.9 for all .

The algebraic equations (7, 2 and 5) provide a relationship between the currents and voltages at a specific time .
These equations are therefore discretized by applying the following substitutions:

Eq.10 and .

The set of first order differential equations are discretized using the Crank-Nicholson finite differencing scheme,
using the following substitutions:

Eq.11 , and .

The discretized equations 7, 8, 2, 4, 5 and 6 take on the following form:

in vn n
n

k n= in 1+ 0=

Rn 1–
V in 1–– vn 1–– Rn 1–

V Rn
H Rn

V+ +()in vn+ + 0=

Rn
PCn

dvn

dt
-------- Rn

Pin vn–=

v1

v1 VS RS R1
H+()i1– R1

Vi1
V–=

v1 VS RS R1
H R1

V+ +()i1– R1
Vi2+=

RS R1
H R1

V+ +()i1 v1 R1
Vi2–+ VS=

R1
PC1

dvk

dt
------- R1

P i1 i2–() v1–=

n 2n
2n 2 2 n 2–()

2

n

t∆ ik t() Ik
m m

t t m t∆= vk t() Vk
m

ik 0() vk 0() 0= =

Ik
0 Vk

0 0= = k

n t

ip Ip
m→ vp Vp

m→

n

ip
Ip

m Ip
m 1–+

2
----------------------→ vp

Vp
m Vp

m 1–+
2

-------------------------→
dvp

dt

Vp
m Vp

m 1––
t∆

-------------------------→
2-52

Eq.12 ,

Eq.13 ,

Eq.14 ,

Eq.15 ,

Eq.16 , and

Eq.17 .

The above equations form a set of linear equations, where the unknown values are the approximations of currents and
voltages for a given time, i.e. , , , ... , . These unknown values are implicitly defined from the old
values , , , ... , , and from additional constants. The process of finding a numerical
solution to the circuit problem consists of starting with the initial condition (a set of known values for time),
and then iteratively finding the unknowns for the next time step.

3.1. 5-diagonal system of linear equations

The system of linear Equations 12-17 can be written in the matrix form as:

Eq.18 ,

where is the column vector representing the solution:

Eq.19 ,

 is a column vector containing the right hand sides of the equations:

Eq.20

and is a by matrix containing the coefficients of the unknowns:

Eq.21 .

For even values of , the entries represents the coefficient for the unknowns , while for odd values of , the
entries correspond to the coefficients of . A quick inspection of Equations 12-17 reveals that the coefficient
matrix is 5-diagonal, i.e. that for a given row , only entries , , , and can be non-zero.
The fact that matrix is 5-diagonal is important in that it allows for efficient solution to the system of linear equations.
Specifically, such a system can be solved in linear time.

The techniques for solving a set of LEs can be divided into two main categories: direct and iterative methods. Direct
methods solve the equations by algebraic manipulations, while iterative methods solve the equations by improving an
existing solution in successive iterations. Gaussian elimination falls into the category of direct solution techniques
and runs in average time of . It solves the system of LEs by successively simplifying the original system,
which is achieved in two phases. In the first phase, the LEs are adjusted so that all non-zero coefficients below the
diagonal are eliminated. In the second phase, the entries above the diagonal are eliminated.

The Gaussian elimination algorithm can be made more efficient when the coefficient matrix of the linear system is
banded. In a banded matrix all nonzero components tend to group around the diagonal. The number describing how

RS R1
H R1

V+ +()I1
m V1

m R1
VI2

m–+ VS=

t∆ R1
PI1

m– 2R1
PC1 t∆+()V1

m t∆ R1
PI2

m+ + t∆ R1
PI1

m 1– t∆ R1
PI2

m 1–– 2R1
PC1 t∆–()V1

m 1–+=

Rk 1–
V Ik 1–

m Vk 1–
m Rk 1–

V Rk
H Rk

V+ +()Ik
m– Vk

m– Rk
VIk 1+

m+ + 0=

t∆ Rk
PIk

m– 2Rk
PCk t∆+()Vk

m t∆ Rk
PIk 1+

m+ + 2Rk
PCk t∆–()Vk

m 1– t∆ Rk
PIk

m 1– t∆ Rk
PIk 1+

m 1––+=

Rn 1–
V In 1–

m Vn 1–
m Rn 1–

V Rn
H Rn

V+ +()In
m– Vn

m–+ 0=

t∆ Rn
PIn

m– 2Rn
PCn t∆+()Vn

m+ 2Rn
PCn t∆–()Vn

m 1– t∆ Rn
PIn

m 1–+=

I1
m V1

m I2
m V2

m In
m Vn

m

I1
m 1– V1

m 1– I2
m 1– V2

m 1– In
m 1– Vn

1–

m 0=

Ax b=

x

xT I1
m V1

m I2
m V2

m I3
m V3

m ... In
m Vn

m=

b

bT B1 B2 ... B2n 1– B2n
=

A 2n 2n

A

A1 1, A1 2, A1 2n,

A2 1, A2 2, ... A2 2n,

A2n 1, A2n 2, ... A2n n,

=

j Ai j, Ii 2⁄
m j

Ai j, V i 2⁄
m

A i Ai i 2–, Ai i 1–, Ai i, Ai i 1+, Ai i 2+,

O n3()
2-53

well the given matrix is banded is called the bandwidth of the matrix, and it is the width of a diagonal band (or strip)
which completely encompasses all non-zero elements of a matrix. A 5-diagonal matrix has a bandwidth equal to 5. If
the bandwidth of a given matrix is , then the Gaussian elimination algorithm can be modified so that the running
time is . This is achieved by modifying the original Gaussian elimination algorithm to perform row
subtractions only in the areas where there are non-zero entries. The running time of Gaussian elimination on a 5-
diagonal system of LEs is therefore .

4. Solving 5-diagonal systems of linear equations using L-Systems

Here we show how L-Systems can be used to solve a system of linear equations which in matrix form can be
written as , and when the coefficient matrix is a 5 diagonal matrix of the form:

The column vector represents the unknowns, and the column vector represents
the right hand sides of the equations. To represent the system of equations using an L-System string, we use a string
of modules M. Each module M has a set of values associated with it, representing all non-zero coefficients of a single
row of the matrix, plus the corresponding entry of the solution vector . The values are grouped into a single
parameter of type struct Row:

The first module M represents the first row of the matrix and the column vector , the second module M represents
the second row, etc. For example, consider the following system of 6 linear equations of 6 unknowns:

m
O m2n()

O n()

n
Ax b= A

a1 3,

A =

a1 4, a1 5, 0 0 0 0 0 0 0 0 0

0 a4 1, a4 2, a4 3, a4 4, a4 5, 0 0 0 0 0 0

a2 2, a2 3, a2 4, a2 5, 0 0 0 0 0 0 0 0

0 0 0 0 0 0 an 3– 1, an 3– 2, an 3– 3, an 3– 4, an 3– 5, 0

0 0 0 0 0 0 0 0 an 1– 1, an 1– 2, an 1– 3, an 1– 4,

0 0 0 0 0 0 0 an 2– 1, an 2– 2, an 2– 3, an 2– 4, an 2– 5,

0 0 0 0 0 0 0 0 0 an 1, an 2, an 3,

a3 1, a3 2, a3 3, a3 4, a3 5, 0 0 0 0 0 0 0

x x1 ... xn[]T= n b b1 ... bn[]T=

n
b

struct Row
{

double a1, a2, a3, a4, a5, rhs;
Row () { a1 = a2 = a3 = a4 = a5 = rhs = 0.0; }
Row (double p1, double p2, double p3, double p4, double p5, double pb)

{ a1 = p1; a2 = p2; a3 = p3; a4 = p4; a5 = p5; rhs = pb;}
};

A b
2-54

This system, in matrix form can be written as: , where

, and .

The L-System string of modules representing such a system would be:

4.1. First phase - elimination below diagonal

As described in the previous section, the solution to the system of linear equation is found by performing a two-phase
process. In the first phase, the coefficients below the diagonal are eliminated. This corresponds to re-writing each
module M of the string corresponding to rows , processing the string from left to right. Let us assume the first

 modules have been already rewritten, i.e. the first rows of already have ‘s below the diagonal:

To adjust the row so that its two non-zero entries below diagonal are eliminated, proper multiples of rows
and have to be subtracted from row . This is achieved by simultaneously adjusting the coefficients of row
as follows:

7x1 8x2 3x3–+ 10=

4x1 x2– 3x3 4x4+ + 2–=

x1– x3 x5+ + 7=

x2 2x3– x4+ 0=

x3 2x4 3x5 4x6+ + + 5=

2x2 4x5 6x6+ + 8=

Ax b=

A

7 8 3– 0 0 0

4 1– 3 4 0 0

1– 0 1 0 1 0

0 1 2– 1 0 0

0 0 1 2 3 4

0 0 0 2 4 6

= x

x1

x2

x3

x4

x5

x6

= b

10

2–

7

0

5

8

=

M(Row(0,0,7,8,-3,10)) M(Row(0,4,-1,3,4,-2)) M(Row(-1,0,1,0,1,7)) M(Row(1,-2,1,0,0,0))
M(Row(1,2,3,4,0,5)) M(Row(2,4,6,0,0,8))

2...n
k 1– k 1– A 0

0 0 ak 1– 3, ak 1– 4, ak 1– 5, 0 0

0 ak 2– 3, ak 2– 4, ak 2– 5, 0 0 0

0 ak 1, ak 2, ak 3, ak 4, ak 5, 0

A =

k k 2–
k 1– k k
2-55

Eq.22 where .

The above substitutions cannot be applied to row , as there is only a single row above it. One solution is to treat row
 as a special case. Another solution, which does not require handling of a special case, is to include a phony row ,

with coefficients and .

The L-System production that performs the pass from left to right - eliminating all entries in the coefficient matrix
below the diagonal - is shown below:

This production effectively replaces each row with a new row, by subtracting from it the proper multiples of the 2
rows above it. In the end, the replaced row contains 0’s to the left of the diagonal coefficient. The production rule uses
fresh left context to gain access to the already modified 2 rows above the row to be adjusted. By using fresh left
context, this production rule is applied to the modules in a single pass.

4.2. Second phase - elimination above diagonal

Once the first phase is completed, the coefficient matrix has the form:

To finish the process of finding the solution, the coefficients above the diagonal are eliminated in the second phase.
This is achieved by processing the rows from bottom to top, subtracting from each row the appropriate multiples of
the two rows below. Assuming that rows remain to be processed, the -th row is adjusted by subtracting from it
multiples of rows and :

ak 1, 0→
ak 2, 0→
ak 3, ak 3, f1ak 2– 4,– f2ak 1– 4,–→
ak 4, ak 4, f2ak 1– 5,–→
ak 5, ak 5,→
bk bk f1bk 2–– f2bk 1––→ 












f1

ak 1,

ak 2– 3,
-------------=

f2

ak 2– 3, ak 2, ak 2– 4, ak 1,–
ak 2– 3, ak 1– 3,

---=

2
2 0

a0 3, 1= a0 1, a0 2, a0 4, a0 5, b0 0= = = = =

M(r1) M(r2) << M(r3) :
{

if (phase == LEFT_TO_RIGHT)
{

double f1 = r3.a1 / r1.a3;
double f2 = (r1.a3 * r3.a2 - r1.a4 * r3.a1) / (r1.a3 * r2.a3);
produce M(Row(0, 0, r3.a3-f1*r1.a5-f2*r2.a4, r3.a4-f2*r2.a5

 , r3.a5, r3.rhs-f1*r1.rhs-f2*r2.rhs));
}

}

a1 3, a1 4, a1 5, 0 0 0 0

0 0 a3 3, a3 4, a3 5, 0 0

0 0 0 0 0 a7 3, a7 4,

0 a2 3, a2 4, a2 5, 0 0 0

0 0 0 0 0 0 an 3,

A =

k k
k 1+ k 2+
2-56

Eq.23 where .

Again, the above substitutions cannot be applied to row , as it does not have two rows below it. In order to avoid
writing an extra rule handling a special case, we add instead a phone row with the same coefficients as row 0,
i.e. and . The production rule which effects the second
phase is:

Similar to the production rule used in the left-to-right phase, this right-to-left production rule also uses fresh context.
Combined with processing the string of modules from right-to-left, this production rule is applied to the whole string
in a single pass. After the second phase is finished, the coefficient matrix has the form:

Since non-zero entries are only on the diagonal, retrieving the solution is trivial, i.e. .

5. The complete L-System implementation

In Section 3 we have shown how the continuous equations describing the voltages and currents in the circuit have
been discretized. The result of such a discretization is a set of linear equations, which must be solved at each time
step. Since the set of linear equations is represented by a 5-diagonal coefficient matrix, they can be solved using L-
Systems, as demonstrated in Section 4. In this Section we describe a complete L-System implementation of the
solution (the complete source is given at the end of this report).

The overall operation of the L-System can be distinguished into 5 distinct phases:
• Phase 0: a data-file describing the circuit is loaded;
• Phase I: the 5 diagonal coefficient matrix and the right hand-side is set up;

ak 1, 0→
ak 2, 0→
ak 3, ak 3,→
ak 4, 0→
ak 5, 0→
bk bk f1bk 1+– f2bk 2+–→ 












f1

ak 4,

ak 1+ 3,
--------------=

f2

ak 5,

ak 2+ 3,
--------------=

n 1–
n 1+

an 1+ 3, 1= an 1+ 1, an 1+ 2, an 1+ 4, an 1+ 5, bn 1+ 0= = = = =

M(r1) >> M(r2) M(r3) :
{

if (phase == RIGHT_TO_LEFT)
{

produce M(Row(0, 0, r1.a3, 0, 0
 , r1.rhs - r1.a4*r2.rhs/r2.a3 - r1.a5*r3.rhs/r3.a3));

}
}

a1 3, 0 0 0 0 0 0

0 0 a3 3, 0 0 0 0

0 0 0 0 0 a7 3, 0

0 a2 3, 0 0 0 0 0

0 0 0 0 0 0 an 3,

A =

xi bi ai 3,⁄=
2-57

• Phase II: the entries below diagonal are eliminated;
• Phase III: the entries above diagonal are eliminated;
• Phase IV: the solution is extracted and simulation time is advanced.

Once the circuit has been loaded from the file, the L-System cycles through phases I-IV. Phase I, II and IV require the
string processing to be done from left-to-right, and phase III needs the string to be processed from right-to-left. Since
different production rules need to be applied in different phases, a global variable phase is used to denote the current
phase. The symbolic names of the 4 phases are SETUP, LEFT_TO_RIGHT, RIGHT_TO_LEFT and COLLECT. Initially, phase is
set to SETUP (line 53). At the end of each string rewrite, the phase is adjusted to reflect the next stage (lines 55-63).
Notice that for phase III the string processing is reversed (line 60).

Phase 0: reading in the data-file

The L-System string is initialized through an axiom (line 65), to
contain 3 modules: B L and E. Modules B and E denote the beginning
and the end of the string, respectively, which are used to determine
boundary case conditions. The parameter of module L is a string,
which specifies the data-file from which the circuit will be loaded.
Through decomposition rules (lines 68-98), the data-file is first
opened, and then read in segment by segment. At the end of the
decomposition, the string has the form “B S S ... S E”. There is one
module S for each circuit segment. The graphical representation of
this process is illustrated in the figure on the right.

Each module S has a parameter of type struct Segment (defined on
lines 17-21). The fields Rh, Rv, Rp and Cap are read in from the file,
and represent the 3 resistances and a capacitance of the segment. The
fields I and V contain the calculated current and voltage in the
segment, and are both initialized to 0 to reflect the initial condition
(Eq. 9).

Phase I: setting up the matrix representation

In phase I, the string is rewritten to represent the system of 5-
diagonal linear equations, implemented by the productions of group
SETUP (lines 103-120). This is achieved by replacing each module S
with 2 modules M, where each module M represents a row in the
coefficient matrix and the corresponding row of the right hand
side column vector , as described in Section 4. If there are
segments in the circuit, there would be rows (or modules M).

The production rule on lines 103-109 corresponds to the general case, and is applied to all segments that have both
neighbors. This rule is derived directly from Eq. 14 and Eq. 15. The production rule on lines 110-115 reflects the left-
boundary case, and is only applied to the very first segment (represented by module S that immediately follows
module B). The left boundary case production rule was derived to reflect Eq. 12 and Eq. 13. Finally, the right
boundary case (lines 116-120) is applied to the right-most segment, and corresponds to Eq. 16 and Eq. 17. The right-
most segment is determined by requiring the right context of the module S to be module E. Finally, notice how the
extra rows are appended at the beginning and at the end of the string (line 111 and line 119).

B L E

R C EB

R C ESB

R C ESSB

S R CSSB

S ESSB

S C ESSB

E

axiom

input file is
opened

first segment
is read in

second
segment is read

rest of segments
are read in

reading is
done

input file is
closed

n

S ESSB

M MMMMMB M EM

n

2n 2+

A
b n

2n 2+
2-58

Phase II and Phase III: solving the system of equations

In phases II and III the string of modules is rewritten to represent a
system of equations, where the corresponding coefficient matrix has
non-zero entries only on its diagonal (lines 121-132). These two
phases have been explained in detail in Section 4.

Phase IV: extracting the solution

In the last phase, the solution is extracted from the string (lines 133-
148). First, the extra rows are eliminated by the production rules on
lines 135-140. Then, for every pair of modules M, a modules S is
produced (lines 141-145). The current for the produced module S is
calculated from the first M, while the voltage is calculated from the
second M.

Rendering

The circuit is rendered each time at the end of phase IV, done by the interpretation rules (lines 150-228). All of the
results presented in the next section were rendered using this L-System, both the circuit and the graphs.

6. Results and conclusions

The output of the L-System program for a simple circuit composed of 4 different segments is shown in Figure 3. At
the top of Figure 3 the circuit is rendered. At the bottom of the figure, the graphs of voltages and currents are
displayed at 5 different points in time.

M MMMMMB M EM

M MMMMMB M EM

2n 2+

S ESSB

M MMMMMB M EM

2n 2+

n

Figure 3: Example I - simple circuit composed of 4 different segments.

voltage on
capacitor in
segment 1

t 1= t 3.1= t 9.2= t 18.0= t 36.0=

V
I,

n

current on horiz.
capacitor in
segment 1
2-59

The next example illustrates the robustness of the presented method for solving the circuit analysis problem. The
circuit in Figure 4 contains resistances and capacitances differing in magnitudes, some of which are even set to 0.
Such a circuit leads to stiff equations, which are impossible to solve using forward integration methods. Our implicit
method however, solves the problem successfully.

The circuit in Figure 5 is set up to simulate diffusion. It is composed of 50 identical segments. Because of the
presence of the parallel resistors, less and less current propagates to the capacitors toward the right-hand-side of the
circuit. As a result, the further the capacitor is from the voltage source, the less it will be charged. This is very similar
to diffusion with decay, where the concentration of the chemical decreases as the distance from the source increases.

Finally, we have also simulated a circuit analogous to diffusion without decay, illustrated in Figure 6. This was
achieved by setting the relative differences between the resistances of the parallel resistors and the other two types of
resistors very high. As a result, given enough time - all capacitors are eventually charged to the same level.

In conclusion, we have successfully demonstrated how L-Systems can be used to solve systems of differential
equations, while employing implicit finite differencing scheme. The core of this approach lies in the method of
solving banded systems of linear equations using L-Systems, which we described in detail. Using fresh contexts, we
were able to implement the solution to solve the equations in only two passes. The resulting L-System performs
almost as fast as a straight C++ implementation, proving that L-Systems are a viable mechanism for solving systems
of differential equations in modeling problems.

Figure 4: Example II - circuit with some resistances set to 0.

VS
2-60

Figure 5: Example III - simulated diffusion, with decay.

t 0.8=t 0.4= t 1.2= t 1.6=

t 3.2= t 6.4= t 12.8= t 25.2=

Figure 6: Example III - simulated diffusion without decay.

t 1.1=t 0.4= t 2.0= t 4.0=

t 8.0=
t 14.2=

t 29.0= t 80.0=
2-61

Appendix A: The complete L+C source code
1 #include <cmath>
2 #include <cstdlib>
3 #include <lpfgall.h>
4 #include <cstdio>
5 #include <cstdlib>
6 #include <string>
7 #include <cassert>
8 #include <stdarg.h>
9

10 using std::string;
11

12 const string fname = "circuit-1.dat"; FILE * fp;
13 double dt, curr_time, Vs, Rs; // time step, curr. time, Rs & Vs
14 float x, vscale;// used for rendering
15 bool draw_circuit;// whether to draw circuit
16

17 struct Segment
18 { double Rh, Rv, Rp, Cap;// the resistances and the capacitance of a single segment
19 double I, V;// current and voltage
20 Segment () { Rh = Rv = Rp = Cap = I = V = 0.0; }
21 };
22

23 struct Row
24 { double a1, a2, a3, a4, a5, rhs;
25 Segment seg;
26 Row () { a1 = a2 = a3 = a4 = a5 = rhs = 0.0; }
27 Row (double pa1, double pa2, double pa3, double pa4, double pa5, double prhs, Segment & pseg)
28 { a1 = pa1; a2 = pa2; a3 = pa3; a4 = pa4; a5 = pa5; rhs = prhs; seg = pseg;}
29 };
30

31 module B(); // marks the beginning of the string
32 module E(); // marks the end of the string
33 module L(string); // module that will load the file
34 module C(); // closes the file
35 module R(long); // reads the file
36 module S(Segment); // contains the information about the segment
37 module M(Row); // represents one row of coeff. matrix & RHS
38 module Capacitor(double, double, double); // renders a capacitor
39 module ResistorV(double, double, double); // renders a vertical resistor
40 module ResistorH(double, double, double); // renders a horizontal resistor
41 module Emf(double, double, double); // renders EMF
42 module Rectangle(double, double, double, double); // draw empty rectangle
43 module RectangleF(double, double, double, double); // draw filled rectangle
44 module LabS(double, double, string); // draw a string
45

46 // phases of computation
47 #define SETUP 1
48 #define LEFT_TO_RIGHT 2
49 #define RIGHT_TO_LEFT 3
50 #define COLLECT 4
51 int phase;
52

53 Start: {phase = SETUP;Forward(); }
54 StartEach: {UseGroup (phase); }
55 EndEach:
56 { switch (phase)
57 {
58 case SETUP: phase = LEFT_TO_RIGHT; Forward(); break;
59 case LEFT_TO_RIGHT: phase = RIGHT_TO_LEFT; Backward(); break;
60 case RIGHT_TO_LEFT: phase = COLLECT; Forward(); break;
61 case COLLECT: phase = SETUP; Forward(); break;
62 }
63 }
64

65 Axiom: B() L(fname) E();
66 // ==
2-62

67

68 decomposition:
69 maximum depth: 1000;
70 // ==
71 L(fname) : // open the file for reading
72 { fp = fopen (fname . c_str (), "r");
73 bool error = (fp == NULL);
74 long nseg;
75 error = error || (4 != fscanf (fp, "%lf %ld %lf %lf", & dt, & nseg, & Vs, & Rs));
76 if (error){
77 Printf ("Cannot open/read file %s.\n", fname . c_str ());
78 produce ;
79 }
80 draw_circuit = nseg < 10;
81 vscale = nseg;
82 curr_time = 0.0;
83 produce R(nseg) C();
84 }
85 C() : // Close the file
86 { fclose (fp);
87 produce ;
88 }
89 R(n) : // Read another segment from the file
90 { if (n == 0) produce ;
91 Segment s;
92 if (4 != fscanf (fp, "%lf %lf %lf %lf", & s.Rh, & s.Rv, & s.Rp, & s.Cap))
93 {
94 Printf ("Cannot read segment.\n");
95 produce ;
96 }
97 produce S(s) R(n-1);
98 }
99

100 production:
101 derivation length: 4;
102 // ==
103 group SETUP:
104 // --
105 S(sL) < S(sC) > S(sR) : // general case
106 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, -sC.Rv, 0, sC))
107 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
108 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
109 }
110 B() < S(sC) > S(sR) : // left boundary case
111 { produce M (Row (0,0,1,0,0,0,sC))
112 M (Row (0, 0, Rs+sC.Rh+sC.Rv, 1,-sC.Rv, Vs, sC))
113 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
114 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
115 }
116 S(sL) < S(sC) > E() : // right boundary case
117 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, 0, 0, sC))
118 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, 0, 0, (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I, sC))
119 M (Row (0,0,1,0,0,0,sC));
120 }
121 group LEFT_TO_RIGHT:
122 // --
123 M(r1) M(r2) << M(r3) :
124 { double k1 = r3.a1 / r1.a3;
125 double k2 = (r1.a3 * r3.a2 - r1.a4 * r3.a1) / (r1.a3 * r2.a3);
126 produce M(Row(0, 0, r3.a3-k1*r1.a5-k2*r2.a4, r3.a4-k2*r2.a5, r3.a5, r3.rhs-k1*r1.rhs-k2*r2.rhs,
r3.seg));
127 }
128 group RIGHT_TO_LEFT:
129 // --
130 M(r1) >> M(r2) M(r3) :
131 { produce M(Row(0, 0, r1.a3, 0, 0, r1.rhs - r1.a4 * r2.rhs / r2.a3 - r1.a5 * r3.rhs / r3.a3, r1.seg));
132 }
133 group COLLECT:
2-63

134 // --
135 B() < M(r) : // discard the first phony row
136 { produce ;
137 }
138 M(r) > E() : // discard the last phony row
139 { produce ;
140 }
141 M(r1) M(r2) : // convert two equations to a circuit segment
142 { r1.seg.I = r1.rhs / r1.a3;
143 r1.seg.V = r2.rhs / r2.a3;
144 produce S (r1.seg);
145 }
146 E() :
147 { curr_time += dt;
148 }
149

150 interpretation:
151 maximum depth: 1000;
152 // ==
153 B() : // draw the intial voltage & resistor
154 { nproduce SetWidth(2);
155 x = -1;
156 if (draw_circuit)
157 { nproduce SetColor(7)
158 Line2d(V2d(-0.33,0),V2d(-0.33,1))
159 Line2d(V2d(-0.33,1),V2d(0,1))
160 Line2d(V2d(-0.33,0),V2d(0,0))
161 ResistorV(-0.33,0.75,Rs)
162 Emf (-0.33, 0.25, Vs);
163 }
164 produce SetColor(6) Line2d(V2d(0,1.2),V2d(0,1.2+vscale*Vs));
165 }
166 S(s) : // draw the segment and corresponding portion of the graph
167 { x = x + 1;
168 if (draw_circuit)
169 { static char buff1 [4096]; sprintf (buff1, "I=%.3f", s.I);
170 static char buff2 [4096]; sprintf (buff2, "V=%.3f", s.V);
171 nproduce SetColor (1)
172 Line2d(V2d(x,1),V2d(x+1,1))
173 Line2d(V2d(x+1,1),V2d(x+1,0))
174 Line2d(V2d(x+0.5,0.5),V2d(x+1,0.5))
175 Line2d(V2d(x+0.5,0.5),V2d(x+0.5,0))
176 Line2d(V2d(x,0),V2d(x+1,0))
177 Capacitor(x+1,0.25,s.Cap)
178 ResistorV(x+0.5,0.25,s.Rp)
179 ResistorV(x+1,0.75,s.Rv)
180 ResistorH(x+0.5,1,s.Rh)
181 SetColor(5) MoveTo(x+0.65,1.02,0) Label(buff1)
182 SetColor(4) MoveTo(x+1.04,0.5,0) Label(buff2);
183 }
184 produceSetColor(6) Line2d(V2d(x,1.2),V2d(x+1,1.2)) // axis
185 SetColor(5) RectangleF(x+0.5,1.2,x+1,1.2+vscale*s.I)// Render calculated current
186 SetColor(4) RectangleF(x,1.2,x+0.5,1.2+vscale*s.V);// Render calculated voltage
187 }
188 E() : // draw the time
189 { static char buff [4096]; sprintf (buff, "Time: %.3f", curr_time);
190 produce SetColor(1) LabS (vscale,1.2,buff);
191 }
192 Capacitor(cx, cy, val) : // draw a capacitor
193 { static char buff [4096]; sprintf (buff, "%.2f", val);
194 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
195 SetColor(1) Line2d(V2d(cx-0.1,cy-0.02),V2d(cx+0.1,cy-0.02))
196 Line2d(V2d(cx-0.1,cy+0.02),V2d(cx+0.1,cy+0.02))
197 SetColor(6) LabS(cx+0.02,cy+0.04,buff);
198 }
199 ResistorV(cx, cy, val) : // draw a vertical resistor
200 { if (val == 0) produce ;
201 static char buff [4096]; sprintf (buff, "%.2f", val);
2-64

202 produce SetColor(2) RectangleF(cx-0.02,cy-0.1,cx+0.02,cy+0.1)
203 SetColor(1) Rectangle (cx-0.02,cy-0.1,cx+0.02,cy+0.1)
204 SetColor(6) LabS(cx+0.04,cy,buff);
205 }
206 ResistorH(cx, cy, val) : // draw a horizontal resistor
207 { if (val == 0) produce ;
208 static char buff [4096]; sprintf (buff, "%.2f", val);
209 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
210 SetColor(1) Rectangle (cx-0.1,cy-0.02,cx+0.1,cy+0.02)
211 SetColor(6) LabS(cx-0.1,cy+0.04,buff);
212 }
213 Emf cx, cy, val) : // draw EMF
214 { static char buff [4096]; sprintf (buff, "%.2f", val);
215 produce SetColor(1) MoveTo(cx,cy,0) Circle(0.1) SetColor(2) Circle(0.09)
216 SetColor(6) LabS(cx+0.12,cy,buff);
217 }
218 RectangleF(x1, y1, x2, y2) : // draw filled rectangle
219 { produce SP () MoveTo(x1,y1,0) PP() MoveTo(x2,y1,0) PP() MoveTo(x2,y2,0) PP()
220 MoveTo(x1,y2,0) PP() EP ();
221 }
222 Rectangle(x1, y1, x2, y2) : // draw outline of a rectangle
223 { produce Line2d (V2d (x1, y1), V2d (x2, y1)) Line2d (V2d (x2, y1), V2d (x2, y2))
224 Line2d (V2d (x2, y2), V2d (x1, y2)) Line2d (V2d (x1, y2), V2d (x1, y1));
225 }
226 LabS(x, y, s) : // draw label
227 { produce MoveTo(x,y,0) Label(s.c_str ());
228 }
2-65

	Solving Linear Algebraic and Differential Equations
	with L-Systems.
	Pavol Federl
	University of Calgary
	1. Introduction
	2. The circuit
	Figure 1: A circuit segment.
	Figure 2: The overall circuit assembled from segments connected in series.
	2.1. Continuous equations
	The general case:
	Eq.1 .
	Eq.2 .
	Eq.3 .
	Eq.4 .

	The right boundary case:
	Eq.5 ,
	Eq.6 .

	The left boundary case:
	Eq.7 .
	Eq.8 .

	3. Discretization of time
	Eq.9 for all .
	Eq.10 and .
	Eq.11 , and .
	Eq.12 ,
	Eq.13 ,
	Eq.14 ,
	Eq.15 ,
	Eq.16 , and
	Eq.17 .
	3.1. 5-diagonal system of linear equations
	Eq.18 ,
	Eq.19 ,
	Eq.20
	Eq.21 .

	4. Solving 5-diagonal systems of linear equations using L-Systems
	4.1. First phase - elimination below diagonal
	Eq.22 where .

	4.2. Second phase - elimination above diagonal
	Eq.23 where .

	5. The complete L-System implementation
	Phase 0: reading in the data-file

	B
	Phase I: setting up the matrix representation

	S
	Phase II and Phase III: solving the system of equations

	M
	Phase IV: extracting the solution

	S
	Rendering
	6. Results and conclusions
	Figure 3: Example I - simple circuit composed of 4 different segments.
	Figure 4: Example II - circuit with some resistances set to 0.
	Figure 5: Example III - simulated diffusion, with decay.
	Figure 6: Example III - simulated diffusion without decay.

	Appendix A: The complete L+C source code
	1 #include <cmath>
	2 #include <cstdlib>
	3 #include <lpfgall.h>
	4 #include <cstdio>
	5 #include <cstdlib>
	6 #include <string>
	7 #include <cassert>
	8 #include <stdarg.h>
	9
	10 using std::string;
	11
	12 const string fname = "circuit-1.dat"; FILE * fp;
	13 double dt, curr_time, Vs, Rs; // time step, curr. time, Rs & Vs
	14 float x, vscale; // used for rendering
	15 bool draw_circuit; // whether to draw circuit
	16
	17 struct Segment
	18 { double Rh, Rv, Rp, Cap; // the resistances and the capacitance of a single segment
	19 double I, V; // current and voltage
	20 Segment () { Rh = Rv = Rp = Cap = I = V = 0.0; }
	21 };
	22
	23 struct Row
	24 { double a1, a2, a3, a4, a5, rhs;
	25 Segment seg;
	26 Row () { a1 = a2 = a3 = a4 = a5 = rhs = 0.0; }
	27 Row (double pa1, double pa2, double pa3, double pa4, double pa5, double prhs, Segment & pseg)
	28 { a1 = pa1; a2 = pa2; a3 = pa3; a4 = pa4; a5 = pa5; rhs = prhs; seg = pseg;}
	29 };
	30
	31 module B(); // marks the beginning of the string
	32 module E(); // marks the end of the string
	33 module L(string); // module that will load the file
	34 module C(); // closes the file
	35 module R(long); // reads the file
	36 module S(Segment); // contains the information about the segment
	37 module M(Row); // represents one row of coeff. matrix & RHS
	38 module Capacitor(double, double, double); // renders a capacitor
	39 module ResistorV(double, double, double); // renders a vertical resistor
	40 module ResistorH(double, double, double); // renders a horizontal resistor
	41 module Emf(double, double, double); // renders EMF
	42 module Rectangle(double, double, double, double); // draw empty rectangle
	43 module RectangleF(double, double, double, double); // draw filled rectangle
	44 module LabS(double, double, string); // draw a string
	45
	46 // phases of computation
	47 #define SETUP 1
	48 #define LEFT_TO_RIGHT 2
	49 #define RIGHT_TO_LEFT 3
	50 #define COLLECT 4
	51 int phase;
	52
	53 Start: { phase = SETUP; Forward(); }
	54 StartEach: { UseGroup (phase); }
	55 EndEach:
	56 { switch (phase)
	57 {
	58 case SETUP: phase = LEFT_TO_RIGHT; Forward(); break;
	59 case LEFT_TO_RIGHT: phase = RIGHT_TO_LEFT; Backward(); break;
	60 case RIGHT_TO_LEFT: phase = COLLECT; Forward(); break;
	61 case COLLECT: phase = SETUP; Forward(); break;
	62 }
	63 }
	64
	65 Axiom: B() L(fname) E();
	66 // ==
	67
	68 decomposition:
	69 maximum depth: 1000;
	70 // ==
	71 L(fname) : // open the file for reading
	72 { fp = fopen (fname . c_str (), "r");
	73 bool error = (fp == NULL);
	74 long nseg;
	75 error = error || (4 != fscanf (fp, "%lf %ld %lf %lf", & dt, & nseg, & Vs, & Rs));
	76 if (error) {
	77 Printf ("Cannot open/read file %s.\n", fname . c_str ());
	78 produce ;
	79 }
	80 draw_circuit = nseg < 10;
	81 vscale = nseg;
	82 curr_time = 0.0;
	83 produce R(nseg) C();
	84 }
	85 C() : // Close the file
	86 { fclose (fp);
	87 produce ;
	88 }
	89 R(n) : // Read another segment from the file
	90 { if (n == 0) produce ;
	91 Segment s;
	92 if (4 != fscanf (fp, "%lf %lf %lf %lf", & s.Rh, & s.Rv, & s.Rp, & s.Cap))
	93 {
	94 Printf ("Cannot read segment.\n");
	95 produce ;
	96 }
	97 produce S(s) R(n-1);
	98 }
	99
	100 production:
	101 derivation length: 4;
	102 // ==
	103 group SETUP:
	104 // --
	105 S(sL) < S(sC) > S(sR) : // general case
	106 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, -sC.Rv, 0, sC))
	107 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
	108 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
	109 }
	110 B() < S(sC) > S(sR) : // left boundary case
	111 { produce M (Row (0,0,1,0,0,0,sC))
	112 M (Row (0, 0, Rs+sC.Rh+sC.Rv, 1,-sC.Rv, Vs, sC))
	113 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
	114 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
	115 }
	116 S(sL) < S(sC) > E() : // right boundary case
	117 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, 0, 0, sC))
	118 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, 0, 0, (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I, sC))
	119 M (Row (0,0,1,0,0,0,sC));
	120 }
	121 group LEFT_TO_RIGHT:
	122 // --
	123 M(r1) M(r2) << M(r3) :
	124 { double k1 = r3.a1 / r1.a3;
	125 double k2 = (r1.a3 * r3.a2 - r1.a4 * r3.a1) / (r1.a3 * r2.a3);
	126 produce M(Row(0, 0, r3.a3-k1*r1.a5-k2*r2.a4, r3.a4-k2*r2.a5, r3.a5, r3.rhs-k1*r1.rhs-k2*r2.rh...
	127 }
	128 group RIGHT_TO_LEFT:
	129 // --
	130 M(r1) >> M(r2) M(r3) :
	131 { produce M(Row(0, 0, r1.a3, 0, 0, r1.rhs - r1.a4 * r2.rhs / r2.a3 - r1.a5 * r3.rhs / r3.a3, ...
	132 }
	133 group COLLECT:
	134 // --
	135 B() < M(r) : // discard the first phony row
	136 { produce ;
	137 }
	138 M(r) > E() : // discard the last phony row
	139 { produce ;
	140 }
	141 M(r1) M(r2) : // convert two equations to a circuit segment
	142 { r1.seg.I = r1.rhs / r1.a3;
	143 r1.seg.V = r2.rhs / r2.a3;
	144 produce S (r1.seg);
	145 }
	146 E() :
	147 { curr_time += dt;
	148 }
	149
	150 interpretation:
	151 maximum depth: 1000;
	152 // ==
	153 B() : // draw the intial voltage & resistor
	154 { nproduce SetWidth(2);
	155 x = -1;
	156 if (draw_circuit)
	157 { nproduce SetColor(7)
	158 Line2d(V2d(-0.33,0),V2d(-0.33,1))
	159 Line2d(V2d(-0.33,1),V2d(0,1))
	160 Line2d(V2d(-0.33,0),V2d(0,0))
	161 ResistorV(-0.33,0.75,Rs)
	162 Emf (-0.33, 0.25, Vs);
	163 }
	164 produce SetColor(6) Line2d(V2d(0,1.2),V2d(0,1.2+vscale*Vs));
	165 }
	166 S(s) : // draw the segment and corresponding portion of the graph
	167 { x = x + 1;
	168 if (draw_circuit)
	169 { static char buff1 [4096]; sprintf (buff1, "I=%.3f", s.I);
	170 static char buff2 [4096]; sprintf (buff2, "V=%.3f", s.V);
	171 nproduce SetColor (1)
	172 Line2d(V2d(x,1),V2d(x+1,1))
	173 Line2d(V2d(x+1,1),V2d(x+1,0))
	174 Line2d(V2d(x+0.5,0.5),V2d(x+1,0.5))
	175 Line2d(V2d(x+0.5,0.5),V2d(x+0.5,0))
	176 Line2d(V2d(x,0),V2d(x+1,0))
	177 Capacitor(x+1,0.25,s.Cap)
	178 ResistorV(x+0.5,0.25,s.Rp)
	179 ResistorV(x+1,0.75,s.Rv)
	180 ResistorH(x+0.5,1,s.Rh)
	181 SetColor(5) MoveTo(x+0.65,1.02,0) Label(buff1)
	182 SetColor(4) MoveTo(x+1.04,0.5,0) Label(buff2);
	183 }
	184 produce SetColor(6) Line2d(V2d(x,1.2),V2d(x+1,1.2)) // axis
	185 SetColor(5) RectangleF(x+0.5,1.2,x+1,1.2+vscale*s.I) // Render calculated current
	186 SetColor(4) RectangleF(x,1.2,x+0.5,1.2+vscale*s.V); // Render calculated voltage
	187 }
	188 E() : // draw the time
	189 { static char buff [4096]; sprintf (buff, "Time: %.3f", curr_time);
	190 produce SetColor(1) LabS (vscale,1.2,buff);
	191 }
	192 Capacitor(cx, cy, val) : // draw a capacitor
	193 { static char buff [4096]; sprintf (buff, "%.2f", val);
	194 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
	195 SetColor(1) Line2d(V2d(cx-0.1,cy-0.02),V2d(cx+0.1,cy-0.02))
	196 Line2d(V2d(cx-0.1,cy+0.02),V2d(cx+0.1,cy+0.02))
	197 SetColor(6) LabS(cx+0.02,cy+0.04,buff);
	198 }
	199 ResistorV(cx, cy, val) : // draw a vertical resistor
	200 { if (val == 0) produce ;
	201 static char buff [4096]; sprintf (buff, "%.2f", val);
	202 produce SetColor(2) RectangleF(cx-0.02,cy-0.1,cx+0.02,cy+0.1)
	203 SetColor(1) Rectangle (cx-0.02,cy-0.1,cx+0.02,cy+0.1)
	204 SetColor(6) LabS(cx+0.04,cy,buff);
	205 }
	206 ResistorH(cx, cy, val) : // draw a horizontal resistor
	207 { if (val == 0) produce ;
	208 static char buff [4096]; sprintf (buff, "%.2f", val);
	209 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
	210 SetColor(1) Rectangle (cx-0.1,cy-0.02,cx+0.1,cy+0.02)
	211 SetColor(6) LabS(cx-0.1,cy+0.04,buff);
	212 }
	213 Emf cx, cy, val) : // draw EMF
	214 { static char buff [4096]; sprintf (buff, "%.2f", val);
	215 produce SetColor(1) MoveTo(cx,cy,0) Circle(0.1) SetColor(2) Circle(0.09)
	216 SetColor(6) LabS(cx+0.12,cy,buff);
	217 }
	218 RectangleF(x1, y1, x2, y2) : // draw filled rectangle
	219 { produce SP () MoveTo(x1,y1,0) PP() MoveTo(x2,y1,0) PP() MoveTo(x2,y2,0) PP()
	220 MoveTo(x1,y2,0) PP() EP ();
	221 }
	222 Rectangle(x1, y1, x2, y2) : // draw outline of a rectangle
	223 { produce Line2d (V2d (x1, y1), V2d (x2, y1)) Line2d (V2d (x2, y1), V2d (x2, y2))
	224 Line2d (V2d (x2, y2), V2d (x1, y2)) Line2d (V2d (x1, y2), V2d (x1, y1));
	225 }
	226 LabS(x, y, s) : // draw label
	227 { produce MoveTo(x,y,0) Label(s.c_str ());
	228 }

