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Abstract

This note introduces the notion of structured dynamical systems,
and places L-systems in their context.

1 Basic definitions

Many natural phenomena can be modeled as dynamical systems. At any
point in time, a dynamical system is characterized by its state. A state is
represented by a set of state variables. For example, in the description of
planetary motions around the sun, the set of state variables may represent
positions and velocities of the planets. Changes of the state over time are
described by a transition function, which determines the next state of the
system as a function of its previous state and, possibly, the values of external
variables (input to the system). This progression of states forms a trajectory

of the system in its phase space (the set of all possible states of the system).
Mathematical objects with diverse properties can be considered dynami-

cal systems. For instance, state variables may take values from a continuous
or discrete domain. Likewise, time may advance in continuous or discrete
steps. Examples of dynamical systems characterized by different combina-
tions of these features are listed in Table 1.

Table 1: Some formalisms used to specify dynamical systems according to
the discrete or continuous nature of time and state variables.

C: continuous,
D: discrete.

ODE
Iterated

Mappings
Finite

Automata

Time C D D

State C C D

1Adapted from: J.-L Giavitto, C. Godin, O. Michel and P. Prusinkiewicz, Computa-

tional Models for Integrative and Developmental Biology, LaMI Rapport de Recherche No

72-2002, March 2002, Section 2.
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In simple cases, trajectories of dynamical systems may be expressed us-
ing mathematical formulas. For example, the ODE (ordinary differential
equation) describing the motion of a mass on a spring has an analytical
solution expressed by a sine function (linear spring, in the absence of fric-
tion and damping). In more complex cases, analytic formulas representing
trajectories of the system may not exist, and the behavior of the system is
best studied using computer simulations.

By their nature, simulations operate in discrete time. Models initially
formulated in terms of continuous time must therefore be discretized. Strate-
gies for discretizing time in a manner leading to efficient simulations have
extensively been studied in the scope of simulation theory, e.g. [6].

Dynamical systems with apparently simple specifications may have very
complex trajectories. This phenomenon is called chaotic behavior, c.f. [13],
and is relevant to biological systems (for example, in populations mod-
els) [10, 11].

2 Structured dynamical systems

Many dynamical systems can be decomposed into parts. The advancement
of the state of the whole system is then viewed as the result of the advance-
ment of the state of its components. For example, a developing plant can
be described in terms of its functional units (modules), such as apices, in-
ternodes, leaves, and flowers (reviewed in [15]). Similarly, the operation of
a gene regulation network can be described in terms of interactions between
individual genes, and gene activities in interacting cells (e.g. [12, 14, 18, 19]).

Formally, we use the term structured dynamical system to denote a dy-
namical system divided into component subsystems (units). The set of state
variables of the whole system is the Cartesian product of the sets of state
variables of the component subsystems. Accordingly, the state transition
function of the whole system can be described as the product of the state
transition functions of these subsystems. Similarly to non-structured sys-
tems, structured dynamical systems can be defined assuming continuous or
discrete state variables and time. In addition, the components can be ar-
ranged in a continuous or discrete manner in space. Some of the formalisms
resulting from different combinations of these features are listed in Table 2.

Time management is an important issue in the modeling and simula-
tion of structured systems [8]. For example, state transitions may occur
synchronously (simultaneously in all components) or asynchronously. Fur-
thermore, efficient simulation techniques may assume different rates of time
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Table 2: Some formalisms used to specify structured dynamical systems
according to the continuous or discrete nature of space, time, and state
variables of the components. The heading “Numerical Solutions” refers to
explicit numerical solutions of partial differential equations and systems of
coupled ordinary differential equations.

C: continuous
D: discrete

PDE
Coupled

ODE
Numerical
Solutions

Cellular
Automata

Space C D D D

Time C C D D

States C C C D

progression in different components [5].
In many cases, the transition function of each subsystem depends only

on a (small) subset of the state variables of the whole system. If the compo-
nents of the system are discrete (i.e., excluding partial differential equations,
or PDEs), these dependencies can be depicted as a directed graph, with the
nodes representing the subsystems and the arrows indicating the inputs to
each subsystem. We say that this graph defines the topology of the struc-
tured dynamical system, and call neighbors the pairs of subsystems (directly)
connected by arrows.

The topology of a structured dynamical system may reflect its spatial or-

ganization, in the sense that only physically close subsystems are connected.
A dynamical system with this property is said to be locally defined. Locality
is an important feature of systems that model physical reality, because phys-
ical means of information exchange ultimately have a local character (e.g.,
transport of signaling molecules between neighboring cells). On the other
hand, physically-based models need not to be rigorously local. For example,
when modeling plants, it may be convenient to assume that higher branches
cast shadow on lower branches without simulating the local mechanism of
light propagation through space.

When the number of components in a structured dynamical systems
is large, the exhaustive listing of all connections between the components
becomes impractical or infeasible. This limitation can be overcome in several
ways. For example, if the components are arranged in a regular pattern, the
neighbors of each component need not to be listed explicitly. This is the
case of cellular automata (e.g. [17, 20]), in which cells are arranged in a
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Figure 1: Two examples of regular patterns of connections in structured
dynamical systems: Euclidean grid, in which each cell has four neighbors
(von Neumann neighborhood, left), and hyperbolic grid, in which each cell
has five neighbors (right).

square grid. The neighbor of each cell (excluding the cells, if present), can
be referred to in a uniform way, using the directions North, South, East and
West. Cellular automata operating in the hyperbolic plane [9] and group-

based fields [1] are generalizations of this idea, allowing for a wider range
of connecting patterns (Figure 1). Large structures can also be defined by
simulated development, as it is discussed in the next section.

3 Dynamical systems with a dynamic structure

A developing multicellular organism can be viewed as a dynamical system in
which not only the values of state variables, but also the set of state variables
and the state transition function change over time. These phenomena can be
captured using an extension of structured dynamic systems, in which the set
of subsystems or the topology of their connections may dynamically change.
We call these systems dynamical systems with a dynamic structure [1], or
(DS)2-systems in short.

For example, let us consider a multicellular plant structure, defined at
the level of individual cells. A large network of interconnected cells can by
gradually created by simulating the process of cell division. When a cell
divides, the topology of this network is adjusted to:

• remove connections (neighborhood relations) between the mother cell
and the rest of the organism,

• create connections between the daughter cells,
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• insert connections between the daughter cells and the remainder of the
system.

Other examples of natural processes that can be viewed as (DS)2-systems
include:

• chemical reactions, considered as interactions between molecules,

• developing plants, in which apical meristems create new meristems,
branch segments, leaves, and flowers,

• developing ecosystems, in which plants and animals reproduce, inter-
act with each other, and die.

The concept of (DS)2-systems can also be extended to more abstract, math-
ematical constructs, such as:

• fractal generation using Koch construction,

• generation of curves and surfaces using subdivision and pyramid algo-
rithms [4],

• numerical solution of PDEs using adaptive numerical methods, in
which the discretization of space changes over time,

• parallel algorithms, in which the number of interconnected computing
elements changes as the computation proceeds.

In the above examples, time is the independent variable that drives the
system dynamics. It is also possible to consider (DS)2-systems in which the
independent variable has spatial character. These include multiresolution
representations, in which the level of detail is controlled by the scale of
observations.

From the computer science point of view, simulation of dynamical sys-
tems with a dynamical structure raises the problem of finding a program-
ming paradigm (or the modeling language) well suited to the specification
of such systems. The key difficulty is that, in (DS)2-system, not only the
values of variables that describe the system, but also the entire set of vari-
ables, and equations that relate them, change over time. If the number of
these changes is small, they can be specified explicitly. In general, however,
we need a formalism that supports these changes in an automatic manner.
Table 3 presents some of the existing formalisms for handling systems that
operate in discrete space.

1-5



Table 3: Some formalisms used for the modeling of (DS)2, according to the
underlying topology of space.

Topology Multiset Sequence Array Graph

Formalism

multiset
rewriting

L-systems cellular
automata

map L-systems,
graph grammars,
MGS, VV-systems,
Cellerator

In this table, the first line gives the type of the topology used to connect
the subcomponents of a system. In a multiset, all elements are considered
to be connected to each other. In a sequence, elements are ordered linearly;
this case includes lists and extends to tree-like structures. Array structures
represent regular neighborhoods; for example, the lattice shown in Figure 1.
In this case, addition of new elements to the structure may only occur at
its boundary. Finally, graphs are used to define arbitrary connections be-
tween discrete components. Formalisms for describing (DS)2 operating on
graphs are less well developed than the formalisms operating on multisets,
sequences, and arrays. Current research includes MGS (acronym for un

Modèle Général de Simulation de système dynamique [1, 2, 3]) and vertex-
vertex systems, outlined later in these notes. Cellerator [16] is a recent
example of a practical simulation system operating on dynamically recon-
figured graphs.

4 Conclusions

Structured dynamical systems consist of interconnected components. In
dynamical systems with a dynamic structure, or (DS)2, the set of components
and their connections may change over time. This raises the problem of
characterizing these changes as a part of a (DS)2 specification. One possibility
is to assume that the (DS)2 components exist in some topological space, and
use proximity of components in this space to define their connections. These
connections define, how the variables in one component are related to the
variables in its neighbors. Within this general framework, several formalisms
for modeling (DS)2 exist. Specifically, L-systems [7] make it possible to model
dynamically reconfigurable structures with linear or branching topology.
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