

SIGGRAPH 2003 Course Notes

L-systems and Beyond

Organizer:
Przemyslaw Prusinkiewicz

Department of Computer Science
The University of Calgary

Instructors:

 Pavol Federl
Department of Computer Science
The University of Calgary
2500 University Drive N.W.
Calgary, Alberta T2N 1N4, Canada
federl@cpsc.ucalgary.ca

 Radoslaw Karwowski

Department of Computer Science
The University of Calgary
2500 University Drive N.W.
Calgary, Alberta T2N 1N4, Canada
pwp@cpsc.ucalgary.ca

 Radomir Mech
SGI
1600 Amphitheatre Way
Mountain View, CA 94043
rmech@sgi.com

 Przemyslaw Prusinkiewicz

Department of Computer Science
The University of Calgary
2500 University Drive N.W.
Calgary, Alberta T2N 1N4, Canada
pwp@cpsc.ucalgary.ca

Course Description

L-systems are a biologically-motivated formalism that can be used as a tool for modeling and
visualizing biological structures, and as a computing technique gleaned from nature to solve
other modeling problems. Their appeal lies in a compact, intuitive description of algorithms,
and the possibility of using this description directly as an input to the modeling software.
The course will present recent theoretical results, implementations, applications and research
directions pertinent to L-systems and their extensions. The applications include, on one hand,
the modeling and visualization of plants at different levels of abstraction and for a variety of
purposes, and, on the other hand, geometric modeling of curves and surfaces. These
applications are united by their treatment of the modeled objects as dynamical structures
subject to local operations, and can be implemented using the same modeling software. The
course will be of a particular interest to researchers and students working on geometric
modeling and the modeling of nature.

Prerequisites

The course will assume basic knowledge of geometric modeling algorithms, in particular
subdivision curves and surfaces, and of numerical methods for solving algebraic and
(ordinary and partial) differential equations. Prior exposure to L-systems, fractals, and the
modeling of plants is desirable, but not necessary.

 ii

Speaker Biographies

Pavol Federl is a research associate in the Department of Computer Science at the
University of Calgary, where he also received his Ph.D. His graduate work was done under
the direction of Dr. Przemyslaw Prusinkiewicz, and involved physically based simulations of
fracture patterns. Dr. Federl's current research interests lie in the area of simulating growth
in biological structures. He is also involved in the development of Virtual Laboratory
(VLAB), an interactive and collaborative simulation environment.

Radoslaw Karwowski is a research associate in the Department of Computer Science at the
University of Calgary. He holds an M.Sc. in Computational Physics from the University of
Wroclaw, Poland, and a Ph.D. in Computer Science from the University of Calgary. From
1996 to 1998 he worked on the modeling and simulation of plant development in the Institute
of Botany at the University of Wroclaw. His current research interests are in the domain of
modeling languages and simulation methods applicable to plant modeling. He is a co-creator
and developer of the L-system-based plant modeling software L-studio.

Radomir Mech is a technical staff member at SGI, Mountain View, CA. He received a
Ph.D. in Computer Science from the University of Calgary in 1997, where he completed a
dissertation under the direction of Dr. Przemyslaw Prusinkiewicz. His graduate work was
devoted to L-system models of plants interacting with their environment. After his Ph.D.,
Dr. Mech joined the OpenGL Performer team at SGI, where he developed algorithms
enhancing the visual quality of real-time rendering. Dr. Mech is the (co)author of several
research papers, including three papers presented at SIGGRAPH. His current research spans
real-time rendering and procedural modeling.

Przemyslaw Prusinkiewicz is a Professor of Computer Science at the University of Calgary.
He holds an M.Sc. and Ph.D., both in Computer Science, from the Technical University of
Warsaw. Before joining the faculty of the University of Calgary, he was a faculty member at
the University of Regina, Canada, University of Science and Technology of Algiers, and
Technical University of Warsaw. He was also a Visiting Professor at Yale University
(1988), l'Ecole Polytechnique Federale de Lausanne (1990), and a Visiting Researcher at the
University of Bremen (1989) and the Centre for Tropical Pest Management in Brisbane
(1993, 1994, 1998). His research combines computer graphics with concepts rooted in
biology, formal language theory, and mathematics. He originated a method for visualizing
the structure and growth of plants based on L-systems, a mathematical model of
development. He is the co-author of two books, "The Algorithmic Beauty of Plants", and
"Lindenmayer Systems, Fractals, and Plants", and numerous papers in this area. He was the
organizer of the 1992 SIGGRAPH course on fractals, and a speaker in over 15 other
SIGGRAPH courses on fractals, procedural modeling, artificial life, and modeling of natural
phenomena. Dr. Prusinkiewicz is the recipient of the 1997 ACM SIGGRAPH Computer
Graphics Achievement Award.

 iii

Course Schedule

Part 1: Introduction to L-systems

 1:45: Introduction to L-systems: theory, modeling, and graphics
 Prusinkiewicz

Part 2: Plant modeling with L-systems

 2:15 Foundations: simulating control processes in plants
 Mech

 2:45 Interlude: solving algebraic and differential equations with L-systems
 Federl

3:15 Break

 3:30 Advanced plant modeling: genes, physiology, and biomechanics
 Prusinkiewicz

Part 3: Geometric modeling with L-systems

 4:00 Application of L-systems to geometric modeling of curves
 Prusinkiewicz

 4:20 Extending L-systems to surfaces
 Prusinkiewicz

Part 4: Implementations of L-systems

 4:40 Designing and implementing an L-system-based language
 Karwowski

5:00 Hardware implementation of L-systems
 Mech

5:20 Questions and answers
 Federl, Karwowski, Mech, Prusinkiewicz

 iv

 v

Table of Contents

Part 1: Introduction to L-systems

Structured dynamical systems 1-1
Introduction to modeling with L-systems 1-9

Part 2: Plant modeling with L-systems

L-systems: from the theory to visual modeling of plants 2-1
Visual models of plants interacting with their environment 2-13
The use of positional information in the modeling of plants 2-27
L-systems and partial differential equations 2-39
Solving linear algebraic and differential equations with L-systems 2-50
Integrating biomechanics into developmental plant models

expressed using L-systems 2-66

Part 3: Geometric modeling with L-systems

L-system description of subdivision curves 3-1
L-system implementation of multiresolution curves

based on cubic B-spline subdivision 3-23
Relational specification of surface subdivision algorithms 3-31

Part 4: Implementations of L-systems

Design and implementation of the L+C modeling language 4-1
Generating subdivision curves with L-systems on a GPU 4-15

Structured Dynamical Systems

Przemyslaw Prusinkiewicz1

Department of Computer Science
University of Calgary

Abstract

This note introduces the notion of structured dynamical systems,
and places L-systems in their context.

1 Basic definitions

Many natural phenomena can be modeled as dynamical systems. At any
point in time, a dynamical system is characterized by its state. A state is
represented by a set of state variables. For example, in the description of
planetary motions around the sun, the set of state variables may represent
positions and velocities of the planets. Changes of the state over time are
described by a transition function, which determines the next state of the
system as a function of its previous state and, possibly, the values of external
variables (input to the system). This progression of states forms a trajectory

of the system in its phase space (the set of all possible states of the system).
Mathematical objects with diverse properties can be considered dynami-

cal systems. For instance, state variables may take values from a continuous
or discrete domain. Likewise, time may advance in continuous or discrete
steps. Examples of dynamical systems characterized by different combina-
tions of these features are listed in Table 1.

Table 1: Some formalisms used to specify dynamical systems according to
the discrete or continuous nature of time and state variables.

C: continuous,
D: discrete.

ODE
Iterated

Mappings
Finite

Automata

Time C D D

State C C D

1Adapted from: J.-L Giavitto, C. Godin, O. Michel and P. Prusinkiewicz, Computa-

tional Models for Integrative and Developmental Biology, LaMI Rapport de Recherche No

72-2002, March 2002, Section 2.

1-1

In simple cases, trajectories of dynamical systems may be expressed us-
ing mathematical formulas. For example, the ODE (ordinary differential
equation) describing the motion of a mass on a spring has an analytical
solution expressed by a sine function (linear spring, in the absence of fric-
tion and damping). In more complex cases, analytic formulas representing
trajectories of the system may not exist, and the behavior of the system is
best studied using computer simulations.

By their nature, simulations operate in discrete time. Models initially
formulated in terms of continuous time must therefore be discretized. Strate-
gies for discretizing time in a manner leading to efficient simulations have
extensively been studied in the scope of simulation theory, e.g. [6].

Dynamical systems with apparently simple specifications may have very
complex trajectories. This phenomenon is called chaotic behavior, c.f. [13],
and is relevant to biological systems (for example, in populations mod-
els) [10, 11].

2 Structured dynamical systems

Many dynamical systems can be decomposed into parts. The advancement
of the state of the whole system is then viewed as the result of the advance-
ment of the state of its components. For example, a developing plant can
be described in terms of its functional units (modules), such as apices, in-
ternodes, leaves, and flowers (reviewed in [15]). Similarly, the operation of
a gene regulation network can be described in terms of interactions between
individual genes, and gene activities in interacting cells (e.g. [12, 14, 18, 19]).

Formally, we use the term structured dynamical system to denote a dy-
namical system divided into component subsystems (units). The set of state
variables of the whole system is the Cartesian product of the sets of state
variables of the component subsystems. Accordingly, the state transition
function of the whole system can be described as the product of the state
transition functions of these subsystems. Similarly to non-structured sys-
tems, structured dynamical systems can be defined assuming continuous or
discrete state variables and time. In addition, the components can be ar-
ranged in a continuous or discrete manner in space. Some of the formalisms
resulting from different combinations of these features are listed in Table 2.

Time management is an important issue in the modeling and simula-
tion of structured systems [8]. For example, state transitions may occur
synchronously (simultaneously in all components) or asynchronously. Fur-
thermore, efficient simulation techniques may assume different rates of time

1-2

Table 2: Some formalisms used to specify structured dynamical systems
according to the continuous or discrete nature of space, time, and state
variables of the components. The heading “Numerical Solutions” refers to
explicit numerical solutions of partial differential equations and systems of
coupled ordinary differential equations.

C: continuous
D: discrete

PDE
Coupled

ODE
Numerical
Solutions

Cellular
Automata

Space C D D D

Time C C D D

States C C C D

progression in different components [5].
In many cases, the transition function of each subsystem depends only

on a (small) subset of the state variables of the whole system. If the compo-
nents of the system are discrete (i.e., excluding partial differential equations,
or PDEs), these dependencies can be depicted as a directed graph, with the
nodes representing the subsystems and the arrows indicating the inputs to
each subsystem. We say that this graph defines the topology of the struc-
tured dynamical system, and call neighbors the pairs of subsystems (directly)
connected by arrows.

The topology of a structured dynamical system may reflect its spatial or-

ganization, in the sense that only physically close subsystems are connected.
A dynamical system with this property is said to be locally defined. Locality
is an important feature of systems that model physical reality, because phys-
ical means of information exchange ultimately have a local character (e.g.,
transport of signaling molecules between neighboring cells). On the other
hand, physically-based models need not to be rigorously local. For example,
when modeling plants, it may be convenient to assume that higher branches
cast shadow on lower branches without simulating the local mechanism of
light propagation through space.

When the number of components in a structured dynamical systems
is large, the exhaustive listing of all connections between the components
becomes impractical or infeasible. This limitation can be overcome in several
ways. For example, if the components are arranged in a regular pattern, the
neighbors of each component need not to be listed explicitly. This is the
case of cellular automata (e.g. [17, 20]), in which cells are arranged in a

1-3

Figure 1: Two examples of regular patterns of connections in structured
dynamical systems: Euclidean grid, in which each cell has four neighbors
(von Neumann neighborhood, left), and hyperbolic grid, in which each cell
has five neighbors (right).

square grid. The neighbor of each cell (excluding the cells, if present), can
be referred to in a uniform way, using the directions North, South, East and
West. Cellular automata operating in the hyperbolic plane [9] and group-

based fields [1] are generalizations of this idea, allowing for a wider range
of connecting patterns (Figure 1). Large structures can also be defined by
simulated development, as it is discussed in the next section.

3 Dynamical systems with a dynamic structure

A developing multicellular organism can be viewed as a dynamical system in
which not only the values of state variables, but also the set of state variables
and the state transition function change over time. These phenomena can be
captured using an extension of structured dynamic systems, in which the set
of subsystems or the topology of their connections may dynamically change.
We call these systems dynamical systems with a dynamic structure [1], or
(DS)2-systems in short.

For example, let us consider a multicellular plant structure, defined at
the level of individual cells. A large network of interconnected cells can by
gradually created by simulating the process of cell division. When a cell
divides, the topology of this network is adjusted to:

• remove connections (neighborhood relations) between the mother cell
and the rest of the organism,

• create connections between the daughter cells,

1-4

• insert connections between the daughter cells and the remainder of the
system.

Other examples of natural processes that can be viewed as (DS)2-systems
include:

• chemical reactions, considered as interactions between molecules,

• developing plants, in which apical meristems create new meristems,
branch segments, leaves, and flowers,

• developing ecosystems, in which plants and animals reproduce, inter-
act with each other, and die.

The concept of (DS)2-systems can also be extended to more abstract, math-
ematical constructs, such as:

• fractal generation using Koch construction,

• generation of curves and surfaces using subdivision and pyramid algo-
rithms [4],

• numerical solution of PDEs using adaptive numerical methods, in
which the discretization of space changes over time,

• parallel algorithms, in which the number of interconnected computing
elements changes as the computation proceeds.

In the above examples, time is the independent variable that drives the
system dynamics. It is also possible to consider (DS)2-systems in which the
independent variable has spatial character. These include multiresolution
representations, in which the level of detail is controlled by the scale of
observations.

From the computer science point of view, simulation of dynamical sys-
tems with a dynamical structure raises the problem of finding a program-
ming paradigm (or the modeling language) well suited to the specification
of such systems. The key difficulty is that, in (DS)2-system, not only the
values of variables that describe the system, but also the entire set of vari-
ables, and equations that relate them, change over time. If the number of
these changes is small, they can be specified explicitly. In general, however,
we need a formalism that supports these changes in an automatic manner.
Table 3 presents some of the existing formalisms for handling systems that
operate in discrete space.

1-5

Table 3: Some formalisms used for the modeling of (DS)2, according to the
underlying topology of space.

Topology Multiset Sequence Array Graph

Formalism

multiset
rewriting

L-systems cellular
automata

map L-systems,
graph grammars,
MGS, VV-systems,
Cellerator

In this table, the first line gives the type of the topology used to connect
the subcomponents of a system. In a multiset, all elements are considered
to be connected to each other. In a sequence, elements are ordered linearly;
this case includes lists and extends to tree-like structures. Array structures
represent regular neighborhoods; for example, the lattice shown in Figure 1.
In this case, addition of new elements to the structure may only occur at
its boundary. Finally, graphs are used to define arbitrary connections be-
tween discrete components. Formalisms for describing (DS)2 operating on
graphs are less well developed than the formalisms operating on multisets,
sequences, and arrays. Current research includes MGS (acronym for un

Modèle Général de Simulation de système dynamique [1, 2, 3]) and vertex-
vertex systems, outlined later in these notes. Cellerator [16] is a recent
example of a practical simulation system operating on dynamically recon-
figured graphs.

4 Conclusions

Structured dynamical systems consist of interconnected components. In
dynamical systems with a dynamic structure, or (DS)2, the set of components
and their connections may change over time. This raises the problem of
characterizing these changes as a part of a (DS)2 specification. One possibility
is to assume that the (DS)2 components exist in some topological space, and
use proximity of components in this space to define their connections. These
connections define, how the variables in one component are related to the
variables in its neighbors. Within this general framework, several formalisms
for modeling (DS)2 exist. Specifically, L-systems [7] make it possible to model
dynamically reconfigurable structures with linear or branching topology.

1-6

References

[1] J.-L. Giavitto and O. Michel. MGS: A programming language for the
transformation of topological collections. Research Report 61-2001,
CNRS - Université d’Evry Val d’Esonne, Evry, France, 2001.

[2] J.-L. Giavitto and O. Michel. Data structures as topological spaces.
In Proceedings of the 3nd International Conference on Unconventional

Models of Computation UMC02, volume 2509, pages 137–150, 2002.
Lecture Notes in Computer Science.

[3] J.-L. Giavitto and O. Michel. The topological structures of membrane
computing. Fundamenta Informaticae, 49:107–129, 2002.

[4] R. Goldman. Pyramid algorithms. A dynamic programming approach

to curves and surfaces for geometric modeling. Morgan Kaufmann, San
Francisco, 2003.

[5] D. Jefferson. Virtual time. ACM Transactions on Programming Lan-

guages and Systems, 7(3):404–425, July 1985.

[6] W. Kreutzer. System simulation: Programming styles and languages.
Addison-Wesley, Sydney, 1986.

[7] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

[8] N. A. Lynch. Distributed algorithms. Morgan Kauffman, Los Altos,
CA, 1996.

[9] M. Margenstern. Celular automata in the hyperbolic plane. Report
99-103, Groupe d’Informatique Fondemantale de Metz, Université de
Metz, 1999.

[10] R. M. May. Biological population models obeying difference equations:
Stable points, stable cycles, and chaos. Journal of Theoretical Biology,
51:511–524, 1975.

[11] R. M. May. Simple mathematical models with very complicated dy-
namics. Nature, 261:459–467, 1976.

[12] E. Mjolsness, D. Sharp, and J. Reinitz. A connectionist model of de-
velopment. Journal of Theoretical Biology, 152:429–453, 1991.

1-7

[13] H.-O. Peitgen, H. Jürgens, and D. Saupe, editors. Chaos and fractals.

New frontiers of science. Springer-Verlag, New York, 1992.

[14] J. Reinitz and D. Sharp. Mechanism of eve stripe formation. Mecha-

nisms of Development, 49:133–158, 1995.

[15] P. M. Room, L. Maillette, and J. Hanan. Module and metamer dynam-
ics and virtual plants. Advances in Ecological Research, 25:105–157,
1994.

[16] B. Shapiro and E. Mjolsness. Developmental simulations with Cellera-
tor. In Proceedings of the Second International Conference on Systems

Biology, pages 342–351, 2001.

[17] T. Toffoli and N. Margolus. Cellular automata machines: A new envi-

ronment for modeling. MIT Press, Cambridge, Massachusetts, 1987.

[18] G. von Dassow, E. Meir, E. Munro, and G. Odell. Ingeneue manual v.
0.7. http://www.beakerware.com/ingeneue/.

[19] G. von Dassow, E. Meir, E. Munro, and G. Odell. The segment polarity
network is a robust developmental module. Nature, 406:188–192, 2000.

[20] S. Wolfram. A new kind of science. Wolfram Media, Champaign, IL,
2002.

1-8

Introduction to Modeling
with L-systems

Przemyslaw Prusinkiewicz1

Department of Computer Science
University of Calgary

Abstract

This note introduces L-systems as a programming language for de-
velopmental model construction. The examples presented here refer
to a real biological structure, the vegetative segment of a cyanobac-
terium Anabaena catenula. Problems related to time management in
developmental simulations are given particular attention.

1 Background

L-systems were introduced by A. Lindenmayer as a mathematical formal-
ism for modeling multicellular organisms that form linear or branching fil-
aments [11, 12]. The whole organism is treated as an assembly of discrete
units, called modules. The nature of the modules is not predefined by the
formalism. For example, they may represent individual cells in the models
of lower organisms, or functional units, such as apical meristems, intern-
odes, leaves and flowers, in the models of higher plants. Each module is
represented by a symbol (a letter of the L-system alphabet), which specifies
the module’s type. In addition, a module can be characterized by one or
more numerically-valued parameters [2, 13], which, together with the sym-
bol, characterize the module’s state. The resulting concept of parametric
L-systems has been formalized in [5, 23], among others. Recent extensions
make it possible to use parameters of compound data types, such as struc-
tures [7] and lists [3].

L-system models are inherently dynamic, which means that the form
of an organism is viewed as a result of development: “an event in space-
time, and not merely a configuration in space” [28]. The development of a

1Based in part on: P. Prusinkiewicz: Introduction to modeling using L-systems, in J.
A. Kaandorp and J. E. Kübler (Eds.), The Algorithmic Beauty of Seaweeds, Sponges, and
Corals, Springer, Berlin, 2001, pp. 91–93, and P. Prusinkiewicz, J. Hanan and R. Měch,
An L-system-based plant modeling language, Lecture Notes in Computer Science 1779,
Springer, Berlin, pp. 395–410.

1-9

structure is described in terms of rewriting rules or productions that change
the module’s state, or replace a module by zero, one or several new mod-
ules. Productions are applied in parallel, which is intended to capture the
simultaneous progress of time in all parts of the growing organism.

L-systems were originally introduced as a mathematical tool for reason-
ing about development. Soon after their introduction, however, they began
to be used as a formal basis for constructing simulation modeling programs
and modeling languages. The availability of these languages is one of the key
practical advantages of L-systems in modeling applications, because diverse
structures and processes can be modeled using the same L-system-based
procedural modeling program with different inputs. The L-system-based
languages have initially been almost indistinguishable from the underlying
mathematical notation of L-systems, but, with the increased complexity of
the modeling tasks, they gradually diverged from this notation.

The notion of L-systems is often presented in a formal manner. In con-
trast, we will present it in the context of a specific modeling application.
This will allow us to see the relationship between a natural phenomenon
and its L-system models, highlight the conceptual essence of L-systems, see
the motivation behind their extensions, and trace the evolution of L-system-
based modeling languages. In addition, the examples address the question
of time management in simulations, which is essential to the animation of
development.

2 Model organism: Anabaena catenula

Anabaena is one of the earliest examples of multicellular organisms with
cellular specialization [1, 4]. Like many other cyanobacteria, it is capable
both of aerobic photosynthesis and fixation of nitrogen from the atmosphere.
These processes, however, are incompatible with each other, because the en-
zyme nitrogenase responsible for nitrogen fixation is destroyed by oxygen,
a byproduct of photosynthesis. Some cyanobacteria deal with this incom-
patibility by dividing their activities over time: they photosynthesize in the
daytime, and fix nitrogen in the night. Anabaena, in contrast, divides these
activities in space, using two different types of cells: vegetative cells respon-
sible for photosynthesis, and heterocysts responsible for nitrogen fixation.
This division of tasks is the rationale for the multicellular structure of the
organism.

1-10

Anabaena cells are arranged into filaments. In the absence of ammonia
or nitrate in the medium, individual heterocysts are separated by sequences
of approximately ten vegetative cells of varying sizes. The filaments grow by
asymmetric division of vegetative cells. As this process moves the existing
heterocysts apart, new heterocysts differentiate from vegetative cells roughly
midway between those already present. Consequently, the regular spacing
of heterocysts remains approximately constant while the filament grows.

The developmental process outlined above raises two questions, which
have attracted the interest of biologists and modelers alike:

1. What mechanism controls the asymmetric division of vegetative cells,
resulting in the observed sequence of cell sizes along the filament; and

2. What mechanism regulates the spacing of heterocysts?

In this note we will address the first question.

3 Context-free L-systems

Mitchison and Wilcox [18] proposed to explain the observed pattern of long
and short cells in a vegetative segment of Anabaena as a direct result of a
developmental process. To this end, they divided the cells that form the
filament into two classes: long cells L and small cells S. Furthermore, they
assumed that each vegetative cell has one of two possible polarities, which
can be indicated by an arrow:

→
L ,

←
L , and

→
S ,

←
S . During the development,

cells S elongate and change their state to L. Long cells divide, producing a
cell L and a cell S.

Lindenmayer [16] observed that, taking polarities into account, the essence
of the model of Mitchison and Wilcox can be written as a set of rewriting
rules, or productions:

→
S−→→

L
←
S−→←

L
→
L−→←

L
→
S

←
L−→←

S
→
L (1)

These rules are the cornerstone of a DOL-system, the simplest type of L-
systems [12] (see also [6, 26, 23, 27]). The acronym DOL stands for a
Deterministic L-system with 0 interactions. This means that exactly one
production applies to any symbol of the L-system alphabet, and the pro-
ductions are context-free. The DOL-system productions have the form

predecessor −→ successor,

1-11

S L S L L S L L

L L S L S

S L L

L S

L

Figure 1: Developmental sequence of an Anabaena filament modeled with
L-system 1.

where the predecessor is a single symbol of the L-system alphabet V , and the
successor is a string of zero, one, or several symbols from the same alphabet.

Like all L-systems, DOL-systems operate on sequences of symbols called
strings or words. In a single derivation step, each letter in the predecessor
string is replaced by its successor using the applicable production from the
production set P . The developmental process is simulated as a sequence of
such derivation steps, beginning with a given initial string, called the axiom,
and denoted ω. For example, Figure 1 shows the developmental sequence
generated by L-system G = 〈V, ω, P 〉 with alphabet V = {→L ,

←
L ,

→
S ,

←
S }, axiom

ω =
→
L , and the production set P given by Equation 1.
The above model implies that the time between the formation and divi-

sion of a short cell is twice as long as the time between the formation and
division of a long cell. In reality, a short cell takes only about 20% longer
to divide that a long cell. Lück and Lück [17], and Lindenmayer [15] in-
corporated this behavior into the model by introducing a sequence of state
transitions to control the timing of cell division:

→
S−→→

L
→
L−→→

A
→
A−→→

B
→
B−→→

C
→
C−→←

L
→
S

←
S−→←

L
←
L−→←

A
←
A−→←

B
←
B−→←

C
←
C−→←

S
→
L

(2)

Sequences of state transitions are not intuitively represented by the L-
system formalism, but can be conceptualized using diagrams, similar to that
shown in Figure 2. Similar diagrams have been used by Lindenmayer [10]
and Lück and Lück [17]. Formally, they are a synchronously operating vari-

1-12

Figure 2: Petri net representation of L-system 2. A cell undergoes a sequence
of transitions (vertical bars), which advance its state (circles). The last
transition represents division of cell C into two children cells, S and L.

L A L S

S L C

C B

B A

A L

L S

C

2 3 2 1

1 2 5

5 4

4 3

3 2

2 1

5

Figure 3: Improved developmental sequences of the Anabaena vegetative
filaments. The models that take into account timing of the short and long
cell divisions. Left: the sequence generated by non-parametric L-system 2.
Right: the corresponding sequence generated by the parametric L-system 3.

ant of Petri nets [19, 25]. As illustrated in Figure 2, L-system 2 specifies
a sequence of developmental stages, through which a cell progresses until
it reaches the dividing state C. The children of cell C have different posi-
tions along this sequence, and therefore need different times to divide again.
Specifically, the time to the next division is equal to 4 time units for a cell
L and 5 time units for a cell S, thus resulting in the required ratio of 80%.
This timing is also evident in the developmental sequence shown in Figure 3
on the right.

1-13

4 Parametric L-systems

Sequences of developmental stages significantly increase the size of the L-
sysem alphabet and the size of the corresponding production set, and conse-
quently complicate the specification of DOL-systems. Parametric L-systems [5,
23] offer a solution to this problem, by associating numerical parameters with
L-system symbols. Context-free parametric productions have the form

predecessor : condition −→ successor,

where predecessor is a single module (L-system symbol with the associated
parameters), successor is a sequence of modules, and condition is the log-
ical expression that determines whether the production can be applied to
a given module. For example, a parametric L-system equivalent to that in
Equation 2 is given below:

→
M (s) : s < 5 −→ →

M (s + 1)
→
M (s) : s == 5 −→ ←

M (2)
→
M (1)

←
M (s) : s < 0 −→ ←

M (s + 1)
←
M (s) : s == 5 −→ ←

M (1)
→
M (2)

(3)

The non-parametric L-system 2 and the parametric L-system 3 are equiva-
lent because modules type in L-system 2 correspond one-to-one to parameter
values in L-system 3:

S ↔ 1, L ↔ 2, A ↔ 3, B ↔ 4, C ↔ 5. (4)

This correspondence is also illustrated by Figure 3, which compares the
developmental sequences generated by both L-systems.

Parameters are useful in specifying various attributes of modules. For
example, in the case of Anabaena, cell polarity can also be represented as a
parameter. This results in the following L-system:

/* L-system 4 */
#define LEFT -1
#define RIGHT 1
Axiom: M(5,RIGHT)
M(t,p) : t<5 --> M(t+1,p)
M(t,p) : t==5 && p == LEFT --> M(1,LEFT)M(2,RIGHT)
M(t,p) : t==5 && p == RIGHT --> M(2,LEFT)M(1,RIGHT)

1-14

We have switched here from the mathematical notation to a program-
ming language style of L-system specification. The particular language used
has been devised for the L-system-based modeling program cpfg [22]. At
this point, the differences between the mathematical notation and the cor-
responding cpfg specification are minimal, but the programming language
style will allow us to more conveniently present further extensions to L-
systems.

5 Modeling development in continuous time

All the L-systems discussed above advance time by unit interval per deriva-
tion step. In many applications, for example the animation of development,
it is convenient to advance time by arbitrary user-defined increments. We
can partially achieve this goal by reinterpreting the step-counting variable t
in L-system 4 as a continuously-valued developmental stage or physiological
age of the cell, and increment it by a constant dt. By applying this concept
to L-system 4, and rescaling time so that the short cells have unit life span,
we obtain:

/* L-system 5 */
#define LEFT -1
#define RIGHT 1
#define t_div 1.0 /* cell age at division */
#define t_s 0.0 /* initial age - short cell */
#define t_l 0.2 /* initial age - long cell */
#define dt 0.7 /* time increment per step */
Axiom: M(0,RIGHT)
M(t,p) : t+dt<t_div --> M(t+dt,p)
M(t,p) : t+dt>=t_div && p == LEFT -->

M(t+dt-t_div+t_s,LEFT) M(t+dt-t_div+t_l,RIGHT)
M(t,p) : t+dt>=t_div && p == RIGHT -->

M(t+dt-t_div+t_l,LEFT) M(t-t_div+t_s+dt,RIGHT)

Figure 4 shows developmental sequences generated by this L-system for
two values of time increment, dt1 = 0.7 and dt2 = 1.4. A comparison
of these sequences reveals that the results are correct for the smaller time
increment dt1, but incorrect for the larger increment dt2. The reason for this
discrepancy is presented in Figure 5, which places the branching process of
cell division in the context of time increments used in both simulation. If

1-15

0.0 0.2 0.4 0.2 0.0 0.2 0.8

0.3 0.5 0.3 0.1

0.6 0.4

0.7

0.0

1.0 1.2 1.0 0.8

0.6 0.4

0.0

Figure 4: Developmental sequences generated by L-system 5 using time steps
dt1 = 0.7 (left) and dt2 = 1.4 (right). The sequence on the left correctly
captures the development of the filament, whereas sequence on the right
does not, because it includes cells past their division age.

Figure 5: Development of an Anabaena filament considered in continuous
time. Each cell divides at most once within any interval of duration dt1 =<
0.8, but may divide more than once within an interval dt2 ≥ 0.8. Sample
intervals dt1 = 0.7 and dt2 = 1.4 are shown.

the time increment dt is sufficiently small, for example dt = 0.7, each cell
undergoes at most one division within an interval (t, t+dt]. This is correctly
captured by L-system 5, according to which a cell either does not divide
within a derivation step at all, or divides once. On the other hand, if the
time increment dt is too large, for example dt = 1.4, some cells may undergo
two divisions within an interval (t, t + dt]. This possibility is not accounted

1-16

for in L-system 5, which instead produces cells that exceed the age at which
they should have divided.

6 Decomposition rules

Time steps of a duration longer than the minimum lifetime of a cell could be
handled using productions that create more than two cells in a single deriva-
tion step. A more general and concise solution, however, is to assume that
a cell will divide recursively, as long as the age of the descendants is greater
than the division age tdiv (Figure 6). Recursive application of productions is
a concept characteristic of Chomsky grammars rather than L-systems. We
combine these concepts by distinguishing two types of productions: L-system
productions, applied in the breadth-first fashion, and Chomsky productions,
applied recursively [24]. In the cpfg language, we refer to Chomsky produc-
tions as decomposition rules, and separate them from the ordinary L-system
productions with the keyword decomposition [22]. A derivation step con-
sists of the application of L-system productions to all modules in the string,
followed by the recursive application of decomposition rules. A model of
Anabaena development using decomposition rules is given by L-system 6.

/* L-system 6 */
#define LEFT -1
#define RIGHT 1
#define t_div 1.0 /* cell age at division */
#define t_s 0.0 /* initial age - short cell */
#define t_l 0.2 /* initial age - long cell */
#define dt 0.7 /* time increment per step */
Axiom: M(0,RIGHT)
M(t,p) --> M(t+dt,p)
decomposition:
M(t,p) : t>=t_div && p == LEFT -->

M(t-t_div+t_s,LEFT) M(t-t_div+t_l,RIGHT)
M(t,p) : t>=t_div && p == RIGHT -->

M(t-t_div+t_l,LEFT) M(t-t_div+t_s,RIGHT)

The use of decomposition rules improved the structure of L-system 6 with
respect to L-system 5, by distinguishing between an ordinary L-system pro-
duction, which advances time, and decomposition rules, which describe the

1-17

Figure 6: Development of an Anabaena filament simulated using L-system
6 with time step dt = 1.4. The application of the time-advancing L-system
production (thick line) is followed by the recursive application of decompo-
sition rules (thin lines).

structure of the descendants of each module. The underlying logical dis-
tinction between the relations “produces over time” and “is a part of” was
formalized by Woodger and Tarski [29], and reviewed by Lindenmayer [14].
Figure 6 shows that L-system 6 works correctly for time increments exceed-
ing the lifetime of a cell.

If we are only interested in the final state of the model at some time
T , we can delegate all computation to the recursive application of decom-
position rules by setting dt = T . This mode of operation is closely related
to timed L-systems, defined in [23]. Timed L-systems make it possible to
find the state of the developing structure at any time T , and consequently
were the first variant of L-systems used to create “smooth” animations of
plant development. As a limiting factor, the arbitrarily large time steps
and recursive evaluation of L-systems are only possible in the deterministic
context-free case, where components of the structure do not communicate
with each other during the development, and always create the same lineage.

7 Interpretation rules

Up to now, we have not been concerned with the visualization of the models.
This is consistent with the original definition of the L-system formalism,
which only described ordering of cells in the filament, i.e., its topology.
Nevertheless, in order to present generated models graphically, we need to

1-18

 µ0 µ1 µ2 µ3 ...

 ν0 ν1 ν2 ν3 ...

P P P P

h h h h

Figure 7: Generation of a developmental sequence using a cpfg model with
interpretation rules. The progression of strings µ0, µ1, µ2, . . . results from
the derivation steps P=⇒ defined by productions and decomposition rules.
The interpretation rules h=⇒ map strings µi into the final strings νi that
contain the graphical information.

assign a geometric interpretation to the modules. The problem is that the
types of modules in terms of which a model is formulated and conceptualized
(e.g., cells, apices, or leaves) is often very different from graphical primitives
that are convenient to describe its geometry (e.g., lines, polygons, parametric
surfaces). This problem was first addressed by Kurth [9], who introduced
the notion of interpretation rules.

Interpretation rules provide a mechanism for complementing models with
the geometric information needed for visualization purposes. They do not
affect the sequence of strings µ0, µ1, µ2, . . . derived by productions and de-
composition rules, but make it possible to temporarily replace modules in
the derived strings by other modules or sequences of modules (Figure 7),
which may have a predefined graphical interpretation. Formally, the inter-
pretation rules are related to the notion of string homomorphisms, which
have been studied in the mathematical theory of L-systems [6, 26]. The in-
terpretation rules extend the concept of homomorphism, because they may
operate on symbols with parameters, and can be applied in hierarchical and
recursive manners. In that sense, they resemble decomposition rules.

In the cpfg language, the interpretation rules are specified using the
same syntax as context-free productions and decomposition rules, following
the keyword homomorphism. To see how they work, let us assume that
the modeling program supports predefined modules L(length,width) and
R(length,width), which draw a round-cornered rectangles of given length
and width. In addition, each module incorporates an arrow, pointing to
the left or right, respectively. (In the actual cpfg implementation, modules
L and R are defined in terms of more fundamental primitives, but this is

1-19

irrelevant to the basic concept.) We thus can define a complete L-system
model of a vegetative segment of the Anabaena filament, by extending L-
systems 6 with interpretation rules.

/* L-system 7 */
#define LEFT -1
#define RIGHT 1
#define t_div 1.0 /* cell age at division */
#define t_s 0.0 /* initial age - short cell */
#define t_l 0.2 /* initial age - long cell */
#define a 2.1673 /* exponential growth base */
#define WID 1.0 /* cell width */
#define dt 0.7 /* time increment per step */
Axiom: M(0,RIGHT)
M(t,p) --> M(t+dt,p)
decomposition:
M(t,p) : t>=t_div && p == LEFT -->

M(t-t_div+t_s,LEFT) M(t-t_div+t_l,RIGHT)
M(t,p) : t>=t_div && p == RIGHT -->

M(t-t_div+t_l,LEFT) M(t-t_div+t_s,RIGHT)
homomorphism:
M(t,p) : p==LEFT --> L(a^t,WID)
M(t,p) : p==RIGHT --> R(a^t,WID)

8 Geometric continuity

L-system 7 illustrates a nontrivial detail of the geometric interpretation of
L-systems that can operate with arbitrarily small time steps: the need of
preserving geometric continuity of the growing structure over time. In this
specific example, we have assumed that the length of Anabaena cells in-
creases exponentially with time: l(t) = at. Since the exponential function is
continuous, the length of cells, and therefore the filament, will also be con-
tinuous functions of time in the intervals between cell divisions. In order to
maintain the continuity during cell divisions as well, the length of a mother
cell immediately before its division must be equal to the combined length of
the daughter cells immediately after the division:

atdiv = ats + atl

1-20

Given age values tdiv = 1.0, ts = 0.0 and tl = 0.2, we obtain the ba-
sis a of the exponential growth by numerically solving the above equation:
a ≈ 2.1673. Thus, the value of a is a logical consequence of the timing of
cell division and the exponential character of cell growth. The cell width
WID has been set to ats = 1.0, so that the smallest cells in the filament
appear round. For a more general discussion of the problem of maintaining
geometric continuity see [23].

In the above example, each cell keeps track of its age, and divides when
it reaches the threshold age. An alternative approach is to use a cell’s
size itself as the independent variable. In this case, the continuity of the
filament length is preserved in a more straightforward fashion, by explicitly
partitioning the mother cell in the ratio SMALLER : (1 − SMALLER).
The resulting L-system is given below.

/* L-system 8 */
#define LEFT -1
#define RIGHT 1
#define x_div 2.1673 /* cell length at division */
#define SMALLER 0.4614 /* fraction of dividing cell length */
#define gr 1.7185 /* growth rate per simulation step */
#define WID 1.0 /* cell width */
Axiom: M(1.0,RIGHT)
M(x,p) --> M(x*gr,p)
decomposition:
M(x,p) : x>=x_div && p == LEFT

--> M(x*SMALLER,LEFT) M(x*(1-SMALLER),RIGHT)
M(x,p) : x>=x_div && p == RIGHT

--> M(x*(1-SMALLER),LEFT) M(x*SMALLER,RIGHT)
homomorphism:
M(x,p) : p==LEFT --> L(x,WID)
M(x,p) : p==RIGHT --> R(x,WID)

The constant values in L-system 8 have been chosen in terms of the
constants of L-system 7, such that both L-systems produce the same devel-
opmental sequence. Specifically, xdiv = atdiv , SMALLER = ats/xdiv and
gr = adt.

1-21

Figure 8: Developmental sequence of Anabaena filament (basic model, as in
Figure 1), with explicitly represented cell walls. The parameter of cell walls
indicated their age.

9 Context-sensitive L-systems

All models considered so far were united by one common tread: the fate of
each module was determined by this module itself. A developmental process
that proceeds this way is said to be controlled by lineage [12, 23, 20]. In
reality, however, the fate of modules may also be controlled by interactions
with their neighbors. In order to give a simple example of this fundamental
concept, let us consider a variant of the Anabaena filament model, in which
asymmetric cell divisions are controlled by properties of cell walls, rather
than an attribute inherent in the individual cells. This variant of the model
provides an insight into a plausible mechanism of polarity determination in
nature.

The modified model treats the filament as a sequence of cells C separated
by explicitly represented walls W . Similarly to cells, walls carry the age
attribute. Figure 8 shows a developmental sequence corresponding to that
of the basic Anabaena model (Figure 1). This sequence reveals that, during
the asymmetric cell division, the shorter cell is always formed on the side of
the older wall. It can be proven that this relationship between cell polarity
and the age the walls that separate it from its neighbors also holds true for
Anabaena models with improved timing (L-systems 2 to 8).

We now use this observation to a context-sensitive L-system [11] model,
in which the asymmetry of cell division is controlled by the age of the neigh-
boring walls (the context of the cell), rather than cell type or parameters
transferred from mother to daughter cell by lineage. Context-sensitive para-

1-22

metric have the form

left context < predecessor > right context : condition −→ successor,

where left context and right context are strings of zero, one or more mod-
ules to the left and to the right of the strict predecessor [5, 23, 20]. During
the derivation, the context modules may affect the applicability and out-
come of a production application, but only the strict predecessor module is
replaced by the successor. Using this notation, a context-sensitive variant
of the Anabaena model based on L-system 5 is given below:

/* L-system 9 */
#define LEFT -1
#define RIGHT 1
#define t_div 1.0 /* cell age at division */
#define t_s 0.0 /* initial age - short cell */
#define t_l 0.2 /* initial age - long cell */
#define dt 0.7 /* time increment per step */
Axiom: W(0)M(0)W(dt)
W(t) --> W(t+dt)
M(t) : t<t_div --> M(t+dt)
W(tl) < M(t,p) > W(tr) : t>=t_div && tl<tr -->

M(t-t_div+t_s+dt) W(t-t_div) M(t-t_div+t_l+dt)
W(tl) < M(t,p) > W(tr) : t>=t_div && tr>tl -->

M(t-t_div+t_l+dt) W(t-t_div) M(t-t_div+t_s+dt)

In this model we have not used decomposition rules, and, consequently,
the model does not operate properly for large time steps dt. The recursive
cell division implemented using decomposition rules in L-systems 6 to 8 is
not possible here, because it does not provide context information needed
for cell divisions. More advanced time management techniques than the
simple time slicing implemented by L-system 9 have been developed in the
scope of simulation theory [8] and can be applied to L-systems as well [21],
but their discussion is outside the scope of these introductory notes.

10 Conclusions

We have outlined basic types of L-systems introduced by Lindenmayer,
context-free (DOL) and context-sensitive L-systems, and some of their ex-
tensions useful for model construction. These include the addition of at-
tributes to L-system symbols (parametric L-systems), and decomposition

1-23

and interpretation rules. We have illustrated these concepts with a sequence
of models of the vegetative segment of an Anabaena catenula filament. These
examples also present a method for constructing developmental models that
operate in arbitrarily small time steps.

References

[1] D. G. Adams. Heterocyst formation in cyanobacteria. Current Opinoin
in Microbiology, 3:618–624, 2000.

[2] R. Baker and G. T. Herman. Simulation of organisms using a devel-
opmental model, parts I and II. International Journal of Bio-Medical
Computing, 3:201–215 and 251–267, 1972.

[3] K. A. Erstad. L-systems, twining plants, Lisp. Master’s thesis, Univer-
sity of Bergen, January 2002.

[4] J. W. Golden and H.-S. Yoon. Heterocyst formation in Anabaena. Cur-
rent Opinion in Microbiology, 1:623–629, 1998.

[5] J. S. Hanan. Parametric L-systems and their application to the mod-
elling and visualization of plants. PhD thesis, University of Regina,
June 1992.

[6] G. T. Herman and G. Rozenberg. Developmental systems and lan-
guages. North-Holland, Amsterdam, 1975.

[7] R. Karwowski. Improving the process of plant modeling: The L+C
modeling language. PhD thesis, University of Calgary, October 2002.

[8] W. Kreutzer. System simulation: Programming styles and languages.
Addison-Wesley, Sydney, 1986.

[9] W. Kurth. Growth grammar interpreter GROGRA 2.4: A software
tool for the 3-dimensional interpretation of stochastic, sensitive growth
grammars in the context of plant modeling. Introduction and refer-
ence manual. Forschungszentrum Waldökosysteme der Universität
Göttingen, Göttingen, 1994.

[10] A. Lindenmayer. Developmental systems and languages in their bio-
logical context. In G. T. Herman and G. Rozenberg, Developmental
systems and languages. North-Holland, Amsterdam, 1975, pp. 1 – 40.

1-24

[11] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

[12] A. Lindenmayer. Developmental systems without cellular interaction,
their languages and grammars. Journal of Theoretical Biology, 30:455–
484, 1971.

[13] A. Lindenmayer. Adding continuous components to L-systems. In
G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in
Computer Science 15, pages 53–68. Springer-Verlag, Berlin, 1974.

[14] A. Lindenmayer. Theories and observations of developmental biology.
In R. E. Butts and J. Hintikka, editors, Foundational problems in special
sciences, pages 103–118. D. Reidel Publ. Co, Dordrecht-Holland, 1977.

[15] A. Lindenmayer. Algorithms for plant morphogenesis. In R. Sattler,
editor, Theoretical plant morphology, pages 37–81. Leiden University
Press, The Hague, 1978.

[16] A. Lindenmayer. Developmental algorithms: Lineage versus interactive
control mechanisms. In S. Subtelny and P. B. Green, editors, Develop-
mental order: Its origin and regulation, pages 219–245. Alan R. Liss,
New York, 1982.

[17] H. B. Lück and J. Lück. Cell number and cell size in filamentous or-
ganisms in relation to ancestrally and positionally dependent generation
times. In A. Lindenmayer and G. Rozenberg, editors, Automata, lan-
guages, development, pages 109–124. North-Holland, Amsterdam, 1976.

[18] G. J. Mitchison and M. Wilcox. Rules governing cell division in An-
abaena. Nature, 239:110–111, 1972.

[19] J. L. Peterson. Petri net theory and the modeling of systems. Prentice
Hall, Englewood Cliffs, 1981.

[20] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of
plant development. In G. Rozenberg and A. Salomaa, editors, Handbook
of formal languages, Vol. III: Beyond words, pages 535–597. Springer,
Berlin, 1997.

1-25

[21] P. Prusinkiewicz, M. Hammel, and E. Mjolsness. Animation of plant
development. Proceedings of SIGGRAPH 93 (Anaheim, California,
August 1–6, 1993). ACM SIGGRAPH, New York, 1993, pp. 351–360.

[22] P. Prusinkiewicz, J. Hanan, and R. Měch. An L-system-based plant
modeling language. In M. Nagl, A. Schürr, and M. Münch, editors,
Applications of graph transformations with industrial relevance, Lec-
ture Notes in Computer Science 1779, pages 395–410. Springer-Verlag,
Berlin, 2000.

[23] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.
Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia,
D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[24] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The
use of positional information in the modeling of plants. Proceedings of
SIGGRAPH 2001 (Los Angeles, California, August 12–17, 2001). ACM
SIGGRAPH, New York, 2001, pp. 289–300.

[25] P. Prusinkiewicz and W. Remphrey. Characterization of architectural
tree models using L-systems and Petri nets. In M. Lebrecque, edi-
tor, L’Arbre - The Tree 2000. Papers presented at the 4th Internatinal
Symposium on the Tree at the Montreal Botanical Garden, Aug. 20-25,
2000., pages 177–186. Isabelle Quentin and Institut de Recherche en
Biologie Végétale, Montreal, 2001.

[26] G. Rozenberg and A. Salomaa. The mathematical theory of L systems.
Academic Press, New York, 1980.

[27] G. Rozenberg and A. Salomaa. Handbook of formal languages. Springer,
Berlin, 1997.

[28] d’Arcy Thompson. On growth and form. University Press, Cambridge,
1952.

[29] J. H. Woodger. The axiomatic method in biology. University Press,
Cambridge, 1937. With appendices by A. Tarski and W. F. Floyd.

1-26

L-systems: from the Theory to Visual Models of Plants

Przemyslaw Prusinkiewicz1, Jim Hanan2, Mark Hammel1 and Radomir Mech1

1 Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
2 CSIRO — Cooperative Research Centre for Tropical Pest Management, Brisbane, Queensland, Australia

1 Introduction

In 1968, Aristid Lindenmayer introduced a formalism for simu-
lating the development of multicellular organisms, subsequently
named L-systems [18]. This formalism was closely related to ab-
stract automata and formal languages, and attracted the immedi-
ate interest of theoretical computer scientists. The vigorous de-
velopment of the mathematical theory of L-systems was followed
by its applications to the modeling of plants. These applications
gained momentum after 1984, when Smith introduced state-of-the
art computer graphics techniques to visualize the structures and pro-
cesses being modeled [52]. Smith also attracted attention to the
phenomenon of data-base amplification, or the possibility of gener-
ating complex structures from compact data sets, which is inherent
in L-systems and forms the cornerstone of L-system applications
to image synthesis. Subsequent developments (presented here from
our personal perspective, without covering the fast-growing array
of contributions from many other researchers) included:

� introduction of turtle interpretation of L-systems [32, 53] and
refinement of a programming language based on L-systems
[11, 43], which facilitated specification of the models for
simulation purposes and promoted the use of L-systems as
a language for describing models in publications;

� recognition of the fractal character of structures generated by
L-systems, which related them to the dynamically develop-
ing science of fractals [32, 43, 38];

� increased interest in the application of computer simulations
to the understanding of living processes and structures, re-
lated to the emergence of the field of Artificial Life;

� extension of the range of phenomena that can be modeled
using L-systems, including, most recently, incorporation of
environmental factors into the models [30, 41];

� increased understanding of the modeling process, providing a
methodology for constructing models according to biological
observations and measurements [45, 48].

In this paper, we revisit basic mechanisms that control plant devel-
opment: lineage (cellular descent), captured by the class of context
free L-systems, and endogenous interaction (transfer of informa-
tion between neighboring modules in the structure), captured by
context-sensitive L-systems (c.f. [22]). Within this framework, we
present several models that have been developed after the survey of
L-systems in [43].

The original version of this apper appeared in M. T. Michalewicz (Ed.): Plants
to Ecosystems. Advances in Computational Life Sciences, CSIRO, Collingwood, Aus-
tralia 1997, pp. 1–27.

apical meristem

bud (lateral)

apex

internode

leaf

inflorescence

flowers

metamer
or
shoot unit

branch

apical segment

Figure 1: Selected modules and groups of modules (encircled with
dashed lines) used to describe plants

2 The modular structure of plants

L-systems were originally introduced to model the development
of simple multicellular organisms (for example, algae) in terms
of division, growth, and death of individual cells [18, 19]. The
range of L-system applications has subsequently been extended to
higher plants and complex branching structures, in particular inflo-
rescences [8, 9], described as configurations of modules in space. In
the context of L-systems, the term module denotes any discrete con-
structional unit that is repeated as the plant develops, for example
an internode, an apex, a flower, or a branch (Figure 1) [2, 12, 55].
The goal of modeling at the modular level is to describe the de-
velopment of a plant as a whole, and in particular the emergence
of plant shape, as the integration of the development of individual
units.

3 Plant development as a rewriting process

The essence of development at the modular level can be conve-
niently captured by a parallel rewriting system that replaces indi-
vidual parent, mother, or ancestor modules by configurations of
child, daughter, or descendant modules. All modules belong to a
finite alphabet of module types, thus the behavior of an arbitrarily
large configuration of modules can be specified using a finite set of
rewriting rules or productions. In the simplest case of context-free

2-1

a)

b)

c)

bud flower young fruit old fruit

Figure 2: Examples of production specification and application: (a)
development of a flower, (b) development of a branch, and (c) cell
division.

rewriting, a production consists of a single module called the pre-
decessor or the left-hand side, and a configuration of zero, one, or
more modules called the successor or the right-hand side. A pro-
duction p with the predecessor matching a given mother module
can be applied by deleting this module from the rewritten structure
and inserting the daughter modules specified by the production’s
successor.

Three examples of production application are shown in Figure 2.
In case (a), modules located at the extremities of a branching struc-
ture are replaced without affecting the remainder of the structure.
In case (b), productions that replace internodes divide the branch-
ing structure into a lower part (below the internode) and an upper
part. The position of the upper part is adjusted to accommodate the
insertion of the successor modules, but the shape and size of both
the lower and upper part are not changed. Finally, in case (c), the
rewritten structures are represented by graphs with cycles. The size
and shape of the production successor does not exactly match the
size and shape of the predecessor, and the geometry of the predeces-
sor and the embedding structure had to be adjusted to accommodate
the successor. The last case is most complex, since the application
of a local rewriting rule may lead to a global change of the struc-
ture’s geometry. Developmental models of cellular layers operating
in this manner have been presented in [43, 4, 5, 7]. In this paper
we focus on the rewriting of branching structures corresponding to
cases (a) and (b).

Productions may be applied sequentially, to one module at a time,
or they may be applied in parallel, with all modules being rewritten
simultaneously in every derivation step. Parallel rewriting is more
appropriate for the modeling of biological development, since de-
velopment takes place simultaneously in all parts of an organism. A
derivation step then corresponds to the progress of time over some
interval. A sequence of structures obtained in consecutive deriva-
tion steps from a predefined initial structure or axiom is called a
developmental sequence. It can be viewed as the result of a discrete-
time simulation of development.

For example, Figure 3 illustrates the development of a stylized com-
pound leaf including two module types, the apices (represented by

Figure 3: Developmental model of a compound leaf, modeled as a
configuration of apices and internodes

a b

Figure 4: A comparison of the Koch construction (a) with a rewrit-
ing system preserving the branching topology of the modeled struc-
tures (b). The same production is applied in both cases, but the rules
for incorporating the successor into the structure are different.

thin lines) and the internodes (thick lines). An apex yields a struc-
ture that consists of two internodes, two lateral apices, and a replica
of the main apex. An internode elongates by a constant scaling fac-
tor. In spite of the simplicity of these rules, an intricate branching
structure develops from a single apex over a number of derivation
steps.

It is interesting to contrast simulation of development using rewrit-
ing rules with the well known Koch construction for generating
fractals [29, page 39]. The essence of the Koch construction is
the replacement of straight line segments by sets of lines. Their
positions, orientations, and scales are determined by the position,
orientation, and scale of the segment being replaced (Figure 4a).
In contrast, in models of plants, the position and orientation of each
module is determined by the chain of modules beginning at the base
of the structure and extending to the module under consideration.
For example, when the internodes bend, the subtended branches
are rotated and displaced to maintain the connectivity of the struc-
ture (Figure 4b). Thus, development is simulated as a parallel ap-
plication of productions, followed by a sequential connection of the
child structures.

Rewriting processes maintaining the connectivity of branching
structures can be defined directly in the geometric domain, but a
more convenient approach is to express the generating rules and
the resulting structures symbolically, using a string notation. A se-
quential geometric interpretation of these strings from the left (plant
base) to right (branch extremities) automatically captures proper
positioning of the higher branches on the lower ones. The rewriting

2-2

of branching structures in the string domain is the cornerstone of
L-systems.

The basic notions of the theory of L-systems have been presented
in many survey papers [22, 20, 21, 24, 25, 26] and books [43, 38,
13, 50, 51]. Consequently, we only describe parametric L-systems,
which are a particularly convenient programming tool for express-
ing models of plant development. Our presentation closely follows
the formalization introduced in [43, 39] (see also [11, 40]).

4 Parametric L-systems

Parametric L-systems operate on parametric words, which are
strings of modules consisting of letters with associated parameters.
The letters belong to an alphabet V , and the parameters belong to
the set of real numbers <. A module with letter A 2 V and param-
eters a1; a2; :::; an 2 < is denoted by A(a1; a2; :::; an). Every
module belongs to the set M = V �<�, where <� is the set of all
finite sequences of parameters. The set of all strings of modules and
the set of all nonempty strings are denoted by M� = (V � <�)�

and M+ = (V �<�)+, respectively.

The real-valued actual parameters appearing in the words have a
counterpart in the formal parameters, which may occur in the spec-
ification of L-system productions. If � is a set of formal parame-
ters, then C(�) denotes a logical expression with parameters from
�, and E(�) is an arithmetic expression with parameters from the
same set. Both types of expressions consist of formal parameters
and numeric constants, combined using the arithmetic operators +,
�, �, =; the exponentiation operator ^, the relational operators <,
<=, >, >=, ==; the logical operators !, &&, jj (not, and, or); and
parentheses (). The expressions can also include calls to standard
mathematical functions, such a natural logarithm, sine, floor, and
functions returning random variables. The operation symbols and
the rules for constructing syntactically correct expressions are the
same as in the C programming language [17]. For clarity of pre-
sentation, however, we sometimes use Greek letters and symbols
with subscripts in print. Relational and logical expressions evalu-
ate to zero for false and one for true. A logical statement specified
as the empty string is assumed to have value one. The sets of all
correctly constructed logical and arithmetic expressions with pa-
rameters from � are noted C(�) and E(�).

A parametric 0L-system is defined as an ordered quadruple G =
hV;�; !; P i, where:

� V is the alphabet of the system,

� � is the set of formal parameters,

� ! 2 (V � <�)+ is a nonempty parametric word called the
axiom,

� P � (V � ��) � C(�) � (V � E(�)�)� is a finite set of
productions.

The symbols : and ! are used to separate the three components
of a production: the predecessor, the condition, and the successor.
Thus, a production has the format

pred : cond! succ:

For example, a production with predecessor A(t), condition t > 5
and successor B(t+ 1)CD(t ^ 0:5; t� 2) is written as

A(t) : t > 5 ! B(t+ 1)CD(t ^ 0:5; t� 2): (1)

µ0: B(2) A(4,4)

µ2: B(0) B(3) A(2,1)

µ3: C B(2) A(4,3)

µ4: C B(1) B(4)A(1.33,0)

µ1: B(1) B(4) A(1,0)

Figure 5: The initial sequence of strings generated by the paramet-
ric L-system specified in equation (2)

A production in a 0L-system matches a module in a parametric
word if the following conditions are met:

� the letter in the module and the letter in the production pre-
decessor are the same,

� the number of actual parameters in the module is equal to the
number of formal parameters in the production predecessor,
and

� the condition evaluates to true if the actual parameter values
are substituted for the formal parameters in the production.

A matching production can be applied to the module, creating a
string of modules specified by the production successor. The actual
parameter values are substituted for the formal parameters accord-
ing to their position. For example, production (1) above matches a
module A(9), since the letter A in the module is the same as in the
production predecessor, there is one actual parameter in the mod-
ule A(9) and one formal parameter in the predecessor A(t), and the
logical expression t > 5 is true for t equal to 9. The result of the ap-
plication of this production is a parametric word B(10)CD(3; 7).

If a module a produces a parametric word � as the result of a pro-
duction application in an L-system G, we write a 7! �. Given
a parametric word � = a1a2:::am , we say that the word � =
�1�2:::�m is directly derived from (or generated by) � and write
� =) � if and only if ai 7! �i for all i = 1; 2; :::; m. A parametric
word � is generated by G in a derivation of length n if there exists
a sequence of words �0; �1; :::; �n such that �0 = !, �n = � and
�0 =) �1 =) ::: =) �n.

An example of a parametric L-system is given below.

! : B(2)A(4; 4)
p1 : A(x; y) : y <= 3 ! A(x � 2; x+ y)
p2 : A(x; y) : y > 3 ! B(x)A(x=y;0)
p3 : B(x) : x < 1 ! C
p4 : B(x) : x >= 1 ! B(x� 1)

(2)

It is assumed that a module replaces itself if no matching production
is found in the set P . The words obtained in the first few derivation
steps are shown in Figure 5.

Productions in parametric 0L-systems are context-free, i.e., appli-
cable regardless of the context in which the predecessor appears.
A context-sensitive extension is necessary to model information
exchange between neighboring modules. In general, a context-
sensitive production has the format

lc < pred>rc : cond ! succ;

2-3

where symbols < and > separate the three components of the pre-
decessor: a string of modules without brackets lc called the left
context, a module pred called the strict predecessor, and a well-
nested bracketed string of modules rc called the right context. The
remaining components of the production are the condition cond and
the successor succ, defined as for parametric 0L-systems.

A sample context-sensitive production is given below:

A(x) < B(y) > C(z) : x+ y + z > 10 !
E((x+ y)=2)F ((y + z)=2):

(3)

The left context is separated from the strict predecessor by the sym-
bol <. Similarly, the strict predecessor is separated from the right
context by the symbol>. Production 3 can be applied to the module
B(5) that appears in a parametric word

� � �A(4)B(5)C(6) � � � (4)

since the sequence of letters A;B;C in the production and in para-
metric word (4) are the same, the numbers of formal parameters
and actual parameters coincide, and the condition 4 + 5 + 6 > 10
is true. As a result of the production application, the module B(5)
will be replaced by a pair of modules E(4:5)F (5:5). Naturally, the
modules A(4) and C(6) will be replaced by other productions in
the same derivation step.

Productions in 2L-systems use context on both sides of the strict
predecessor. 1L-systems are a special case of 2L-systems in which
context appears only on one side of the productions.

When no production explicitly listed as a member of the produc-
tion set P matches a module in the rewritten string, we assume that
an appropriate identity production belongs to P and replaces this
module by itself. Under this assumption, a parametric L-system
G = hV;�; !; P i is called deterministic if and only if for each
module A(t1; t2; : : : ; tn) 2 V � <� the production set includes
exactly one matching production. Within this paper we only con-
sider deterministic L-systems.

5 The turtle interpretation of L-systems

Strings generated by L-systems may be interpreted geometrically in
many different ways. Below we outline the turtle interpretation of
L-systems, introduced by Szilard and Quinton [53], and extended
by Prusinkiewicz [32, 33] and Hanan [11, 10]. A tutorial exposition
is included in [43], and subsequent results are presented in [11].
The summary below is based on [43, 39, 33, 15].

After a string has been generated by an L-system, it is scanned se-
quentially from left to right, and the consecutive symbols are inter-
preted as commands that maneuver a LOGO-style turtle [1, 31] in
three dimensions. The turtle is represented by its state, which con-
sists of turtle position and orientation in the Cartesian coordinate
system, as well as various attribute values, such as current color
and line width. The position is defined by a vector ~P , and the orien-
tation is defined by three vectors ~H, ~L, and ~U, indicating the turtle’s
heading and the directions to the left and up (Figure 6a). These
vectors have unit length, are perpendicular to each other, and sat-
isfy the equation ~H � ~L = ~U. Rotations of the turtle are expressed
by the equation:

�
~H 0 ~L0 ~U 0

�
=

�
~H ~L ~U

�
R;

where R is a 3� 3 rotation matrix [6]. Changes in the turtle’s state
are caused by interpretation of specific symbols, each of which may
be followed by parameters. If one or more parameters are present,

a) b)

H\
→

/
L

−+

U
→

→

^

&

F(2)[−F[−F]F]/(137.5)F(1.5)[−F]F

x

y

z

1 2 30

1

2

3

4

1

2

3

5

137.5°

Figure 6: a) Controlling the turtle in three dimensions. b) Example
of the turtle interpretation of a string.

the value of the first parameter affects the turtle’s state. If the sym-
bol is not followed by any parameter, default values specified out-
side the L-system are used. The following list specifies the basic
set of symbols interpreted by the turtle.

Symbols that cause the turtle to move and draw

F (s);G(s) Move forward a step of length s and draw a line seg-
ment from the original to the new position of the turtle.

f(s); g(s) Move forward a step of length swithout drawing a line.

@O(r) Draw a sphere of radius r at the current position.

Symbols that control turtle orientation in space (Figure 6a)

+(�) Turn left by angle � around the ~U axis.

�(�) Turn right by angle � around the ~U axis.

&(�) Pitch down by angle � around the~L axis.

^(�) Pitch up by angle � around the ~L axis.

=(�) Roll left by angle � around the ~H axis.

n(�) Roll right by angle � around the ~H axis.

j Turn 180Æ around the ~U axis. This is equivalent to
+(180) or �(180).

Symbols for modeling structures with branches

[Push the current state of the turtle (position, orientation
and drawing attributes) onto a pushdown stack.

] Pop a state from the stack and make it the current state
of the turtle. No line is drawn, although in general the
position and orientation of the turtle are changed.

2-4

Symbols for creating and incorporating surfaces

f Start saving the subsequent positions of the turtle as the
vertices of a polygon to be filled.

g Fill the saved polygon.

� X(s) Draw the surface identified by symbol X , scaled by s,
at the turtle’s current location and orientation. Such a
surface is usually defined as a bicubic patch [33, 10].

Symbols that change the drawing attributes

#(w) Set line width to w, or increase the value of the current
line width by the default width increment if no parameter
is given.

!(w) Set line width to w, or decrease the value of the current
line width by the default width decrement if no parameter
is given.

; (n) Set the index of the color map to n, or increase the value
of the current index by the default colour increment if no
parameter is given.

; (n) Set the index of the color map to n, or decrease the value
of the current index by the default colour decrement if no
parameter is given.

A sample string and its interpretation are shown in Figure 6b. The
default length of lines represented by symbols F without a param-
eter is 1, and the default magnitude of the angles represented by
symbols + and � is 45Æ.

6 Examples of parametric D0L-system mod-
els

This section presents selected examples that illustrate the operation
of deterministic 0L-systems (D0L-systems) with turtle interpreta-
tion and their application to the modeling of plants. Many other
examples are included in [11, 43, 39].

6.1 Fractal generation

Fractal curves provide a convenient means for illustrating the basic
principle of L-system operation [32, 43, 38, 44]. For example, the
following L-system generates the well-known snowflake curve [29,
54].

! : F (1)� (120)F (1)� (120)F (1)
p1 : F (s)! F (s=3) + (60)F (s=3)

�(120)F (s=3) + (60)F (s=3)

The axiom F (1) � (120)F (1) � (120)F (1) draws an equilateral
triangle, with edges of unit length. Production p1 replaces each line
segment with a polygonal shape, as shown at the top of Figure 7.
Productions for symbols + and � are not listed, which means that
the corresponding modules will be replaced by themselves during
the derivation. The same effect could have been obtained by explicit
inclusion of productions:

p2 : +(a)! +(a)
p3 : �(a)! �(a)

The axiom and the figures obtained in the first three derivation steps
are shown at the bottom of Figure 7.

6.2 Simulation of development

The next L-system generates the developmental sequence of the
stylized compound leaf model presented in Figure 3.

! : !(1)F (1; 1)
p1 : F (s) ! G(s)[�!(1)F (s)][+!(1)F (s)]G(s)!(1)F (s)
p2 : G(s) ! G(2 � s)
p3 : !(w) ! !(3)

The structure is built from two module types, apices F (represented
by thin lines) and internodes G (thick lines). In both cases the pa-
rameter s determines the length of the line representing the module.
An apex yields a structure that consists of two internodes, two lat-
eral apices, and a replica of the main apex (production p1). An
internode elongates by a constant scaling factor (production p2).
Production p3 is used to make the lines representing the internodes
wider (3 units of width) than the lines representing the apices (1
unit). The branching angle associated with symbols + and � is set
to 45Æ by a global variable outside the L-system.

6.3 Exploration of parameter space

Parametric L-systems provide a convenient mathematical frame-
work for exploring the range of forms that can be captured by the
same structural model with varying attributes (constants in the pro-
ductions). Such parameter space explorations motivated some of
the earliest computer simulations of biological structures: the mod-
els of sea shells devised by Raup and Michelson [46, 47] and the
models of trees proposed by Honda [14] to study factors that de-
termine overall tree shape. Parameter space exploration may re-
veal an unexpected richness of forms that can be produced by even
the simplest models. For example, Figure 8 shows nine branching
structures selected from a continuum generated by the following
parametric D0L-system:

! : A(100; w0)
p1 : A(s;w) : s >= min ! !(w)F (s)

[+(�1)=('1)A(s � r1; w � q ^ e)]
[+(�2)=('2)A(s � r2; w � (1� q) ^ e)]

The single non-identity production p1 replaces apex A by an in-
ternode F and two new apices A. The angle values �1, �2, '1, and
'2 determine the orientation of these apices with respect to the sub-
tending internode. Parameters s and w specify internode length and

�!

n = 0 n = 1 n = 2 n = 3

Figure 7: Visual interpretation of the production for the snowflake
curve, and the curve after n = 0, 1, 2, and 3 derivation steps

2-5

a b c

d e f

g h i

Figure 8: Sample structures generated by a parametric D0L-system
with different values of constants

Table 1: The values of constants used to generate Figure 8

Figure r1 r2 �1 �2 '1 '2 w0 q e min n

a .75 .77 35 -35 0 0 30 .50 .40 0.0 10
b .65 .71 27 -68 0 0 20 .53 .50 1.7 12
c .50 .85 25 -15 180 0 20 .45 .50 0.5 9
d .60 .85 25 -15 180 180 20 .45 .50 0.0 10
e .58 .83 30 15 0 180 20 .40 .50 1.0 11
f .92 .37 0 60 180 0 2 .50 .00 0.5 15
g .80 .80 30 -30 137 137 30 .50 .50 0.0 10
h .95 .75 5 -30 -90 90 40 .60 .45 25.0 12
i .55 .95 -5 30 137 137 5 .40 .00 5.0 12

width. The constants r1 and r2 determine the gradual decrease in
internode length that occurs while traversing the tree from its base
towards the apices. The constants w0, q, and e control the width of
branches. The initial stem width is specified by w0 in the second pa-
rameter of the axiom module A. For e = 0:5, the combined area of
the descendant branches is equal to the area of the mother branch,
as postulated by Leonardo da Vinci [29, page 156] (see also [28,
pages 131–135]). The value q specifies the differences in width be-
tween descendant branches originating at the same vertex. Finally,
the condition prevents formation of branches with length less then
the threshold value min. The values of constants corresponding to
each structure are collected in Table 1. The final column headed n
indicates the number of derivation steps.

6.4 Modeling mesotonic and acrotonic structures

In spite of their apparent diversity, the structures generated by L-
system of Section 6.3 share a common developmental pattern: in
each derivation step, every apex gives rise to an internode termi-
nated by a pair of new apices. This is a simple instance of sub-
apical branching, a common developmental pattern in plants, in
which new branches are initiated only near the apices of the ex-

isting axes. As a consequence of this pattern, the lower branches,
being created first, have more time to develop than the branches
further up, and a basitonic structure (more developed near the base
than near the top) results (Figure 9a). In nature, however, one also
finds mesotonic and acrotonic structures, in which the most devel-
oped branches are located near the middle or the top of the mother
branch (Figures 9 b and c). As observed by Frijters and Linden-
mayer [9], and formalized by Prusinkiewicz and Kari [42], arbitrar-
ily large mesotonic and acrotonic structures cannot be generated by
non-parametric deterministic 0L-systems with subapical branching.
In contrast, parametric D0L-systems can generate such structures.
For example, the following parametric D0L-system generates the
mesotonic structure shown in Figure 9b.

! : FA(0)
p1 : A(v) ! [�FB(v)][+FB(v)]FA(v + 1)
p2 : B(v) : v > 0 ! FB(v � 1)

The axiom ! defines the initial structure as an internode F termi-
nated by an apex A. In each derivation step, the apex A adds a new
segment F to the main axis and initiates a pair of branches FB
(production p1). The value of parameter v assigned to the lateral
apices B describes the maximum length to which each branch will
grow (production p2). This value is incremented acropetally (i.e.,
in the ascending order of branches) by production p1, yielding a se-
quence of branches of increasing length. This sequence is broken in
the upper part of the structure, where the branches still grow. Con-
sequently, the younger branches near the top are shorter than the
older ones further down, and a mesotonic overall structure results.

A detailed discussion of the generation of mesotonic and acrotonic
structures using a construct similar to parametric L-systems has
been presented by Lück, Lück, and Bakkali [27].

6.5 The shedding of branches

The natural processes of plant development often involve shed-
ding, or programmed removal of selected modules from the grow-
ing structure. In order to simulate shedding, Hanan [11] extended
the formalism of L-systems with the cut symbol %, which causes
the removal of the remainder of the branch that follows it. For ex-
ample, in the absence of other productions, the derivation step given
below takes place:

a[b%[cd]e[%f]]g[h[%i]j]k =) a[b]g[h[]j]k

A simple example of an L-system incorporating the cut symbol is
given below:

! : A
p1 : A ! F (1)[�X(3)B][+X(3)B]A
p2 : B ! F (1)B
p3 : X(d) : d > 0 ! X(d� 1)
p4 : X(d) : d == 0 ! U%
p5 : U ! F (0:3)

a b c

Figure 9: Schematic representation of a basitonic (a), mesotonic
(b), and acrotonic (c) branching pattern. From [42].

2-6

Figure 10: A developmental sequence generated by the L-system
specified in Section 6.5. The images shown represent derivation
steps 2 through 9.

According to production p1, in each derivation step the apex of the
main axis A produces an internode F of unit length and a pair of
lateral apices B. Each apex B extends a branch by forming a suc-
cession of internodes F (production p2). After three steps from
branch initiation (controlled by production p3), production p4 in-
serts the cut symbol % and an auxiliary symbol U at the base of the
branch. In the next step, the cut symbol removes the branch, while
symbol U inserts a marker F (0:3) indicating a “scar” left by the
removed branch. The resulting developmental sequence is shown
in Figure 10. The initial steps capture the growth of a basitonic
structure. Beginning at derivation step 6, the oldest branches are
shed, creating an impression of a tree crown of constant shape and
size moving upwards. The crown is in a state of dynamic equilib-
rium: the addition of new branches and internodes at the apices is
compensated by the loss of branches further down.

The state of dynamic equilibrium can be easily observed in the de-
velopment of palms, where new leaves are created at the apex of the
trunk while old leaves are shed at the base of the crown (Figure 11).
Since both processes take place at the same rate, an adult palm car-
ries an approximately constant number of leaves. This phenomenon
has an interesting physiological explanation: palms are unable to
gradually increase the diameter of their trunk over time, thus the
flow of water and nutrients through the trunk can support only a
crown of constant size.

7 Examples of context-sensitive L-system
models

In this section we consider the propagation of control information
through the structure of the developing plant (endogenous informa-
tion flow [34]), which is captured by context-sensitive productions
in the framework of L-systems. The conceptual elegance and ex-
pressive power of context-sensitive productions are among the most
important assets of L-systems in modeling applications.

7.1 Development of a mesotonic structure

As outlined in Section 6.4, arbitrarily large mesotonic and acro-
tonic structures cannot be generated using deterministic 0L-systems
without parameters [42]. The proposed mechanisms for modeling
these structures can be divided into two categories: those using pa-
rameters to characterize the growth potential or vigor of individual
apices, such as the L-system discussed in Section 6.4 and those
postulating control of development by signals [8, 16]. The follow-
ing L-system simulates the development of the mesotonic structure
shown in Figure 12 using an acropetal (upward moving) signal.

Figure 11: A model of the date palm (Phoenix dactylifera). This
image was created using an L-system with the general structure
specified in Section 6.5.

#de�ne m 3 = � plastochron � main axis � =
#de�ne n 4 = � plastochron � branc h� =
#de�ne u 4 = � propagation rate � main axis � =
#de�ne v 2 = � propagation rate � branc h� =

ignore : +�=

! : S(0)F (1; 0)A(0)
p1 : A(i) : i < m� 1 ! A(i+ 1)
p2 : A(i) : i == m� 1 !

[+(60)F (1; 1)B(0)]F (1; 0)=(180)A(0)
p3 : B(i) : i < n� 1! B(i+ 1)
p4 : B(i) : i == n� 1 ! F (1; 1)B(0)
p5 : S(i) : i < u+ v ! S(i+ 1)
p6 : S(i) : i == u+ v ! "
p7 : S(i) < F (l; o) : (o == 0)&&(i == u� 1) !

#F (l; o)!S(0)
p8 : S(i) < F (l; o) : (o == 1)&&(i == v � 1)!

#F (l; o)!S(0)
p9 : S(i) < B(j)! "

The above L-system operates under the assumption that the context-
sensitive production p9 takes priority over p3 or p4. The ignore
statement lists symbols that should not be taken for consideration
for context-matching purposes. The axiom ! describes the initial
structure as an internode F terminated by an apex A. A signal S

2-7

Figure 12: Development of a mesotonic branching structure con-
trolled by an acropetal signal. Wide lines indicate the internodes
reached by the signal. The stages shown correspond to derivation
lengths 12, 24, 36, 48, and 60.

a b c d

U

UD

DL L R R

Figure 13: Insect’s behavior at a branching point. An upward-
moving insect U that approaches a branching point L is directed
to the left daughter branch (a). A downward moving insect D that
approaches a branching point marked L changes this marking to R,
returns to state U , and enters the right branch (b and c). A down-
ward moving insect D approaching a branching point R continues
its downward motion (d).

is placed at the base of this structure. According to productions
p1 and p2, the apex A periodically produces a lateral branch and
adds an internode to the main axis. The period (called the plas-
tochron of the main axis) is controlled by the constant m. Produc-
tions p3 and p4 describe the development of the lateral branches,
where new segments F are added with plastochron n. Productions
p5 to p8 describe the propagation of the signal through the struc-
ture. The signal propagation rate is u in the main axis, and v in
the branches. Production p9 removes the apex B when the signal
reaches it, thus terminating the development of the corresponding
lateral branch. Figure 12 shows that, for the values of plastochrons
and signal propagation rates specified be the #define statements, the
lower branches have less time to grow than the higher branches, and
a mesotonic structure develops as a result.

A similar mechanism, based on the pursuit of apices by acropetal
signals, has been proposed to model basipetal flowering se-
quences [43, 16, 23]. These sequences are characterized by the
appearance of the first flower near the top of a plant, and a subse-
quent downward propagation of the flowering zone.

7.2 Attack of a plant by an insect

More complex information flow is considered in the next example.
A hypothetical insect explores a growing branching structure and
feeds on its apices. The insect always moves along the branches
(i.e., it does not jump or drop from one branch to another) and there-
fore can be treated as an endogenous signal. The insect’s behavior
at a branching point depends on its direction of motion and the state
of the branching point, as explained in Figure 13. In a nutshell,
the insect attempts to traverse the entire developing structure using

the depth-first strategy. A context-sensitive L-system that integrates
plant growth with the behavior of the insect is given below.

#define lL 3 /* length of the left branch */
#define lR 5 /* length of the right branch */
#define d 5 /* plastochron */
#define w 40 /* delay */

! : W (w)FA(lL; d)
p1 : F < A(n;m) : m > 0

! A(n;m� 1)
p2 : F < A(n;m) : n > 0 && m == 0

! FA(n� 1; d)
p3 : F < A(n;m) : n == 0 && m == 0

! L[+FA(lL; d)][�FA(lR; d)]
p4 : W (t) : t > 0 ! W (t� 1)
p5 : W (t) : t == 0 ! U
p6 : U < F ! FU
p7 : U ! "
p8 : UL < + ! +U
p9 : U < A(n;m) ! D
p10 : F > D ! DF
p11 : D ! "
p12 : L > [+D] ! UR
p13 : UR < � ! �U
p14 : R > [][�D] ! D

Productions p1 to p3 describe the development of a simple branch-
ing structure. Starting with a single axis specified by axiom !, the
apex A appends a sequence of branch segments F to the current
axis (productions p1 and p2), then initiates a pair of new lateral
apices (production p3) that recursively repeat the same pattern. Pa-
rameter m is used to count the derivation steps between the creation
of consecutive segments F . Parameter n determines the remaining
number of segments to be produced before the next branching oc-
curs. The total number of segments in an axis is defined by con-
stants lL (for the main axis and the branches issued to the left) and
lR (for the branches issued to the right). A newly created branching
point is marked by symbol L (production p3).

After a delay of w steps introduced by production p4, production
p5 places an insect in the state U at the base of the branching struc-
ture. This insect moves upwards, one branch segment per derivation
step (productions p6 and p7), until it encounters the branching point
marker L. The insect is then directed to the left daughter branch
(production p8). After crossing a number of segments and, possi-
bly, further branching points, the insect eventually reaches an apex
A. As specified by production p9, this apex is then removed from
the structure, thus stopping further growth of its axis, and the state
of the insect is changed from U (moving upwards) to D (moving
downwards). The downward movement is simulated by produc-
tions p10 and p11. Returning to a branching point marked L, the
insect changes this mark to R to indicate that the left branch has
been already explored, reverts its own state to U , and enters the
right branch (productions p12 and p13). Coming back from that
branch, the insect continues its downward movement (production
p14) until it reaches another branching point marked L and enters
an unexplored right branch, or until it completes the traversal of the
entire structure at its base.

A sequence of images obtained using a straightforward extension
of the above L-system is shown in Figure 14. In this case, the insect
feeds on the apices of a three-dimensional structure, and a branch
that no longer carries any apices wilts.

Similar models can be constructed assuming different traversing

2-8

Figure 14: Simulation of the development of a plant attacked by an
insect

and feeding strategies for one or many insects (which may inter-
act with each other). Prospective applications of such models in-
clude simulation studies of insects used for weed control and of the
impact of insects on crop plants [48, 49].

7.3 Development controlled by resource allocation

In the previous examples, discrete information was transferred be-
tween the modules of a developing structure. A signal (or insect)
was either present or absent at any particular point, and affected the
structure in an “all-or-nothing” manner, by removing the apices at
the ends of branches. In nature, however, developmental processes
are often controlled in a more modulated way, by the quantity of
substances (resources) exchanged between the modules. For ex-
ample, the growth of plants depends on the amount of water and
minerals absorbed by the roots and carried acropetally (upwards),
and by the amount of photosynthates produced by the leaves and
transported basipetally. An early developmental model of branch-
ing structures making use of quantitative information flow was pro-
posed by Borchert and Honda [3]. Below we restate the essence of
this model using the formalism of L-systems, then we extend it to
simulate interactions between the shoot and the roots in a growing
plant.

Borchert and Honda postulated that the development of a branching
structure is controlled by a flow or flux of substances, which prop-
agate from the base of the structure towards the apices and supply
them with materials needed for growth. When the flux reaching an
apex exceeds a predefined threshold value, the apex bifurcates and

initiates a lateral branch; otherwise it remains inactive. At branch-
ing points the flux is distributed according to the types of the sup-
ported internodes (straight or lateral) and the number of apices in
the corresponding branches. These numbers are accumulated by
messages that originate at the apices and propagate towards the base
of the plant. Thus, development is controlled by a cycle of alternat-
ing acropetal and basipetal information flow.

An L-system that implements these mechanisms is given below.

#define �1 10 /* branching angle - straight segment */
#define �2 32 /* branching angle - lateral segment */
#define �0 17 /* initial flux */
#define � 0:89 /* controls input flux changes */
#define � 0:7 /* flux distribution factor */
#define vth 5:0 /* threshold flux for branching */

ignore: +�=

! : N(1)I(0; 2; 0; 1)A
p1 : N(k) < I(b;m; v; c) : b == 0 && m == 2

! I(b; 1; �0 � 2 ^ (k � 1) � (� ^ k); c)
p2 : N(k) > I(b;m; v; c) : b == 0 && m == 2! N(k + 1)
p3 : I(bl;ml; vl; cl) < I(b;m; v; c) : ml == 1 && b == 1

! I(b;ml; vl � vl � (1� �) � ((cl � c)=c); c)
p4 : I(bl;ml; vl; cl) < I(b;m; v; c) : ml == 1 && b == 2

! I(b;ml; vl � (1� �) � (c=(cl � c)); c)
p5 : I(b;m; v; c) < A : m == 1 && v > vth

! =(180)[�(�2)I(2; 2; v � (1� �); 1)A]
+(�1)I(1; 2; v � �; 1)A

p6 : I(b;m; v; c) > A : m == 1 && v <= vth ! I(b; 2; v; c)
p7 : I(b;m; v; c) > [I(b2;m2; v2; c2) =]I(b1;m1; v1; c1) :

m == 0 &&m1 == 2 && m2 == 2
! I(b; 2; v; c1 + c2)

p8 : I(b;m; v; c) : m == 1 ! I(b; 0; v; c)
p9 : I(bl;ml; vl; cl) < I(b;m; v; c) : ml == 2 && m == 2

! I(b; 0; v; c)

This L-system operates on three types of modules: apices A, intern-
odes I , and an auxiliary module N . The internodes are visualized
as lines of unit length. Each internode has four parameters:

� segment type b, where 0 denotes base of the tree, 1 – a
straight segment, and 2 – a lateral segment;

� message type m, where 0 denotes no message currently car-
ried by the internode, 1 – an acropetal message (flux), and 2
– a basipetal message (apex count);

� flux value v, and

� apex count c.

All internodes are visualized as lines of unit length.

At the beginning of a developmental cycle, indicated by the pres-
ence of a basipetal message (m = 2) in the basal internode (b = 0),
production p1 calculates an input flux value. The expression used

for this purpose, v = �02
(k�1)�k , was introduced by Borchert and

Honda to simulate a sigmoid increase of flux penetrating the base
of a plant over time. The progress of time is captured by production
p2, which increments the current cycle number k in module N .

Productions p3 and p4 simulate acropetal flux propagation and dis-
tribute it between the straight segment and the lateral segment. If
both the straight and lateral branch support the same number of

2-9

80

62

36

51

14 66

5

3

2 1

3
8

5

8
18

3 8

3

4

27
11

25
11

9

1510
13

1512

11

4

7

5 11

16

1

1

1 1

1
1

1

1
1

1 1

1

1

12
2

2
2

2

33
3

44

a b

Figure 15: The structure generated by L-system of Section 7.3 at
completion of the fifth developmental cycle. The numbers indicate
the flow values v rounded to the nearest integer (a), and the numbers
of apices c in the branches supported by each internode (b).

apices, the straight segment will obtain a predefined fraction � of
the flux vl reaching the branching point; the lateral segment will ob-
tain the remainder, (1 � �)vl. If a lateral branch supports c apices
and its sister straight branch supports cs apices, the flux reaching
the lateral branch is further multiplied by the ratio c=cs. The num-
ber cs is not directly available to the lateral branch, but it can be cal-
culated as the difference between the number of apices supported
by this branch and its mother, cs = cl � c. In total, the flux di-
rected towards the lateral branch is equal to vl(1 � �)(c=(cl � c)
(production p3). The remaining flux reaches the straight segment.
The parameter c denotes, in this case, the number of apices sup-
ported by the straight segment, and the resulting expression is
vl � vl(1� �)((cl � c)=c) (production p4).

Productions p5 and p6 control the addition of new segments to the
structure. According to production p5, if the internode preceding an
apex A reaches a sufficient flux v > vth, the apex will create two
new internodes I terminated by apices A. The new segments are as-
signed an initial message type m = 2, which triggers the basipetal
signal propagation needed to update the count of apices supported
by each segment. Alternatively, if the flux reaching an apex is not
sufficient for bifurcation (v � vth), the supporting internode itself
starts the propagation of the basipetal signal (production p6).

Production p7 adds the number of apices supported by the daughter
branches (c1 and c2), and propagates the result to the mother intern-
ode. Both input numbers must be available (m1 = 2 and m2 = 2)
before basipetal message propagation takes place.

The remaining productions reset the message value m to zero, after
the flux values have been transferred acropetally (p8) or the apex
count has been passed basipetally (p9).

The initial state of the model is determined by the axiom !. The
value of the parameter to module N sets the current cycle number to
1. The initial structure consists of a single internode I terminated by
an apex A. The message type indicates the presence of a basipetal
message (m = 2) which triggers the application of productions
p1 and p2, initiating the first full developmental cycle. The state
of the structure after 35 derivation steps (completion of the fifth
developmental cycle) is shown in Figure 15.

A remarkable feature of Borchert and Honda’s model is its ability
to simulate the response of a plant to its environment. Specifically,
after a branch has been pruned, the model redirects the fluxes to the
remaining branches and accelerates their growth to compensate for
the loss. A sequence of structures that illustrates this phenomenon
is shown in Figure 16. In accordance with [3], the L-system used in
this case extends the L-system discussed above with parameters and
productions needed to capture the effect of aging. Consequently, a
branch that was unable to grow for a given number of developmen-

a b c

*

d e

Figure 16: Development of a branching structure simulated using
an L-system implementation of the model by Borchert and Honda.
(a) Development not affected by pruning; (b, c) the structure imme-
diately before and after pruning; (d, e) the subsequent development
of the pruned structure. Based on [3].

 7
 7

17
17

38
38

73
73

134
134

 4
 5

11
12

26
25

52
53

99
99

7
7

 6
17

 7
26

17
29

43
38

3 5 7 9 11

Figure 17: Application of the Borchert and Honda’s model to the
simulation of a complete plant, showing development unaffected
by pruning (top row), affected by pruning during the third cycle of
development (middle row), and affected by pruning during the fifth
cycle of development (bottom row). The numbers of live apices
in the shoot and root are indicated above and below the ground
level. The numbers at the base of the figure indicate the number of
completed developmental cycles.

tal cycles dies: it loses the ability to develop further and stops taking
any fluxes.

Similar behavior is shown in Figure 17. In this case, two structures
representing the shoot and the root of a plant are generated simulta-
neously. The flux penetrating the root at the beginning of a develop-
mental cycle is assumed to be proportional to the number of apices
in the shoot; reciprocally, the flux penetrating the shoot is propor-
tional to the number of apices in the root. These assumptions form
a crude approximation of plant physiology, whereby the photosyn-
thates produced by the shoot fuel the development of the root, and
water and mineral compounds gathered by the root are required for
the development of the shoot. The model also assumes an increase
of internode width over time and a gradual rotation of a lateral seg-
ment to the straight segment position, after the straight segment has

2-10

been lost. The developmental sequence shown in the top row of
Figure 17 is unaffected by pruning. The shoot and the root develop
in concert. The next two rows illustrate development affected by a
loss of branches. The removal of a shoot branch slows down the
development of the root; on the other hand, the large size of the
root, compared to the remaining shoot, fuels a fast re-growth of the
shoot. Eventually, the plant is able to redress the balance between
the size of the shoot and the root. This is a non-obvious conse-
quence of the model, which illustrates the usefulness of L-systems
in predicting the global behavior of plants, given the specification
of their components.

8 Conclusions

L-system models integrate local processes, taking place at the level
of individual modules, into developmental patterns and structures
of entire plants. Consequently, they address the central problem
of morphogenesis: the description and understanding of mecha-
nisms through which living organisms acquire their form. This
aspect of modeling motivated the original biological applications
of L-systems investigated by Lindenmayer and his collaborators,
and continues to play a key role in current biological research using
L-systems. The emergence of global forms and developmental pat-
terns is also important in the application of L-systems to computer
graphics, because it makes it possible to create realistic represen-
tations of growing plants using relatively easy to specify, compact
sets of data.

In principle, the mathematical formulation of L-systems should also
make it possible to address biologically relevant questions in the
form of a deductive theory of plant development. The results of this
theory could be potentially more general than simulations, which
are inherently limited to case studies. Unfortunately, construction
of such a theory still seems quite remote. One reason is the lack
of a precise mathematical description of plant form. This is not of
crucial importance in simulations, where the results are evaluated
visually, but impedes the formulation of theorems and proofs. An-
other difficulty is the discrepancy between studies on the theory of
L-systems and the needs of biological modeling. Most theoretical
results are pertinent to non-parametric 0L-systems that operate on
non-branching strings without geometric interpretation (for exam-
ples, see [50]). In contrast, L-system models of biological phenom-
ena often involve parameters, interactions between modules, and
geometric features of the modeled structures. We hope that further
development of the theory of L-systems will bridge this gap.

9 Acknowledgements

An overview of L-systems was the subject of several invited lec-
tures and tutorials presented recently by P. Prusinkiewicz. Conse-
quently, this paper includes sections of previous surveys [36, 37],
and coincides with [35]. The idea of using L-systems to simulate
the interaction between plants and insects was proposed by Peter
Room. The reported research has been sponsored by grants and
graduate scholarships from the Natural Sciences and Engineering
Council of Canada.

References

[1] H. Abelson and A. A. diSessa. Turtle geometry. M.I.T. Press, Cam-
bridge, 1982.

[2] A. Bell. Plant form: An illustrated guide to flowering plants. Oxford
University Press, Oxford, 1991.

[3] R. Borchert and H. Honda. Control of development in the bifurcating
branch system of Tabebuia rosea: A computer simulation. Botanical
Gazette, 145(2):184–195, 1984.

[4] M. J. M. de Boer. Analysis and computer generation of division pat-
terns in cell layers using developmental algorithms. PhD thesis, Uni-
versity of Utrecht, 1989.

[5] M. J. M. de Boer, F. D. Fracchia, and P. Prusinkiewicz. A model
for cellular development in morphogenetic fields. In G. Rozenberg
and A. Salomaa, editors, Lindenmayer systems: Impacts on theoreti-
cal computer science, computer graphics, and developmental biology,
pages 351–370. Springer-Verlag, Berlin, 1992.

[6] J. D. Foley and A. Van Dam. Fundamentals of interactive computer
graphics. Addison-Wesley, Reading, 1982.

[7] F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer. Anima-
tion of the development of multicellular structures. In N. Magnenat-
Thalmann and D. Thalmann, editors, Computer Animation ’90, pages
3–18, Tokyo, 1990. Springer-Verlag.

[8] D. Frijters and A. Lindenmayer. A model for the growth and flow-
ering of Aster novae-angliae on the basis of table (1,0)L-systems. In
G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in
Computer Science 15, pages 24–52. Springer-Verlag, Berlin, 1974.

[9] D. Frijters and A. Lindenmayer. Developmental descriptions of
branching patterns with paracladial relationships. In A. Lindenmayer
and G. Rozenberg, editors, Automata, languages, development, pages
57–73. North-Holland, Amsterdam, 1976.

[10] J. S. Hanan. PLANTWORKS: A software system for realistic plant
modelling. Master’s thesis, University of Regina, November 1988.

[11] J. S. Hanan. Parametric L-systems and their application to the mod-
elling and visualization of plants. PhD thesis, University of Regina,
June 1992.

[12] J. L. Harper and A. D. Bell. The population dynamics of growth forms
in organisms with modular construction. In R. M. Anderson, B. D.
Turner, and L. R. Taylor, editors, Population dynamics, pages 29–52.
Blackwell, Oxford, 1979.

[13] G. T. Herman and G. Rozenberg. Developmental systems and lan-
guages. North-Holland, Amsterdam, 1975.

[14] H. Honda. Description of the form of trees by the parameters of the
tree-like body: Effects of the branching angle and the branch length
on the shape of the tree-like body. Journal of Theoretical Biology,
31:331–338, 1971.

[15] M. James, J. Hanan, and P. Prusinkiewicz. CPFG version 2.0 user’s
manual. Manuscript, Department of Computer Science, University of
Calgary, 1993, 50 pages.

[16] J. M. Janssen and A. Lindenmayer. Models for the control of branch
positions and flowering sequences of capitula in Mycelis muralis (L.)
Dumont (Compositae). New Phytologist, 105:191–220, 1987.

[17] B. W. Kernighan and D. M. Ritchie. The C programming language.
Second edition. Prentice Hall, Englewood Cliffs, 1988.

[18] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

[19] A. Lindenmayer. Developmental systems without cellular interac-
tion, their languages and grammars. Journal of Theoretical Biology,
30:455–484, 1971.

[20] A. Lindenmayer. Developmental algorithms for multicellular organ-
isms: A survey of L-systems. Journal of Theoretical Biology, 54:3–22,
1975.

[21] A. Lindenmayer. Algorithms for plant morphogenesis. In R. Sattler,
editor, Theoretical plant morphology, pages 37–81. Leiden University
Press, The Hague, 1978.

[22] A. Lindenmayer. Developmental algorithms: Lineage versus inter-
active control mechanisms. In S. Subtelny and P. B. Green, editors,
Developmental order: Its origin and regulation, pages 219–245. Alan
R. Liss, New York, 1982.

2-11

[23] A. Lindenmayer. Positional and temporal control mechanisms in in-
florescence development. In P. W. Barlow and D. J. Carr, editors, Po-
sitional controls in plant development. University Press, Cambridge,
1984.

[24] A. Lindenmayer. Models for multicellular development: Character-
ization, inference and complexity of L-systems. In A. Kelemenová
and J. Kelemen, editors, Trends, techniques and problems in theoreti-
cal computer science, Lecture Notes in Computer Science 281, pages
138–168. Springer-Verlag, Berlin, 1987.

[25] A. Lindenmayer and H. Jürgensen. Grammars of development:
Discrete-state models for growth, differentiation and gene expres-
sion in modular organisms. In G. Rozenberg and A. Salomaa, edi-
tors, Lindenmayer systems: Impacts on theoretical computer science,
computer graphics, and developmental biology, pages 3–21. Springer-
Verlag, Berlin, 1992.

[26] A. Lindenmayer and P. Prusinkiewicz. Developmental models of mul-
ticellular organisms: A computer graphics perspective. In C. G. Lang-
ton, editor, Artificial Life, pages 221–249. Addison-Wesley, Redwood
City, 1988.

[27] J. Lück, H. B. Lück, and M. Bakkali. A comprehensive model for
acrotonic, mesotonic, and basitonic branching in plants. Acta Biothe-
oretica, 38:257–288, 1990.

[28] N. MacDonald. Trees and networks in biological models. J. Wiley &
Sons, New York, 1983.

[29] B. B. Mandelbrot. The fractal geometry of nature. W. H. Freeman,
San Francisco, 1982.

[30] R. Měch and P. Prusinkiewicz. Visual models of plants interacting with
their environment. Proceedings of SIGGRAPH ’96 (New Orleans,
Louisiana, August 4–9, 1996). ACM SIGGRAPH, New York, 1996,
pp. 397–410.

[31] S. Papert. Mindstorms: Children, computers and powerful ideas. Ba-
sic Books, New York, 1980.

[32] P. Prusinkiewicz. Graphical applications of L-systems. In Proceed-
ings of Graphics Interface ’86 — Vision Interface ’86, pages 247–253,
1986.

[33] P. Prusinkiewicz. Applications of L-systems to computer imagery. In
H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph
grammars and their application to computer science; Third Interna-
tional Workshop, pages 534–548. Springer-Verlag, Berlin, 1987. Lec-
ture Notes in Computer Science 291.

[34] P. Prusinkiewicz. Visual models of morphogenesis. Artificial Life,
1:61–74, 1994.

[35] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. L-systems:
from the theory to visual models of plants. Machine Graphics and
Vision, 5(1/2):365–392, 1996.

[36] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual mod-
els of plant development. In G. Rozenberg and A. Salomaa, editors,
Handbook of formal languages, Vol. III: Beyond words, pages 535–
597. Springer, Berlin, 1997.

[37] P. Prusinkiewicz, M. Hammel, R. Měch, and J. Hanan. The artificial
life of plants. In D. Terzopoulos, editor, SIGGRAPH 1995 Course
Notes on Artificial Life, pages 1–1 – 1–38. ACM SIGGRAPH, 1995.

[38] P. Prusinkiewicz and J. Hanan. Lindenmayer systems, fractals, and
plants, volume 79 of Lecture Notes in Biomathematics. Springer-
Verlag, Berlin, 1989 (second printing 1992).

[39] P. Prusinkiewicz and J. Hanan. Visualization of botanical structures
and processes using parametric L-systems. In D. Thalmann, editor,
Scientific visualization and graphics simulation, pages 183–201. J.
Wiley & Sons, Chichester, 1990.

[40] P. Prusinkiewicz and J. Hanan. L-systems: From formalism to pro-
gramming languages. In G. Rozenberg and A. Salomaa, editors, Lin-
denmayer systems: Impacts on theoretical computer science, com-
puter graphics, and developmental biology, pages 193–211. Springer-
Verlag, Berlin, 1992.

[41] P. Prusinkiewicz, M. James, and R. Měch. Synthetic topiary. Proceed-
ings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994). ACM
SIGGRAPH, New York, 1994, pp. 351–358.

[42] P. Prusinkiewicz and L. Kari. Subapical bracketed L-systems. In
J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, Graph gram-
mars and their application to computer science; Fifth International
Workshop, Lecture Notes in Computer Science 1073, pages 550–564.
Springer-Verlag, Berlin, 1996.

[43] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of
plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[44] P. Prusinkiewicz, A. Lindenmayer, and F. D. Fracchia. Synthesis of
space-filling curves on the square grid. In H.-O. Peitgen, J. M. Hen-
riques, and L. F. Penedo, editors, Fractals in the fundamental and ap-
plied sciences, pages 341–366. North-Holland, Amsterdam, 1991.

[45] P. Prusinkiewicz, W. Remphrey, C. Davidson, and M. Hammel. Mod-
eling the architecture of expanding Fraxinus pennsylvanica shoots us-
ing L-systems. Canadian Journal of Botany, 72:701–714, 1994.

[46] D. M. Raup. Geometric analysis of shell coiling: general problems.
Journal of Paleontology, 40:1178–1190, 1966.

[47] D. M. Raup and A. Michelson. Theoretical morphology of the coiled
shell. Science, 147:1294–1295, 1965.

[48] P. M. Room, J. S. Hanan, and P. Prusinkiewicz. Virtual plants: new
perspectives for ecologists, pathologists, and agricultural scientists.
Trends in Plant Science, 1(1):33–38, 1996.

[49] P. M. Room, L. Maillette, and J. Hanan. Module and metamer dynam-
ics and virtual plants. Advances in Ecological Research, 25:105–157,
1994.

[50] G. Rozenberg and A. Salomaa. The mathematical theory of L systems.
Academic Press, New York, 1980.

[51] A. Salomaa. Formal languages. Academic Press, New York, 1973.

[52] A. R. Smith. Plants, fractals, and formal languages. Proceedings
of SIGGRAPH ’84 (Minneapolis, Minnesota, July 22–27, 1984).
In Computer Graphics, 18, 3 (July 1984), pages 1–10, ACM SIG-
GRAPH, New York, 1984.

[53] A. L. Szilard and R. E. Quinton. An interpretation for DOL systems
by computer graphics. The Science Terrapin, 4:8–13, 1979.

[54] H. von Koch. Une méthode géométrique élémentaire pour l’étude de
certaines questions de la théorie des courbes planes. Acta Mathemat-
ica, 30:145–174, 1905.

[55] D. M. Waller and D. A. Steingraeber. Branching and modular growth:
Theoretical models and empirical patterns. In J. B. C. Jackson and
L. W. Buss, editors, Population biology and evolution of clonal organ-
isms, pages 225–257. Yale University Press, New Haven, 1985.

2-12

Visual Models of Plants
Interacting with Their Environment

Radomı́r Měch and Przemyslaw Prusinkiewicz1

University of Calgary

ABSTRACT

Interaction with the environment is a key factor affecting the devel-
opment of plants and plant ecosystems. In this paper we introduce a
modeling framework that makes it possible to simulate and visualize
a wide range of interactions at the level of plant architecture. This
framework extends the formalism of Lindenmayer systems with
constructs needed to model bi-directional information exchange be-
tween plants and their environment. We illustrate the proposed
framework with models and simulations that capture the develop-
ment of tree branches limited by collisions, the colonizing growth of
clonal plants competing for space in favorable areas, the interaction
between roots competing for water in the soil, and the competition
within and between trees for access to light. Computer animation
and visualization techniques make it possible to better understand
the modeled processes and lead to realistic images of plants within
their environmental context.

CR categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems: Parallel rewrit-
ing systems, I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, I.6.3 [Simulation and Modeling]: Appli-
cations, J.3 [Life and Medical Sciences]: Biology.

Keywords: scientific visualization, realistic image synthesis, soft-
ware design, L-system, modeling, simulation, ecosystem, plant de-
velopment, clonal plant, root, tree.

1 INTRODUCTION

Computer modeling and visualization of plant development can be
traced back to 1962, when Ulam applied cellular automata to sim-
ulate the development of branching patterns, thought of as an ab-
stract representation of plants [53]. Subsequently, Cohen presented
a more realistic model operating in continuous space [13], Linden-

1Department of Computer Science, University of Calgary, Cal-
gary, Alberta, Canada T2N 1N4 (mechjpwp@cpsc.ucalgary.ca)

Published in the Proceedings of SIGGRAPH ’96 (New Orleans, LA,
August 4–9, 1996). In Computer Graphics Proceedings, Annual
Conference Series, 1996, ACM SIGGRAPH, New York, pp. 397–
410.

mayer proposed the formalism of L-systems as a general framework
for plant modeling [38, 39], and Honda introduced the first computer
model of tree structures [32]. From these origins, plant modeling
emerged as a vibrant area of interdisciplinary research, attracting the
efforts of biologists, applied plant scientists, mathematicians, and
computer scientists. Computer graphics, in particular, contributed
a wide range of models and methods for synthesizing images of
plants. See [18, 48, 54] for recent reviews of the main results.

One aspect of plant structure and behavior neglected by most models
is the interaction between plants and their environment (including
other plants). Indeed, the incorporation of interactions has been
identified as one of the main outstanding problems in the domain of
plant modeling [48] (see also [15, 18, 50]). Its solution is needed to
construct predictive models suitable for applications ranging from
computer-assisted landscape and garden design to the determination
of crop and lumber yields in agriculture and forestry.

Using the information flow between a plant and its environment as
the classification key, we can distinguish three forms of interaction
and the associated models of plant-environment systems devised to
date:

1. The plant is affected by global properties of the environment,
such as day length controlling the initiation of flowering [23]
and daily minimum and maximum temperatures modulating the
growth rate [28].

2. The plant is affected by local properties of the environment, such
as the presence of obstacles controlling the spread of grass [2]
and directing the growth of tree roots [26], geometry of support
for climbing plants [2, 25], soil resistance and temperature in
various soil layers [16], and predefined geometry of surfaces to
which plant branches are pruned [45].

3. The plant interacts with the environment in an information feed-
back loop, where the environment affects the plant and the plant
reciprocally affects the environment. This type of interaction is
related to sighted [4] or exogenous [42] mechanisms controlling
plant development, in which parts of a plant influence the devel-
opment of other parts of the same or a different plant through the
space in which they grow. Specific models capture:

� competition for space (including collision detection and ac-
cess to light) between segments of essentially two-dimensional
schematic branching structures [4, 13, 21, 22, 33, 34, 36];

� competition between root tips for nutrients and water trans-
ported in soil [12, 37] (this mechanism is related to competition
between growing branches of corals and sponges for nutrients
diffusing in water [34]);

2-13

� competition for light between three-dimensional shoots of
herbaceous plants [25] and branches of trees [9, 10, 11, 15,
33, 35, 52].

Models of exogenous phenomena require a comprehensive repre-
sentation of both the developing plant and the environment. Con-
sequently, they are the most difficult to formulate, implement, and
document. Programs addressed to the biological audience are often
limited to narrow groups of plants (for example, poplars [9] or trees
in the pine family [21]), and present the results in a rudimentary
graphical form. On the other hand, models addressed to the com-
puter graphics audience use more advanced techniques for realistic
image synthesis, but put little emphasis on the faithful reproduction
of physiological mechanisms characteristic to specific plants.

In this paper we propose a general framework (defined as a mod-
eling methodology supported by appropriate software) for mod-
eling, simulating, and visualizing the development of plants that
bi-directionally interact with their environment. The usefulness of
modeling frameworks for simulation studies of models with com-
plex (emergent) behavior is manifested by previous work in the-
oretical biology, artificial life, and computer graphics. Examples
include cellular automata [51], systems for simulating behavior of
cellular structures in discrete [1] and continuous [20] spaces, and
L-system-based frameworks for modeling plants [36, 46]. Frame-
works may have the form of a general-purpose simulation program
that accepts models described in a suitable mini-language as in-
put, e.g. [36, 46], or a set of library programs [27]. Compared to
special-purpose programs, they offer the following benefits:

� At the conceptual level, they facilitate the design, specification,
documentation, and comparison of models.

� At the level of model implementation, they make it possible to de-
velop software that can be reused in various models. Specifically,
graphical capabilities needed to visualize the models become a
part of the modeling framework, and do not have to be reimple-
mented.

� Finally, flexible conceptual and software frameworks facilitate
interactive experimentation with the models [46, Appendix A].

Our framework is intended both for purpose of image synthesis and
as a research and visualization tool for model studies in plant mor-
phogenesis and ecology. These goals are addressed at the levels of
the simulation system and the modeling language design. The un-
derlying paradigm of plant-environment interaction is described in
Section 2. The resulting design of the simulation software is outlined
in Section 3. The language for specifying plant models is presented
in Section 4. It extends the concept of environmentally-sensitive L-
systems [45] with constructs for bi-directional communication with
the environment. The following sections illustrate the proposed
framework with concrete models of plants interacting with their
environment. The examples include: the development of planar
branching systems controlled by the crowding of apices (Section 5),
the development of clonal plants controlled by both the crowding
of ramets and the quality of terrain (Section 6), the development
of roots controlled by the concentration of water transported in the
soil (Section 7), and the development of tree crowns affected by the
local distribution of light (Section 8) The paper concludes with an
evaluation of the results and a list of open problems (Section 9).

Plant Environment

Internal processes

Reception

Response

Internal processes

Reception

Response

Figure 1: Conceptual model of plant and environment treated as
communicating concurrent processes

2 CONCEPTUAL MODEL

As described by Hart [30], every environmentally controlled phe-
nomenon can be considered as a chain of causally linked events.
After a stimulus is perceived by the plant, information in some form
is transported through the plant body (unless the site of stimulus
perception coincides with the site of response), and the plant re-
acts. This reaction reciprocally affects the environment, causing
its modification that in turn affects the plant. For example, roots
growing in the soil can absorb or extract water (depending on the
water concentration in their vicinity). This initiates a flow of water
in the soil towards the depleted areas, which in turn affects further
growth of the roots [12, 24].

According to this description, the interaction of a plant with the
environment can be conceptualized as two concurrent processes
that communicate with each other, thus forming a feedback loop
of information flow (Figure 1). The plant process performs the
following functions:

� reception of information about the environment in the form of
scalar or vector values representing the stimuli perceived by spe-
cific organs;

� transport and processing of information inside the plant;

� generation of the response in the form of growth changes (e.g.
development of new branches) and direct output of information
to the environment (e.g. uptake and excretion of substances by a
root tip).

Similarly, the environmental process includes mechanisms for
the:

� perception of the plant’s actions;

� simulation of internal processes in the environment (e.g. the
diffusion of substances or propagation of light);

� presentation of the modified environment in a form perceivable
by the plant.

The design of a simulation system based on this conceptual model
is presented next.

3 SYSTEM DESIGN

The goal is to create a framework, in which a wide range of plant
structures and environments can be easily created, modified, and

2-14

used for experimentation. This requirement led us to the following
design decisions:

� The plant and the environment should be modeled by separate
programs and run as two communicating processes. This design
is:

� compatible with the assumed conceptual model of plant-envi-
ronment interaction (Figure 1);

� consistent with the principles of structured design (modules
with clearly specified functions jointly contribute to the solu-
tion of a problem by communicating through a well defined
interface; information local to each module is hidden from
other modules);

� appropriate for interactive experimentation with the models;
in particular, changes in the plant program can be implemented
without affecting the environmental program, and vice versa;

� extensible to distributed computing environments, where dif-
ferent components of a large ecosystem may be simulated
using separate computers.

� The user should have control over the type and amount of infor-
mation exchanged between the processes representing the plant
and the environment, so that all the needed but no superfluous
information is transferred.

� Plant models should be specified in a language based on L-
systems, equipped with constructs for bi-directional communi-
cation between the plant and the environment. This decision has
the following rationale:

� A succinct description of the models in an interpreted lan-
guage facilitates experimentation involving modifications to
the models;

� L-systems capture two fundamental mechanisms that control
development, namely flow of information from a mother mod-
ule to its offspring (cellular descent) and flow of information
between coexisting modules (endogenous interaction) [38].
The latter mechanism plays an essential role in transmitting
information from the site of stimulus perception to the site
of the response. Moreover, L-systems have been extended
to allow for input of information from the environment (see
Section 4);

� Modeling of plants using L-systems has reached a relatively
advanced state, manifested by models ranging from algae to
herbaceous plants and trees [43, 46].

� Given the variety of processes that may take place in the environ-
ment, they should be modeled using special-purpose programs.

� Generic aspects of modeling, not specific to particular models,
should be supported by the modeling system. This includes:

� an L-system-based plant modeling program, which interprets
L-systems supplied as its input and visualizes the results, and

� the support for communication and synchronization of pro-
cesses simulating the modeled plant and the environment.

A system architecture stemming from this design is shown in Fig-
ure 2. We will describe it from the perspective of extensions to the
formalism of L-systems.

Plant
model
(L−system)

Plant
simulator

Model of
the environment

Interface
plant−
environment

Environ−
mental data

C
O
M
M
U
N
I
C
A
T
I
O
N

C
O
M
M
U
N
I
C
A
T
I
O
N

Communication
specification

Figure 2: Organization of the software for modeling plants interact-
ing with their environment. Shaded rectangles indicate components
of the modeling framework, clear rectangles indicate programs and
data that must be created by a user specifying a new model of a plant
or environment. Shaded arrows indicate information exchanged in
a standardized format.

4 OPEN L-SYSTEMS

Historically, L-systems were conceived as closed cybernetic sys-
tems, incapable of simulating any form of communication between
the modeled plant and its environment. In the first step towards
the inclusion of environmental factors, Rozenberg defined table L-
systems, which allow for a change in the set of developmental rules
(the production set of the L-system) in response to a change in
the environment [31, 49]. Table L-systems were applied, for ex-
ample, to capture the switch from the production of leaves to the
production of flowers by the apex of a plant due to a change in day
length [23]. Parametric L-systems [29, 46], introduced later, made
it possible to implement a variant of this technique, with the envi-
ronment affecting the model in a quantitative rather than qualitative
manner. In a case study illustrating this possibility, weather data
containing daily minimum and maximum temperatures were used
to control the rate of growth in a bean model [28]. Environmentally-
sensitive L-systems [45] represented the next step in the inclusion of
environmental factors, in which local rather than global properties
of the environment affected the model. The new concept was the
introduction of query symbols, returning current position or ori-
entation of the turtle in the underlying coordinate system. These
parameters could be passed as arguments to user-defined functions,
returning local properties of the environment at the queried location.
Environmentally-sensitive L-systems were illustrated by models of
topiary scenes. The environmental functions defined geometric
shapes, to which trees were pruned.

Open L-systems, introduced in this paper, augment the functionality
of environmentally-sensitive L-systems using a reserved symbol for
bilateral communication with the environment. In short, parameters
associated with an occurrence of the communication symbol can
be set by the environment and transferred to the plant model, or
set by the plant model and transferred to the environment. The
environment is no longer represented by a simple function, but
becomes an active process that may react to the information from the
plant. Thus, plants are modeled as open cybernetic systems, sending
information to and receiving information from the environment.

In order to describe open L-systems in more detail, we need to
recall the rudiments of L-systems with turtle interpretation. Our
presentation is reproduced from [45].

2-15

An L-system is a parallel rewriting system operating on branching
structures represented as bracketed strings of symbols with asso-
ciated numerical parameters, called modules. Matching pairs of
square brackets enclose branches. Simulation begins with an ini-
tial string called the axiom, and proceeds in a sequence of discrete
derivation steps. In each step, rewriting rules or productions replace
all modules in the predecessor string by successor modules. The
applicability of a production depends on a predecessor’s context
(in context-sensitive L-systems), values of parameters (in produc-
tions guarded by conditions), and on random factors (in stochastic
L-systems). Typically, a production has the format:

id : lc < pred > rc : cond! succ : prob

where id is the production identifier (label), lc, pred, and rc are
the left context, the strict predecessor, and the right context, cond is
the condition, succ is the successor, and prob is the probability of
production application. The strict predecessor and the successor are
the only mandatory fields. For example, the L-system given below
consists of axiom ! and three productions p1, p2, and p3.

!: A(1)B(3)A(5)
p1: A(x) !A(x+1) : 0.4
p2: A(x) !B(x–1) : 0.6
p3: A(x) < B(y) > A(z) : y < 4 !B(x+z)[A(y)]

The stochastic productions p1 and p2 replace module A(x) by ei-
ther A(x + 1) or B(x � 1), with probabilities equal to 0.4 and
0.6, respectively. The context-sensitive production p3 replaces a
module B(y) with left context A(x) and right context A(z) by
module B(x+ z) supporting branch A(y). The application of this
production is guarded by condition y < 4. Consequently, the first
derivation step may have the form:

A(1)B(3)A(5)) A(2)B(6)[A(3)]B(4)

It was assumed that, as a result of random choice, production p1

was applied to the module A(1), and production p2 to the module
A(5). Production p3 was applied to the module B(3), because it
occurred with the required left and right context, and the condition
3 < 4 was true.

In the L-systems presented as examples we also use several addi-
tional constructs (cf. [29, 44]):

� Productions may include statements assigning values to local
variables. These statements are enclosed in curly braces and
separated by semicolons.

� The L-systems may also include arrays. References to array
elements follow the syntax of C; for example, MaxLen[order].

� The list of productions is ordered. In the deterministic case, the
first matching production applies. In the stochastic case, the set
of all matching productions is established, and one of them is
chosen according to the specified probabilities.

For details of the L-system syntax see [29, 43, 46].

H\
→

/
L

−+

U
→

→

^

&

Figure 3: Controlling the
turtle in three dimensions

In contrast to the parallel applica-
tion of productions in each deriva-
tion step, the interpretation of the
resulting strings proceeds sequen-
tially, with reserved modules act-
ing as commands to a LOGO-style
turtle [46]. At any point of the
string, the turtle state is charac-
terized by a position vector ~P and

derive

env. step

interpret

 ... A(a1,...,ak) ?E(x1,...,xm) B(b1,...,bn) ...

... A(a1,...,ak) ?E(y1,...,ym) B(b1,...,bn) ...

environment

Figure 4: Information flow during the simulation of a plant inter-
acting with the environment, implemented using an open L-system

three mutually perpendicular orientation vectors ~H, ~U , and ~L, indi-
cating the turtle’s heading, the up direction, and the direction to the
left (Figure 3). Module F causes the turtle to draw a line in the cur-
rent direction. Modules +,�, &, ^, = and n rotate the turtle around
one of the vectors ~H; ~U , or ~L, as shown in Figure 3. The length
of the line and the magnitude of the rotation angle can be given
globally or specified as parameters of individual modules. During
the interpretation of branches, the opening square bracket pushes
the current position and orientation of the turtle on a stack, and the
closing bracket restores the turtle to the position and orientation
popped from the stack. A special interpretation is reserved for the
module %, which cuts a branch by erasing all symbols in the string
from the point of its occurrence to the end of the branch [29]. The
meaning of many symbols depends on the context in which they
occur; for example, + and � denote arithmetic operators as well as
modules that rotate the turtle.

The turtle interpretation of L-systems described above was de-
signed to visualize models in a postprocessing step, with no effect
on the L-system operation. Position and orientation of the turtle
are important, however, while considering environmental phenom-
ena, such as collisions with obstacles and exposure to light. The
environmentally-sensitive extension of L-systems makes these at-
tributes accessible during the rewriting process [45]. The generated
string is interpreted after each derivation step, and turtle attributes
found during the interpretation are returned as parameters to re-
served query modules. Syntactically, the query modules have the
form ?X(x; y; z), where X = P;H;U; or L. Depending on the
actual symbol X , the values of parameters x, y, and z represent a
position or an orientation vector.

Open L-systems are a generalization of this concept. Communi-
cation modules of the form ?E(x1; : : : ; xm) are used both to send
and receive environmental information represented by the values of
parameters x1; : : : ; xm (Figure 4). To this end, the string resulting
from a derivation step is scanned from left to right to determine
the state of the turtle associated with each symbol. This phase is
similar to the graphical interpretation of the string, except that the
results need not be visualized. Upon encountering a communica-
tion symbol, the plant process creates and sends a message to the
environment including all or a part of the following information:

� the address (position in the string) of the communication module
(mandatory field needed to identify this module when a reply
comes from the environment),

� values of parameters xi,

� the state of the turtle (coordinates of the position and orientation

2-16

vector, as well as some other attributes, such as current line
width),

� the type and parameters of the module following the communi-
cation module in the string (not used in the examples discussed
in this paper).

The exact message format is defined in a communication specifi-
cation file, shared between the programs modeling the plant and
the environment (Figure 2). Consequently, it is possible to include
only the information needed in a particular model in the messages
sent to the environment. Transfer of the last message corresponding
to the current scan of the string is signaled by a reserved end-of-
transmission message, which may be used by the environmental
process to start its operation.

The messages output by the plant modeling program are transferred
to the process that simulates the environment using an interprocess
communication mechanism provided by the underlying operating
system (a pair of UNIX pipes or shared memory with access syn-
chronized using semaphores, for example). The environment pro-
cesses that information and returns the results to the plant model
using messages in the following format:

� the address of the target communication module,

� values of parameters yi carrying the output from the environment.

The plant process uses the received information to set parameter val-
ues in the communication modules (Figure 4). The use of addresses
makes it possible to send replies only to selected communication
modules. Details of the mapping of messages received by the plant
process to the parameters of the communication modules are defined
in the communication specification file.

After all replies generated by the environment have been received
(a fact indicated by an end-of-transmission message sent by the
environment), the resulting string may be interpreted and visualized,
and the next derivation step may be performed, initiating another
cycle of the simulation.

Note that, by preceding every symbol in the string with a communi-
cation module it is possible to pass complete information about the
model to the environment. Usually, however, only partial informa-
tion about the state of a plant is needed as input to the environment.
Proper placement of communication modules in the model, com-
bined with careful selection of the information to be exchanged,
provide a means for keeping the amount of transferred information
at a manageable level.

We will illustrate the operation of open L-systems within the con-
text of complete models of plant-environment interactions, using
examples motivated by actual biological problems.

5 A MODEL OF BRANCH TIERS

Background. Apical meristems, located at the endpoints of
branches, are engines of plant development. The apices grow, con-
tributing to the elongation of branch segments, and from time to time
divide, spawning the development of new branches. If all apices
divided periodically, the number of apices and branch segments
would increase exponentially. Observations of real branching struc-
tures show, however, that the increase in the number of segments
is less than exponential [8]. Honda and his collaborators mod-
eled several hypothetical mechanisms that may control the extent of

branching in order to prevent overcrowding [7, 33] (see also [4]).
One of the models [33], supported by measurements and earlier
simulations of the tropical tree Terminalia catappa [19], assumes
an exogenous interaction mechanism. Terminalia branches form
horizontal tiers, and the model is limited to a single tier, treated
as a two-dimensional structure. In this case, the competition for
light effectively amounts to collision detection between the apices
and leaf clusters. We reproduce this model as the simplest example
illustrating the methodology proposed in this paper.

Communication specification. The plant communicates with the
environment using communication modules of the form ?E(x).
Messages sent to the environment include the turtle position and the
value of parameter x, interpreted as the vigor of the corresponding
apex. On this basis, the environmental process determines the fate
of each apex. A parameter value of x = 0 returned to the plant
indicates that the development of the corresponding branch will be
terminated. A value of x = 1 allows for further branching.

The model of the environment. The environmental process con-
siders each apex or non-terminal node of the developing tier as the
center of a circular leaf cluster, and maintains a list of all clusters
present. New clusters are added in response to messages received
from the plant. All clusters have the same radius �, specified in the
environmental data file (cf. Figure 2). In order to determine the fate
of the apices, the environment compares apex positions with leaf
cluster positions, and authorizes an apex to grow if it does not fall
into an existing leaf cluster, or if it falls into a cluster surrounding
an apex with a smaller vigor value.

The plant model. The plant model is expressed as an open L-
system. The values of constants are taken from [33].

#define r1 0.94 /* contraction ratio and vigor 1 */
#define r2 0.87 /* contraction ratio and vigor 2 */
#define �1 24.4 /* branching angle 1 */
#define �2 36.9 /* branching angle 2 */
#define ' 138.5 /* divergence angle */
!: –(90)[F(1)?E(1)A(1)]+(')[F(1)/?E(1)A(1)]

+(')[F(1)?E(1)A(1)]+(')[F(1)/?E(1)A(1)]
+(')[F(1)?E(1)A(1)]

p1: ?E(x) < A(v) : x == 1 !
[+(�2)F(v*r2)?E(r2)A(v*r2)] –(�1)F(v*r1)/?E(r1)A(v*r1)

p2: ?E(x) ! "

The axiom ! specifies the initial structure as a whorl of five branch
segmentsF . The divergence angle' between consecutive segments
is equal to 138:5�. Each segment is terminated by a communication
symbol ?E followed by an apex A. In addition, two branches
include module =, which changes the directions at which subsequent
branches will be issued (left vs. right) by rotating the apex 180�

around the segment axis.

Production p1 describes the operation of the apices. If the value of
parameter x returned by a communication module ?E is not 1, the
associated apex will remain inactive (do nothing). Otherwise the
apex will produce a pair of new branch segments at angles�1 and�2

with respect to the mother segment. Constants r1 and r2 determine
the lengths of the daughter segments as fractions of the length of
their mother segment. The values r1 and r2 are also passed to the
process simulating the environment using communication modules
?E. Communication modules created in the previous derivation
step are no longer needed and are removed by production p2.

2-17

Figure 5: Competition for space between two tiers of branches
simulated using the Honda model

Simulation. Figure 5 illustrates the competition for space between
two tiers developing next to each other. The extent of branching
in each tier is limited by collisions between its apices and its own
or the neighbor’s leaf clusters. The limited growth of each struc-
ture in the direction of its neighbor illustrates the phenomenon of
morphological plasticity, or adaptation of the form of plants to their
environment [17].

6 A MODEL OF FORAGING IN CLONAL PLANTS

Background. Foraging (propagation) patterns in clonal plants pro-
vide another excellent example of response to crowding. A clonal
plant spreads by means of horizontal stem segments (spacers),
which form a branching structure that grows along the ground and
connects individual plants (ramets) [3]. Each ramet consists of a
leaf supported by an upright stem and one or more buds, which may
give rise to further spacers and ramets. Their gradual death, after
a certain amount of time, causes gradual separation of the whole
structure (the clone) into independent parts.

Following the surface of the soil, clonal plants can be captured using
models operating in two dimensions [5], and in that respect resem-
ble Terminalia tiers. We propose a model of a hypothetical plant
that responds to favorable environmental conditions (high local in-
tensity of light) by more extensive branching and reduced size of
leaves (allowing for more dense packing of ramets). It has been
inspired by a computer model of clover outlined by Bell [4], the
analysis of responses of clonal plants to the environment presented
by Dong [17], and the computer models and descriptions of veg-
etative multiplication of plants involving the death of intervening
connections by Room [47].

Communication specification. The plant sends messages to the en-
vironment that include turtle position and two parameters associated
with the communications symbol, ?E(type; x). The first param-
eter is equal to 0, 1, or 2, and determines the type of exchanged
information as follows:

� The message ?E(0; x) represents a request for the light intensity
(irradiance [14]) at the position of the communication module.

The environment responds by setting x to the intensity of incom-
ing light, ranging from 0 (no light) to 1 (full light).

� The message ?E(1; x) notifies the environment about the creation
of a ramet with a leaf of radius x at the position of the commu-
nication module. No output is generated by the environment in
response to this message.

� The message ?E(2; x) notifies the environment about the death of
a ramet with a leaf of radius x at the position of the communica-
tion module. Again, no output is generated by the environment.

The model of the environment. The purpose of the environment
process is to determine light intensity at the locations requested
by the plant. The ground is divided into patches (specified as a
raster image using a paint program), with different light intensities
assigned to each patch. In the absence of shading, these intensities
are returned by the environmental process in response to messages
of type 0. To consider shading, the environment keeps track of the
set of ramets, adding new ramets in response to a messages of type
1, and deleting dead ramets in response to messages of type 2. If
a sampling point falls in an area occupied by a ramet, the returned
light intensity is equal to 0 (leaves are assumed to be opaque, and
located above the sampling points).

The plant model. The essential features of the plant model are
specified by the following open L-system.

#define � 45 /* branching angle */
#define MinLight 0.1 /* light intensity threshold */
#define MaxAge 20 /* lifetime of ramets and spacers */
#define Len 2.0 /* length of spacers */
#define ProbB (x) (0.12+x*0.42)
#define ProbR(x) (0.03+x*0.54)
#define Radius(x) (sqrt(15–x*5)/�)

!: A(1)?E(0,0)

p1: A(dir) > ?E(0,x) : x >= MinLight
! R(x)B(x,dir)F(Len,0)A(–dir)?E(0,0)

p2: A(dir) > ?E(0,x) : x < MinLight ! "

p3: B(x,dir) ! [+(�*dir)F(Len,0)A(–dir)?E(0,0)] : ProbB (x)
p4: B(x,dir) ! " : 1–ProbB (x)

p5: R(x) ! [@o(Radius(x),0)?E(1,Radius(x))] : ProbR(x)
p6: R(x) ! " : 1–ProbR(x)

p7: @o(radius,age): age < MaxAge !@o(radius,age+1)
p8: @o(radius,age): age == MaxAge ! ?E(2,radius)

p9: F(len,age): age < MaxAge ! F(len,age+1)
p10: F(len,age): age == MaxAge ! f(len)

p11: ?E(type,x) ! "

The initial structure specified by the axiom ! consists of an apex A
followed by the communication module ?E. If the intensity of light
x reaching an apex is insufficient (below the threshold MinLight),
the apex dies (production p2). Otherwise, the apex creates a ramet
initial R (i.e., a module that will yield a ramet), a branch initial
B, a spacer F , and a new apex A terminated by communication
module ?E (production p1). The parameter dir, valued either 1 or
-1, controls the direction of branching. Parameters of the spacer
module specify its length and age.

2-18

A branch initial B may create a lateral branch with its own apex
A and communication module ?E (production p3), or it may die
and disappear from the system (production p4). The probability of
survival is an increasing linear function ProbB of the light intensity
x that has reached the mother apex A in the previous derivation
step. A similar stochastic mechanism describes the production of
a ramet by the ramet initial R (productions p5 and p6), with the
probability of ramet formation controlled by an increasing linear
function ProbR. The ramet is represented as a circle @o; its radius
is a decreasing function Radius of the light intensity x. As in the
case of spacers, the second parameter of a ramet indicates its age,
initially set to 0. The environment is notified about the creation of
the ramet using a communication module ?E.

The subsequent productions describe the aging of spacers (p7) and
ramets (p9). Upon reaching the maximum age MaxAge, a ramet is
removed from the system and a message notifying the environment
about this fact is sent by the plant (p8). The death of the spacers
is simulated by replacing spacer modules F with invisible line seg-
ments f of the same length. This replacement maintains the relative
position of the remaining elements of the structure. Finally, produc-
tion p11 removes communication modules after they have performed
their tasks.

1.0

0.0

0.60.2

0.2

I

IIIII

IV

V

Figure 6: Division of
the ground into patches

Simulations. Division of the
ground into patches used in the sim-
ulations is shown in Figure 6. Ara-
bic numerals indicate the intensity
of incoming light, and Roman nu-
merals identify each patch. The de-
velopment of a clonal plant assum-
ing this division is illustrated in Fig-
ure 7. As an extension of the basic
model discussed above, the length
of the spacers and the magnitude of
the branching angle have been var-

ied using random functions with a normal distribution. Ramets have
been represented as trifoliate leaves.

The development begins with a single ramet located in relatively
good (light intensity 0.6) patch II at the top right corner of the growth
area (Figure 7, step 9 of the simulation). The plant propagates
through the unfavorable patch III without producing many branches
and leaves (step 26), and reaches the best patch I at the bottom left
corner (step 39). After quickly spreading over this patch (step 51),
the plant searches for further favorable areas (step 62). The first
attempt to reach patch II fails (step 82). The plant tries again, and
this time succeeds (steps 101 and 116). Light conditions in patch II
are not sufficient, however, to sustain the continuous presence of the
plant (step 134). The colony disappears (step 153) until the patch is
reached again by a new wave of propagation (steps 161 and 182).

The sustained occupation of patch I and the repetitive invasion of
patch II represent an emerging behavior of the model, difficult to
predict without running simulations. Variants of this model, includ-
ing other branching architectures, responses to the environment,
and layouts of patches in the environment, would make it possible
to analyze different foraging strategies of clonal plants. A further
extension could replace the empirical assumptions regarding plant
responses with a more detailed simulation of plant physiology (for
example, including production of photosynthates and their trans-
port and partition between ramets). Such physiological models
could provide insight into the extent to which the foraging patterns
optimize plants’ access to resources [17].

Figure 7: Development of a hypothetical clonal plant simulated
using an extension of L-system 3. The individual images represent
structures generated in 9, 26, 39, 51, 62, and 82 derivation steps
(top), followed by structures generated in 101, 116, 134, 153, 161,
and 182 steps (bottom).

7 A MODEL OF ROOT DEVELOPMENT

Background. The development of roots provides many examples
of complex interactions with the environment, which involve me-
chanical properties, chemical reactions, and transport mechanisms
in the soil. In particular, the main root and the rootlets absorb water
from the soil, locally changing its concentration (volume of water
per unit volume of soil) and causing water motion from water-rich to
depleted regions [24]. The tips of the roots, in turn, follow the gra-
dient of water concentration [12], thus adapting to the environment
modified by their own activities.

Below we present a simplified implementation of the model of root
development originally proposed by Clausnitzer and Hopmans [12].
We assume a more rudimentary mechanism of water transport,
namely diffusion in a uniform medium, as suggested by Liddell
and Hansen [37]. The underlying model of root architecture is sim-
ilar to that proposed by Diggle [16]. For simplicity, we focus on
model operation in two-dimensions.

Communication specification. The plant interacts with the en-
vironment using communication modules ?E(c; �) located at the
apices of the root system. A message sent to the environment in-
cludes the turtle position ~P , the heading vector ~H, the value of

2-19

parameter c representing the requested (optimal) water uptake, and
the value of parameter � representing the tendency of the apex to
follow the gradient of water concentration. A message returned to
the plant specifies the amount of water actually received by the apex
as the value of parameter c, and the angle biasing direction of further
growth as the value of �.

H

θin∇C

∇C

θout

 →

T
 →

Figure 8: Definition of
the biasing angle �out

The model of the environment.
The environment maintains a field
C of water concentrations, repre-
sented as an array of the amounts
of water in square sampling areas.
Water is transported by diffusion,
simulated numerically using finite
differencing [41]. The environ-
ment responds to a request for wa-
ter from an apex located in an area
(i; j) by granting the lesser of the

values requested and available at that location. The amount of water
in the sampled area is then decreased by the amount received by the
apex. The environment also calculates a linear combination ~T of
the turtle heading vector ~H and the gradient of water concentration
rC (estimated numerically from the water concentrations in the
sampled area and its neighbors), and returns an angle � between the
vectors ~T and ~H (Figure 8). This angle is used by the plant model
to bias turtle heading in the direction of high water concentration.

The root model. The open L-system representing the root model
makes use of arrays that specify parameters for each branching order
(main axis, its daughter axes, etc.). The parameter values are loosely
based on those reported by Clausnitzer and Hopmans [12].

#define N 3 /* max. branching order + 1 */
Define: f array
Req[N] = f0.1, 0.4, 0.05g, /* requested nutrient intake */
MinReq[N] = f0.01, 0.06, 0.01g, /* minimum nutrient intake */
ElRate[N] = f0.55, 0.25, 0.55g, /* maximum elongation rate */
MaxLen[N] = f200, 5, 0.8g, /* maximum branch length */
Sens[N] = f10, 0, 0g, /* sensitivity to gradient */
Dev[N] = f30, 75, 75g, /* deviation in heading */
Del[N–1] = f30, 60g, /* delay in branch growth */
BrAngle[N–1] = f90, 90g, /* branching angle */
BrSpace[N–1] = f1, 0.5g /* distance between branches */
g

!: A(0,0,0)?E(Req[0],Sens[0])

p1: A(n,s,b) > ?E(c,�) : (s > MaxLen[n]) || (c < MinReq[n]) ! "

p2: A(n,s,b) > ?E(c,�) :
(n >= N–1) || (b < BrSpace[n]) fh=c/Req[n]*ElRate[n];g
! +(nran(�,Dev[n]))F(h) A(n,s+h,b+h)?E(Req[n],Sens[n])

p3: A(n,s,b) > ?E(c,�) :
(n < N–1) && (b >= BrSpace[n]) fh=c/Req[n]*ElRate[n];g
! +(nran(�,Dev[n]))B(n,0)F(h)

/(180)A(n,s+h,h)?E(Req[n],Sens[n])

p4: B(n,t) : t < Del[n] ! B(n,t+1)
p5: B(n,t) : t >= Del[n]

! [+(BrAngle[n])A(n+1,0,0)?E(Req[n+1],Sens[n+1])]
p6: ?E(c,�) ! "

The development starts with an apex A followed by a communica-
tion module ?E. The parameters of the apex represent the branch
order (0 for the main axis, 1 for its daughter axes, etc.), current axis
length, and distance (along the axis) to the nearest branching point.

Figure 9: A two-dimensional model of a root interacting with water
in soil. Background colors represent concentrations of water diffus-
ing in soil (blue: high, black: low). The initial and boundary values
have been set using a paint program.

Figure 10: A three-dimensional extension of the root model. Water
concentration is visualized by semi-transparent iso-surfaces [55]
surrounding the roots. As a result of competition for water, the
roots grow away from each other. The divergence between their
main axes depends on the spread of the rootlets, which grow faster
on the left then on the right.

Productions p1 to p3 describe possible fates of the apex as described
below.

If the length s of a branch axis exceeds a predefined maximum value
MaxLen[n] characteristic to the branch order n, or the amount
of water c received by the apex is below the required minimum
MinReq[n], the apex dies, terminating the growth of the axis (pro-
duction p1).

If the branch order n is equal to the maximum value assumed in the
model (N � 1), or the distance b to the closest branching point on
the axis is less than the threshold value BrSpace[n], the apex adds
a new segment F to the axis (production p2). The length h of F
is the product of the nominal growth increment ElRate[n] and the
ratio of the amount of water received by the apex c to the amount
requested Req[n]. The new segment is rotated with respect to its
predecessor by an angle nran(�;Dev[n]), where nran is a random
function with a normal distribution. The mean value �, returned by
the environment, biases the direction of growth towards regions of

2-20

higher water concentration. The standard deviation Dev[n] char-
acterizes the tendency of the root apex to change direction due to
various factors not included explicitly in the model.

If the branch order n is less than the maximum value assumed in the
model (N � 1), and the distance b to the closest branching point on
the axis is equal to or exceeds the threshold value BrSpace[n], the
apex creates a new branch initial B (production p3). Other aspects
of apex behavior are the same as those described by production p2.

After the delay of Del[n] steps (production p4), the branch initialB
is transformed into an apex A followed by the communication mod-
ule ?E (production p5), giving rise to a new root branch. Production
p6 removes communication modules that are no longer needed.

Simulations. A sample two-dimensional structure obtained using
the described model is shown in Figure 9. The apex of the main axis
follows the gradient of water concentration, with small deviations
due to random factors. The apices of higher-order axes are not
sensitive to the gradient and change direction at random, with a
larger standard deviation. The absorption of water by the root and
the rootlets decreases water concentration in their neighborhood;
an effect that is not fully compensated by water diffusion from the
water-rich areas. Low water concentration stops the development
of some rootlets before they have reached their potential full length.

Figure 10 presents a three-dimensional extension of the previous
model. As a result of competition for water, the main axes of the
roots diverge from each other (left). If their rootlets grow more
slowly, the area of influence of each root system is smaller and
the main axes are closer to each other (right). This behavior is
an emergent property of interactions between the root modules,
mediated by the environment.

8 MODELS OF TREES CONTROLLED BY LIGHT

Background. Light is one of the most important factors affect-
ing the development of plants. In the essentially two-dimensional
structures discussed in Section 5, competition for light could be
considered in a manner similar to collision detection between leaves
and apices. In contrast, competition for light in three-dimensional
structures must be viewed as long-range interaction. Specifically,
shadows cast by one branch may affect other branches at significant
distances.

The first simulations of plant development that take the local light
environment into account are due to Greene [25]. He considered
the entire sky hemisphere as a source of illumination and computed
the amount of light reaching specific points of the structure by
casting rays towards a number of points on the hemisphere. Another
approach was implemented by Kanamaru et al. [35], who computed
the amount of light reaching a given sampling point by considering
it a center of projection, from which all leaf clusters in a tree were
projected on a surrounding hemisphere. The degree to which the
hemisphere was covered by the projected clusters indicated the
amount of light received by the sampling point. In both cases,
the models of plants responded to the amount and the direction
of light by simulating heliotropism, which biased the direction of
growth towards the vector of the highest intensity of incoming light.
Subsequently, Chiba et al. extended the models by Kanamaru et
al. using more involved tree models that included a mechanism
simulating the flow of hypothetical endogenous information within
the tree [10, 11]. A biologically better justified model, formulated
in terms of production and use of photosynthates by a tree, was

proposed by Takenaka [52]. The amount of light reaching leaf
clusters was calculated by sampling a sky hemisphere, as in the work
by Greene. Below we reproduce the main features of the Takenaka’s
model using the formalism of open L-systems. Depending on the
underlying tree architecture, it can be applied to synthesize images
of deciduous and coniferous trees. We focus on a deciduous tree,
which requires a slightly smaller number of productions.

Communication specification. The plant interacts with the envi-
ronment using communication modules ?E(r). A message sent by
the plant includes turtle position ~P , which represents the center of a
spherical leaf cluster, and the value of parameter r, which represents
the cluster’s radius. The environment responds by setting r to the
flux [14] of light from the sky hemisphere, reaching the cluster.

The model of the environment. Once all messages describing
the current distribution of leaves on a tree have been received, the
environmental process computes the extent of the tree in the x, y,
and z directions, encompasses the tree in a tight grid (32 � 32 �
32 voxels in our simulations), and allocates leaf clusters to voxels
to speed up further computations. The environmental process then
estimates the light flux Φ from the sky hemisphere reaching each
cluster (shadows cast by the branches are ignored). To this end,
the hemisphere is represented by a set of directional light sources
S (9 in the simulations). The flux densities (radiosities) B of the
sources approximate the non-uniform distribution of light from the
sky (cf. [52]). For each leaf cluster Li and each light source S, the
environment determines the set of leaf clusters Lj that may shade
Li. This is achieved by casting a ray from the center of Li in the
direction of S and testing for intersections with other clusters (the
grid accelerates this process). In order not to miss any clusters that
may partially occlude Li, the radius of each cluster Lj is increased
by the maximum value of cluster radius rmax.

To calculate the flux reaching cluster Li, this cluster and all clusters
Lj that may shade it according to the described tests are projected
on a plane P perpendicular to the direction of light from the source
S. The impact of a cluster Lj on the flux Φ reaching cluster Li is
then computed according to the formula:

Φ = (Ai �Aij)B +Aij�B

where Ai is the area of the projection of Li on P , Aij is the area
of the intersection between projections of Li and Lj , and � is the
light transmittance through leaf cluster Lj (equal to 0.25 in the
simulations). If several clusters Lj shade Li, their influences are
multiplied. The total flux reaching cluster Li is calculated as the
sum of the fluxes received from each light source S.

The plant model. In addition to the communication module ?E,
the plant model includes the following types of modules:

� Apex A(vig; del). Parameter vig represents vigor, which deter-
mines the length of branch segments (internodes) and the diam-
eter of leaf clusters produced by the apex. Parameter del is used
to introduce a delay, needed for propagating products of photo-
synthesis through the tree structure between consecutive stages
of development (years).

� Leaf L(vig; p; age; del). Parameters denote the leaf radius vig,
the amount of photosynthates produced in unit time according
to the leaf’s exposure to light p, the number of years for which
a leaf has appeared at a given location age, and the delay del,
which plays the same role as in the apices.

� Internode F (vig). Consistent with the turtle interpretation, the
parameter vig indicates the internode length.

2-21

� Branch width symbol !(w; p; n), also used to carry the endoge-
nous information flow. The parameters determine: the width of
the following internode w, the amount of photosynthates reach-
ing the symbol’s location p, and the number of terminal branch
segments above this location n.

The corresponding L-system is given below.

#define ' 137.5 /* divergence angle */
#define �0 5 /* direction change - no branching */
#define �1 20 /* branching angle - main axis */
#define �2 32 /* branching angle - lateral axis */
#define W 0.02 /* initial branch width */
#define VD 0.95 /* apex vigor decrement */
#define Del 30 /* delay */
#define LS 5 /* how long a leaf stays */
#define LP 8 /* full photosynthate production */
#define LM 2 /* leaf maintenance */
#define PB 0.8 /* photosynthates needed for branching */
#define PG 0.4 /* photosynthates needed for growth */
#define BM 0.32 /* branch maintenance coefficient */
#define BE 1.5 /* branch maintenance exponent */
#define Nmin 25 /* threshold for shedding */
Consider: ?E[]!L /* for context matching */

!: !(W,1,1)F(2)L(1,LP,0,0)A(1,0)[!(0,0,0)]!(W,0,1)

p1: A(vig,del) : del<Del ! A(vig,del+1)
p2: L(vig,p,age,del) : (age<LS)&&(del<Del–1) ! L(vig,p,age,del+1)
p3: L(vig,p,age,del) : (age<LS)&&(del==Del–1)

! L(vig,p,age,del+1)?E(vig*0.5)
p4: L(vig,p,age,del) > ?E(r) : (age<LS) && (r*LP>=LM)

&& (del == Del)! L(vig,LP*r–LM,age+1,0)
p5: L(vig,p,age,del) > ?E(r) : ((age == LS)||(r*LP<=LM))

&& (del == Del) ! L(0,0,LS,0)

p6: ?E(r) < A(vig,del) : r*LP–LM>PB fvig=vig*VD;g
! /(')[+(�2)!(W,–PB,1)F(vig)L(vig,LP,0,0)A(vig,0)

[!(0,0,0)]!(W,0,1)]
–(�1)!(W,0,1)F(vig)L(vig,LP,0,0)/A(vig,0)

p7: ?E(r) < A(vig,del) : r*LP–LM > PG fvig=vig*VD;g
! /(')–(�0)[!(0,0,0)]

!(W,–PG,1)F(vig)L(vig,LP,0,0)A(vig,0)
p8: ?E(r) < A(vig,del) : r*LP–LM <= PG ! A(vig,0)
p9: ?E(r) ! "

p10: !(w0,p0,n0) > L(vig,pL,age,del) [!(w1,p1,n1)]!(w2,p2,n2) :
fw=(w1ˆ2+w2ˆ2)ˆ0.5; p=p1+p2+pL–BM*(w/W)ˆBE;g
(p>0) || (n1+n2 >=Nmin) ! !(w,p,n1+n2)

p11: !(w0,p0,n0) > L(vig,pL,age,del) [!(w1,p1,n1)]!(w2,p2,n2)
! !(w0,0,0)L%

The simulation starts with a structure consisting of a branch segment
F , supporting a leaf L and an apex A (axiom !). The first branch
width symbol ! defines the segment width. Two additional symbols
! following the apex create “virtual branches," needed to provide
proper context for productions p10 and p11. The tree grows in stages,
with the delay of Del + 1 derivation steps between consecutive
stages introduced by production p1 for the apices and p2 for the
leaves. Immediately before each new growth stage, communication
symbols are introduced to inform the environment about the location
and size of the leaf clusters (p3). If the flux r returned by the
environment results in the production of photosynthates r � LP

exceeding the amount LM needed to maintain a cluster, it remains
in the structure (p4). Otherwise it becomes a liability to the tree and

0 4 8 1612 20 24
0

8

128

512

32768

2

32

2048

8192

year

nu
m

be
r

of
 te

rm
in

al
s

Figure 11: The number of terminal branch segments resulting from
unrestricted bifurcation of apices (continuous line), compared to the
number of segments generated in a simulation (isolated points)

dies (p5). Another condition to production p5 prevents a leaf from
occupying the same location for more than LS years.

The flux r also determines the fate of the apex, captured by pro-
ductions p6 to p8. If the amount of photosynthates r � LP � LM

transported from the nearby leaf exceeds a threshold value PB, the
apex produces two new branches (p6). The second parameter in
the first branch symbol ! is set to �PB, to subtract the amount
of photosynthates used for branching from the amount that will be
transported further down. The length of branch segments vig is
reduced with respect to the mother segment by a predefined factor
V D, reflecting a gradual decrease in the vigor of apices with age.
The branch width modules ! following the first apex A are intro-
duced to provide context required by productions p10 and p11, as in
the axiom.

If the amount of photosynthates r �LP �LM transported from the
leaf is insufficient to produce new branches, but above the threshold
PG, the apex adds a new segment F to the current branch axis
without creating a lateral branch (p7). Again, a virtual branch
containing the branch width symbol ! is being added to provide
context for productions p10 and p11.

If the amount of photosynthates is below PG, the apex remains dor-
mant (p8). Communication modules no longer needed are removed
from the structure (p9).

Production p10 captures the endogenous information flow from
leaves and terminal branch segments to the base of the tree. First, it
determines the radius w of the mother branch segment as a function
of the radii w1 and w2 of the supported branches:

w =
p
w2

1 + w2
2:

Thus, a cross section of the mother segment has an area equal to the
sum of cross sections of the supported segments, as postulated in
the literature [40, 46]. Next, production p10 calculates the flow p of
photosynthates into the mother segment. It is defined as the sum of
the flows pL, p1 and p2 received from the associated leafL and from
both daughter branches, decreased by the amountBM �(w=W)BE

representing the cost of maintaining the mother segment. Finally,
production p10 calculates the number of terminal branch segments
n supported by the mother segment as the sum of the numbers of
terminal segments supported by the daughter branches, n1 and n2.

Production p10 takes effect if the flow p is positive (the branch is
not a liability to the tree), or if the number n of supported terminals
is above a threshold Nmin. If these conditions are not satisfied,

2-22

Figure 12: A tree model with branches competing for access to
light, shown without the leaves

Figure 13: A climbing plant growing on the tree from the previous
figure

production p11 removes (sheds) the branch from the tree using the
cut symbol %.

Simulations. The competition for light between tree branches is
manifested by two phenomena: reduced branching or dormancy
of apices in unfavorable local light conditions, and shedding of

Figure 14: A model of deciduous trees competing for light. The
trees are shown in the position of growth (top) and moved apart
(bottom) to reveal the adaptation of crown geometry to the presence
of the neighbor tree.

branches which do not receive enough light to contribute to the
whole tree. Both phenomena limit the extent of branching, thus
controlling the density of the crown. This property of the model
is supported by the simulation results shown in Figure 11. If the
growth was unlimited (production p6 was always chosen over p7

and p8), the number of terminal branch segments would double
every year. Due to the competition for light, however, the number
of terminal segments observed in an actual simulation increases
more slowly. For related statistics using a different tree architecture
see [52].

A tree image synthesized using an extension of the presented model
is shown in Figure 12. The key additional feature is a gradual
reduction of the branching angle of a young branch whose sister
branch has been shed. As the result, the remaining branch assumes
the role of the leading shoot, following the general growth direction
of its supporting segment. Branch segments are represented as
texture-mapped generalized cylinders, smoothly connected at the
branching points (cf. [6]). The bark texture was created using a
paint program.

As an illustration of the flexibility of the modeling framework pre-
sented in this paper, Figure 13 shows the effect of seeding a hypo-
thetical climbing plant near the same tree. The plant follows the
surface of the tree trunk and branches, and avoids excessively dense
colonization of any particular area. Thus, the model integrates sev-

2-23

Figure 15: A model of coniferous trees competing for light. The
trees are shown in the position of growth (top) and moved apart
(bottom).

eral environmentally-controlled phenomena: the competition of tree
branches for light, the following of surfaces by a climbing plant, and
the prevention of crowding as discussed in Section 6. Leaves were
modeled using cubic patches (cf. [46]).

In the simulations shown in Figure 14 two trees described by the
same set of rules (younger specimens of the tree from Figure 12)
compete for light from the sky hemisphere. Moving the trees apart
after they have grown reveals the adaptation of their crowns to the
presence of the neighbor tree. This simulation illustrates both the
necessity and the possibility of incorporating the adaptive behavior
into tree models used for landscape design purposes.

The same phenomenon applies to coniferous trees, as illustrated
in Figure 15. The tree model is similar to the original model by
Takenaka [52] and can be viewed as consisting of approximately
horizontal tiers (as discussed in Section 5) produced in sequence
by the apex of the tree stem. The lower tiers are created first and
therefore potentially can spread more widely then the younger tiers
higher up (the phase effect [46]). This pattern of development is
affected by the presence of the neighboring tree: the competition
for light prevents the crowns from growing into each other.

The trees in Figure 15 retain branches that do not receive enough
light. In contrast, the trees in the stand presented in Figure 16 shed
branches that do not contribute photosynthates to the entire tree,

Figure 16: Relationship between tree form and its position in a
stand.

using the same mechanism as described for the deciduous trees.
The resulting simulation reveals essential differences between the
shape of the tree crown in the middle of a stand, at the edge, or
at the corner. In particular, the tree in the middle retains only
the upper part of its crown. In lumber industry, the loss of lower
branches is usually a desirable phenomenon, as it reduces knots
in the wood and the amount of cleaning that trees require before
transport. Simulations may assist in choosing an optimal distance
for planting trees, where self-pruning is maximized, yet there is
sufficient space between trees too allow for unimpeded growth of
trunks in height and diameter.

9 CONCLUSIONS

In this paper, we introduced a framework for the modeling and visu-
alization of plants interacting with their environment. The essential
elements of this framework are:

� a system design, in which the plant and the environment are
treated as two separate processes, communicating using a stan-
dard interface, and

� the language of open L-systems, used to specify plant models
that can exchange information with the environment.

We demonstrated the operation of this framework by implementing
models that capture collisions between branches, the propagation of
clonal plants, the development of roots in soil, and the development
of tree crowns competing for light. We found that the proposed
framework makes it possible to easily create and modify models
spanning a wide range of plant structures and environmental pro-
cesses. Simulations of the presented phenomena were fast enough
to allow interactive experimentation with the models (Table 1).

There are many research topics that may be addressed using the
simulation and visualization capabilities of the proposed framework.
They include, for instance:

� Fundamental analysis of the role of different forms of informa-
tion flow in plant morphogenesis (in particular, the relationship
between endogenous and exogenous flow). This is a continuation

2-24

Number of Derivation Timea

Fig. branch leaf steps yrs sim. render.
segments clusters

5 138 140 5 5 1 s 1 s
7 786 229 182 NA 50 s 2 s
9 4194 34b 186 NA 67 s 3 s

10 37228 448b 301 NA 15 min 70 s
12 22462 19195 744 24 22 min 13 sc

15 13502 3448 194 15 4 min 8 sd

aSimulation and rendering using OpenGL on a 200MHz/64MB Indigo2 Extreme
bactive apices
cwithout generalized cylinders and texture mapping
dbranching structure without needles

Table 1: Numbers of primitives and simulation/rendering times for
generating and visualizing selected models

of the research pioneered by Bell [4] and Honda et al. [7, 33].

� Development of a comprehensive plant model describing the
cycling of nutrients from the soil through the roots and branches
to the leaves, then back to the soil in the form of substances
released by fallen leaves.

� Development of models of specific plants for research, crop and
forest management, and for landscape design purposes. The
models may include environmental phenomena not discussed in
this paper, such as the global distribution of radiative energy in
the tree crowns, which affects the amount of light reaching the
leaves and the local temperature of plant organs.

The presented framework itself is also open to further research. To
begin, the precise functional specification of the environment, im-
plied by the design of the modeling framework, is suitable for a
formal analysis of algorithms that capture various environmental
processes. This analysis may highlight tradeoffs between time,
memory, and communication complexity, and lead to programs
matching the needs of the model to available system resources in an
optimal manner.

A deeper understanding of the spectrum of processes taking place in
the environment may lead to the design of a mini-language for envi-
ronment specification. Analogous to the language of L-systems for
plant specification, this mini-language would simplify the modeling
of various environments, relieving the modeler from the burden of
low-level programming in a general-purpose language. Fleischer
and Barr’s work on the specification of environments supporting
collisions and reaction-diffusion processes [20] is an inspiring step
in this direction.

Complexity issues are not limited to the environment, but also arise
in plant models. They become particularly relevant as the scope of
modeling increases from individual plants to groups of plants and,
eventually, entire plant communities. This raises the problem of
selecting the proper level of abstraction for designing plant models,
including careful selection of physiological processes incorporated
into the model and the spatial resolution of the resulting structures.

The complexity of the modeling task can be also addressed at the
level of system design, by assigning various components of the
model (individual plants and aspects of the environment) to different
components of a distributed computing system. The communication
structure should then be redesigned to accommodate information

transfers between numerous processes within the system.

In summary, we believe that the proposed modeling methodology
and its extensions will prove useful in many applications of plant
modeling, from research in plant development and ecology to land-
scape design and realistic image synthesis.

Acknowledgements

We would like to thank Johannes Battjes, Campbell Davidson, Art
Diggle, Heinjo During, Michael Guzy, Naoyoshi Kanamaru, Bruno
Moulia, Zbigniew Prusinkiewicz, Bill Remphrey, David Reid, and
Peter Room for discussions and pointers to the literature rele-
vant to this paper. We would also like to thank Bruno Andrieu,
Mark Hammel, Jim Hanan, Lynn Mercer, Chris Prusinkiewicz, Pe-
ter Room, and the anonymous referees for helpful comments on
the manuscript. Most images were rendered using the ray tracer
rayshade by Craig Kolb. This research was sponsored by grants
from the Natural Sciences and Engineering Research Council of
Canada.

REFERENCES

[1] AGRAWAL, P. The cell programming language. Artificial Life 2, 1
(1995), 37–77.

[2] ARVO, J., AND KIRK, D. Modeling plants with environment-sensitive
automata. In Proceedings of Ausgraph’88 (1988), pp. 27 – 33.

[3] BELL, A. Plant form: An illustrated guide to flowering plants. Oxford
University Press, Oxford, 1991.

[4] BELL, A. D. The simulation of branching patterns in modular or-
ganisms. Philos. Trans. Royal Society London, Ser. B 313 (1986),
143–169.

[5] BELL, A. D., ROBERTS, D., AND SMITH, A. Branching patterns: the
simulation of plant architecture. Journal of Theoretical Biology 81
(1979), 351–375.

[6] BLOOMENTHAL, J. Modeling the Mighty Maple. Proceedings of SIG-
GRAPH ’85 (San Francisco, California, July 22-26, 1985), in Com-
puter Graphics, 19, 3 (July 1985), pages 305–311, ACM SIGGRAPH,
New York, 1985.

[7] BORCHERT, R., AND HONDA, H. Control of development in the bi-
furcating branch system of Tabebuia rosea: A computer simulation.
Botanical Gazette 145, 2 (1984), 184–195.

[8] BORCHERT, R., AND SLADE, N. Bifurcation ratios and the adaptive
geometry of trees. Botanical Gazette 142, 3 (1981), 394–401.

[9] CHEN, S. G., CEULEMANS, R., AND IMPENS, I. A fractal based Populus
canopy structure model for the calculation of light interception. Forest
Ecology and Management (1993).

[10] CHIBA, N., OHKAWA, S., MURAOKA, K., AND MIURA, M. Visual sim-
ulation of botanical trees based on virtual heliotropism and dormancy
break. The Journal of Visualization and Computer Animation 5 (1994),
3–15.

[11] CHIBA, N., OHSHIDA, K., MURAOKA, K., MIURA, M., AND SAITO, N. A
growth model having the abilities of growth-regulations for simulating
visual nature of botanical trees. Computers and Graphics 18, 4 (1994),
469–479.

[12] CLAUSNITZER, V., AND HOPMANS, J. Simultaneous modeling of tran-
sient three-dimensional root growth and soil water flow. Plant and Soil
164 (1994), 299–314.

[13] COHEN, D. Computer simulation of biological pattern generation pro-
cesses. Nature 216 (October 1967), 246–248.

[14] COHEN, M., AND WALLACE, J. Radiosity and realistic image synthesis.
Academic Press Professional, Boston, 1993. With a chapter by P.
Hanrahan and a foreword by D. Greenberg.

2-25

[15] DE REFFYE, P., HOULLIER, F., BLAISE, F., BARTHELEMY, D., DAUZAT,
J., AND AUCLAIR, D. A model simulating above- and below-ground
tree architecture with agroforestry applications. Agroforestry Systems
30 (1995), 175–197.

[16] DIGGLE, A. J. ROOTMAP - a model in three-dimensional coordinates
of the structure and growth of fibrous root systems. Plant and Soil 105
(1988), 169–178.

[17] DONG, M. Foraging through morphological response in clonal herbs.
PhD thesis, Univeristy of Utrecht, October 1994.

[18] FISHER, J. B. How predictive are computer simulations of tree archi-
tecture. International Journal of Plant Sciences 153 (Suppl.) (1992),
137–146.

[19] FISHER, J. B., AND HONDA, H. Computer simulation of branching
pattern and geometry in Terminalia (Combretaceae), a tropical tree.
Botanical Gazette 138, 4 (1977), 377–384.

[20] FLEISCHER, K. W., AND BARR, A. H. A simulation testbed for the study
of multicellular development: The multiple mechanisms of morpho-
genesis. In Artificial Life III, C. G. Langton, Ed. Addison-Wesley,
Redwood City, 1994, pp. 389–416.

[21] FORD, E. D., AVERY, A., AND FORD, R. Simulation of branch growth
in the Pinaceae: Interactions of morphology, phenology, foliage pro-
ductivity, and the requirement for structural support, on the export of
carbon. Journal of Theoretical Biology 146 (1990), 15–36.

[22] FORD, H. Investigating the ecological and evolutionary significance of
plant growth form using stochastic simulation. Annals of Botany 59
(1987), 487–494.

[23] FRIJTERS, D., AND LINDENMAYER, A. A model for the growth and
flowering of Aster novae-angliae on the basis of table (1,0)L-systems.
In L Systems, G. Rozenberg and A. Salomaa, Eds., Lecture Notes in
Computer Science 15. Springer-Verlag, Berlin, 1974, pp. 24–52.

[24] GARDNER, W. R. Dynamic aspects of water availability to plants. Soil
Science 89, 2 (1960), 63–73.

[25] GREENE, N. Voxel space automata: Modeling with stochastic growth
processes in voxel space. Proceedings of SIGGRAPH ’89 (Boston,
Mass., July 31–August 4, 1989), in Computer Graphics 23, 4 (August
1989), pages 175–184, ACM SIGGRAPH, New York, 1989.

[26] GREENE, N. Detailing tree skeletons with voxel automata. SIG-
GRAPH ’91 Course Notes on Photorealistic Volume Modeling and
Rendering Techniques, 1991.

[27] GUZY, M. R. A morphological-mechanistic plant model formalized
in an object-oriented parametric L-system. Manuscript, USDA-ARS
Salinity Laboratory, Riverside, 1995.

[28] HANAN, J. Virtual plants — Integrating architectural and physiological
plant models. In Proceedings of ModSim 95 (Perth, 1995), P. Binning,
H. Bridgman, and B. Williams, Eds., vol. 1, The Modelling and Sim-
ulation Society of Australia, pp. 44–50.

[29] HANAN, J. S. Parametric L-systems and their application to the mod-
elling and visualization of plants. PhD thesis, University of Regina,
June 1992.

[30] HART, J. W. Plant tropisms and other growth movements. Unwin
Hyman, London, 1990.

[31] HERMAN, G. T., AND ROZENBERG, G. Developmental systems and
languages. North-Holland, Amsterdam, 1975.

[32] HONDA, H. Description of the form of trees by the parameters of the
tree-like body: Effects of the branching angle and the branch length
on the shape of the tree-like body. Journal of Theoretical Biology 31
(1971), 331–338.

[33] HONDA, H., TOMLINSON, P. B., AND FISHER, J. B. Computer simulation
of branch interaction and regulation by unequal flow rates in botanical
trees. American Journal of Botany 68 (1981), 569–585.

[34] KAANDORP, J. Fractal modelling: Growth and form in biology.
Springer-Verlag, Berlin, 1994.

[35] KANAMARU, N., CHIBA, N., TAKAHASHI, K., AND SAITO, N. CG sim-
ulation of natural shapes of botanical trees based on heliotropism. The
Transactions of the Institute of Electronics, Information, and Commu-
nication Engineers J75-D-II, 1 (1992), 76–85. In Japanese.

[36] KURTH, W. Growth grammar interpreter GROGRA 2.4: A software
tool for the 3-dimensional interpretation of stochastic, sensitive growth
grammars in the context of plant modeling. Introduction and refer-
ence manual. Forschungszentrum Waldökosysteme der Universität
Göttingen, Göttingen, 1994.

[37] LIDDELL, C. M., AND HANSEN, D. Visualizing complex biological
interactions in the soil ecosystem. The Journal of Visualization and
Computer Animation 4 (1993), 3–12.

[38] LINDENMAYER, A. Mathematical models for cellular interaction in
development, Parts I and II. Journal of Theoretical Biology 18 (1968),
280–315.

[39] LINDENMAYER, A. Developmental systems without cellular interac-
tion, their languages and grammars. Journal of Theoretical Biology 30
(1971), 455–484.

[40] MACDONALD, N. Trees and networks in biological models. J. Wiley
& Sons, New York, 1983.

[41] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY,
B. P. Numerical recipes in C: The art of scientific computing. Second
edition. Cambridge University Press, Cambridge, 1992.

[42] PRUSINKIEWICZ, P. Visual models of morphogenesis. Artificial Life 1,
1/2 (1994), 61–74.

[43] PRUSINKIEWICZ, P., HAMMEL, M., HANAN, J., AND MĚCH, R. Visual
models of plant development. In Handbook of formal languages,
G. Rozenberg and A. Salomaa, Eds. Springer-Verlag, Berlin, 1996. To
appear.

[44] PRUSINKIEWICZ, P., AND HANAN, J. L-systems: From formalism
to programming languages. In Lindenmayer systems: Impacts on
theoretical computer science, computer graphics, and developmental
biology, G. Rozenberg and A. Salomaa, Eds. Springer-Verlag, Berlin,
1992, pp. 193–211.

[45] PRUSINKIEWICZ, P., JAMES, M., AND MĚCH, R. Synthetic topiary.
Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994),
pages 351–358, ACM SIGGRAPH, New York, 1994.

[46] PRUSINKIEWICZ, P., AND LINDENMAYER, A. The algorithmic beauty
of plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[47] ROOM, P. M. ‘Falling apart’ as a lifestyle: the rhizome architecture and
population growth of Salvinia molesta. Journal of Ecology 71 (1983),
349–365.

[48] ROOM, P. M., MAILLETTE, L., AND HANAN, J. Module and metamer
dynamics and virtual plants. Advances in Ecological Research 25
(1994), 105–157.

[49] ROZENBERG, G. T0L systems and languages. Information and Control
23 (1973), 357–381.

[50] SACHS, T., AND NOVOPLANSKY, A. Tree from: Architectural models
do not suffice. Israel Journal of Plant Sciences 43 (1995), 203–212.

[51] SIPPER, M. Studying artificial life using a simple, general cellular
model. Artificial Life 2, 1 (1995), 1–35.

[52] TAKENAKA, A. A simulation model of tree architecture development
based on growth response to local light environment. Journal of Plant
Research 107 (1994), 321–330.

[53] ULAM, S. On some mathematical properties connected with patterns of
growth of figures. In Proceedings of Symposia on Applied Mathematics
(1962), vol. 14, American Mathematical Society, pp. 215–224.

[54] WEBER, J., AND PENN, J. Creation and rendering of realistic trees.
Proceedings of SIGGRAPH ’95 (Los Angeles, California, August 6–
11, 1995), pages 119–128, ACM SIGGRAPH, New York, 1995.

[55] WYVILL, G., MCPHEETERS, C., AND WYVILL, B. Data structure for
soft objects. The Visual Computer 2, 4 (February 1986), 227–234.

2-26

The use of positional information in the modeling of plants

Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, Brendan Lane

Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
pwpjlarsjradekkjlaneb@cpsc.ucalgary.ca

Abstract

We integrate into plant models three elements of plant representa-
tion identified as important by artists: posture (manifested in curved
stems and elongated leaves), gradual variation of features, and the
progression of the drawing process from overall silhouette to local
details. The resulting algorithms increase the visual realism of plant
models by offering an intuitive control over plant form and support-
ing an interactive modeling process. The algorithms are united by
the concept of expressing local attributes of plant architecture as
functions of their location along the stems.

CR categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems, I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling,
J.3 [Life and Medical Sciences]: Biology.

Keywords: realistic image synthesis, interactive procedural model-
ing, plant, positional information, phyllotaxis, Chomsky grammar,
L-system, differential turtle geometry, generalized cylinder.

1 Introduction

Forward simulation of development is a well established paradigm
for modeling plants. It underlies, for example, the AMAP simula-
tion software [9] and modeling methods based on L-systems [28].
In both cases, a plant is modeled using a set of rules that describe
the emergence and growth of individual plant components. The
simulation program traces their fate over time, and integrates them
into the structure of the whole plant.

Over the years, the simulation paradigm has been extended to in-
clude a wide range of interactions between plants and their envi-
ronments [15, 21]. The resulting models have gained acceptance
as a research tool in biology and have led to increasingly convinc-
ing visualizations. In image synthesis applications, however, the
simulation-based approach has several drawbacks:

� Visual realism of the models is linked to the biological and
physical accuracy of simulations. This requires the modeler
to have a good understanding of the underlying processes,
makes comprehensive models complicated, and results in
long simulation times.

 ACM SIGGRAPH 2001 (Los Angeles, California, August12-17, 2001),
 pp. 289 - 300.

Figure 1: Selected elements of the artistic representation of plants:
(a) posture, (b) regular arrangement and gradual variation of organs
along an axis, and (c) progression from silhouette to detail in the
drawing process. Figure (a) is based on [37, page 41], (b) is redrawn
from [38, page 68], and (c) is redrawn from [24, page 13].

� Global characteristics of plant appearance, such as the curva-
ture of plant axes, the density of organ distribution, and the
overall silhouette of the plant, are emergent properties of the
models and therefore are difficult to control.

Methods for creating visually realistic representations of plants

2-27

have long been understood by artists (Figure 1). Important ele-
ments include plant posture, defined by the angles of insertion and
curvature of organs, and the arrangement and gradual variation
of organs on their supporting stems. The drawing process pro-
gresses in a global-to-local fashion, from silhouette to detail. In-
spired by the quality of botanical illustrations, we have developed
a plant modeling method that supports similar elements and pro-
cesses. The proposed method inverts the local-to-global operation
of simulation-based models by progressing from global plant char-
acteristics specified by the user to algorithmically generated details.
The algorithms are united by their use of positional information,
which we define as the position of plant components along the axes
of their supporting stems or branches. User-defined functions map
this information to morphogenetic gradients [2], which describe the
distributions of features along the axes.

The notions of positional information and morphogenetic gradients
unify and generalize several plant-modeling concepts that have al-
ready appeared in botanical and computer graphics literature. Fol-
lowing their review (Section 2), we outline our modeling software
environment, focusing on the language that we use to formally de-
scribe the algorithms and models (Section 3). We then develop the
mathematical foundations of plant modeling based on positional in-
formation: the modeling and framing of individual axes (Section 4),
and their partitioning into internodes (Section 5). In Section 6, we
present the resulting modeling method from the modeler’s perspec-
tive, and illustrate its applications using plants and plant structures
organized along a single axis. In Section 7, we address the im-
portant special case of organ arrangement in closely packed spiral
phyllotactic patterns. Finally, in Section 8, we extend the proposed
modeling method to plants with higher-order branches, including
trees. We conclude the paper with a discussion of the results, appli-
cations, and problems open for further research (Section 9). Proofs
of selected mathematical results pertinent to the use of positional
information in the modeling of plants are presented in the Appen-
dices.

2 Previous work

Applications of positional information have their origins in early
descriptive plant models created by biologists: the poplar model by
Burk et al. [7] and the larch sapling model by Remphrey and Pow-
ell [30]. In both cases, the length of lateral branches was expressed
as a function of their position on the main stem. The models were
visualized as two-dimensional line drawings.

In computer graphics, a related concept was first applied to model
trees by Reeves and Blau [29], who expressed the length of first-
order branches as the distance from the branching point to a user-
specified surface defining the silhouette of the tree. Higher-order
branches were generated algorithmically, with “many parameters
inherited from the parent.”

A more elaborated model was introduced by Weber and Penn [36].
They characterized a tree using several positional functions, and
pointed to an advantage of this technique: “Since our parameters
can address the character of an entire stem and not just its segment-
to-segment nature, we allow users to make changes on a level they
can more easily understand and visualize.”

Lintermann and Deussen incorporated positional information into
their interactive plant modeling program xfrog [18, 19]. The po-
sition of a sample point along an axis may affect the length of an in-
ternode, the length of a branch, the magnitude of a branching angle,
and other attributes. Functions that map positions to attribute values

Figure 2: A snapshot of the L-studio/cpfg screen. The model can
be manipulated using textual and graphical editors displayed on the
right side of the screen. In this example, the outline of the fishbone
water fern leaf (Blechnum nudum) is being defined using a graph-
ical function editor. A gallery under the editor’s window provides
access to various functions used in this model. The second row of
tabs near the top of the screen makes it possible to select other ed-
itors, such as the textual editor of the L-system that has been used
to specify the algorithmic structure of this model.

can be specified graphically, by editing function plots, or textually,
by editing algebraic expressions. The authors did not describe in
detail the algorithms underlying their software, but experience with
xfrog was an inspiration for our work. From the user interface
perspective, the editing of function plots is an extension of the in-
teractive manipulation of plant parameters using sliders [23, 28].

3 The modeling environment

We have adapted the L-system-based modeling software L-
studio/cpfg [27] to the needs of modeling using positional in-
formation. A screenshot of the system in operation is shown in
Figure 2.

An L-studio model consists of two basic components: a description
of a generative algorithm in the cpfg modeling language [25], and
a set of graphically defined entities. These entities can be defined
and manipulated using the L-studio function, curve, surface and
material editors [27], or imported from external sources.

The fundamental constructs of the cpfg language are rewriting
rules, or productions. The program supports both parallel applica-
tion of productions, characteristic of L-systems [28], and sequen-
tial application of productions, characteristic of Chomsky gram-
mars [8]. In the context of plant modeling, these formalisms com-
pare as follows.

L-system productions capture the development of plant compo-
nents over time. For example, the division of a mother cell A
into two daughter cells B and C can be described by the produc-
tion A �!BC. In the case of multicellular organisms, L-system
productions are applied in parallel to advance time consistently in
all cells. The simulation is completed when the organism reaches
a predefined terminal age, corresponding to a given number of
derivation steps.

2-28

Chomsky grammars, in contrast, characterize the structure of
plants, that is, the distribution of their features and components in
space. The fact that organismA consists of partsB and C can again
be expressed by a production, for example A ; BC, but such a
decomposition rule has a different meaning and functions in a dif-
ferent way than its L-system counterpart. Since non-overlapping
substructures can be partitioned independently from each other, the
decomposition rules may be applied sequentially. Furthermore, the
appropriate condition for terminating a decomposition process is
the reaching of terminal symbols, which represent components that
cannot be divided further.

Our intended use of positional information is to capture the distribu-
tion of plant features and components in space. Consequently, the
meaning and formal properties of productions used in this paper
correspond with the definition of Chomsky grammars. In the big
picture of a complete plant modeling software design, the switch
from L-systems to Chomsky grammars amounts to a relatively mi-
nor modification of the code. Consequently, our modeling lan-
guage, outlined below, expands, rather than replaces, features of the
earlier purely L-system-based implementations of the cpfg mod-
eling language [13, 28].

As in the case of L-systems, a branching structure is represented
by a bracketed string of modules (symbols with associated pa-
rameters). Matching pairs of brackets enclose branches. Deriva-
tion begins with an initial string identified by the keyword axiom.
Context-free productions are specified using the syntax

pred : fblock1g cond fblock2g; succ; (1)

where pred is the predecessor (a single module), and succ is the
successor (a bracketed string of modules) [25]. The optional field
cond is the condition (logical expression) that guards production
application. Fields block1 and block2 are sequences of C state-
ments. The first block is executed before the evaluation of the con-
dition. If the condition is true, the second block is also evaluated
and the production is applied. For example, the rule

A(x) : fy = x+2; g y � 5 fz = y=3; g; B(z)C(z+1) (2)

can be applied to module A(4), subdividing it into modules
B(2)C(3) .

The cpfg language also supports context-sensitive productions, in
which the strict predecessor (module being replaced) pred may
be preceded by one or more modules constituting the left context,
and/or followed by modules constituting the right context. These
contexts are separated from the strict predecessor by symbols <
and > respectively. For example, production

A(x) < B(y) > C(z) : x+ z > 0;M(y=2)N(y=2) (3)

decomposes module B into a pair of modules M and N , provided
that module B appears in the context of modules A and C, and the
sum of their parameters is greater then 0. In the scope of this paper,
context is limited to query symbols, discussed later on.

In order to conveniently specify morphogenetic gradients inherent
in the use of positional information, we have extended the cpfg
modeling language with function calls of the form func(id ; x). The
integer number id is the identifier of a planar B-spline curve and the
real number x is the function argument. Function plots are manip-
ulated using the interactive function editor (Figure 2). It constrains
the motion of the control points that define the function plots to
guarantee that they assign a unique value y to each argument x.

The modeling language also supports function calls of the form
curv eX (id ; s), curv eY(id ; s), curveZ(id ; s), and tanX(id ; s),

tanY(id ; s), tanZ(id ; s), where id is the identifier of an arbitrary
B-spline curve. These calls return coordinates of a point on the
curve id and of the tangent vector at this point, given the arc-length
distance s from the curve origin. The call curveLen (id) returns the
total length of the curve.

H\
→

/
L

−+

U
→

→

^

&

Figure 3: Controlling
the turtle in three dimen-
sions.

To create a graphical model, the
derived string is scanned sequen-
tially and reserved modules are
interpreted as commands to a
LOGO-style turtle [28]. At any
point within the string, the turtle
state is characterized by a posi-
tion vector ~P and three mutually
perpendicular orientation vectors
~H, ~L, and ~U that indicate the tur-
tle’s heading, the direction to the

left, and the up direction (Figure 3). The coordinates of these vec-
tors can be accessed using query modules of the form ?X(x; y; z),
where X is the vector to be accessed, one of P , H , L, or U [26].
Module F causes the turtle to draw a line in the current direction,
while modules f causes the turtle to move without drawing a line.
Modules +, �, &, ^, =, and n rotate the turtle around one of the
vectors ~H; ~L, or ~U , as shown in Figure 3. Many symbols are over-
loaded; for example, + and � denote the modules that rotate the
turtle as well as the usual arithmetic operations. The length of the
line and the magnitude of the rotation angle can be given globally
or specified as parameters of individual modules. Branches are cre-
ated using a stack mechanism: the opening square bracket pushes
the current state of the turtle on the stack, and the closing bracket
restores it to the last saved state. Other interpreted symbols will be
introduced with the sample models.

4 Modeling curved limbs

The shape of curved limbs, such as stems and elongated leaves, is
“vital in capturing the character of a species” [37]. In computer
graphics, this was first recognized by Bloomenthal [5], who ap-
plied generalized cylinders to model tree branches. A generalized
cylinder is obtained by sweeping a planar generating curve, which
determines the organ’s cross section, along a carrier curve [16] that
defines the organ’s axis. The generating curve may be closed, as
is typically the case for stems, or open, as for thin leaves, and it
may change size and shape while being swept [33]. It also must
be properly oriented with respect to the carrier curve. The Frenet
frame [34], which is frequently used for this purpose, creates well
known problems along straight sections of the carrier curve and at
inflection points, where it is not defined. It also twists 180Æ in the
proximity of the inflection points [6]. To avoid these problems, we
propose an alternative solution based on the use of turtle geome-
try. This solution subsumes the Frenet frame, as well as the twist-
minimizing parallel transport frame [3, 6, 14], as special cases. The
turtle frame was previously used by Jirasek et al. [15] in the context
of biomechanical modeling of plant branches.

The carrier curve is defined as a sequence of infinitesimal turtle
movements. Let s denote the arc-length distance of the turtle from
the origin of this curve. To define a smooth curve, we specify func-
tions !H(s), !L(s) and !U(s) that characterize the rates of tur-
tle’s rotations around the axes ~H~L~U as the turtle moves (we use
the term “rate of rotation” although s is a spatial coordinate and
not time). The infinitesimal rotations d
H , d
L and d
U between

2-29

curve points ~P (s) and ~P (s+ ds) are then given by the equations:

d
H = !H(s)ds; d
L = !L(s)ds; d
U = !U(s)ds: (4)

This specification yields a uniquely defined curve and moving refer-
ence frame (Appendix A.1). After replacing the infinitesimal incre-
ments ds by finite increments �s, we obtain the following straight-
forward algorithm for modeling elongated plant organs:

Algorithm 1

1 #define ` 1.0 /* total axis length */
2 #define G 7 /* cross section ID */
3 #define �s 0.02 /* turtle step */
4
5 #define !L(s) func(1,s)
6 #define !U(s) func(2,s)
7 #define !H(s) func(3,s)
8 #define �(s) func(4,s)
9 #define width(s) func(5,s)
10
11 Axiom: @#(G) A(0,0)
12
13 A(s,'): s � `
14 f�
L = !L(s)�s;
15 �
H= !H(s)�s;
16 �
U = !U(s)�s;
17 ' = '+ �(s)�s; g;
18 +(�
L) &(�
U) /(�
H)
19 /(') #(width(s)) F(�s) n(')
20 A(s+�s,')
21
22 A(s,�): s > `; �

Following the implementation of generalized cylinders in the cpfg
program [20], the generating curve is selected by expression @#(G)
in the axiom (line 11). The generalized cylinder is created recur-
sively by the first production (lines 13-20) as a sequence of slices
of length �s. The cross section size is defined by module # with the
parameter width(s) (line 19), and is linearly interpolated between
points s and s + �s. The angles of turtle rotation are calculated
according to Equation 4 in lines 14–16, and applied to the turtle
in line 18. The order of rotations represented by the symbols +,
& and = in line 18 is arbitrary, since infinitesimal rotations com-
mute. Function �(s) (line 17) rotates the generating curve around
the cylinder axis without affecting the shape of the axis. This is
convenient when defining twisted organs. The second production
(line 22) removes the apex A at the end of cylinder generation, by
replacing it with the empty symbol �. Figure 4 shows sample leaves
and stems generated by this Algorithm, with all functions specified
using the interactive function editor (Section 3).

From the user’s perspective, functions !L, !U , !H , � and width,
control bending, twist, and tapering of a generalized cylinder. Our
experience confirms Barr’s observation that such deformations are
intuitive operations for modeling three-dimensional objects [1]. On
the other hand, the user may prefer to specify the shape of an axis
directly, for example as a spline curve. If this is the case, we frame
it (i.e., compute turtle’s rotations d
U , d
L and d
H) as follows.

Let ~P (s); s 2 [0; `], be a given smooth curve. Assume that it has
been framed by a moving turtle; the turtle’s heading vector ~H thus
coincides with the tangent vector ~T to the curve for all s 2 [0; `].
Denote by ~H~L~U the turtle orientation at point ~P (s) of this curve

Figure 4: Leaves and stems of a herb lily (left) and tulip (right),
modeled using Algorithm 1. The models are based on drawings
in [38, pp. 56 and 58].

and by ~H 0 = ~H + d ~H the direction of the heading vector at
point ~P (s+ ds). Following [12], the infinitesimal rotation d~
 that
changes vector ~H to ~H 0 satisfies the equation d ~H = d~
 � ~H,
hence:

d ~H = d~
� ~H = (~Ud
U + ~Ld
L + ~Hd
H)� ~H (5)

= (~U � ~H)d
U + (~L� ~H)d
L + (~H � ~H)d
H (6)

= ~Ld
U � ~Ud
L + 0d
H : (7)

By taking dot products of the first and last expression with vectors
~L and ~U , we obtain:

d ~H � ~L = (~H 0 � ~H) � ~L = ~H 0 � ~L = d
U ; (8)

d ~H � ~U = (~H 0 � ~H) � ~U = ~H 0 � ~U = �d
L: (9)

By substituting ~T 0 for ~H 0 to emphasize that ~T 0 is a given tangent
vector to the curve being framed, we obtain finally:

d
U = ~T 0 � ~L and d
L = �~T 0 � ~U: (10)

Equations 10 constrain two rotational degrees of freedom. The third
angle d
H remains unconstrained, because it is multiplied by 0 in
Equation 7. This implies that a moving turtle frame can be assigned
to a given curve in different ways. In particular, if we set !H(s) in
such a way that vector ~L (or ~U) always lies in the osculating plane,
we obtain the Frenet frame, and if !H(s) � 0, we obtain the par-
allel transport frame. We commonly use the latter, because it min-
imizes rotations of the reference frame around the axis of the gen-
eralized cylinder. The resulting algorithm for approximating and
framing a given curve ~P (s) using a sequence of turtle motions is
given below.

Algorithm 2
1 #define P 1 /* curve ID */
2 #define K 57.29 /* radians to degrees */
3
4 Axiom: A(0) ?U(0,0,0) ?L(0,0,0)
5
6 A(s) > ?U(ux,uy ,uz) ?L(lx,ly,lz) : f s0 = s+�s g s0 � `
7 f t0x = tanX(P ,s0); t0y = tanY(P ,s0); t0z = tanZ(P ,s0);
8 �
L =K � (t0xlx + t0yly + t0zlz);
9 �
U = �K � (t0xux + t0yuy + t0zuz); g;
10 +(�
U) &(�
L) F(�s) A(s0)

The initial structure consists of apex A followed by query modules
?U and ?L (line 4). The parameter of the apex represents the cur-
rent position of the turtle, measured as its arc-length distance from

2-30

the origin of curve P . The production (lines 6 to 10) creates an or-
gan axis as a sequence of generalized cylinder slices of length �s,
as in Algorithm 1 (functions controlling the orientation and size of
the generating curve have been omitted here for simplicity). Specif-
ically, rotations �
U and �
L are calculated by multiplying (dot
product) the vectors ~U and ~L (lines 8 and 9) returned by the query
modules ?U and ?L (line 6) with the tangent vector to the curve P
returned by the tanX, tanY and tanZ function calls (line 7). The
values �
U and �
L orient the next segment of the curve, rep-
resented by module F(�s) in line 10. House-keeping productions
that erase modules A, ?U and ?L at the end of the derivation have
been omitted from this listing.

Figure 5: Allum vineale
(field garlic), modeled
using Algorithm 2 after
the photograph in [4].

A sample application of Al-
gorithm 2 is shown in Fig-
ure 5. Stems of a dry gar-
lic plant have been modeled
interactively, then framed us-
ing Algorithm 2 to orient the
generating curve. Although
the generating curve is circu-
lar in this case, its orienta-
tion is important for proper
polygonization of the result-
ing generalized cylinders.

The turtle frame also plays an
important role in orienting the
organs and branches that are
attached to an axis. Before
discussing this in detail, we
will consider the spacing of
organs along an axis.

5 Organ spacing

We call points at which organs are attached to an axis the nodes,
and the axis segments delimited by them the internodes. Let
fsig; i = 0; 1; : : : , be a sequence of node positions on an axis, and
fli = si+1 � sig be the associated sequence of internode lengths
(Figure 6a). It is straightforward to define the internode lengths us-
ing a function � of the position of one of its incident nodes, for
instance using the formula li = si+1 � si = �(si). Unfortunately,
with this definition function � does not provide a robust control
over the node distribution, because a small change in the position
of the initial node s0 may result in a totally different sequence of
the nodes that follow. For example, if s0 = 0, the function � shown
in Figure 6b will yield the sequence of node positions fsig =
0; 1; 2; 3; : : : (internode length equal to 1), but if s00 = 0:25, the se-
quence of node positions will be fs0ig = 0:25; 0:75; 1:25; 1:75; : : :
(internode length 0.5).

To achieve a more stable behavior, we observe that 1=�(s) can be
interpreted as the local density of nodes, in the sense that the integer
part of the integral

N(so; s) =

Z s

s0

ds

�(s)
(11)

represents the number of internodes between node s0 and point s on
the axis. Thus, given the initial node s0, positions of the subsequent
nodes correspond to the integer increments of the value of function
N , that is, N(so; si+1) = N(so; si)+1 (Figure 6c). The sequence
of nodes fsig defined this way is no longer critically sensitive to
the initial node position s0. Specifically, in Appendix A.2 we prove

s0
l0

s1

l1

s2
l2

s3
l3

s4
a

0

1

1 2 3 4

λ(s)

s

b

1 2 3 4
0

1

2
1/λ(s)

s

c

Figure 6: Partitioning an axis into segments. (a) The labeling of
nodes and internodes. (b) Positional information represents the in-
ternode length. The same function �(s) generates very different
node sequences (filled and empty circles), depending on the posi-
tion of the initial node. (c) Positional information represents node
density. Nodes are placed at the locations corresponding to the unit
areas under the curve 1=�(s). This definition leads to a more stable
node spacing than (b).

that for any two node sequences fsig, fs0ig such that s0 < s00 < s1,
the elements of both sequences interleave: si < s0i < si+1 for all
i = 0; 1; 2; : : : .

Specification of node spacing based on Equation 11 also has other
useful properties. First, if �(s) has a constant value l between nodes
si and si+1, then l is equal to the internode length:

Z si+1

si

ds

l
= 1 implies si+1 � si = l: (12)

Second, if �(s) is a linear function, �(s) = as + b, the length of
consecutive internodes changes in a geometric sequence, li+1 =
eali (proof in Appendix A.3). The ease of defining geometric se-
quences is important, because their approximations are often ob-
served in nature (according to Niklas, they form the “null hypothe-
sis” [22]).

The algorithm for placing nodes according to a given function �(s)
is presented below.

Algorithm 3

1 Axiom: A(0,0)
2
3 A(s,a) : f s0 = s+�s g s0 � `
4 f a0 = a+�s=�(s) ;
5 if (a0 < 1) f flag = 0; g
6 else f a0 = a0 � 1; flag = 1; g g;
7 F(�s) B(flag) A(s0,a0)
8
9 B(flag) : flag == 0; �
10 B(flag) : flag == 1; @o

The initial structure consists of apex A (line 1). The first parameter
represents the distance of the current point on the axis from the axis
base, as in Algorithms 1 and 2. The second parameter represents
the fractional part of the integral N(0; s) given by Equation 11.
The production in lines 3 to 7 creates the axis as a sequence of
segments F of length �s, separated by markers of potential node
locations B. If the flag is zero, module B is subsequently erased
(line 9). When a exceeds 1, the flag is set (line 6) to produce a
node marked by symbols @o (line 10).

2-31

0.5

1.0

002

0.5

1.0

0 -20020

0.5

1.0

0012

10

20

 x

y -20 2

Leaflet length [cm] Internode length [cm] Branching angle [deg] Stem shape [cm]

 a b c d e f g

Given image Model

s /l s /l s /l

Figure 7: Using positional information to model a Pellaea falcata (sickle fern) leaf.

6 Modeling single-compound plant struc-
tures

We have combined the methods for framing and partitioning an axis
into the following algorithm, which makes it possible to model a va-
riety of single-compound structures (sequences of organs supported
by a single stem). Definitions of graphical functions and constants
used in previous algorithms have not been included. Secondary
features, such as the randomization of values returned by functions,
have also been omitted.

Algorithm 4

1 #define � 0 /* phyllotactic angle */
2
3 Axiom: A(0,0,0) ?U(0,0,0) ?L(0,0,0)
4
5 A(s,a,') > ?U(ux,uy,uz) ?L(lx,ly,lz) :
6 f s0 = s+�s g s0 � `
7 f t0x = tanX(P ,s0); t0y = tanY(P ,s0); t0z = tanZ(P ,s0);
8 �
L =K � (t0xlx + t0yly + t0zlz);
9 �
U = �K � (t0xux + t0yuy + t0zuz);
10 a = a+�s=�(s)
11 if (a < 1) f flag = 0; g
12 else f a = a� 1; flag = 1; ' = '+�; g g;
13 +(�
U) &(�
L) #(stem width(s))
14 F(�s)B(s,',flag) A(s0,a,')
15
16 B(s,',flag) : flag == 0; �
17 B(s,',flag) : flag == 1
18 f l = length(s); w = width(s); g;
19 [/(') [+(brangle(s)) ˜L(l,w)]
20 [�(brangle(s)) ˜L(l,w)]]

The key new element is the third production (lines 17 to 20), which
inserts a pair of organs at the node. The organs are defined as in-
stances of a predefined surface L, with the length, width and angle
of insertion determined by functions of position s.

In order to present the operation of Algorithm 4 from a user’s per-
spective, let us consider the process of modeling a Pellaea falcata
(sickle fern) leaf. The photograph of the target structure is shown
in Figure 7a. Construction begins with a generic single-compound

(pinnate) leaf (b), which is generated when all graphically defined
functions are set to their default constant values. The length of the
leaflets is then modified as a function of their position on the stem
(c). Since the leaf silhouette is determined by the extent of its com-
ponent leaflets, this function controls the overall leaf shape. The
next two functions define the lengths of the internodes (d) and the
values of the branching angles between the stem and the leaflets
(e). The stem shape is then established by manipulating a paramet-
ric curve (f). Finally, the branching angles and the leaflet lengths
are randomized to capture the unorganized variation present in the
original leaf (g). The model also makes use of functions that have
not been shown in Figure 7, which define the taper of the stem and
the width of the leaflets.

In the above example, the individual leaflets have been modeled
as predefined surfaces L, scaled in length and width using func-
tions of their position on the stem (lines 18 to 20 in Algorithm 4).
Leaves, petals and similar organs can also be modeled as gener-
alized cylinders with Algorithm 1. We use this technique in most

Figure 8: Plants and plant organs with different phyllotactic pat-
terns: (a) Blechnum gibbum leaf with the distichous arrangement of
leaflets, (b) Antirrhinum majus (snapdragon) plant with a decussate
arrangement of leaves, (c,d) Casilleja coccinea (Indian paintbrush)
plant and Pinus strobus (white pine) cone with spiral arrangements
of leaves and scales.

2-32

models, because it allows us to define and manipulate organ shapes
more easily. For example, the rippled surface of the Blechnum gib-
bum leaflets (Figure 8a) was obtained by randomly changing the
shape, size and orientation of the generating curve.

Constant � in Algorithm 4 controls phyllotaxis, or the arrangement
of organs around the stem [28]. If � = 0, organs are arranged in a
planar distichous pattern, as in Figures 7 and 8a. If � = 90Æ, con-
secutive pairs of organs are issued in mutually perpendicular planes,
forming a decussate pattern (Figure 8b). Finally, if � = 137:5Æ

(the golden angle), and only one organ is attached to each node
(line 20 of Algorithm 4 is removed), a spiral phyllotactic pattern
results (Figure 8c and d). Thus, a change in a single constant ex-
tends Algorithm 4 to three dimensions.

Figure 9: Helichrysum
bracteatum (strawflower).

A distinctive feature of
Helichrysum bracteatum (a
strawflower, Figure 9) is
the posture of petals (ray
florets), which are more
curved near the center of
the flower head than on the
outside. To capture this gra-
dient, the position of the
petals on the main axis of
the flower head was used
to interpolate between two
curves that describe the ex-
treme postures of the petals.
A similar technique made it

possible to control the shape of leaves and petals in the beargrass
model (Figure 10). Photographs of the inflorescences that we used
as a reference to construct this model are shown in Figure 11.

7 Compact phyllotactic patterns

In spiral phyllotactic patterns, the individual organs, e.g. petals, flo-
rets, or scales, are often densely packed on their supporting surface
(the receptacle), as illustrated by the model of beargrass. Model-
ing such patterns using Algorithm 4 requires a coordinated manip-
ulation of the radius of the receptacle, the size of the organs being
placed, and their vertical displacement (corresponding to the intern-
ode length). In this section we facilitate the modeling process by re-
lating the vertical displacement to the radius of the supporting sur-
face and the size of organs. Both the radius and the organ size can
be defined as functions of organ position on the receptacle, making
it possible to capture a wide range of forms and patterns. The pro-
posed model has the same generative power as the collision-based
model of phyllotaxis introduced by Fowler et al. [11], but operates
faster because it avoids the explicit detection of collisions between
organs.

Vogel [35] provided the first mathematical description of phyllotac-
tic patterns used for computer graphics purposes [28]. His model
places equally sized organs on the surface of a flat disk, stating that
the n-th organ will have polar coordinates:

� = n � 137:5Æ; r = c
p
n; n = 1; 2; : : : (13)

where c is a constant. The angular displacement of 137:5Æ between
consecutive organs is treated as empirical data, reproduced but not
explained by the model. The formula for the radial displacement
r is justified by two observations: (a) since organs are placed from
the disk center outwards, the ordering number n of the organ placed
at a distance r from the center is equal to the total number of organs

Figure 10: Model of Xerophyllum tenax (beargrass).

Figure 11: Photographs of Xerophyllum tenax inflorescences.

that occupy a disk of radius r, and (b) if all organs occupy the same
area, the total number n of organs in a disk of radius r will be
proportional to r2, hence r = c

p
n.

Vogel’s model abstracts from the shape of organs and places them in
a disk according to the area they occupy. Lintermann and Deussen
proposed a similar approximation to derive a formula for placing
organs on the surface of a sphere [19]. Both approaches are sub-
sumed by the model of Ridley [31], which operates on arbitrary
surfaces of revolution. Our algorithm is based on Ridley’s analysis.

2-33

x

y

C

dA=2πfx(s)ds

fx(s)

ds

Figure 12: A receptacle.

Let (fx(s); fy(s)); s 2
[0; L] be a parametric def-
inition of a planar curve C
that generates the recepta-
cle when rotated around the
y axis of the coordinate sys-
tem (Figure 12). We as-
sume natural parameteriza-
tion of the curve C, which
means that parameter s is
the arc-length distance of
point (fx(s); fy(s)) from
the origin of this curve. The
area dA of the infinitesimal

slice of the receptacle generated by the arc [s; s+ ds] is then equal
to 2�fx(s)ds (Figure 12). We denote by ��2(s) the area occupied
by an organ placed on the receptacle at a distance s from the origin
of the generating curve C. As in the case of partitioning an axis
into internodes (Section 5), we can interpret 1=��2(s) as the organ
density at s. The integer part of the integral

N(0; s) =

Z s

0

2�fx(s)

��2(s)
ds =

Z s

0

2fx(s)

�2(s)
ds (14)

is then equal to the total number of organs placed in the portion
[0; s] of the receptacle. Consecutive organs are placed at locations
that increment N(0; s) by one. This leads to the following algo-
rithm:

Algorithm 5

1 #define C 1 /* generating curve ID */
2 #define ` curveLen(C) /* length of curve C */
3 #define �(s) func(2,s) /* density function */
4 #define �s 0.001 /* integration step */
5
6 Axiom: A(0,0)
7
8 A(s,a) : s < `
9 f while(a < 1 && s < `)
10 f x = curveX (C; s);
11 a = a+ (2x=�2(s))�s;
12 s = s+�s;
13 g
14 a = a� 1; y = curveY(C; s);
15 g
16 ; [f(y)-(90)f(x)˜O(�(s))] n(137.5) A(s,a)

Figure 13: Example of a
compact phyllotactic pat-
tern generated using Algo-
rithm 5.

The first parameter of module
A represents the arc-length dis-
tance s of the current point
from the base of the recepta-
cle. The second parameter is
the fractional part a of the inte-
gral N(0; s) (Equation 14). The
integration is performed incre-
mentally by the while loop in-
side the production (lines 9 to
13). When the integral reaches
1, an organ O of radius �(s) is
placed at height y and distance x
from the receptacle axis y (line
16). Consecutive organs are ro-

tated with respect to each other by the golden angle 137:5Æ mea-

Figure 14: Inflorescences of Kniphofia sp. (red-hot poker plant)
generated using Algorithm 5: models of two developmental stages
(top) and the photographs used as a reference (bottom).

sured around this axis. A sample pattern generated by Algorithm 5
is shown in Figure 13.

Figure 15: A Pinus
banksiana (Jack pine)
cone.

In realistic models, we replace
spheres O by models of plant or-
gans, as in [11]. For example,
Figure 14 shows two developmen-
tal stages of the inflorescence of
Kniphofia sp. (red-hot poker plant),
in which florets have been modeled
using generalized cylinders. In Fig-
ure 15 the algorithm has been ad-
ditionally modified to allow for a
curved cone axis. This modification
is equivalent to the deformation of a
straight cone, performed as a post-
processing step.

8 Modeling multiple-compound structures

Algorithms 4 and 5, introduced in the previous sections, have been
illustrated using examples of single-compound monopodial struc-
tures, each consisting of a sequence of organs placed along an axis
or on a receptacle. The same algorithms can also be used, how-

2-34

Figure 16: A photograph and a model of a Spiraea sp. twig. The
arrangement of shoots on the twig and the arrangement of leaves
and flowers in each shoot follow the spiral phyllotactic pattern.
The approximately vertical posture of all shoots reflects strong or-
thotropism, which has been simulated by biasing the turtle’s head-
ing vector in the vertical direction as described in [28, page 58].

ever, to generate structures in which the main axis supports entire
substructures. For example, the Spiraea sp. twig shown in Fig-
ure 16 was constructed using Algorithm 4 twice: first to place the
flower-bearing shoots along the main stem, then to place the leaves
and the flowers within each shoot. In this case, all shoots have been
assumed equal, except for the different shoot axis shapes caused by
their orthotropism (tendency to grow vertically). In general, how-
ever, the supported structures may vary in a systematic manner, re-
flecting a morphogenetic gradient along the main stem.

To capture this gradient, we assume that, given two branches of
the same order, the shorter branch is identical (up to the effects
of tropisms and random variation) to the top portion of the longer
branch. This concept of branch mapping is supported by both bio-
logical arguments and simulation results.

Biologically, it is related to the fact that apical meristems, the main
engines of plant development, are located at the distal ends of

Figure 17: The effect of branch mapping. (a) An inflorescence of
common lilac Syringa vulgaris. (b) Reconstruction of this inflo-
rescence based on the measurements of all branches and flowers.
(c) The same structure, all flowers assumed to be identical. (d) An
approximate reconstruction based on branch mapping.

branches. Thus, if branch B develops over a shorter time or at a
slower rate than an otherwise equivalent branch A, branch B will
resemble the top portion of A.

A modeling example supporting the use of branch mapping is
shown in Figure 17. An inflorescence of common lilac Syringa
vulgaris (a) has been measured and reconstructed at three levels of
accuracy: with all architectural information present (b), using the
assumption that all flowers are identical (c), and using the assump-
tion that shorter branches are identical to the top portions of the
longer branches of the same order (d). Although reconstruction (d)
is visually the least accurate, it still matches the real structure well.

Branch mapping makes it possible to define all branches of the same
order using one set of functions. This concept is captured by the
following algorithm.

Algorithm 6

1 Axiom: A(0,0)
2
3 A(o,s) : o <MAX && s < max len[o]
4 f rel = s=max len[o]; g;
5 #(int width(o,rel)) F(int len(o,rel))
6 [+(branch ang(o,rel))
7 A(o+ 1,max len[o+ 1] - branch len(o,rel))]
8 [�(branch ang(o,rel))
9 A(o+ 1,max len[o+ 1] - branch len(o,rel))]
10 /(90) A(o,s+int len(o; rel))
11
12 A(o,s) : s � max len[o]; ˜K

Algorithm 6 can be viewed as a recursive version of Algorithm 4,
with the mechanism for creating curved axes removed for simplic-
ity, and the internode length determined using point-sampled posi-
tional information as in Figure 6b for the same reason. Parameters o
and s of the apicesA represent the axis order and position along this
axis, respectively. The array max len[o] specifies the length `max
of the longest axis of each order o < MAX. This value is used to
represent positional information in relative terms, as a fraction rel
of `max (line 4). This facilitates the specification of all functions,
since they have fixed domain [0; 1]. Functions int width(o; rel),
int len(o; rel), branch ang(o; rel) and branch len(o; rel) character-
ize morphogenetic gradients: the width and length of internodes,
the branching angles at which the child branches are inserted, and
the length of these child branches. All axes of the same order share
the same set of functions. Within an axis of length `, parameter s
ranges from the initial value of `max � ` (assigned to the newly
created apices A in lines 7 and 9) to the maximum value of `max
(condition in line 3). Thus, morphogenetic gradients along shorter
axes are aligned with the distal portion of the longest axis of the
same order, as required for branch mapping. Predefined flowers K
are placed at the ends of the branches (line 12).

Examples of lilac inflorescences generated by Algorithm 6 are
shown in Figure 18. Lilac inflorescences have decussate phyl-
lotaxis. As was the case for Algorithm 4, a small modification
of Algorithm 6 makes it possible to generate structures with spiral
phyllotaxis. An example of the resulting structure — the inflores-
cence of an Astilbe plant — is shown in Figure 19.

Algorithm 6 can also be applied to approximate trees with clearly
delineated branch axes (many young trees satisfy this criterion).
If the axes of first-order branches are approximately straight and
higher-order branches are relatively short, the outline of the tree
crown is determined by the extent of the first-order branches and

2-35

Figure 18: Inflorescences of two lilac species modeled using Algo-
rithm 6: (a) Syringa chinensis CV. Rubra and (b) Syringa reticulata.

Figure 19: A photograph and a model of an Astilbe x arendsii CV.
Diamant plant.

can easily be controlled by function branch len(0; rel) (Figure 20).
In this sense, the use of positional information addresses the prob-
lem of progressing from silhouette to detail in the modeling process,
exemplified by Figure 1c.

Figure 20: A generic
tree model and its sil-
houette specifciation.

The problem of generating trees
given their silhouettes occurs in
several applications. One of them
is the modeling and rendering of
plant ecosystems. According to the
approach proposed by Deussen et
al. [10], the complexity of ecosys-
tem modeling can be addressed
by performing an individual-based
simulation of the whole ecosys-
tem, then replacing the coarse
plant models used in this simu-
lation with their detailed counter-
parts. The modeling method de-
scribed in the present paper pro-
vides a means of creating plant
models that match silhouettes de-
termined at the ecosystem level
(Figure 21).

9 Conclusions

We have explored the idea of plant modeling with functions that
relate features of a plant to their positions along plant axes. Our ex-
perience confirms previous observations that this use of positional
information is intuitive and well suited to the interactive model-
ing of plants. Visually important aspects of plant appearance —
posture, the arrangement of components, and the overall silhouette
— can easily be captured and controlled, while the procedural ap-
proach removes the tedium of specifying and placing each plant
component individually. The algorithms are sufficiently fast to sup-
port interactive plant modeling on current personal computers.

We demonstrated the power of the modeling with positional infor-
mation by recreating the form of several plants found in nature,
presented on photographs, or depicted in drawings. The modeled
structures range from individual leaves to compound herbaceous
plants and trees.

The use of positional information is not limited to interactive mod-
eling applications. We showed this by incorporating detailed tree
models into a plant ecosystem model that only provided coarse
characteristics of tree silhouettes. A related potential application
is the automatic generation of plant models that match silhouettes
of real trees, given their photographs [32].

At the technical level, our paper contributes: (a) a conceptual
distinction between L-systems and Chomsky grammars as formal
bases of developmental and structural plant models; (b) a general-
ized method for framing plant axes, free of the artifacts of the Frenet
frame; (c) a robust method for spacing organs along plant axes; (d)
an analytic method for generating phyllotactic patterns on arbitrary
surfaces of revolution, based on Ridley’s model; (e) the notion of
branch mapping and its application to the modeling of compound
plant structures; and (f) an example of the modeling system that
integrates all of these concepts.

One open research problem is the use of constraints. In Algorithm
5 we introduced a relation between organ size and available space
to constrain organ position in phyllotactic patterns. Many other re-
lations have also been identified by biologists and can be applied
to plant modeling [17]. By incorporating them into the algorithms
we may further facilitate the modeling process. Specifically, con-
straints may reduce the number of parameters and functions that
must be specified explicitly, while enforcing biological plausibility
of the resulting structures.

Another interesting problem falls in the domain of interactive mod-
eling techniques. In the present implementation, the user manip-
ulates function plots, curves, and surfaces that are displayed sepa-
rately from the model. A direct manipulation interface, in which
the user would interact with the modeled structure itself, may lead
to an even more intuitive modeling process.

A Appendices

A.1 Fundamental theorem of differential turtle
geometry

The method for modeling curved limbs presented in Section 4 is
based on the following extension of the fundamental theorem of
differential geometry for three-dimensional curves [34, page 61] to
the turtle reference frame.

Theorem. Let ~H(s)~L(s)~U(s) denote a moving reference frame de-
fined on an interval [0; `]. Furthermore, let ~H(0)~L(0)~U(0) be the

2-36

Figure 21: Visualization of an ecosystem simulation. Top: direct visualization. Bottom: realistic visualization. Tree silhouettes match the
shapes coarsely defined at the ecosystem level.

initial orientation of this frame, and differentiable functions !H(s),
!L(s) and !U(s) be its rates of rotation around the axes ~H(s),
~L(s) and ~U(s). The orientation of this frame is then uniquely de-
fined for all s 2 [0; `]. Moreover, given the initial frame position
~P (0), there is a unique differentiable curve ~P (s) for which s is the
natural (arc-length) parameter, such that ~H(s) is tangent to ~P (s)
for all s 2 [0; `].

Proof. Following [12], an infinitesimal rotation vector d~
 acting on
an arbitrary vector ~A changes it by d ~A = d~
� ~A. Thus, changes
of the ~H~L~U reference frame due to the rotation rate vector ~! =
!H ~H + !L~L+ !U ~U satisfy the system of equations:

d ~H

ds
= ~! � ~H;

d~L

ds
= ~! � ~L;

d~U

ds
= ~! � ~U: (15)

Given the initial frame orientation ~H(0)~L(0)~U(0), vectors ~H(s),
~L(s) and ~U(s) are thus the unique solution to the initial value prob-
lem for the system of differential equations (15) in the interval [0; `].
Moreover, curve ~P (s) is given by the integral:

~P (s) = ~P (0) +

Z s

0

~H(s)ds: 2 (16)

A.2 Stability of node distribution

The fact that the distribution of nodes defined by integer values of
Equation 11 does not depend critically on the choice of the initial
node can be formally stated as follows.

Theorem. Consider a function � such that �(s) > 0 for all s > 0,
and let so; s00 > 0 be two numbers. Using function N specified
by Equation 11, define sequences fsig and fs0ig such that si+1 =
N(s0; si)+ 1 and s0i+1 = N(s00; s

0

i)+ 1 for all i = 0; 1; 2; : : : : If
s0 < s00 < s1 then si < s0i < si+1 for all i = 0; 1; 2; : : : :

Proof by induction on i. The assumption �(s) > 0 implies that
F (s) � N(s0; s) is an increasing function of the argument s. Thus,
si < s0i < si+1 implies F (si) < F (s0i) < F (si+1), and therefore
F (si)+1 < F (s0i)+1 < F (si+1)+1. By substituting F (si)+1 =
F (si+1), F (s0i) + 1 = F (s0i+1), and F (si+1) + 1 = F (si+2), we
obtain F (si+1) < F (s0i+1) < F (si+2), hence si+1 < s0i+1 <
si+2: 2

A.3 Distribution of nodes defined by a linear
function �.

Theorem. Consider the sequence of nodes si defined by integer
values of Equation 11, and let �(s) = as + b. The length of con-
secutive internodes li = si+1�si satisfies the equation li+1 = eali
for i = 0; 1; 2; : : : :

2-37

Proof. From Equation 11 we obtain:

1 = N(s0; si+1)�N(s0; si) (17)

=

Z si+1

si

ds

as+ b
=

1

a
ln
asi+1 + b

asi + b
: (18)

Thus, asi+1 + b = ea(asi + b) and, similarly, asi+2 + b =
ea(asi+1+b). By subtracting these equations sidewise and dividing
by a we obtain si+2 � si+1 = ea(si+1 � si), or li+1 = eali: 2.

Acknowledgments

We would like to thank: Lynn Mercer for contributing Figures 1b
and c, Josh Barron for Figure 8a, Laura Marik for Figure 15, En-
rico Coen for joint work on the snapdragon model (Figure 8b),
Campbell Davidson for joint work on the lilac models (Figure 18),
Christophe Godin for joint work on the decomposition rules, Bernd
Lintermann and Oliver Deussen for a detailed demo of xfrog, and
the referees for their insightful comments. The support of the Nat-
ural Sciences and Engineering Research Council of Canada, the In-
ternational Council for Canadian Studies, the Alberta MACI project
and the University of Calgary is gratefully acknowledged.

References

[1] A. H. Barr. Global and Local Deformations of Solid Primitives. Pro-
ceedings of SIGGRAPH 84, in Computer Graphics, 18, 3, July 1984,
pages 21–30.

[2] D. Barthélémy, Y. Caraglio, and E. Costes. Architecture, Gradients
Morphogénétiques et Age Physiologique ches les Végétaux. In J. Bou-
chon, Ph. De Reffye, and D. Barthélémy, editors, Modélisation et Sim-
ulation de l’Architecture des Végétaux, pages 89–136. INRA Editions,
Paris, 1997.

[3] R. L. Bishop. There Is More Than One Way to Frame a Curve. Amer.
Math. Monthly, 82(3):246–251, March 1975.

[4] H. Bjornson. Weeds. Chronicle Books, San Francisco, 2000.

[5] J. Bloomenthal. Modeling the Mighty Maple. Proceedings of SIG-
GRAPH 85, in Computer Graphics, 19, 3, July 1985, pages 305–311.

[6] J. Bloomenthal. Calculation of Reference Frames Along a Space
Curve. In A. Glassner, editor, Graphics Gems, pages 567–571. Aca-
demic Press, Boston, 1990.

[7] T. E. Burk, N. D. Nelson, and J. G. Isebrands. Crown Architecture
of Short-rotation, Intensively Cultured Populus. III. A Model of First-
order Branch Architecture. Canadian Journal of Forestry Research,
13:1107–1116, 1983.

[8] N. Chomsky. Three Models for the Description of Language. IRE
Trans. on Information Theory, 2(3):113–124, 1956.

[9] P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. Plant
Models Faithful to Botanical Structure and Development. Proceedings
of SIGGRAPH 88, in Computer Graphics 22, 4, August 1988, pages
151–158.

[10] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and
P. Prusinkiewicz. Realistic Modeling and Rendering of Plant Ecosys-
tems. Proceedings of SIGGRAPH 98, Annual Conference Series, July,
1998, pages 275–286.

[11] D. R. Fowler, P. Prusinkiewicz, and J. Battjes. A Collision-based
Model of Spiral Phyllotaxis. Proceedings of SIGGRAPH 92, in Com-
puter Graphics, 26, 2, July 1992, pages 361–368.

[12] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, 1980.

[13] J. S. Hanan. Parametric L-systems and Their Application to the Mod-
elling and Visualization of Plants. PhD thesis, University of Regina,
June 1992.

[14] A. J. Hanson. Quaternion Gauss Maps and Optimal Framings of
Curves and Surfaces. Technical Report 518, Computer Science De-
partment, Indiana University, Bloomington, IN, 1998.

[15] C. Jirasek, P. Prusinkiewicz, and B. Moulia. Integrating Biomechanics
into Developmental Plant Models Expressed Using L-systems. In H.-
Ch. Spatz and T. Speck, editors, Plant Biomechanics 2000, pages 615–
624. Georg Thieme Verlag, Stuttgart, 2000.

[16] J. J. Koenderink. Solid Shape. MIT Press, Cambridge, 1993.

[17] P. Kruszewski and S. Whitesides. A General Random Combina-
torial Model of Botanical Trees. Journal of Theoretical Biology,
191(2):221–236, 1998.

[18] B. Lintermann and O. Deussen. XFROG 2.0. www.greenworks.de,
December 1998.

[19] B. Lintermann and O. Deussen. Interactive Modeling of Plants. IEEE
Computer Graphics and Applications, 19(1):56–65, 1999.

[20] R. Měch. Modeling and Simulation of the Interactions of Plants with
the Environment using L-systems and their Extensions. PhD thesis,
University of Calgary, October 1997.

[21] R. Měch and P. Prusinkiewicz. Visual Models of Plants Interacting
with their Environment. Proceedings of SIGGRAPH 96, Annual Con-
ference Series, August, 1996, pages 397–410.

[22] K. J. Niklas. Plant Allometry: The Scaling of Form and Process. The
University of Chicago Press, Chicago, 1994.

[23] P. Oppenheimer. Real Time Design and Animation of Fractal Plants
and Trees. Proceedings of SIGGRAPH 86, in Computer Graphics, 20,
4, August 1986, pages 151–158.

[24] W. F. Powell. Drawing Trees. Walter Foster Publishing, Inc., Laguna
Hills, CA, 1998.

[25] P. Prusinkiewicz, J. Hanan, and R. Měch. An L-system-based Plant
Modeling Language. Lecture Notes in Computer Science 1779, pages
395–410. Springer-Verlag, Berlin, 2000.

[26] P. Prusinkiewicz, M. James, and R. Měch. Synthetic Topiary. Proceed-
ings of SIGGRAPH 94, Annual Conference Series, July, 1994, pages
351–358.

[27] P. Prusinkiewicz, R. Karwowski, R. Měch, and J. Hanan. L-
studio/cpfg: A Software System for Modeling Plants, 2000. Lecture
Notes in Computer Science 1779, pages 457–464. Springer-Verlag,
Berlin, 2000.

[28] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[29] W. T. Reeves and R. Blau. Approximate and Probabilistic Algorithms
for Shading and Rendering Structured Particle Systems. Proceedings
of SIGGRAPH 85, in Computer Graphics, 19, 3, July 1985, pages
313–322.

[30] W. R. Remphrey and G. R. Powell. Crown Architecture of Larix lar-
icina Saplings: Quantitative Analysis and Modelling of (nonsyllep-
tic) Order 1 Branching in Relation to Development of the Main Stem.
Canadian Journal of Botany, 62(9):1904–1915, 1984.

[31] J. N. Ridley. Ideal Phyllotaxis on General Surfaces of Revolution.
Mathematical Biosciences, 79:1–24, 1986.

[32] T. Sakaguchi. Botanical Tree Structure Modeling Based on Real
Image Set. SIGGRAPH 98 Conference Abstracts and Applications,
1998.

[33] J. M. Snyder and J. T. Kajiya. Generative Modeling: A Symbolic
System for Geometric Modeling. Proceedings of SIGGRAPH 92, in
Computer Graphics, 26, 2, July 1992, pages 369–378.

[34] I. Vaisman. A First Course in Differential Geometry. Marcel Dekker,
New York, 1984.

[35] H. Vogel. A Better Way to Construct the Sunflower Head. Mathemat-
ical Biosciences, 44:179–189, 1979.

[36] J. Weber and J. Penn. Creation and Rendering of Realistic Trees. Pro-
ceedings of SIGGRAPH 95, Annual Conference Series, August, 1995,
pages 119–128.

[37] K. West. How to Draw Plants. The Techniques of Botanical Illustra-
tion. Timber Press, Portland, OR, 1997.

[38] E. Wunderlich. Botanical Illustration in Watercolor. Watson–Guptill,
New York, 1991.

2-38

L-systems and partial differential equations∗

Mark Hammel and Przemyslaw Prusinkiewicz

Department of Computer Science

University of Calgary

1 Introduction

Interesting applications of parametric context-sensitive L-systems stem from
their capability of expressing numerical solutions to initial value problems
for partial differential equations. This capability was originally explored in
the context of simulations performed using CELIA, the first software im-
plementation of L-systems [2, 3, 9, 12], with the most general observations
made in [10]. In this note, we present an approach to solving the initial value
problem for PDEs with L-systems, using a parabolic (diffusion) equation as
an example. We then apply this approach to solve a system of reaction-
diffusion equations operating in a one-dimensional medium of constant size,
as well as in an expanding medium. These solutions represent the evolu-
tion of the spatial distribution of the dependent variable(s) over time, and
therefore lend themselves in a natural way to visualizations using extruded
objects in space-time. In the examples considered, the visualizations lead to
a realistic image of the shell of Nautilus pompilius with a pigmentation pat-
tern, and to a graphical representation of the development of a filamentous
bacteria Anabaena catenula.

2 Diffusion and decay

Let us consider the following equation:

∂u

∂t
= −νu + D

∂2u

∂x2
. (1)

∗Adapted from: M. Hammel and P. Prusinkiewicz: Visualization of developmental
processes by extrusion in space-time, Proceedings of Graphics Interface ’96, pp. 246–258.

2-39

If u is interpreted as the concentration of a substance C, this equation
represents the decay of C with time constant ν and the diffusion of C along
axis x with the diffusion coefficient D (for example, see [6]). Suppose that
we want to solve this equation in the interval [a, b] for t ≥ 0, assuming the
boundary conditions u(a, t) = ua, u(b, t) = ub, and the initial conditions

u(x, 0) = ua + (ub − ua)
x − a

b − a
. (2)

Following the finite-difference method [19, Chapter 19], we approximate the
derivatives in Equation (1) using values taken at equally spaced sampling
points along both the x and t axes:

xi = x0 + i∆x, where i = 0, 1, . . . , m,

tj = t0 + j∆t, where j = 0, 1, 2,
(3)

Using notation u
j
i = u(xi, tj), we obtain:

u
j+1
i − u

j
i

∆t
= −νu

j
i + D

u
j
i+1 − 2uj

i + u
j
i−1

(∆x)2
, (4)

which leads to

u
j+1
i = u

j
i +

(

−νu
j
i + D

u
j
i+1 − 2uj

i + u
j
i−1

(∆x)2

)

∆t. (5)

For any values of indices i and j, Equation (5) can be regarded as assigning
a new value u

j+1
i to the variable u

j
i , taking into account the values u

j
i+1 and

u
j
i−1 at the neighboring sampling points. Any sampling point along the axis

x (except for the boundary points) is subject to a similar assignment, thus
Equation (5) can be rewritten as the following context-sensitive L-system
production:

M(ul) < M(u) > M(ur) → M
(

u + (−νu + D ul−2u+ur

(∆x)2
)∆t

)

. (6)

Notice that the L-system notation eliminates the need for index arithmetic.
The subscripts in the formal parameter names ul, u, and ur are not numbers,
but mnemonic descriptors of the left and right neighbors. Similarly, indices
are not needed to distinguish between the “old” and “new” values of variable
u at any point in space, because the progress of time is implicit in the notion
of a derivation step in an L-system.

To provide a framework for finite differencing expressed by production
(6) a complete L-system solving Equation (1) must also:

2-40

112 160 208 25664

402416

a)

b)

Figure 1: a) Visual representation of a solution to the PDE (1) obtained
using an L-system based on production (6). Boundaries separating black
and white regions indicate selected values of variable u. b) Visual represen-
tation of a solution to the PDE (7) obtained using an L-system based on
production (10). White areas represent concentrations a < 0.15, and black
areas represent concentrations a ≥ 0.15. In both figures, time progresses
from the top down.

• create a string of m modules M from the axiom,

• set the initial value of variable u in each module,

• maintain the boundary values of u in the first and the last modules M

during the derivation process.

In addition, a graphical output must be associated with each module M if
a visual representation of the solution is needed.

Figure 1a shows an extruded representation of the solution to PDE (1)
obtained using an L-system in which each module M is shown as a line
segment of unit length, with the color dependent on the value of variable u.
The values of constants used in this simulation were: ν = 0.01, D = 5, a =
0, ua = 64, b = 128, ub = 256, ∆t = 1, and m = 128, yielding ∆x = b−a

m
= 1.

2-41

3 Reaction-diffusion

The described approach to solving partial differential equations using L-
systems can easily be extended to systems of equations. In this case, a
module M will have several parameters, each representing a different de-
pendent variable. We will illustrate this technique by referring to reaction-
diffusion models of the formation of pigmentation patterns in sea shells
[7, 14, 15, 16, 17]1. The models recreate pattern formation in nature, which
is characterized by Meinhardt as follows [15, p. vii]:

A mollusc can enlarge its shell only at the shell margin. In most
cases, only at this margin are new elements of the pigmentation
pattern added. Therefore, the shell pattern preserves a record in
time of a process that took place in a narrow zone at the growing
edge. A certain point on the shell represents a certain moment
in its history. Like a time machine one can go into the past or
the future just by turning the shell back and forth.

According to this description, a pigmentation pattern can be captured by
simulating processes taking place at the growing edge and extruding this
edge along an axis representing time. For example, the following system of
differential equations was proposed by Meinhardt to model the formation of
the pigmentation pattern on the shell of Nautilus pompilius [16] (see also [15,
page 61]):

∂a
∂t

= a′ − µa + Da
∂2a
∂x2 ,

∂s
∂t

= σ(x) − a′ − νs + Ds
∂2s
∂x2 ,

(7)

where

a′ = ρs
a2

1 + κa2
+ ρ0, (8)

and

σ(x) = σmin + (σmax − σmin)
2 min{x − xmin, xmax − x}

xmax − xmin
. (9)

1The idea of modeling shell patterns using L-systems is not entirely new. Specifically,
Baker and Herman generated pigmentation patterns similar to those found in Oliva por-

phyria [3] (see also [10, Chapter 18]) by applying L-systems to express a cellular automaton
model proposed by Waddington and Cowe [21]. This approach preceded the formulation
of the reaction-diffusion models of pigmentation, first reported in [14], and therefore did
not expose the general possibility of expressing reaction-diffusion models using L-systems.

2-42

The variables a and b in Equation (7) describe concentrations of two chemical
substances, called the activator and the substrate, which diffuse along the
growing edge and react with each other. Equation (9) characterizes the
production of the substrate σ(x) as a triangle-shaped function of the position
of the sampling point x along the edge [xmin, xmax].

To solve Equation (7) using an L-system, we discretize the growing edge
and represent it as a string of modules M . The production that implements
the finite difference method is:

M(al, sl, σl) < M(a, s, σ) > M(ar, sr, σr)

→ M
(

a + (a′ − µa + Da
al−2a+ar

(∆x)2
)∆t,

s + (σ − a′ − νs + Ds
sl−2s+sr

(∆x)2
)∆t, σ

)

.

(10)

where a′ is defined by Equation (8). As in the diffusion-decay example dis-
cussed in Section 2, the complete L-system for solving Equations (7) must
also create the string of modules M and assign the initial and boundary
values to the variables. This includes, in particular, the values of substrate
production σ, which depend on the module position in the string (Equa-
tion 9).

A solution to Equation (7) in the interval

[xmin, xmax] = [0, 100] (11)

with the initial conditions a(x, 0) = s(x, 0) = 0 and boundary conditions
a(0, t) = a(100, t) = s(0, t) = s(100, t) = 0, is visualized in Figure 1b. The
following constants were used: ρ = 0.5, κ = 1, ρ0 = 0.004, µ = 0.1, Da =
0.1, ν = 0, Ds = 0.1, σmin = 0.012, σmax = 0.038, ∆x = 1, and ∆t = 1.

A realistic model of the Nautilus shell can be obtained assuming that
the shell opening has the shape of a circle, growing exponentially from one
derivation step to another, and that the axis of extrusion is coiled into a log-
arithmic spiral (see [7, 15] for details regarding the modeling of shell shape).
Both phenomena can be easily expressed using an L-system, resulting in the
model shown in Figure 2.

4 Reaction-diffusion in an expanding medium

The model of Nautilus pompilius extends the range of applications of L-
system models to sea shells with pigmentation patterns. More generally,

2-43

Figure 2: Model of a Nautilus pompilius shell

it demonstrates that reaction-diffusion processes can be expressed using L-
systems. However, the integration of reaction-diffusion processes and L-
systems also leads to a wider class of models of morphogenesis, characterized
by reaction-diffusion taking place in expanding media.

From a historical perspective, reaction-diffusion models were originally
formulated under the simplifying assumption that the medium in which
diffusion takes place does not grow [20]. This assumption dominated subse-
quent applications of the reaction-diffusion model. Exceptions include the
consideration of edge growth in models of the pigmentation pattern of se-
lected sea shells [15, 16], a model of stripe rearrangement during growth on
the skin of the fish Pomacanthus semicirculatus [11], and a generic model
of a growing filament that maintains a constant spacing between dividing
and non-dividing cells [4]. In this section we present a related model of the
development of the bacteria Anabaena catenula.

As described by Mitchison and Wilcox [18], the cells of Anabaena are
organized into filaments which consist of sequences of vegetative cells sepa-
rated by heterocysts. The vegetative cells divide into two cells of unequal
length and, in some cases, differentiate into heterocysts which do not further

2-44

divide. Due to this differentiation, the organism maintains an approximately
constant spacing between heterocysts: whenever the distance between two
heterocysts becomes too large due to the division and elongation of vegeta-
tive cells, a new heterocyst emerges.

What mechanisms is responsible for the differentiation of heterocysts
and the maintenance of constant spacing between them? Baker and Herman
[2, 3] (see also [5, 9, 12] proposed the following model. The heterocysts fix
atmospheric nitrogen and transform it into nitrogenous compounds. These
compounds diffuse along the filament and are used by the vegetative cells.
When the level of nitrogenous compounds drops below a threshold value,
the cells that detect this reduced level differentiate into heterocysts.

Although the model of Baker and Herman is capable of reproducing the
observed pattern of heterocyst spacing, it is very sensitive to parameter
values. Small changes in these values easily result in filaments with pairs
of heterocysts appearing almost simultaneously, close to each other. This is
not surprising, considering the operation of the model. The gradient of the
concentration of nitrogenous compounds may be too small near the middle
of a sequence of vegetative cells to precisely define the point in which a new
heterocyst should differentiate. Consequently, the threshold value may be
reached almost simultaneously by several neighboring cells, resulting in the
differentiation of two or more heterocysts close to each other.

The described model can be improved assuming that the prospective
heterocysts compete until one “wins” and suppresses the differentiation of
its neighbors. This “interactive” model was originally proposed by Wilcox et

al [22]. We formalize it using the framework of the activator-inhibitor class
of reaction-diffusion models [13]. In addition to the nitrogenous compounds
that inhibit the differentiation, the cells are assumed to carry a hypothetical
substance referred to as the activator. The concentration of the activator
is the criterion that distinguishes the vegetative cells (low concentration)
from the heterocysts (high concentration). The activator and inhibitor are
antagonistic substances: the production of the activator is suppressed by
the inhibitor unless the concentration of the inhibitor is low. In that case,
production of the activator drastically increases through an autocatalytic
process (an increased concentration of the activator promotes its own fur-
ther production). High concentration of the activator also promotes the
production of the inhibitor, which diffuses to the neighboring cells. This
establishes a ground for competition in which activator-producing cells at-
tempt to suppress production of the activator in the neighboring cells. For
proper values of parameters that control this process, only individual, widely

2-45

spaced cells are able to maintain the high-activation state.
An L-system implementation of these mechanisms (a variant of the L-

system from [8]) is given below:

ω : M(0.5, 1, 200, right)M(0.5, 1, 100, right)M(0.5, 1, 100, right)
p1 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :

s < smax & a < ath → M(s′, a′, h′, p)
p2 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :

s ≥ smax & a < ath & p = left →
M(ks′, a′, h′, left)M((1 − k)s′, a′, h′, right)

p3 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :
s ≥ smax & a < ath & p = right →
M((1 − k)s′, a′, h′, left)M(ks′, a′, h′, right)

p4 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :
a ≥ ath → M(s, a′, h′, p)

(12)

where:

s′ = s(1 + r∆t),

a′ = a +
(

ρ
h
(a2

1+κa2 + a0) − µa
)

∆t,

h′ = h +
(

ρ(a2

1+κa2 + h0) − νh + Dh
hl+hr−h

sw

)

∆t.

(13)

The cells are specified as modules M , where parameter s stands for cell
length, a is the concentration of the activator, h is the concentration of the
inhibitor, and p denotes polarity, which plays a role during cell division. All
productions are context-sensitive to capture diffusion of the activator and
inhibitor. It is assumed that the main barrier for the diffusion are cell walls
of width w. Production p1 characterizes growth of vegetative cells (a < ath),
controlled by the growth rate r. A cell that reaches the maximum length of
smax divides into two unequal daughter cells, with the lengths controlled by
constant k < 0.5. The respective positions of the longer and shorter cells
depends on the polarity p of the mother cell, as described by productions
p2 and p3. Increase of the concentration of the activator a to or above
the threshold value ath indicates the emergence of a heterocyst. According
to production p4, a heterocyst does not further elongate or divide. The
equations for s′, a′, and h′ govern the exponential elongation of the cells
and the activator-inhibitor interactions [13].

The operation of the model is illustrated in Figure 3. The vertical lines

2-46

Figure 3: Fragment of a simulated filament of Anabaena. Vertical lines indi-
cate the concentrations of the activator and inhibitor (above and below the
cells, respectively). Notice the sharp peaks of the activator concentration
that define the heterocysts, and high levels of the inhibitor concentration in
the neighboring vegetative, which prevent their differentiation. The param-
eters used in the simulation were: ρ = 3, κ = 0.001, a0 = 0.01, µ = 0.1,
h0 = 0.001, ν = 0.45, Dh = 0.004, ath = 1, k = 0.38196, smax = 1,
r = 0.002, and w = 0.001.

indicate the concentrations of the activator (above the filament) and in-
hibitor (below the filament) associated with each cell.

It is interesting from the historical perspective that the interactive model
of Wilcox et al. [22] and its subsequent L-system implementation [8] pre-
dicted the essential structure of the gene regulation network that controls
the development of Anabaena filaments in nature [1]. The activator corre-
sponds to the protein HetR, which plays a key role in the maintenance of
the heterocyst state, whereas the inhibitor corresponds to the protein PatS
(or a fragment of it), which diffuses across the filament and maintains the
spacing between the heterocysts. The character of interactions captured by
the simulation model is consistent with the postulated structure of the gene
regulation network, in which HetR upregulates its own production as well
as the production of PatS, whereas PatS downregulates production of HetR.

References

[1] D. G. Adams. Heterocyst formation in cyanobacteria. Current Opinoin

in Microbiology, 3:618–624, 2000.

2-47

[2] R. Baker and G. T. Herman. CELIA — a cellular linear iterative array
simulator. In Proceedings of the Fourth Conference on Applications of

Simulation (9–11 December 1970), pages 64–73, 1970.

[3] R. Baker and G. T. Herman. Simulation of organisms using a devel-
opmental model, parts I and II. International Journal of Bio-Medical

Computing, 3:201–215 and 251–267, 1972.

[4] J.-P. Boon and A. Noullez. Development, growth, and form in living
systems. In H. E. Stanley and N. Ostrowsky, editors, On growth and

form, pages 174–183. Martinus Nijhoff Publ., Boston, 1986.

[5] C. G. de Koster and A. Lindenmayer. Discrete and continuous models
for heterocyst differentiation in growing filaments of blue-green bacte-
ria. Acta Biotheoretica, 36:249–273, 1987.

[6] L. Edelstein-Keshet. Mathematical models in biology. Random House,
New York, 1988.

[7] D. R. Fowler, H. Meinhardt, and P. Prusinkiewicz. Modeling seashells.
Proceedings of SIGGRAPH ’92 (Chicago, Illinois, July 26–31, 1992),
in Computer Graphics, 26, 2 (July 1992), pages 379–387, ACM SIG-
GRAPH, New York, 1992.

[8] M. Hammel and P. Prusinkiewicz. Visualization of developmental pro-
cesses by extrusion in space-time. In Proceedings of Graphics Interface

’96, pages 246–258, 1996.

[9] G. T. Herman and G. Rozenberg. Developmental systems and lan-

guages. North-Holland, Amsterdam, 1975.

[10] G. T. Herman and G. L. Schiff. Simulation of multi-gradient models of
organisms in the context of L-systems. Journal of Theoretical Biology,
54:35–46, 1975.

[11] S. Kondo and R. Asai. A reaction-diffusion wave on the skin of the
marine angelfish Pomacanthus. Nature, 376:765–768, 31 August 1995.

[12] A. Lindenmayer. Adding continuous components to L-systems. In
G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in
Computer Science 15, pages 53–68. Springer-Verlag, Berlin, 1974.

2-48

[13] H. Meinhardt. Models of biological pattern formation. Academic Press,
London, 1982.

[14] H. Meinhardt. Models for positional signalling, the threefold subdivi-
sion of segments and the pigmentations pattern of molluscs. Journal of

Embryology and Experimental Morphology, 83:289–311, 1984.

[15] H. Meinhardt. The algorithmic beauty of sea shells. Springer-Verlag,
Berlin, 1995.

[16] H. Meinhardt and M. Klinger. A model for pattern formation on the
shells of molluscs. Journal of Theoretical Biology, 126:63–89, 1987.

[17] H. Meinhardt and M. Klinger. Pattern formation by coupled oscilla-
tions: The pigmentation patterns on the shells of molluscs. In Lecture

Notes in Biomathematics, volume 71, pages 184–198. Springer-Verlag,
Berlin, 1987.

[18] G. J. Mitchison and M. Wilcox. Rules governing cell division in An-

abaena. Nature, 239:110–111, 1972.

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes in C: The art of scientific computing. Second edition.
Cambridge University Press, Cambridge, 1992.

[20] A. Turing. The chemical basis of morphogenesis. Philosophical Trans-

actions of the Royal Society of London B, 237:37–72, 1952.

[21] C. H. Waddington and J. Cowe. Computer simulations of a molluscan
pigmentation pattern. Journal of Theoretical Biology, 25:219–225, 1969.

[22] M. Wilcox, G. J. Mitchison, and R. J. Smith. Pattern formation in
the blue-green alga, Anabaena. I. Basic mechanisms. Journal of Cell

Science, 12:707–723, 1973.

2-49

Solving Linear Algebraic and Differential Equations
with L-Systems.

1. Introduction

In the previous note it was shown how L-Systems can be used to numerically solve systems of partial differential
equations, for a constant or growing medium, and the method was applied to computer graphics purposes. The L-
System from the previous section employed a forward Euler method for finite differencing. Although simple to
implement, the forward Euler method is in many case inadequate, for example when the equations are stiff. In this
note we show how an implicit method for solving differential equations can be implemented within the framework of
L-Systems. At the heart of this method lies a technique for solving systems of banded linear equations. To present this
method, we use analogy between the processes involved in diffusion and the behavior of electric circuits.

We begin the discussion by describing the electric circuit in Section 2, for which we wish to find the voltages and
currents. Then we proceed to develop a set of continuous equations describing the relationship of currents and
voltages in the circuits. The continuous time in these equations is then discretized through a Crank-Nicholson implicit
finite differencing scheme, described in Section 3. The resulting discretized equations form a set of linear equations,
describing the changing state of voltages and currents during a time step. Such a set of equations needs to be then
solved at each time step. The set of linear equations can be represented by a 5-diagonal coefficient matrix. In Section
4 we show how such a banded system of linear equations can be effectively solved using L-Systems. In Section 5 we
combine the material presented in Sections 3 and 4 into a complete L-System, and in Section 6 we discuss the results.

2. The circuit

The circuit we wish to analyze consists of circuit segments
(Figure 2) connected in series (Figure 1). Each segment contains 3
resistors (horizontal, vertical and parallel) and a capacitor. The
resistances for the -th segment are labeled , and , and
the capacitance is labeled . The voltage on the capacitor,
or in short , is a function of time. The currents passing through
the horizontal, vertical and parallel resistors are , and

, respectively, while the current passing through the capacitor
is . All 4 currents are also functions of time, and will be
referred to using a short-hand notation as , , and ,
respectively.

At the right end of the circuit, the -th segment is left open. On
the left end, the initial segment is connected to a constant voltage source (with voltage) and a resistor (with
resistance).

Pavol Federl
University of Calgary

Przemyslaw Prusinkiewicz
University of Calgary

Figure 1: A circuit segment.

horizontal

vertical
resistor

parallel
resistor capacitor

n

k Rk
H Rk

V Rk
P

Ck vk t()
vk

ik t() ik
V t()

ik
P t()

ik
C t()

ik ik
V ik

H ik
C

n
VS

RS
2-50

2.1. Continuous equations

In order to analyze the relationship between the currents and voltages in the whole circuit, we consider the currents
and voltages from the perspective of a single segment. There are 3 cases to consider: the general case and 2 boundary
conditions. In the general case a segment is connect to other segments both on its left side and on its right side. In the
boundary cases, a segment is only connected to one other segment. Since the voltage source and the initial resistor are
present only on the left side of the circuit, the equations for the left and right boundary cases are derived separately.
The initial conditions for the circuit are trivial, i.e. for all .

The general case:

The general case applies to a segment when . In such cases the segment is connected to a segment
 on the left, and to segment on the right. We can express the voltage and current in terms of currents

 and , and the voltage as follows. The relationship between voltages and is established using
Kirchoff’s voltage law (KVL), i.e.:

Eq.1 .

From Kirchoff’s current law (KCL) we know that and . Substituting these into Eq. 1
results in:

, or

, or

Eq.2 .

The current passing through the capacitor is defined as a time derivative of the voltage on the capacitor, i.e.:

Eq.3 .

From KVL we know that and from KCL we know that and therefore .
Substituting these into Eq. 3 yields:

Eq.4 .

Equations 2 and 4 provide an implicit relationship between the voltages and currents of a segment , and the voltages
and currents of its immediate neighbors: segments and .

Ck 1–

Rk 1–
P

ik 1–
V

ik 1–
Cik 1–

R

ik
V

ik

Rk
H

ik 1+ik 1–

Rk 1–
V Rk

V

Ck

Rk
P

ik
Cik

R

vkvk 1–

i1
V

i1

R1
H

i2

RS R1
V

C1
R1

P

i1
Ci1

R

v1

VS

Cn 1–

Rn 1–
P

in 1–
V

in 1–
Cin 1–

R

in

Rn
H

in 1–

Rn 1–
V Rn

V

Cn
Rn

P

in
Cin

R

vnvn 1–

Figure 2: The overall circuit assembled from segments connected in series.n

ik 0() vk 0() 0= = k

k k 2 n 1–,[]∈ k
k 1– k 1+ vk ik

ik 1– ik 1+ vk 1– vk 1– vk

vk vk 1– Rk 1–
V ik 1–

V Rk
Hik– Rk

Vik
V–+=

ik 1–
V ik 1– ik–= ik

V ik ik 1+–=

vk vk 1– Rk 1–
V ik 1– ik–() Rk

Hik– Rk
V ik ik 1+–()–+=

vk vk 1– Rk 1–
V ik 1– Rk 1–

V ik– Rk
Hik– Rk

Vik Rk
Vik 1++–+=

Rk 1–
V ik 1– vk 1– Rk 1–

V Rk
H Rk

V+ +()ik– vk– Rk
Vik 1++ + 0=

Ck

dvk

dt
------- ik

C=

vk Rk
Pik

R– 0= ik
R ik

V ik
C–= ik

R ik ik 1+– ik
C–=

Rk
PCk

dvk

dt
------- Rk

P ik ik 1+–() vk–=

k
k 1– k 1+
2-51

The right boundary case:

The equations for the right boundary case can be derived by considering the current and voltage for segment .
Since the circuit to the right of segment is open, the equations for the right boundary case can be derived directly
from the general case by setting and . Eq. 2 then becomes:

Eq.5 ,

and Eq. 4 becomes:

Eq.6 .

The left boundary case:

The voltage can be derived again from KVL:

, or

, or

Eq.7 .

By following the same process for deriving Eq. 4, we arrive to the second equation for the first circuit segment:

Eq.8 .

3. Discretization of time

For a circuit with segments, coupled equations describe the relationships between currents and voltages. Of the
 equations, correspond to the left boundary case (Equations 7 and 8), equations come from the general

case (Equations 2 and 4), and equations correspond to the right boundary case (Equations 5 and 6). One half of
these equations is a set of regular algebraic equations, while the other half is a set of first order differential equations.
An analytical solution to such a system of equations is unfeasible even for moderate values of , and thus numerical
solution becomes a necessity.

We find a numerical solution to these equations through finite differencing. To this end, we discretize the time domain
into discrete time steps, each of size . The solution of current is approximated by , where the integer
represents the discretized time , i.e. . Similarly, the solution for voltage is approximated by . For
example, the initial condition corresponding to is expressed by setting

Eq.9 for all .

The algebraic equations (7, 2 and 5) provide a relationship between the currents and voltages at a specific time .
These equations are therefore discretized by applying the following substitutions:

Eq.10 and .

The set of first order differential equations are discretized using the Crank-Nicholson finite differencing scheme,
using the following substitutions:

Eq.11 , and .

The discretized equations 7, 8, 2, 4, 5 and 6 take on the following form:

in vn n
n

k n= in 1+ 0=

Rn 1–
V in 1–– vn 1–– Rn 1–

V Rn
H Rn

V+ +()in vn+ + 0=

Rn
PCn

dvn

dt
-------- Rn

Pin vn–=

v1

v1 VS RS R1
H+()i1– R1

Vi1
V–=

v1 VS RS R1
H R1

V+ +()i1– R1
Vi2+=

RS R1
H R1

V+ +()i1 v1 R1
Vi2–+ VS=

R1
PC1

dvk

dt
------- R1

P i1 i2–() v1–=

n 2n
2n 2 2 n 2–()

2

n

t∆ ik t() Ik
m m

t t m t∆= vk t() Vk
m

ik 0() vk 0() 0= =

Ik
0 Vk

0 0= = k

n t

ip Ip
m→ vp Vp

m→

n

ip
Ip

m Ip
m 1–+

2
----------------------→ vp

Vp
m Vp

m 1–+
2

-------------------------→
dvp

dt

Vp
m Vp

m 1––
t∆

-------------------------→
2-52

Eq.12 ,

Eq.13 ,

Eq.14 ,

Eq.15 ,

Eq.16 , and

Eq.17 .

The above equations form a set of linear equations, where the unknown values are the approximations of currents and
voltages for a given time, i.e. , , , ... , . These unknown values are implicitly defined from the old
values , , , ... , , and from additional constants. The process of finding a numerical
solution to the circuit problem consists of starting with the initial condition (a set of known values for time),
and then iteratively finding the unknowns for the next time step.

3.1. 5-diagonal system of linear equations

The system of linear Equations 12-17 can be written in the matrix form as:

Eq.18 ,

where is the column vector representing the solution:

Eq.19 ,

 is a column vector containing the right hand sides of the equations:

Eq.20

and is a by matrix containing the coefficients of the unknowns:

Eq.21 .

For even values of , the entries represents the coefficient for the unknowns , while for odd values of , the
entries correspond to the coefficients of . A quick inspection of Equations 12-17 reveals that the coefficient
matrix is 5-diagonal, i.e. that for a given row , only entries , , , and can be non-zero.
The fact that matrix is 5-diagonal is important in that it allows for efficient solution to the system of linear equations.
Specifically, such a system can be solved in linear time.

The techniques for solving a set of LEs can be divided into two main categories: direct and iterative methods. Direct
methods solve the equations by algebraic manipulations, while iterative methods solve the equations by improving an
existing solution in successive iterations. Gaussian elimination falls into the category of direct solution techniques
and runs in average time of . It solves the system of LEs by successively simplifying the original system,
which is achieved in two phases. In the first phase, the LEs are adjusted so that all non-zero coefficients below the
diagonal are eliminated. In the second phase, the entries above the diagonal are eliminated.

The Gaussian elimination algorithm can be made more efficient when the coefficient matrix of the linear system is
banded. In a banded matrix all nonzero components tend to group around the diagonal. The number describing how

RS R1
H R1

V+ +()I1
m V1

m R1
VI2

m–+ VS=

t∆ R1
PI1

m– 2R1
PC1 t∆+()V1

m t∆ R1
PI2

m+ + t∆ R1
PI1

m 1– t∆ R1
PI2

m 1–– 2R1
PC1 t∆–()V1

m 1–+=

Rk 1–
V Ik 1–

m Vk 1–
m Rk 1–

V Rk
H Rk

V+ +()Ik
m– Vk

m– Rk
VIk 1+

m+ + 0=

t∆ Rk
PIk

m– 2Rk
PCk t∆+()Vk

m t∆ Rk
PIk 1+

m+ + 2Rk
PCk t∆–()Vk

m 1– t∆ Rk
PIk

m 1– t∆ Rk
PIk 1+

m 1––+=

Rn 1–
V In 1–

m Vn 1–
m Rn 1–

V Rn
H Rn

V+ +()In
m– Vn

m–+ 0=

t∆ Rn
PIn

m– 2Rn
PCn t∆+()Vn

m+ 2Rn
PCn t∆–()Vn

m 1– t∆ Rn
PIn

m 1–+=

I1
m V1

m I2
m V2

m In
m Vn

m

I1
m 1– V1

m 1– I2
m 1– V2

m 1– In
m 1– Vn

1–

m 0=

Ax b=

x

xT I1
m V1

m I2
m V2

m I3
m V3

m ... In
m Vn

m=

b

bT B1 B2 ... B2n 1– B2n
=

A 2n 2n

A

A1 1, A1 2, A1 2n,

A2 1, A2 2, ... A2 2n,

A2n 1, A2n 2, ... A2n n,

=

j Ai j, Ii 2⁄
m j

Ai j, V i 2⁄
m

A i Ai i 2–, Ai i 1–, Ai i, Ai i 1+, Ai i 2+,

O n3()
2-53

well the given matrix is banded is called the bandwidth of the matrix, and it is the width of a diagonal band (or strip)
which completely encompasses all non-zero elements of a matrix. A 5-diagonal matrix has a bandwidth equal to 5. If
the bandwidth of a given matrix is , then the Gaussian elimination algorithm can be modified so that the running
time is . This is achieved by modifying the original Gaussian elimination algorithm to perform row
subtractions only in the areas where there are non-zero entries. The running time of Gaussian elimination on a 5-
diagonal system of LEs is therefore .

4. Solving 5-diagonal systems of linear equations using L-Systems

Here we show how L-Systems can be used to solve a system of linear equations which in matrix form can be
written as , and when the coefficient matrix is a 5 diagonal matrix of the form:

The column vector represents the unknowns, and the column vector represents
the right hand sides of the equations. To represent the system of equations using an L-System string, we use a string
of modules M. Each module M has a set of values associated with it, representing all non-zero coefficients of a single
row of the matrix, plus the corresponding entry of the solution vector . The values are grouped into a single
parameter of type struct Row:

The first module M represents the first row of the matrix and the column vector , the second module M represents
the second row, etc. For example, consider the following system of 6 linear equations of 6 unknowns:

m
O m2n()

O n()

n
Ax b= A

a1 3,

A =

a1 4, a1 5, 0 0 0 0 0 0 0 0 0

0 a4 1, a4 2, a4 3, a4 4, a4 5, 0 0 0 0 0 0

a2 2, a2 3, a2 4, a2 5, 0 0 0 0 0 0 0 0

0 0 0 0 0 0 an 3– 1, an 3– 2, an 3– 3, an 3– 4, an 3– 5, 0

0 0 0 0 0 0 0 0 an 1– 1, an 1– 2, an 1– 3, an 1– 4,

0 0 0 0 0 0 0 an 2– 1, an 2– 2, an 2– 3, an 2– 4, an 2– 5,

0 0 0 0 0 0 0 0 0 an 1, an 2, an 3,

a3 1, a3 2, a3 3, a3 4, a3 5, 0 0 0 0 0 0 0

x x1 ... xn[]T= n b b1 ... bn[]T=

n
b

struct Row
{

double a1, a2, a3, a4, a5, rhs;
Row () { a1 = a2 = a3 = a4 = a5 = rhs = 0.0; }
Row (double p1, double p2, double p3, double p4, double p5, double pb)

{ a1 = p1; a2 = p2; a3 = p3; a4 = p4; a5 = p5; rhs = pb;}
};

A b
2-54

This system, in matrix form can be written as: , where

, and .

The L-System string of modules representing such a system would be:

4.1. First phase - elimination below diagonal

As described in the previous section, the solution to the system of linear equation is found by performing a two-phase
process. In the first phase, the coefficients below the diagonal are eliminated. This corresponds to re-writing each
module M of the string corresponding to rows , processing the string from left to right. Let us assume the first

 modules have been already rewritten, i.e. the first rows of already have ‘s below the diagonal:

To adjust the row so that its two non-zero entries below diagonal are eliminated, proper multiples of rows
and have to be subtracted from row . This is achieved by simultaneously adjusting the coefficients of row
as follows:

7x1 8x2 3x3–+ 10=

4x1 x2– 3x3 4x4+ + 2–=

x1– x3 x5+ + 7=

x2 2x3– x4+ 0=

x3 2x4 3x5 4x6+ + + 5=

2x2 4x5 6x6+ + 8=

Ax b=

A

7 8 3– 0 0 0

4 1– 3 4 0 0

1– 0 1 0 1 0

0 1 2– 1 0 0

0 0 1 2 3 4

0 0 0 2 4 6

= x

x1

x2

x3

x4

x5

x6

= b

10

2–

7

0

5

8

=

M(Row(0,0,7,8,-3,10)) M(Row(0,4,-1,3,4,-2)) M(Row(-1,0,1,0,1,7)) M(Row(1,-2,1,0,0,0))
M(Row(1,2,3,4,0,5)) M(Row(2,4,6,0,0,8))

2...n
k 1– k 1– A 0

0 0 ak 1– 3, ak 1– 4, ak 1– 5, 0 0

0 ak 2– 3, ak 2– 4, ak 2– 5, 0 0 0

0 ak 1, ak 2, ak 3, ak 4, ak 5, 0

A =

k k 2–
k 1– k k
2-55

Eq.22 where .

The above substitutions cannot be applied to row , as there is only a single row above it. One solution is to treat row
 as a special case. Another solution, which does not require handling of a special case, is to include a phony row ,

with coefficients and .

The L-System production that performs the pass from left to right - eliminating all entries in the coefficient matrix
below the diagonal - is shown below:

This production effectively replaces each row with a new row, by subtracting from it the proper multiples of the 2
rows above it. In the end, the replaced row contains 0’s to the left of the diagonal coefficient. The production rule uses
fresh left context to gain access to the already modified 2 rows above the row to be adjusted. By using fresh left
context, this production rule is applied to the modules in a single pass.

4.2. Second phase - elimination above diagonal

Once the first phase is completed, the coefficient matrix has the form:

To finish the process of finding the solution, the coefficients above the diagonal are eliminated in the second phase.
This is achieved by processing the rows from bottom to top, subtracting from each row the appropriate multiples of
the two rows below. Assuming that rows remain to be processed, the -th row is adjusted by subtracting from it
multiples of rows and :

ak 1, 0→
ak 2, 0→
ak 3, ak 3, f1ak 2– 4,– f2ak 1– 4,–→
ak 4, ak 4, f2ak 1– 5,–→
ak 5, ak 5,→
bk bk f1bk 2–– f2bk 1––→

f1

ak 1,

ak 2– 3,
-------------=

f2

ak 2– 3, ak 2, ak 2– 4, ak 1,–
ak 2– 3, ak 1– 3,

---=

2
2 0

a0 3, 1= a0 1, a0 2, a0 4, a0 5, b0 0= = = = =

M(r1) M(r2) << M(r3) :
{

if (phase == LEFT_TO_RIGHT)
{

double f1 = r3.a1 / r1.a3;
double f2 = (r1.a3 * r3.a2 - r1.a4 * r3.a1) / (r1.a3 * r2.a3);
produce M(Row(0, 0, r3.a3-f1*r1.a5-f2*r2.a4, r3.a4-f2*r2.a5

 , r3.a5, r3.rhs-f1*r1.rhs-f2*r2.rhs));
}

}

a1 3, a1 4, a1 5, 0 0 0 0

0 0 a3 3, a3 4, a3 5, 0 0

0 0 0 0 0 a7 3, a7 4,

0 a2 3, a2 4, a2 5, 0 0 0

0 0 0 0 0 0 an 3,

A =

k k
k 1+ k 2+
2-56

Eq.23 where .

Again, the above substitutions cannot be applied to row , as it does not have two rows below it. In order to avoid
writing an extra rule handling a special case, we add instead a phone row with the same coefficients as row 0,
i.e. and . The production rule which effects the second
phase is:

Similar to the production rule used in the left-to-right phase, this right-to-left production rule also uses fresh context.
Combined with processing the string of modules from right-to-left, this production rule is applied to the whole string
in a single pass. After the second phase is finished, the coefficient matrix has the form:

Since non-zero entries are only on the diagonal, retrieving the solution is trivial, i.e. .

5. The complete L-System implementation

In Section 3 we have shown how the continuous equations describing the voltages and currents in the circuit have
been discretized. The result of such a discretization is a set of linear equations, which must be solved at each time
step. Since the set of linear equations is represented by a 5-diagonal coefficient matrix, they can be solved using L-
Systems, as demonstrated in Section 4. In this Section we describe a complete L-System implementation of the
solution (the complete source is given at the end of this report).

The overall operation of the L-System can be distinguished into 5 distinct phases:
• Phase 0: a data-file describing the circuit is loaded;
• Phase I: the 5 diagonal coefficient matrix and the right hand-side is set up;

ak 1, 0→
ak 2, 0→
ak 3, ak 3,→
ak 4, 0→
ak 5, 0→
bk bk f1bk 1+– f2bk 2+–→

f1

ak 4,

ak 1+ 3,
--------------=

f2

ak 5,

ak 2+ 3,
--------------=

n 1–
n 1+

an 1+ 3, 1= an 1+ 1, an 1+ 2, an 1+ 4, an 1+ 5, bn 1+ 0= = = = =

M(r1) >> M(r2) M(r3) :
{

if (phase == RIGHT_TO_LEFT)
{

produce M(Row(0, 0, r1.a3, 0, 0
 , r1.rhs - r1.a4*r2.rhs/r2.a3 - r1.a5*r3.rhs/r3.a3));

}
}

a1 3, 0 0 0 0 0 0

0 0 a3 3, 0 0 0 0

0 0 0 0 0 a7 3, 0

0 a2 3, 0 0 0 0 0

0 0 0 0 0 0 an 3,

A =

xi bi ai 3,⁄=
2-57

• Phase II: the entries below diagonal are eliminated;
• Phase III: the entries above diagonal are eliminated;
• Phase IV: the solution is extracted and simulation time is advanced.

Once the circuit has been loaded from the file, the L-System cycles through phases I-IV. Phase I, II and IV require the
string processing to be done from left-to-right, and phase III needs the string to be processed from right-to-left. Since
different production rules need to be applied in different phases, a global variable phase is used to denote the current
phase. The symbolic names of the 4 phases are SETUP, LEFT_TO_RIGHT, RIGHT_TO_LEFT and COLLECT. Initially, phase is
set to SETUP (line 53). At the end of each string rewrite, the phase is adjusted to reflect the next stage (lines 55-63).
Notice that for phase III the string processing is reversed (line 60).

Phase 0: reading in the data-file

The L-System string is initialized through an axiom (line 65), to
contain 3 modules: B L and E. Modules B and E denote the beginning
and the end of the string, respectively, which are used to determine
boundary case conditions. The parameter of module L is a string,
which specifies the data-file from which the circuit will be loaded.
Through decomposition rules (lines 68-98), the data-file is first
opened, and then read in segment by segment. At the end of the
decomposition, the string has the form “B S S ... S E”. There is one
module S for each circuit segment. The graphical representation of
this process is illustrated in the figure on the right.

Each module S has a parameter of type struct Segment (defined on
lines 17-21). The fields Rh, Rv, Rp and Cap are read in from the file,
and represent the 3 resistances and a capacitance of the segment. The
fields I and V contain the calculated current and voltage in the
segment, and are both initialized to 0 to reflect the initial condition
(Eq. 9).

Phase I: setting up the matrix representation

In phase I, the string is rewritten to represent the system of 5-
diagonal linear equations, implemented by the productions of group
SETUP (lines 103-120). This is achieved by replacing each module S
with 2 modules M, where each module M represents a row in the
coefficient matrix and the corresponding row of the right hand
side column vector , as described in Section 4. If there are
segments in the circuit, there would be rows (or modules M).

The production rule on lines 103-109 corresponds to the general case, and is applied to all segments that have both
neighbors. This rule is derived directly from Eq. 14 and Eq. 15. The production rule on lines 110-115 reflects the left-
boundary case, and is only applied to the very first segment (represented by module S that immediately follows
module B). The left boundary case production rule was derived to reflect Eq. 12 and Eq. 13. Finally, the right
boundary case (lines 116-120) is applied to the right-most segment, and corresponds to Eq. 16 and Eq. 17. The right-
most segment is determined by requiring the right context of the module S to be module E. Finally, notice how the
extra rows are appended at the beginning and at the end of the string (line 111 and line 119).

B L E

R C EB

R C ESB

R C ESSB

S R CSSB

S ESSB

S C ESSB

E

axiom

input file is
opened

first segment
is read in

second
segment is read

rest of segments
are read in

reading is
done

input file is
closed

n

S ESSB

M MMMMMB M EM

n

2n 2+

A
b n

2n 2+
2-58

Phase II and Phase III: solving the system of equations

In phases II and III the string of modules is rewritten to represent a
system of equations, where the corresponding coefficient matrix has
non-zero entries only on its diagonal (lines 121-132). These two
phases have been explained in detail in Section 4.

Phase IV: extracting the solution

In the last phase, the solution is extracted from the string (lines 133-
148). First, the extra rows are eliminated by the production rules on
lines 135-140. Then, for every pair of modules M, a modules S is
produced (lines 141-145). The current for the produced module S is
calculated from the first M, while the voltage is calculated from the
second M.

Rendering

The circuit is rendered each time at the end of phase IV, done by the interpretation rules (lines 150-228). All of the
results presented in the next section were rendered using this L-System, both the circuit and the graphs.

6. Results and conclusions

The output of the L-System program for a simple circuit composed of 4 different segments is shown in Figure 3. At
the top of Figure 3 the circuit is rendered. At the bottom of the figure, the graphs of voltages and currents are
displayed at 5 different points in time.

M MMMMMB M EM

M MMMMMB M EM

2n 2+

S ESSB

M MMMMMB M EM

2n 2+

n

Figure 3: Example I - simple circuit composed of 4 different segments.

voltage on
capacitor in
segment 1

t 1= t 3.1= t 9.2= t 18.0= t 36.0=

V
I,

n

current on horiz.
capacitor in
segment 1
2-59

The next example illustrates the robustness of the presented method for solving the circuit analysis problem. The
circuit in Figure 4 contains resistances and capacitances differing in magnitudes, some of which are even set to 0.
Such a circuit leads to stiff equations, which are impossible to solve using forward integration methods. Our implicit
method however, solves the problem successfully.

The circuit in Figure 5 is set up to simulate diffusion. It is composed of 50 identical segments. Because of the
presence of the parallel resistors, less and less current propagates to the capacitors toward the right-hand-side of the
circuit. As a result, the further the capacitor is from the voltage source, the less it will be charged. This is very similar
to diffusion with decay, where the concentration of the chemical decreases as the distance from the source increases.

Finally, we have also simulated a circuit analogous to diffusion without decay, illustrated in Figure 6. This was
achieved by setting the relative differences between the resistances of the parallel resistors and the other two types of
resistors very high. As a result, given enough time - all capacitors are eventually charged to the same level.

In conclusion, we have successfully demonstrated how L-Systems can be used to solve systems of differential
equations, while employing implicit finite differencing scheme. The core of this approach lies in the method of
solving banded systems of linear equations using L-Systems, which we described in detail. Using fresh contexts, we
were able to implement the solution to solve the equations in only two passes. The resulting L-System performs
almost as fast as a straight C++ implementation, proving that L-Systems are a viable mechanism for solving systems
of differential equations in modeling problems.

Figure 4: Example II - circuit with some resistances set to 0.

VS
2-60

Figure 5: Example III - simulated diffusion, with decay.

t 0.8=t 0.4= t 1.2= t 1.6=

t 3.2= t 6.4= t 12.8= t 25.2=

Figure 6: Example III - simulated diffusion without decay.

t 1.1=t 0.4= t 2.0= t 4.0=

t 8.0=
t 14.2=

t 29.0= t 80.0=
2-61

Appendix A: The complete L+C source code
1 #include <cmath>
2 #include <cstdlib>
3 #include <lpfgall.h>
4 #include <cstdio>
5 #include <cstdlib>
6 #include <string>
7 #include <cassert>
8 #include <stdarg.h>
9

10 using std::string;
11

12 const string fname = "circuit-1.dat"; FILE * fp;
13 double dt, curr_time, Vs, Rs; // time step, curr. time, Rs & Vs
14 float x, vscale;// used for rendering
15 bool draw_circuit;// whether to draw circuit
16

17 struct Segment
18 { double Rh, Rv, Rp, Cap;// the resistances and the capacitance of a single segment
19 double I, V;// current and voltage
20 Segment () { Rh = Rv = Rp = Cap = I = V = 0.0; }
21 };
22

23 struct Row
24 { double a1, a2, a3, a4, a5, rhs;
25 Segment seg;
26 Row () { a1 = a2 = a3 = a4 = a5 = rhs = 0.0; }
27 Row (double pa1, double pa2, double pa3, double pa4, double pa5, double prhs, Segment & pseg)
28 { a1 = pa1; a2 = pa2; a3 = pa3; a4 = pa4; a5 = pa5; rhs = prhs; seg = pseg;}
29 };
30

31 module B(); // marks the beginning of the string
32 module E(); // marks the end of the string
33 module L(string); // module that will load the file
34 module C(); // closes the file
35 module R(long); // reads the file
36 module S(Segment); // contains the information about the segment
37 module M(Row); // represents one row of coeff. matrix & RHS
38 module Capacitor(double, double, double); // renders a capacitor
39 module ResistorV(double, double, double); // renders a vertical resistor
40 module ResistorH(double, double, double); // renders a horizontal resistor
41 module Emf(double, double, double); // renders EMF
42 module Rectangle(double, double, double, double); // draw empty rectangle
43 module RectangleF(double, double, double, double); // draw filled rectangle
44 module LabS(double, double, string); // draw a string
45

46 // phases of computation
47 #define SETUP 1
48 #define LEFT_TO_RIGHT 2
49 #define RIGHT_TO_LEFT 3
50 #define COLLECT 4
51 int phase;
52

53 Start: {phase = SETUP;Forward(); }
54 StartEach: {UseGroup (phase); }
55 EndEach:
56 { switch (phase)
57 {
58 case SETUP: phase = LEFT_TO_RIGHT; Forward(); break;
59 case LEFT_TO_RIGHT: phase = RIGHT_TO_LEFT; Backward(); break;
60 case RIGHT_TO_LEFT: phase = COLLECT; Forward(); break;
61 case COLLECT: phase = SETUP; Forward(); break;
62 }
63 }
64

65 Axiom: B() L(fname) E();
66 // ==
2-62

67

68 decomposition:
69 maximum depth: 1000;
70 // ==
71 L(fname) : // open the file for reading
72 { fp = fopen (fname . c_str (), "r");
73 bool error = (fp == NULL);
74 long nseg;
75 error = error || (4 != fscanf (fp, "%lf %ld %lf %lf", & dt, & nseg, & Vs, & Rs));
76 if (error){
77 Printf ("Cannot open/read file %s.\n", fname . c_str ());
78 produce ;
79 }
80 draw_circuit = nseg < 10;
81 vscale = nseg;
82 curr_time = 0.0;
83 produce R(nseg) C();
84 }
85 C() : // Close the file
86 { fclose (fp);
87 produce ;
88 }
89 R(n) : // Read another segment from the file
90 { if (n == 0) produce ;
91 Segment s;
92 if (4 != fscanf (fp, "%lf %lf %lf %lf", & s.Rh, & s.Rv, & s.Rp, & s.Cap))
93 {
94 Printf ("Cannot read segment.\n");
95 produce ;
96 }
97 produce S(s) R(n-1);
98 }
99

100 production:
101 derivation length: 4;
102 // ==
103 group SETUP:
104 // --
105 S(sL) < S(sC) > S(sR) : // general case
106 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, -sC.Rv, 0, sC))
107 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
108 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
109 }
110 B() < S(sC) > S(sR) : // left boundary case
111 { produce M (Row (0,0,1,0,0,0,sC))
112 M (Row (0, 0, Rs+sC.Rh+sC.Rv, 1,-sC.Rv, Vs, sC))
113 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
114 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
115 }
116 S(sL) < S(sC) > E() : // right boundary case
117 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, 0, 0, sC))
118 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, 0, 0, (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I, sC))
119 M (Row (0,0,1,0,0,0,sC));
120 }
121 group LEFT_TO_RIGHT:
122 // --
123 M(r1) M(r2) << M(r3) :
124 { double k1 = r3.a1 / r1.a3;
125 double k2 = (r1.a3 * r3.a2 - r1.a4 * r3.a1) / (r1.a3 * r2.a3);
126 produce M(Row(0, 0, r3.a3-k1*r1.a5-k2*r2.a4, r3.a4-k2*r2.a5, r3.a5, r3.rhs-k1*r1.rhs-k2*r2.rhs,
r3.seg));
127 }
128 group RIGHT_TO_LEFT:
129 // --
130 M(r1) >> M(r2) M(r3) :
131 { produce M(Row(0, 0, r1.a3, 0, 0, r1.rhs - r1.a4 * r2.rhs / r2.a3 - r1.a5 * r3.rhs / r3.a3, r1.seg));
132 }
133 group COLLECT:
2-63

134 // --
135 B() < M(r) : // discard the first phony row
136 { produce ;
137 }
138 M(r) > E() : // discard the last phony row
139 { produce ;
140 }
141 M(r1) M(r2) : // convert two equations to a circuit segment
142 { r1.seg.I = r1.rhs / r1.a3;
143 r1.seg.V = r2.rhs / r2.a3;
144 produce S (r1.seg);
145 }
146 E() :
147 { curr_time += dt;
148 }
149

150 interpretation:
151 maximum depth: 1000;
152 // ==
153 B() : // draw the intial voltage & resistor
154 { nproduce SetWidth(2);
155 x = -1;
156 if (draw_circuit)
157 { nproduce SetColor(7)
158 Line2d(V2d(-0.33,0),V2d(-0.33,1))
159 Line2d(V2d(-0.33,1),V2d(0,1))
160 Line2d(V2d(-0.33,0),V2d(0,0))
161 ResistorV(-0.33,0.75,Rs)
162 Emf (-0.33, 0.25, Vs);
163 }
164 produce SetColor(6) Line2d(V2d(0,1.2),V2d(0,1.2+vscale*Vs));
165 }
166 S(s) : // draw the segment and corresponding portion of the graph
167 { x = x + 1;
168 if (draw_circuit)
169 { static char buff1 [4096]; sprintf (buff1, "I=%.3f", s.I);
170 static char buff2 [4096]; sprintf (buff2, "V=%.3f", s.V);
171 nproduce SetColor (1)
172 Line2d(V2d(x,1),V2d(x+1,1))
173 Line2d(V2d(x+1,1),V2d(x+1,0))
174 Line2d(V2d(x+0.5,0.5),V2d(x+1,0.5))
175 Line2d(V2d(x+0.5,0.5),V2d(x+0.5,0))
176 Line2d(V2d(x,0),V2d(x+1,0))
177 Capacitor(x+1,0.25,s.Cap)
178 ResistorV(x+0.5,0.25,s.Rp)
179 ResistorV(x+1,0.75,s.Rv)
180 ResistorH(x+0.5,1,s.Rh)
181 SetColor(5) MoveTo(x+0.65,1.02,0) Label(buff1)
182 SetColor(4) MoveTo(x+1.04,0.5,0) Label(buff2);
183 }
184 produceSetColor(6) Line2d(V2d(x,1.2),V2d(x+1,1.2)) // axis
185 SetColor(5) RectangleF(x+0.5,1.2,x+1,1.2+vscale*s.I)// Render calculated current
186 SetColor(4) RectangleF(x,1.2,x+0.5,1.2+vscale*s.V);// Render calculated voltage
187 }
188 E() : // draw the time
189 { static char buff [4096]; sprintf (buff, "Time: %.3f", curr_time);
190 produce SetColor(1) LabS (vscale,1.2,buff);
191 }
192 Capacitor(cx, cy, val) : // draw a capacitor
193 { static char buff [4096]; sprintf (buff, "%.2f", val);
194 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
195 SetColor(1) Line2d(V2d(cx-0.1,cy-0.02),V2d(cx+0.1,cy-0.02))
196 Line2d(V2d(cx-0.1,cy+0.02),V2d(cx+0.1,cy+0.02))
197 SetColor(6) LabS(cx+0.02,cy+0.04,buff);
198 }
199 ResistorV(cx, cy, val) : // draw a vertical resistor
200 { if (val == 0) produce ;
201 static char buff [4096]; sprintf (buff, "%.2f", val);
2-64

202 produce SetColor(2) RectangleF(cx-0.02,cy-0.1,cx+0.02,cy+0.1)
203 SetColor(1) Rectangle (cx-0.02,cy-0.1,cx+0.02,cy+0.1)
204 SetColor(6) LabS(cx+0.04,cy,buff);
205 }
206 ResistorH(cx, cy, val) : // draw a horizontal resistor
207 { if (val == 0) produce ;
208 static char buff [4096]; sprintf (buff, "%.2f", val);
209 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
210 SetColor(1) Rectangle (cx-0.1,cy-0.02,cx+0.1,cy+0.02)
211 SetColor(6) LabS(cx-0.1,cy+0.04,buff);
212 }
213 Emf cx, cy, val) : // draw EMF
214 { static char buff [4096]; sprintf (buff, "%.2f", val);
215 produce SetColor(1) MoveTo(cx,cy,0) Circle(0.1) SetColor(2) Circle(0.09)
216 SetColor(6) LabS(cx+0.12,cy,buff);
217 }
218 RectangleF(x1, y1, x2, y2) : // draw filled rectangle
219 { produce SP () MoveTo(x1,y1,0) PP() MoveTo(x2,y1,0) PP() MoveTo(x2,y2,0) PP()
220 MoveTo(x1,y2,0) PP() EP ();
221 }
222 Rectangle(x1, y1, x2, y2) : // draw outline of a rectangle
223 { produce Line2d (V2d (x1, y1), V2d (x2, y1)) Line2d (V2d (x2, y1), V2d (x2, y2))
224 Line2d (V2d (x2, y2), V2d (x1, y2)) Line2d (V2d (x1, y2), V2d (x1, y1));
225 }
226 LabS(x, y, s) : // draw label
227 { produce MoveTo(x,y,0) Label(s.c_str ());
228 }
2-65

Integrating biomechanics into developmental
plant models expressed using L-systems1
C. Jirasek 1, P. Prusinkiewicz 1 and B. Moulia 2

1 Department of Computer Science, University of Calgary, Alberta, Canada
2 INRA, Station d’écophysiologie des plantes fourragères, Lusignan, France

Abstract

We present a method for incorporating the biomechanical model of the bend-
ing of branch axes introduced by Schaffer and Fournier et al. into devel-
opmental plant models expressed using L-systems. The models capture the
impact of gravity, tropisms, contact between elements of a plant structure and
contact with obstacles on the shape of branches. Sample plants modeled using
this technique are compared with photographs of real plants.

Introduction

Plant architecture and its coupling with the environment play an essential role
in the colonization of space by plants (see review in [9]). Consequently,
comprehensive functional-structural plant models take into account physical,
biological, and environmental processes that influence plant development.
L-systems [14,15] provide a convenient theoretical and programming frame-
work for the architectural modeling of plants, and have been used to model a
variety of interactions between plants and their environment. Examples in-
clude the effects of local light on the development of the aerial architecture of
plants, and the effects of water availability on root growth [9]. Nevertheless,
the effects of gravity, tropisms, and contacts between organs have been cap-
tured by L-system models only in a simple manner [15]. The objective of our
current work is to improve the representation of branch shape in L-system
models by including the combined effects of gravity and tropisms according
to the current state of the biomechanical analysis of these phenomena. Our
approach is based on the model of axis growth and reorientation introduced
by Schaffer [16] and Fournier et al. [4]. This model predicts a sigmoidal
shape of branch axes by combining the notion of the gravitropic set angle
(GSA) [2] with the laws of the theory of elasticity [8] applied to longitudi-
nally and radially growing axes. In particular, it incorporates incremental
changes in the amount of load-bearing material due to secondary growth, and
captures the resulting “memorization” of branch shape [4,16].

1 Published in: H.-Ch. Spatz and T. Speck (Eds.): Plant biomechanics 2000. Proceedings of the 3rd Plant Biomechanics

Conference Freiburg-Badenweiler, August 27 to September 2, 2000. Georg Thieme Verlag, Stuttgart, pp. 615-624

2-66

A parallel technique for including biomechanical factors into architectural
tree models has been proposed in the scope of the AMAP modeling system
[3,5]. The biomechanical component of that model was implemented as an
external module using the finite element method. In contrast, we incorporate
the effects of weight and gravitropism on branch shape directly into the
framework of L-systems. As a result, the system of equations that describes
the biomechanical aspects of a plant becomes an inherent part of the model,
and is automatically updated as the plant develops. Metaphorically speaking,
the system of equations grows with the modeled plant. The proposed method
makes it possible to address questions concerning plant axis shape that com-
bine biomechanics with biological regulatory mechanisms [4,5] and with the
trade-offs between various functions of the axes [12].

Mechanical model of a branch axis

We conceptualize the branch axis as an inextensible elastic rod of length L,
with natural parameter s ∈ [0,L] denoting the arc-length distance of a point P

from the base of the rod. Each point P
is associated with a local frame of
reference defined by mutually or-
thogonal unit vectors H, L and U
(heading, left, and up). We assume that
vector H is tangent to the rod axis and
vectors L and U are aligned with the
principal axes of the cross-section of
the rod (Figure 1). In a straight pris-
matic rod each local reference frame
will be parallel to all others. In general,
two successive reference frames sepa-

o
w
c
s
Ω
a
G
s
o

S
P

 Figure 1. Local HLU frames
 of a sample rod
2-67

rated by an infinitesimal rod segment
f length ds may be rotated through an infinitesimal angular vector dΦ,
hich characterizes the curvature and twist at point P. A rod, and specifi-

ally a growing plant axis, may possess curvature and twist in the unloaded
tate [4]; we denote the corresponding angle of rotation at P by dΦ. We call
 = dΦ/ds and Ω = dΦ/ds the rates of rotation of the reference frame HLU

long the rod, although s is a spatial coordinate and not time.
iven vectors H(0), L(0) and U(0) specifying the initial reference frame at

=0, the rate of rotation Ω determines the reference frame HLU at any point
n the rod as the solution to the differential equations:

 dH/ds = Ω × H, dL/ds = Ω × L, dU/ds = Ω × U . (1-3)
ince all vectors H(s) have unit length and are tangent to the axis at points
(s), s ∈ [0,L], the axis shape is given by the integral:

 ∫+=
s

sss
0

d)()0()(H PP . (4)

2-68

To calculate the rates of rotation Ω that determine the shape of the rod at a
static equilibrium, we compare the internal moments IM, resulting from the
reaction of the material to deformation, and external moments M acting on all
points P of the rod. Let us consider the internal moments first. The infini-
tesimal rotations are vectors, thus the rotation rates are vectors as well, and
can be decomposed along the axes HLU:

 ΩH = Ω⋅H, ΩL = Ω⋅L, ΩU = Ω⋅U, (5)
 ΩH = Ω⋅H, ΩL = Ω⋅L, ΩU = Ω⋅U . (6)

Since L and U are the principal axes of the cross-section of the rod, its elastic
properties at P are captured by the torsional rigidity CH and the flexural ri-
gidities in the planes HU and HL, denoted CL and CU, respectively. The
moment IM due to the local deformation of the rod at P is equal to

IM = IMH H + IML L + IMU U , (7)
where:

IMH = CH (ΩH - ΩH), IML = CL (ΩL - ΩL), IMU = CU (ΩU - ΩU) . (8-10)
By substituting equations (5-6) into (8-10) and then into (7), we obtain:

IM = CH ((Ω - Ω)⋅H)H + CL ((Ω - Ω)⋅L)L + CU ((Ω - Ω)⋅U)U, (11)
or, in dyadic notation,

IM = (Ω - Ω)⋅S, where S = CH HH + CL LL + CU UU . (12-13)

Let us denote by K the external force per unit length, acting on the rod at P.
The accumulated force F and the moment M caused by the “overhanging”
rod segment [s,L] acting on the rod at P satisfy the equations [8]:

 dF/ds = - K and dM/ds = F × H . (14-15)
At a static equilibrium, the equation

 M + IM = 0 (16)
must be satisfied at each point P of the rod.
Differential equations (1-3,14-15), complemented with the algebraic equa-
tions (12,16), represent a two-point boundary problem with the unknown
vectors H, L, U, Ω, IM, F, and M. We solve these equations numerically
using a simple relaxation technique. To this end, we divide the rod into short
segments of length ∆si, where index i ranges from 0 at the proximal (fixed)
end of the rod to n at the distal (free) end, and apply the following algorithm:
Input: Vectors H(0), L(0), and U(0) that define the orientation of the HLU
frame at the proximal end of the rod, force F(L) = 0 and moment M(L) = 0 at
the free end, external force densities Ki, rotation rates Ωi that define the shape
of the rod in the unloaded state, and the initial values of the rotation rates Ωi

(for example, all equal to Ωi).
Output: The shape of the rod at a static equilibrium.
Step 1. Compute the orientation of the frame HLU at each point of the rod
using a discretized version of equations (1-3). Since the orientation of the

2-69

frame at the proximal end of the rod is known, computation proceeds out-
wards from the proximal to the distal end, according to the formula:

Hi+1
t = Hi

t + Ωi
t × Hi

t ∆si , i = 0,…,n-1, (17)
and analogous formulae for Li+1

t and Ui+1
t.

Step 2. Compute the distribution of the external forces and moments along
the rod using a discretized version of equations (14-15). Since the boundary
values at the distal end of the rod are known, computation proceeds inwards
from the distal to the proximal end according to the formulae:

Fi-1
t = Fi

t + Ki ∆si , i = n,…,1, (18)
Mi-1

t = Mi
t + Hi

t × Fi
t ∆si . i = n,…,1. (19)

Step 3. Compute the unbalanced moments at nodes i between segments ∆si
and ∆si+1 using a combination of formulae (12,13,16):

Ei
t = Mi

t + IMi
t = Mi

t + (Ωi - Ωi
t)⋅ (CH HH + CL LL + CU UU), (20)

then adjust the rotation rates Ωi proportionally to these unbalanced moments:

Ωi
t+1 = Ωi

t + k Ei
t , i = 0,…,n-1. (21)

The parameter k is an empirically chosen constant that controls the speed of
convergence to the solution.
Step 4. Repeat steps 1-4 until the magnitude of all unbalanced moments |Ei|
decreases below a threshold value, then compute the shape of the rod using a
discretized counterpart of equation (4):

Pi+1 = Pi + Hi ∆si . � (22)
The two-way information flow inherent in this algorithm has been described
in the context of the analysis of chainlike robotic manipulators by Craig [1].
It is the cornerstone of the integration of mechanical phenomena into devel-
opmental models of plant architecture.

Model expression using L-systems

We assume that the reader is familiar with the formalism of L-systems and its
application to the modeling of plant architecture, as described, for example,
in [14,15]. The concept of computing numerical solutions of differential
equations using L-systems is further discussed in [6].
An L-system captures the development of a plant using rewriting rules or
productions. For example, the rule A → IA may be used to specify that at
given time intervals an apex A will produce a internode I and recreate itself at
the distal end of this internode. A repetitive application of this rule yields an
axis composed of a sequence of internodes:

A ⇒ IA ⇒ IIA ⇒ IIIA ⇒ IIIIA ⇒… (23)
Plant modules, such as the apex and the internodes, can be characterized
using numerical parameters. Let us consider a simple example of a develop-

2-70

ing axis in which all internodes have the same length ∆s and are subject to the
same force K per unit length. We assume that the vectors H, U and K are co-
planar, thus the axis will bend in the plane HU perpendicular to L. We also
assume that the rigidity CL is constant. An internode I is then completely
specified by vector H, rotation rate Ω, external force F and external bending
moment M. If all these parameters are assigned the initial value of 0, the
production A → IA will become A → I(0, 0, 0, 0)A. The algorithm for com-
puting the shape of the rod in equilibrium can be then expressed as follows:
Step 1. The outward propagation of orientations in a sequence of internodes
(equation 17) is implemented by production
 I(Hl, Ωl, Fl, Ml) < I(H, Ω, F, M) → I(Hl + Ωl × Hl ∆s, Ω, F, M) ,
where symbol < separates the left context from the strict predecessor of the
production [14,15]. This production states that the header vector H in the
module I(H, Ω, F,M) will acquire a new direction, calculated as a function of
the header vector Hl and the rotation rate Ωl in the previous internode.
Step 2. The inward propagation of external forces and moments (equations
18 and 19) is expressed by production
 I(H, Ω, F, M) > I(Hr, Ωr, Fr, Mr) → I(H, Ω, Fr + Kr ∆s, Mr + Hr

 × Fr∆s),
where symbol > separates the strict predecessor from the right context.
Step 3. The remaining computations (equations 20 and 21) are performed
under the simplifying assumption of the planar deformation of the rod. The
unbalanced moment is then reduced to M + CL Ω, and the updated rotation
rate Ω is captured by production:
 I(H, Ω, F, M) → I(H, Ω + k (M + CL Ω), F, M) .
In the complete L-system, these productions are guarded by conditions that
ensure proper sequencing of the production applications (Step 4) and sched-
ule the addition of new segments by the apex. Details are given in [7].
In general, the assignment of parameters to the internodes provides a mecha-
nism for automatically increasing the number of variables that describe the
plant as it grows. Variables in the neighboring modules are accessed using
context-sensitive productions. Since L-systems can capture the development
of branching structures and the information flow between their modules, the
described technique extends from individual axes to entire plants.

Secondary growth, tropisms, and collisions

Radial (secondary) growth is simulated according to the pipe model [17],
which postulates that the vascular strands originating in a newly added seg-
ment contribute to the girth of previous segments. In other words, the addi-
tion of a distal internode of cross-section A causes the addition of external
layers of the same area to all preceding segments. Together the primary and
secondary growth modify [4,16]:

2-71

• The linear density of the external forces K. For example, if the external
forces are due exclusively to the axis weight, then K = Aρg, where A is
the area of the cross-section of the stem at a given point P, ρ is the aver-
age density of the stem material at this cross-section, and g is the accel-
eration of gravity.

• The torsional and flexural rigidities CH = GJ, CL = EIL and CU = EIU,
where G is the shear modulus of the stem material, E is its Young’s
modulus, J is the torsional constant, and IL and IU are the second moments
of area of the stem’s cross-section. The values of constants J, IL and IU
for different cross-sectional geometries are listed in [12].

• The curvature and twist of the branch axis at rest Ω. Assuming that the
principal axes of the cross-section of a new annual layer are aligned with
the principal axes of the previous cross-section, each component of the
rate of rotation at rest Ω’ is calculated as a weighted average of the previ-
ous rotation at rest Ω and the current rotation vector Ω, e.g.:

Ω’L = (CLΩL + C’LΩL) / (CL + C’L). (24)
The constants CL and C’L denote the rigidities of the previous branch axis
and of the newly added layer, respectively.

Equation (24) is based on the observation that a new layer added by secon-
dary growth is “molded” on the existing branch segment, and thus may have
different rest curvature and twist than previous layers [4,16]. The new rate of
rotation Ω’ (curvature and twist) of an axis segment at rest represents the
auto-stress equilibrium between the new layer and the existing core within
the segment’s cross-section. Thus, the rest shape of an axis after a step of
secondary growth partially memorizes the actual shape of this axis under
load. A derivation of equation (24) is included in [7]. It is an alternative but
equivalent formulation to that proposed in [4].
The secondary growth is incorporated into the model as follows. After a step
of longitudinal growth, the girth of all internodes is recalculated according to
the pipe model. The propagation of information from the distal to the proxi-
mal end, postulated by the pipe model, is implemented by right-context-sen-
sitive productions. The rotation rates at rest and the rigidities of each inter-
node are computed using the formulae described above and incorporated into
an L-system production. The new mechanical equilibrium is then determined
as discussed in the preceding sections for an axis without secondary growth.
This cycle is repeated for each new internode produced by the apex.
Further extensions of the model include tropisms and collisions. Tropisms
are simulated by rotating the frame of the newly inserted segment so that its
tangent vector H becomes more closely aligned with the direction of a prede-
fined tropism vector T. Contacts between structural elements (for example,
grapes in a bunch) and between the structure and its environment (e.g.,
branches partially laying on the ground) are simulated under the assumption
that the colliding elements are elastic, and act on each other with forces pro-
portional to the depth of penetration (penalty method [13].) This technique
makes it possible to approximate the effect of contact on the deformation of
the axes, although it is not precise enough to predict the local shape of the
contact zone in the organs resting on each other.

Results

The described biomechanical model was applied to simulate the development
and capture the structure of several plants. The simulations were carried out
using the plant simulation software cpfg with open L-system support [9]. The
open L-system extension was used to exchange forces between parts in con-
tact. A complete implementation of the L-system models is presented in [7].
Figure 2 compares the S-shaped branches of a tree with the results of a simu-
lation. The branches in the model bend downward due to their weight, but
the branch tips arch upward due to a vertically oriented tropism vector. Fig-
ure 3 shows the results of simulating a hanging plant using the same model
with different parameters. In the model of Spiraea sp. (Figure 4), twigs arch
downward due to gravity, whereas the flower-bearing shoots stand upright
due to a strong orthogravitropism. Figure 5 illustrates the effect of contact
between fruits on the shape of fruit stems. The stems were assumed to elon-
gate and increase in diameter uniformly throughout their length, with no new
segments added during the simulation. Two applications of this model are
shown in Figure 6. Figure 7 illustrates schematically the effect of contact
with the ground on the shape of a growing axis affected by tropism. The
same model without tropism was formally applied to recreate a cycad (Figure
8), with the leaves prevented from penetrating the ground plane by the colli-
sion-detecting mechanism.

Figure 2: A photograph and a model of S-shaped tree branches. The branches
bend down due to gravity, but arch upward at the distal ends due to a tropism.

Figure 3: A photograph and two views of a model of a hanging plant. Branches
hang down due to gravity, but are also influenced by an upward tropism.

2-72

Figure 4: A photograph, a model and a zoom into the modeled flower-bearing
shoots of a Spiraea shrub. The twigs arch downward due to gravity, the flower-
bearing shoots stand upright due to simulated orthogravitropism.

Figure 5: Growing cher-
ries. The stems bend
down as the fruits be-
come heavier.

Figure 6: Models of
cherries and grapes.
The individual fruits rest
against each other.

Figure 7: A growing
orthotropic axis collides
with the ground.

Figure 8: A photograph and two views of a model of a cycad. The lower leaves lie
on the ground plane.

2-73

2-74

In plants and organs without organized secondary growth (e.g., Figures 5 and
8), biomechanical effects of growth are manifested by diffuse primary radial
expansion and secondary cell wall deposition, rather than the addition of
external rings of cells. Nevertheless, processes of shape memorization have
been reported in herbs [10] and the biomechanical principle involved is
probably similar [11]. Therefore, we have applied equation (24) to qualita-
tively capture the shape memorization mechanism even in the absence of
detailed information concerning the distribution of growth rates within the
cross sections.

Conclusions

The described model makes it possible to visually capture the shape of
branches resulting from the combined effect of weight, tropisms, and contact
of organs with each other and with obstacles in the environment. The incor-
poration of biomechanics into L-systems makes it possible to explore differ-
ent branching architectures relatively easily. Prospective extensions and
applications of the model include: (a) incorporation of a mechanistic model
of tropisms that associates bending of branch axes to differential growth; (b)
simulation of the biological regulation of reaction wood formation, and its
mechanical effects; and (c) testing of biological hypotheses relating plant
architecture to biomechanics, for instance the impact of stresses in the mother
branch axis on the formation of lateral branches.

Acknowledgments

The support for this work by a research grant, a postgraduate scholarship, and
an equipment grant from the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged.

References

[1] J. J. Craig (1989): Introduction to robotics: mechanics and control. Second edition.
Addison-Wesley, Reading, 1989.

[2] J. Digby and R. D. Firn (1995): The gravitropic set-point angle (GSA): the identifi-

cation of an important developmentally controlled variable governing plant archi-
tecture. Plant, Cell and Environment, 18: 1434-1440.

[3] Th. Fourcaud (1997): Relations entre croissance et biomécanique de l'arbre. In: J.

Bouchon, Ph. de Reffye and D. Barthélémy (Eds.): Modélisation et simulation de
l'architecture des végétaux. INRA Editions, Paris, pp. 350-382.

[4] M. Fournier, H. Bailleres, and B. Chanson (1994): Tree biomechanics: growth,

cumulative prestresses, and reorientations. Biomimetics, 2 (3): 229-251.

2-75

[5] J. Gril, F. Blaise and M. Fournier (1992) Introduction de concepts mécaniques dans
un logiciel de croissance des plantes. In: B. Thibaut (Ed.): Architecture, Structure,
Mécanique de l’Arbre IV. LMGC, Montpellier, pp. 171-185.

[6] M. Hammel and P. Prusinkiewicz (1996): Visualization of developmental processes

by extrusion in space-time. Proceedings of Graphics Interface ’96, pp. 246-258.

[7] C. Jirasek (2000): A biomechanical model of branch shape in plants expressed using

L-systems. M.Sc. Thesis, Department of Computer Science, University of Calgary.

[8] L. Landau and E. Lifshitz (1986): Theory of elasticity. Third edition. Butterworth

Hinemann, Oxford.

[9] R. Mech and P. Prusinkiewicz (1996): Visual models of plants interacting with their

environment. Proceedings of SIGGRAPH '96, pp. 397-410.

[10] B.Moulia., M. Fournier and D. Guitard (1994): Mechanics and form of the maize

leaf : in vivo qualification of the flexural behaviour. J. Mater. Sci., 29 : 2359-2366.

[11] B.Moulia (1993) Etude mécanique du port foliaire du maïs (Zea mays L.). Thèse

de l'Université de Bordeaux I (UFR de Physique). 123pp.

[12] K. Niklas (1992): Plant biomechanics. The University of Chicago Press, Chicago.

[13] J. Platt and A. Barr (1988): Constraint methods for flexible models. Computer

Graphics, 22 (4): 279-288.

[14] P. Prusinkiewicz, M. Hammel, J. Hanan and R. Mech (1997): Visual models of

plant development. In: G. Rozenberg and A. Salomaa (Eds.): Handbook of formal
languages, Vol. III, Springer, Berlin, pp. 535-597.

[15] P. Prusinkiewicz and A. Lindenmayer (1990): The algorithmic beauty of plants.

Springer, New York.

[16] B. Schaffer (1990) Forme d’équilibre d’une branche d’arbre. CR Acad. Sci. Paris,

311 (2): 37-43.

[17] K. Shinozaki, K. Yoda, K. Hozumi and T. Kira (1964): A quantitative analysis of

plant form - the pipe model theory. I. Basic analyses. Japanese Journal of Ecology,
14 (3): 97-104.

L-system description of subdivision curves∗

Przemyslaw Prusinkiewicz, Faramarz Samavati
Colin Smith and Radoslaw Karwowski

Department of Computer Science
The University of Calgary

pwp|samavati|smithco|radekk@cpsc.ucalgary.ca

Abstract

In recent years, subdivision has emerged as a major geometric modeling tech-
nique. Algorithms for generating subdivision curves are often specified in terms
of iterated matrix multiplication. Each multiplication maps a globally indexed se-
quence of points that represents a coarser approximation of the curve onto a longer
sequence that represents a finer approximation. Unfortunately, an infinite set of
matrices is needed to specify these mappings for sequences of points of arbitrary
length. Thus, matrix algebra is not well attuned to the dynamic nature of subdi-
vision. In addition, matrix notation and the use of indices obscure the local and
stationary character of typical subdivision rules.

We introduce parametric context-sensitive L-systems with affine geometry in-
terpretation as an alternative technique for specifying and generating subdivision
curves. This technique is illustrated using Chaikin, cubic B-spline, and Dyn-Levin-
Gregory (4-point) subdivision schemes as examples. L-systems formalize subdivi-
sion algorithms in an intuitive, concise, index-free manner, reflecting the parallel
and local character of these algorithms. Furthermore, L-system specification of
subdivision algorithms directly leads to their computer implementation.

1 Introduction

The definition and generation of smooth curves and surfaces specified by a small set of
control points is a fundamental problem of geometric modeling. One class of solutions is
based on the concept of subdivision: an iterative replacement of coarser representations
of a curve or surface by finer representations. The first subdivision algorithm for curves
was described almost thirty years ago [5], and algorithms for surfaces soon followed [4,
11]. Nevertheless, subdivision was not recognized as a practical modeling technique
until the late 1990’s, when is was successfully applied to character animation [10]. This

∗To appear in the International Journal of Shape Modeling. Used by permission from World Scien-

tific.

3-1

a) b)

c) d) e)

Figure 1: Curve generation using Chaikin’s algorithm. a) A sample user-specified
control polygon. b) The replacement of old vertices by pairs of new vertices in the first
step of the algorithm. Shaded areas represent the cut-off corners. c–e) Illustration of
the subsequent three subdivision steps.

development coincided with the explosion of research interest in subdivision curves and
surfaces, which continues until now.

One appealing aspect of subdivision is that, at the intuitive level, it is easy to
describe and understand. Unfortunately, this simplicity is not reflected in the index-
and matrix-based notation often used to formalize subdivision algorithms. In this paper
we propose context-sensitive parametric L-systems [22, 30] as an alternative formalism,
rooted in formal language theory. L-systems make it possible to effectively specify
growing sequences of symbols (words) without the use of indices. We extend this
capability to polygonal approximations of subdivision curves. The L-system notation
captures the local nature of subdivision algorithms in a formal yet intuitive manner,
and leads directly to a computer implementation of these algorithms. This, in turn,
is useful in practical applications, such as experimentation with different subdivision
schemes, and expository presentation of subdivision algorithms.

3-2

Figure 2: Example of the labeling of points in the first step of Chaikin’s algorithm

2 Background

Let us consider the original Chaikin algorithm [5] to review the main concept of subdi-
vision and its usual formalization. For simplicity, we will apply it to generate a closed
curve, thus avoiding special-case rules that would be needed near the endpoints of an
open curve. The initial approximation of the curve under construction is specified by a
(circular) list of user-defined control points. Figure 1a shows a sample arrangement of
these points, connected to form a polygon. The next approximation is obtained by cut-
ting the corners of this polygon (Figure 1b). Each “old” vertex is replaced with a pair
of “new” vertices, where each new vertex is situated one quarter of the distance from
its parent point to one of its neighbors (Figure 1b). The subsequent approximations of
the curve are obtained by iterating the same corner-cutting scheme (Figure 1c–e).

In the standard formalization of the subdivision process, points are globally enu-
merated and assigned unique labels. A possible labeling scheme is shown in Figure 2.
The superscript k indicates the iteration step at which point P k

i has been created. The
subscript i is the ordering number of this point within the sequence of points created
in the same step.

The positions of new points are expressed as affine combinations of the positions
of old points. An affine combination of n points P1, P2, . . . , Pn is an expression of the
form

α1P1 + α2P2 + · · · + αnPn, (1)

where the scalar coefficients αi add up to 1:

α1 + α2 + · · · + αn = 1. (2)

The meaning of the affine combination (1) is derived from its transformation to the
form

P = P1 + α2(P2 − P1) + · · · + αn(Pn − P1), (3)

3-3

Figure 3: Definition of point P as an affine combination of points P1 and P2.

which is a well-defined expression of vector algebra. Specifically, for two points we
obtain:

P = α1P1 + α2P2 = P1 + α2(P2 − P1) = P2 + α1(P1 − P2). (4)

Thus, point P divides line P1P2 in the ratio of α2 : α1 (Figure 3). Affine geometry and
its applications to computer graphics have been described in detail by DeRose [8, 9];
for further insights see [20, 18].

Returning to Figure 2, the new point positions are related to the old point positions
by the affine combinations:

P 2
1 =

3

4
P 1

1 +
1

4
P 1

4 , (5)

P 2
2 =

3

4
P 1

1 +
1

4
P 1

2 , (6)

and so on for the remaining points. In matrix notation,

P 2
1

P 2
2

P 2
3

P 2
4

P 2
5

P 2
6

P 2
7

P 2
8

=

3

4
0 0 1

4

3

4

1

4
0 0

1

4

3

4
0 0

0 3

4

1

4
0

0 1

4

3

4
0

0 0 3

4

1

4

0 0 1

4

3

4

1

4
0 0 3

4

P 1
1

P 1
2

P 1
3

P 1
4

. (7)

This equation is generalized to arbitrary control polygons and arbitrary derivation steps
by writing:

3-4

P k+1
1

P k+1
2

P k+1
3

P k+1
4

P k+1
5

P k+1
6

...

P k+1
2n−2

P k+1
2n−1

P k+1
2n

=

3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

·

P k
1

P k
2

P k
3

P k
4

...

P k
n−1

P k
n

(8)

Subdivision schemes other than Chaikin’s can be specified in a similar way, using
different subdivision matrices [2, 33, 36, 37].

Related to the use of matrices is the use of indices to identify and order the points.
Unfortunately, the index notation is not well attuned to the needs of subdivision. Due
to the local character of subdivision, the creation of a pair of new points is based on
the information about their parent old point and its neighbors. Indexing makes it
possible to access this information only in a circular way, by first globally assigning
consecutive numbers to all points, then referring to the neighbors of point P k

i using
index arithmetic: i−1 and i+1. This is more complicated than the verbal description,
in which we would use terms such as “previous” and “next” (or “left” and “right”) to
refer to the neighbors of a given point. At the same time, the index notation is too
powerful: by providing a unique label to each point it makes it possible to access points
at random, in violation of the algorithm’s locality. This is true in both the spatial and
temporal domains: in the latter case, the use of indices makes it potentially possible
to refer to points from arbitrary iteration steps, whereas only the information from the
previous step is available and needed.

3 From stencils and masks to productions

One alternative to the index-based notation is the representation of subdivision rules
using stencils. Sabin [32] defines them as follows:

Stencil. The weights due to various old vertices in computing a given
new one. Also the pattern of relative positions of the old vertices around
the new one.

Stencils (and the related notion of masks) are usually represented as graphs that depict
short subsequences of old and new points. These points are connected by arrows labeled

3-5

Figure 4: A stencil for Chaikin subdivision algorithm

Figure 5: Chaikin’s subdivision as a production

by coefficients α in the affine geometry combinations (Equation 1) that take the old
points to the new ones. For instance, a stencil for the Chaikin subdivision algorithm is
shown in Figure 4. For other examples see [14, 38].

Stencils provide an intuitive, index-free representation of subdivision rules. Unfor-
tunately, this is not a precise representation. For example, Figure 4 shows that three
old points are involved in creating a pair of new points. It does not explicitly specify,
however, whether the same old points may also be involved in the production of other
new points. Looking at the same problem from a different perspective, it is not clear
to what extent the stencils may overlap when applied to various subsequences of old
points.

We address this imprecision by recasting the notion of a stencil into the frame-
work of formal language theory (Figure 5). A sequence of points is viewed as a word
over some alphabet. A circular sequence of points approximating a closed curve is
represented by a circular word [31, 35]. The stencil is a grammar production, with
the predecessor representing a finite subsequence of old points, and the successor rep-
resenting a subsequence of new points. The predecessor is partitioned into the strict
predecessor, left context, and right context. The strict predecessor represents the old
point that is rewritten or “consumed” by the production application, that is, cannot be
used anymore. In Chaikin’s construction, it is the vertex of a corner being cut off. The

3-6

context consists of the neighbors of the strict predecessor that provide the additional
information needed to specify the successor points. When rewriting a sequence of old
points, production predecessors may overlap, as long as no point is used more than
once as a strict predecessor.

The Chaikin construction requires that each old point be replaced by two new ones
in every iteration of the algorithm. This corresponds to the notion of parallel rewriting
as defined for L-systems [22, 23], as opposed to the sequential rewriting defined for
Chomsky grammars [7].

4 L-systems

L-systems were originally introduced as a rewriting mechanism acting on words over a
finite alphabet [22, 23]. Soon afterward, however, they were extended to strings of sym-
bols with numerical attributes [1, 24]. This concept was formalized as parametrized [6]
and parametric [19, 30] L-systems. Here we use an extension of the latter formalism.
For its more detailed presentation see [26, 30].

Parametric L-systems operate on strings of modules. A module is a letter from a
finite alphabet V with optional numerical parameters. For example, the string

A(1.5)B(2.0, 3.0)A(4.5) (9)

is a parametric word over the alphabet V = {A, B}.
Starting with an explicitly defined initial word, or axiom, an L-system generates

a developmental sequence of words using a finite set of productions that operate on
limited-length subwords. The actual parameters in each word correspond to the formal
parameters in the productions. Arithmetic expressions in the successor of a production
determine new parameter values. In the case of context-sensitive productions, the left
and right contexts are separated from the strict predecessor by the metasymbols (i.e.,
symbols that do not represent modules) < and >, respectively.

A developmental sequence of words results from a sequence of derivation steps. In
each step, productions are applied in parallel to all modules of the predecessor word,
so that each module is the strict predecessor of some production. For example, by
applying the production set

A(x) → A(2x + 1) (10)

A(w) < B(x, y) > A(x) → A(w + x)A(y + x) (11)

to the parametric word (9), we obtain after one derivation step:

A(4.0)A(3.5)A(7.5)A(10). (12)

Recent extensions of parametric L-systems [13, 21] make it possible to use not
only numbers, but also compound data structures as parameters. We use this feature

3-7

to represent points as vectors of coordinates, and we overload standard arithmetic
operators to specify affine combinations of points. With this convention, the L-system
production that specifies Chaikin’s subdivision becomes:

P (vl) < P (v) > P (vr) → P (
1

4
· vl +

3

4
· v)P (

3

4
· v +

1

4
· vr) (13)

This mathematical notation is closely reflected in the programming language L+C,
which combines features of L-systems and the C++ programming language [21]. L+C

programs constitute an input to the graphical modeling program lpfg [21], which we
have used to implement the algorithms presented in this paper. For example, the
following L+C program generates the picture (curve with dots) shown in Figure 1d:

1 #include <lpfgall.h>

2 V2f v1(0, 0), v2(0, 1), v3(1, 1), v4(1, 0);

3 module P(V2f);

4

5 ring L-system: 1;

6 derivation length: 3;

7

8 Axiom: P(v1) P(v2) P(v3) P(v4) ;

9 P(vl) < P(v) > P(vr) :

10 { produce P(0.25*vl+0.75*v) P(0.75*v+0.25*vr); }

11

12 interpretation:

13 P(v) : { produce LineTo2f(v) Circle(0.01) ; }

Line 1 is a reference to the file lpfgall.h that contains predefined constants and
structure declarations. Specifically, our program makes use of two-dimensional vectors
V2f. Line 2 defines four points that will be used in line 8 as the vertices of the control
polygon. Line 3 declares module type P as being associated with one parameter — a
vector of type V2f. Line 5 specifies that the L-system will operate on circular words,
and line 6 specifies the required derivation length. Lines 9 and 10 are the essence of this
program and contain the production responsible for the Chaikin subdivision. Finally,
Line 13, preceded by the keyword in line 12, defines the homomorphism that will be
applied at the end of the derivation (c.f. [28]). According to it, each point is represented
as a small circle, connected by a line to its predecessor.

For compactness, in the following sections we will mainly use the mathematical
notation exemplified by Equation 13, rather than complete program listings.

3-8

5 Inferring L-systems from subdivision matrices

Since subdivision curves are often defined using matrix notation [2, 33, 36, 37], the
inference of L-systems from the subdivision matrices is an important practical problem.
Unfortunately, it cannot entirely be resolved by algorithmic means, because dots in the
general subdivision matrices, e.g. (8), require an interpretation. Furthermore, as we
are going to see, many equivalent L-systems can be inferred from the same matrix, thus
the inference process involves an element of decision.

As described in Section 2, the subdivision matrix globally maps an old sequence of
points onto a new sequence. In contrast, an L-system production replaces an individual
old point by a subsequence of new points. We must therefore partition the sequence
of new points into subsequences, and establish a one-to-one mapping between the old
points and these subsequences. For example, a mapping for the Chaikin subdivision
(Equation 8) may take point P k

i to points P k+1
2i−1 and P k+1

2i , where i = 1, 2, . . . , n. An
instance of this mapping for i = 3 is illustrated below:

P k+1
1

P k+1
2

P k+1
3

P k+1
4

P k+1
5

P k+1
6

...

P k+1
2n−2

P k+1
2n−1

P k+1
2n

=

3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

P k
1

P k
2

P k
3

P k
4

...

P k
n−1

P k
n

(14)

The encircled points in the column matrices show that old point P k
3 will be replaced

by new points P k+1
5 and P k+1

6 . In the subdivision matrix, the same replacement is
indicated by encircling column 3, which represents the contribution of point P k

3 to the
matrix multiplication, and rows 5 and 6, which yield points P k+1

5 and P k+1
6 of the

result. The shaded area includes non-zero elements of these rows, and thus identifies
the production predecessor and the coefficients of the affine combinations that will
yield the successor points. The position of the encircled column with respect to this
area partitions the predecessor into left context, strict predecessor, and right context.
The replacement of point P k

3 by points P k+1
5 and P k+1

6 can therefore be written as a
production,

P k
i−1(vl) < P k

i (v) > P k
i+1(vr) → P k+1

2i−1(
1

4
· vl +

3

4
· v)P k+1

2i (
3

4
· v +

1

4
· vr), (15)

3-9

where i = 3. The regular form of the subdivision matrix in Equation 14 suggests that
production (15) applies for any values i, k = 1, 2, This observation leads to the
general L-system production for Chaikin subdivision in Equation 13.

The decision to replace point P k
i with the points P k+1

2i−1 and P k+1
2i was an arbitrary

one. In general, there is an equivalent one-production L-system that generates the same
Chaikin curve (up to a cyclical permutation of points) by taking point P k

i to a pair of
consecutive points P k+1

j−1 P k+1
j (i = 1, 2, . . . , n; j ≡ 2i + d mod 2n) for any integer d.

The mapping performed by production 13 and illustrated by Equation 14 corresponds
to d = 0. Two other mappings, corresponding to d = −1 and d = 1, are indicated
below:

3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

,

3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

.

(16)

The resulting L-system productions are, respectively:

P (vl) < P (v) → P (3

4
· vl + 1

4
· v)P (1

4
· vl + 3

4
· v), (17)

P (v) > P (vr) → P (3

4
· v + 1

4
· vr)P (1

4
· v + 3

4
· vr). (18)

Productions 17 and 18 lack the symmetry of production 13, but are shorter and in this
sense simpler than production 13. Other values of constant d yield productions that
are also asymmetric, but relatively longer. For example, for d = 3 we obtain:

3-10

3

4
0 0 0 · · · 0 1

4

3

4

1

4
0 0 · · · 0 0

1

4

3

4
0 0 · · · 0 0

0 3

4

1

4
0 · · · 0 0

0 1

4

3

4
0 · · · 0 0

0 0 3

4

1

4
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 3

4

1

4

0 0 0 0 · · · 1

4

3

4

1

4
0 0 0 · · · 0 3

4

,

(19)

P (v) > P (vr)P (vrr)P (vrrr) → P (
3

4
· vrr +

1

4
· vrrr)P (

1

4
· vrr +

3

4
· vrrr). (20)

This production, along with other productions obtained for |d| > 1, appears to be of
limited interest, because new points are increasingly distant from the old points they
replace, contrary to the intuition of the Chaikin algorithm.

L-system productions for other subdivision algorithms can be inferred in a similar
way. For example, below we present two views of the subdivision matrix for the cubic
B-spline subdivision (c.f. [15, 33]):

1

2
0 0 0 · · · 0 0 1

2

3

4

1

8
0 0 · · · 0 0 1

8

1

2

1

2
0 0 · · · 0 0 0

1

8

3

4

1

8
0 · · · 0 0 0

0 1

2

1

2
0 · · · 0 0 0

0 1

8

3

4

1

8
· · · 0 0 0

0 0 1

2

1

2
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 1

2

1

2
· · · 1

8

3

4

1

8

0 0 1

2

1

2
· · · 0 1

2

1

2

1

8
0 1

2

1

2
· · · 0 1

8

3

4

,

1

2
0 0 0 · · · 0 0 1

2

3

4

1

8
0 0 · · · 0 0 1

8

1

2

1

2
0 0 · · · 0 0 0

1

8

3

4

1

8
0 · · · 0 0 0

0 1

2

1

2
0 · · · 0 0 0

0 1

8

3

4

1

8
· · · 0 0 0

0 0 1

2

1

2
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 1

2

1

2
· · · 1

8

3

4

1

8

0 0 1

2

1

2
· · · 0 1

2

1

2

1

8
0 1

2

1

2
· · · 0 1

8

3

4

.

(21)

3-11

a) b) c)

Figure 6: A comparison of curves generated with (a) Chaikin, (b) cubic B-spline, and
(c) Dyn-Levin-Gregory subdivision algorithms, using the same control polygon.

The corresponding L-system productions are, respectively:

P (vl) < P (v) > P (vr) → P (1

8
· vl + 3

4
· v + 1

8
· vr)P (1

2
· v + 1

2
· vr), (22)

P (vl) < P (v) > P (vr) → P (1

2
· vl + 1

2
· v)P (1

8
· vl + 3

4
· v + 1

8
· vr). (23)

Figure 6b shows a sample curve generated using either of these productions. Sim-
ilar to Chaikin subdivision (Figure 6a), the cubic B-spline subdivision yields a curve
that approximates the control polygon. In contrast, Dyn-Levin-Gregory 4-point subdi-
vision [12] (see also [33]) generates an interpolating curve (Figure 6c). Its subdivision
matrix, complemented with one of the possible mappings of an old point to new points,
is given below:

9

16
− 1

16
0 0 0 · · · 0 − 1

16

9

16

1 0 0 0 0 · · · 0 0 0
9

16

9

16
− 1

16
0 0 · · · 0 0 0

0 1 0 0 0 · · · 0 0 0

− 1

16

9

16

9

16
− 1

16
0 · · · 0 0 0

0 0 1 0 0 · · · 0 0 0

0 − 1

16

9

16

9

16
− 1

16
· · · 0 0 0

0 0 0 1 0 · · · 0 0 0

0 0 − 1

16

9

16

9

16
· · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 9

16

9

16
− 1

16

0 0 0 0 0 · · · 0 1 0

− 1

16
0 0 0 0 · · · − 1

16

9

16

9

16

0 0 0 0 0 · · · 0 0 1

.

(24)

3-12

Figure 7: Five steps of a curve generation using the Dyn-Levin-Gregory algorithm

The resulting L-system production is:

P (vl) < P (v) > P (vr)P (vrr) →

P (v)P (− 1

16
· vl + 9

16
· v + 9

16
· vr −

1

16
· vrr).

(25)

According to this production, the predecessor old point will be replaced by a copy of
itself, followed by a newly inserted point. A different choice for mapping of old and new
points results in an alternative production, in which the newly inserted point precedes
the copy of the old point:

P (vll)P (vl) < P (v) > P (vr) →

P (− 1

16
· vll + 9

16
· vl + 9

16
· v − 1

16
· vr)P (v).

(26)

The interpolating character of this subdivision scheme is further illustrated in Figure 7,
which shows that points from the previous step are preserved in the next step.

Descriptions of subdivision schemes are often expressed in terms of “even” and
“odd” points [38]. Odd points are newly created in the given algorithm step, whereas
even points are the old points. The position of even points is preserved in the interpo-
lating schemes, or adjusted in the approximating schemes. The L-system expression of
subdivision rules makes the distinction between odd and even points unnecessary.

6 Subdividing open curves

Subdivision of open curves proceeds in a manner similar to the subdivision of closed
curves, except that special subdivision rules must be applied near the curve endpoints.
For example, let us consider the inference of an L-system for the Chaikin subdivision
of an open curve, given the following subdivision matrix [33]:

3-13

1 0 0 0 · · · 0 0 0
1

2

1

2
0 0 · · · 0 0 0

0 3

4

1

4
0 · · · 0 0 0

0 1

4

3

4
0 · · · 0 0 0

0 0 3

4

1

4
· · · 0 0 0

0 0 1

4

3

4
· · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 3

4

1

4
0

0 0 0 0 · · · 1

4

3

4
0

0 0 0 0 · · · 0 1

2

1

2

0 0 0 0 · · · 0 0 1

(27)

Unlike previously considered matrices, which had n columns and 2n rows, this
matrix has only 2n−2 rows. Thus, it is no longer possible to substitute two new points
for each old point. We address this problem assuming that the first and last old point
will be replaced by single points, and the remaining old points will be replaced by pairs
of new points. This leads to the following L-system productions:

l# < P (v) → P (v) (28)

#P (vl) < P (v) > P (vr) → P (
1

2
· vl +

1

2
· v)P (

3

4
· v +

1

4
· vr) (29)

P (vll)P (vl) < P (v) > P (vr)P (vrr) → P (
1

4
· vl +

3

4
· v)P (

3

4
· v +

1

4
· vr) (30)

P (vl) < P (v) > P (vr)# → P (
1

4
· vl +

3

4
· v)P (

1

2
· v +

1

2
· vr) (31)

P (v) > # → P (v) (32)

→ # (33)

We assume that the control polygon is represented by a sequence of at least four
modules P (v), delimited by modules #. Productions 28 and 32 state that the first and
the last point of the curve will be rewritten by themselves, as specified by the first and
the last row of subdivision matrix 27. Production 29 is associated with the second and
third point of the subdivision matrix, and production 31 is associated with the third and
second last row of that matrix in a symmetric way. Production 30 captures subdivision
away from the endpoints. In essence, it is the same production as production 13 for the
Chaikin subdivision of closed curves. The additional context terms, P (vll) and P (vrr),
assure that production 30 will not be applied too close to the endpoints of the curve.
Finally, production 33 rewrites the endmarkers by themselves.

The above L-system can be simplified using the following conventions [26, 30]:

3-14

Figure 8: An open control polygon and the resulting Chaikin subdivision curve obtained
using L-system productions 28 – 33 or 34 – 36.

• if no production for rewriting a particular module is explicitly listed, this module
will be rewritten into itself;

• if more than one production could be used to rewrite the same module, the
production that appears first in the ordered production list will be applied.

Under these conventions, the open-curve Chaikin subdivision can be defined using the
following L-system productions:

l#P (vl) < P (v) > P (vr) → P (
1

2
· vl +

1

2
· v)P (

3

4
· v +

1

4
· vr) (34)

P (vl) < P (v) > P (vr)# → P (
1

4
· vl +

3

4
· v)P (

1

2
· v +

1

2
· vr) (35)

P (vl) < P (v) > P (vr) → P (
1

4
· vl +

3

4
· v)P (

3

4
· v +

1

4
· vr) (36)

These L-systems provide a complete and compact specification of the Chaikin sub-
division algorithm for open curves, and directly lead to its computer implementation
(c.f. Section 4). An application example is given in Figure 8. The reference to the
curve endpoints using context and markers is less error-prone than the use of numerical
limits for index values. The same methodology can be used to specify L-systems for
other subdivision schemes.

7 Reverse subdivision

Bartels and Samavati introduced the notion of reverse subdivision, in which the num-
ber of points representing a curve or surface is gradually reduced, while the resulting
approximations are kept within tolerable error bounds [2, 33]. Specifically, local reverse
subdivision [2] inverts the paradigm of the forward subdivision: instead of replacing

3-15

a) b) c)

Figure 9: Reverse subdivision of a scanned ivy leaf contour. a) The input contour with
1925 points. b, c) Two approximations of the input contour obtained using produc-
tion 38. Both approximations consist of 122 points, and have been obtained after four
reverse subdivision steps using different circular permutations of the input string.

individual old points by subsequences of new points, it replaces subsequences of old
points by individual new points. Bartels and Samavati specify this process using re-
verse subdivision matrices. For example, the matrix for the reverse Chaikin subdivision
of a closed curve is [2]:

3

4
−1

4
0 0 0 · · · 0 0 0 − 1

4

3

4

−1

4

3

4

3

4
−1

4
0 · · · 0 0 0 0 0

0 0 −1

4

3

4

3

4
· · · −1

4
0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 −1

4
· · · 3

4

3

4
−1

4
0 0

0 0 0 0 0 · · · 0 − 1

4

3

4

3

4
−1

4

(37)

This matrix has 2n columns and n rows, which implies that pairs of predecessor
points will be replaced by individual points. Using the grouping indicated by the
encircled row, columns, and the shaded area, we obtain the following production:

P (vl) < P (va)P (vb) > P (vr) → P (−
1

4
· vl +

3

4
· va +

3

4
· vb −

1

4
· vr) (38)

Formally, this production is not consistent with the definition of L-systems, because
its strict predecessor is not a single module. Nevertheless, an extension called pseudo-L-
systems [25] makes it possible to use such productions. In a pseudo-L-system derivation
step, strict predecessors are assumed to partition the predecessor string without over-
laps. This is a source of nondeterminism, since different partitions may exist, leading to

3-16

Figure 10: A Sierpinski space-filling curve (a) and its smooth version obtained using
subdivision (b).

different results. For example, a circular word of length 2n can be partitioned into pairs
(1, 2), (3, 4), . . . , (n − 1, n) or (2, 3), (4, 5), . . . , (n, 1). The existence of different results
of a reverse subdivision step implies that the same original curve may be approximated
in more than one way.

Reverse subdivision can be used, for example, to reduce the number of points ap-
proximating a measured curve. An example of such an application is shown in Figure 9.

8 Conclusions

We proposed context-sensitive parametric L-systems with affine geometry interpreta-
tion as a formal method for specifying subdivision algorithms for curves. L-systems
formalize the notion of stencils and provide an intuitive yet compact and complete
description of subdivision algorithms.

L-systems capture the local character of subdivision rules and the dynamic char-
acter of the subdivision process. This compatibility is closely related to the biological
motivation of L-systems. They were originally proposed to describe the growth of linear
structures made of locally communicating discrete elements. Subdivision can obviously
be seen as an instance of such growth.

An important feature of L-system notation is that it identifies a module by its
state and neighborhood. This stands in a contrast to standard mathematical notation,
in which elements of a sequence are identified by indices. The index-free notation
simplifies the specification and implementation of a dynamical system with dynamic
structure [17]. The indices, if present, must be recalculated each time the number
or configuration of components change, and thus do not provide convenient, stable
identifiers of system elements. In addition, the use of indices obscures the local character
of subdivision rules.

3-17

Figure 11: A branching structure (a) and the result of its smoothing (b).

We have considered the inference of L-systems, given subdivision matrices. We
illustrated this inference using Chaikin, cubic B-spline, and Dyn-Levin-Gregory (4-
point) subdivision schemes as examples. In addition to closed curves, discussed in
more detail, we presented an example of an open curve subdivision, based on Chaikin’s
scheme. We have also shown that an extension of L-systems can be used to specify and
implement local reverse subdivision algorithms.

We have implemented the programming language L+C, which makes it possible to
specify L-systems as input to the modeling program, lpfg. This facilitates experimen-
tation with various subdivision schemes, because not only the subdivision parameters,
but also the entire subdivision algorithms, can easily be specified and modified. This
makes L-systems particularly useful in research and teaching of subdivision curves.

Several problems relating L-systems to subdivision remain open for further research.
For example, we observed that L-systems with affine geometry interpretation can also
be used to generate fractals. This echoes the relation between subdivision curves and
fractals pointed out by Warren and Weimer [37]. The possibility of integrating fractals
and subdivision curves using the same L-system formalism is interesting from the the-
oretical perspective and may have useful applications. For instance, Figure 10 shows
a finite approximation of the Sierpinski space-filling curve [34], and the result of its
smoothing using Chaikin subdivision. The resulting curve is a kolam pattern, a rep-
resentative of patterns that were developed as folk art in India and have attracted
mathematical attention because of their self-similar structure [16, 27, 29].

Another open problem is the extension of subdivision algorithms to branching struc-
tures. An example of such a structure is shown in Figure 11a, and the result of its
smoothing using Chaikin’s algorithm is shown in Figure 11b. As pointed out by Bloo-
menthal [3], the use of curved lines increases the perception of realism in many models

3-18

of organic forms. The formalism of L-systems is useful in describing branching forms,
and therefore may provide a convenient general basis for subdividing branching curves
as well.

Acknowledgement

We thank Lynn Mercer for editorial help. The support of the Natural Sciences and
Engineering Research Council of Canada is gratefully acknowledged.

References

[1] R. Baker and G. T. Herman. Simulation of organisms using a developmental model,
parts I and II. International Journal of Bio-Medical Computing, 3:201–215 and
251–267, 1972.

[2] R. H. Bartels and F. F. Samavati. Reversing subdivision rule: local linear condi-
tions and observations on inner products. Journal of Computational and Applied

Mathematics, 119:29–67, 2000.

[3] J. Bloomenthal. Skeletal design of natural forms. PhD thesis, University of Calgary,
January 1995.

[4] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10(6):350–355, 1978.

[5] G. Chaikin. An algorithm for high speed curve generation. Computer Graphics

and Image Processing, 3:346–349, 1974.

[6] T. W. Chien and H. Jürgensen. Parameterized L systems for modelling: Potential
and limitations. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems:

Impacts on theoretical computer science, computer graphics, and developmental

biology, pages 213–229. Springer-Verlag, Berlin, 1992.

[7] N. Chomsky. Three models for the description of language. IRE Trans. on Infor-

mation Theory, 2(3):113–124, 1956.

[8] T. DeRose. Three-dimensional computer graphics. A coordinate-free approach.
Manuscript, University of Washington, 1992.
http://grail.cs.washington.edu/pub/.

[9] T. DeRose. A coordinate-free approach to geomeric programming. In W. Strasser
and H.-P. Seidel, editors, Theory and practice of geometric modeling, pages 291–
305. Springer-Verlag, Berlin, 1989.

3-19

[10] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character animation.
Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998), pages 85–94,
ACM SIGGRAPH, New York, 1998.

[11] D. Doo and M. Sabin. Analysis of the behaviour of recursive division surfaces near
extraordinary points. Computer Aided Design, 10(6):356–360, 1978.

[12] N. Dyn, J. Gregory, and D. Levin. A four-point interpolatory subdivision scheme
for curve design. Computer Aided Geometric Design, 4:257–268, 1987.

[13] K. A. Erstad. L-systems, twining plants, Lisp. Master’s thesis, University of
Bergen, Norway, January 2002. http://www.ii.uib.no/~ knute/lsystems/.

[14] K. Joy et. al. On-line geometric modeling notes. Computer Science Department,
University of California, Davis.
http://graphics.cs.ucdavis.edu/CAGDNotes.

[15] G. Farin. Curves and surfaces for CAGD. A practical guide. Fifth edition. Morgan
Kaufmann, San Francisco, 2002.

[16] P. Gerdes. Reconstruction and extension of lost symmetries: examples from the
Tamil of South India. Computers Math. Applic., 17(4–6):791–813, 1989.

[17] J.-L. Giavitto and O. Michel. MGS: A programming language for the transfor-
mation of topological collections. Research Report 61-2001, CNRS - Université
d’Evry Val d’Esonne, Evry, France, 2001.

[18] R. Goldman. On the algebraic and geometric foundations of computer graphics.
ACM Transactions on Graphics, 21(1):52–86, January 2002.

[19] J. S. Hanan. Parametric L-systems and their application to the modelling and

visualization of plants. PhD thesis, University of Regina, June 1992.

[20] M. Hausner. A vector space approach to geometry. Dover Publications, Mineola,
1998.

[21] R. Karwowski. Improving the process of plant modeling: The L+C modeling lan-

guage. PhD thesis, University of Calgary, September 2002.

[22] A. Lindenmayer. Mathematical models for cellular interaction in development,
Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[23] A. Lindenmayer. Developmental systems without cellular interaction, their lan-
guages and grammars. Journal of Theoretical Biology, 30:455–484, 1971.

[24] A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg
and A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages
53–68. Springer-Verlag, Berlin, 1974.

3-20

[25] P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics

Interface ’86 — Vision Interface ’86, pages 247–253, 1986.

[26] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of plant
development. In G. Rozenberg and A. Salomaa, editors, Handbook of formal lan-

guages, Vol. III: Beyond words, pages 535–597. Springer, Berlin, 1997.

[27] P. Prusinkiewicz and J. Hanan. Lindenmayer systems, fractals, and plants, vol-
ume 79 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1989 (second
printing 1992).

[28] P. Prusinkiewicz, J. Hanan, and R. Měch. An L-system-based plant modeling lan-
guage. In M. Nagl, A. Schürr, and M. Münch, editors, Applications of graph trans-

formations with industrial relevance, Lecture Notes in Computer Science 1779,
pages 395–410. Springer-Verlag, Berlin, 2000.

[29] P. Prusinkiewicz, K. Krithivasan, and M. G. Vijayanarayana. Application of L-
systems to algorithmic generation of South Indian folk art patterns and karnatic
music. In R. Narasimhan, editor, A perspective in theoretical computer science

— commemorative volume for Gift Siromoney, pages 229–247. World Scientific,
Singapore, 1989. Series in Computer Science Vol. 16.

[30] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-
Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J.
M. de Boer, and L. Mercer.

[31] A. Rosenfeld. A note on cycle grammars. Information and Control, 27:374–377,
1975.

[32] M. Sabin. Subdivision surfaces. Tutorial notes, Shape Modeling International 2002
(Banff, Canada, May 18, 2002), 25 pp.

[33] F. F. Samavati and R. Bartels. Multiresolution curve and surface representation:
reversing subdivision rules by least-squares data fitting. Computer Graphics Fo-

rum, 18(2):97–119, June 1999.

[34] W Sierpiński. Sur une nouvelle courbe qui remplit tout une aire plaine. Bull. Acad.

Sci. Cracovie, Série A, pages 462–478, 1912. Reprinted in W. Sierpiński, Oeuvres

choisies, S. Hartman et al., editors, pages 52–66, PWN – Éditions Scientifiques de
Pologne, Warsaw, 1975.

[35] G. Siromoney, R. Siromoney, and T. Robinson. Kambi kolam and cycle gram-
mars. In R. Narasimhan, editor, A perspective in thepretical computer science.

Commemorative volume for Gift Siromoney, pages 267–300. World Scientific, Sin-
gapore, 1989.

3-21

[36] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. Wavelets for computer graphics:

theory and applications. Morgan Kaufman, San Francisco, CA, 1996.

[37] J. Warren and H. Weimer. Subdivision methods for geometric design. Morgan
Kaufman, San Francisco, CA, 2002.

[38] D. Zorin, P. Schröder, A. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. Sub-
division for modeling and animation. SIGGRAPH 2000 Course Notes.

3-22

L-system Implementation of Multiresolution Curves Based on Cubic
B-Spline Subdivision

K. Poon∗, L. Bateman, R. Karwowski, P. Prusinkiewicz and F. Samavati
University of Calgary

Abstract

It has been previously shown that L-systems can be used to gener-
ate subdivision and reverse subdivision curves [Prusinkiewicz et al.
2003]. In this paper we show that L-systems can also be used to
generate multiresolution curves. The L-system description captures
the locality of the concept of multiresolution curves.

1 Introduction

Finkelstein and Salesin [1994] introduced multiresolution curves
as a curve representation method. The multiresolution representa-
tion supports the ability to change the overall “sweep” of a curve
while maintaining its fine details, or “character”. Finkelstein and
Salesin used a wavelet-based notation, which uses “filters”, which
are represented as large matrices. Bartels and Samavati [2000] in-
troduced a general approach to generate local filters of multiresolu-
tion curves based on reverse subdivision. In this paper, we present
context-sensitive parametric L-systems as an alternative method for
representing the local filters. This idea is an extension of the L-
system based method for generating subdivision curves presented
by Prusinkiewicz et al [2003]. The L-system notation for multires-
olution curves leads to a simpler, more intuitive implementation of
multiresolution curves by eliminating the need for index and matrix
notation used in the traditional approach.

2 Multiresolution Curves

Multiresolution curves, introduced in [Finkelstein and Salesin
1994] allow editing of a curve’s character without affecting its
sweep (Figure 1) and the editing of a curve’s sweep without af-
fecting its character (Figure 2).

Figure 1: Editing a curve’s character without affecting its sweep
(from [Finkelstein and Salesin 1994]).

Multiresolution analysis can be broken into two parts: analysis
and synthesis. During analysis, the original curve is coarsened. De-
tail information lost in this coarsening is stored. During synthesis
the curve is rebuilt by performing subdivision on the coarse curve,
then adding the stored detail information.

∗e-mail: klpoon@cpsc.ucalgary.ca

Figure 2: Editing a curve’s sweep without affecting its character
(from [Finkelstein and Salesin 1994]).

2.1 Matrix Notation

In matrix notation, the original curve,Cn, is represented as a vector
of m points:

Cn = [Cn
1,Cn

2,Cn
3, ...,Cn

m]T . (1)
After one step of analysis the coarse curve,Cn−1, is a vector ofm′

points:
Cn−1 = [Cn−1

1 ,Cn−1
2 ,Cn−1

3 , ...,Cn−1
m′]T . (2)

The stored detail information,Dn−1, is a vector ofm−m′ points:

Dn−1 = [Dn−1
1 ,Dn−1

2 ,Dn−1
3 , ...,Dn−1

m−m′]T . (3)

Analysis can be represented as two matrix multiplications:

Cn−1 = AnCn (4)

Dn−1 = BnCn. (5)
Synthesis can be represented with the matrix equation:

Cn = PnCn−1 +QnDn−1, (6)

wherePn is the subdivision matrix andQn is the detail-restoring
matrix, as determined by B-spline wavelets.An andBn must satisfy
biorthogonality condition:[

An

Bn

]
= [Pn|Qn]−1. (7)

Pn is a known banded matrix for most curve schemes, however,
it is not easy to compute theAn, Bn andQn matrices. Finkelstein
and Salesin focus on the cubic B-spline subdivision scheme. A
banded but complicatedQn is computed using B-spline wavelets.
Consequently,Qn is a local filter.An andBn in that setting are full
matrices, i.e., they are global filters. In order to have linear time
analysis operations in equations 4 and 5, two banded linear systems
are solved.

Analysis and synthesis can be carried out recursively (Figures 3
and 4).

2.2 Multiresolution Based on Reverse Subdivision

Samavati and Bartels [1999] introduced a general technique for
generating multiresolution filters by reversing subdivision. This
technique works for any subdivision scheme, andQn is a very sim-
ple matrix. However,An andBn are still full matrices, i.e., global
filters. In a subsequent work [Bartels and Samavati 2000], several
sets of local multiresolution filters are generated based on reversing

Figure 3: Applying analysis recursively (from [Finkelstein and
Salesin 1994]).

Figure 4: Applying synthesis recursively.

of subdivision schemes. We use here some of these filters. There
are different filters for points near or at the endpoints of an open
curve. For simplicity, we only discuss the general, not endpoint fil-
ters, although our implementation includes endpoint filters as well.

Analysis for a cubic B-spline multiresolution representation of a
small, closed curve is given by the equations:

Cn−1 = AnCn (8)

Cn−1

1
Cn−1

2
Cn−1

3
Cn−1

4

=

− 1

2 2 − 1
2 0 0 0 0 0

0 0 − 1
2 2 − 1

2 0 0 0
0 0 0 0 − 1

2 2 − 1
2 0

− 1
2 0 0 0 0 0 − 1

2 2

Cn
1

Cn
2

Cn
3

Cn
4
...

Cn
8

and

Dn−1 = BnCn (9)

Dn−1

1
Dn−1

2
Dn−1

3
Dn−1

4

=

3
2 −1 1

4 0 0 0 1
4 −1

1
4 −1 3

2 −1 1
4 0 0 0

0 0 1
4 −1 3

2 −1 1
4 0

1
4 0 0 0 1

4 −1 3
2 −1

Cn
1

Cn
2

Cn
3

Cn
4
...

Cn
8

The corresponding synthesis equation is:

Cn = PnCn−1 +QnDn−1 (10)

Cn
1

Cn
2

Cn
3

Cn
4
...

Cn
8

 =

1
2

1
2 0 0

1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8

0 0 1
2

1
2

1
8 0 1

8
3
4

1
2 0 0 1

2
3
4

1
8 0 1

8

Cn−1

1
Cn−1

2
Cn−1

3
Cn−1

4

+

1 0 0 0
1
4

1
4 0 0

0 1 0 0
0 1

4
1
4 0

0 0 1 0
0 0 1

4
1
4

0 0 0 1
1
4 0 0 1

4

Dn−1

1
Dn−1

2
Dn−1

3
Dn−1

4

This matrix notation implies a global mapping of old points to
new points at each step, but as we can see from the sparse, banded
structure of the multiresolution matrices, it is possible to describe
both the synthesis and analysis in local terms.

In the local approach, A, B, P and Q are filters that are applied
only in the immediate neighborhood of the target points. At each
iteration the filters remain the same. This contrasts the local ap-
proach from the global approach, in which the matrices change size
at each analysis and synthesis iteration because they must operate
on a different number of points at each iteration.

L-systems are consistent with the notion of a local algorithm.
They directly capture the locality of the multiresolution algorithm.

3 L-systems

L-systems [Lindenmayer 1968] are string-rewriting systems. An
L-system consists of analphabet, V, an axiom, ω, and a set of
productions, P, defined overV. Each production inP replaces one
or more letters ofV with zero or more letters inV. A word, x,
in the system is a sequence of letters inV. The system’s current
state is represented by a word. The axiom,ω, is a special word,
which represents the system’s initial state. At each time step, the
production rules are applied in parallel to each of the letters in the
current word to produce a new word.

Parametric L-systems [Prusinkiewicz and Lindenmayer 1990]
extend the basic concept of L-systems by assigning additional at-
tributes (parameters) to L-system symbols. A parameter can be
a number, or a C++ structure [Karwowski 2002]. Amodulein a
parametric L-system consists of a letter inV and zero or more pa-
rameters. In parametric L-systems, a word consists of a sequence
of modules.

We implemented multiresolution curves in the language L+C,
which adds L-system constructs to C++ [Karwowski 2002]. In
L+C, the syntax for declaring a module with parameters is:

module identifier(list of parameter types).

The following code declares a module,C, which represents a point.
C has a parameter of typeV2f, which is a pre-defined L+C type that
represents a 2D point or vector:

module C(V2f);

L+C supports context-sensitive productions. A context sensi-
tive production replaces a module, called the strict predecessor, us-
ing information from neighboring modules, called the left and right
context. The syntax for a context sensitive production is

lcontext < strict predecessor > rcontext:
{

...
}

The following code replaces each point with two points, each of
which is a linear combination of the point being replaced and its
left or right neighbor.

P(vl) < P(v) > P(vr):
{

produce P(0.25vl+0.75v) P(0.75v+0.25vr);
}

It is possible in L+C to look to the new string for context. The
<< and>> symbols means look to the left and right, respectively,
in the produced string.

L+C also supports table L-systems [Rozenberg 1973]. This al-
lows us to divide productions into groups. We specify which group
of productions should be used at each derivation step. For example,
the following L+C code segment applies the productionA→AB in
even steps andA→AC in odd steps.

int step = 0;
StartEach:{

if(step%2 == 0) UseGroup(0);
else UseGroup(1);
step++;

}
group 0:
A(): {

produce A() B()
};
group 1:
A(): {

produce A()C()
};
endgroup

4 Implementing Cubic B-spline Multireso-
lution Curves in L+C

4.1 Topology

During multiresolution analysis, detail information accumulates.
We keep detail information associated with those points it will be
used to restore, but after each iteration of analysis the amount of de-
tail we need to store for each point will more than double. To solve
this problem we use a tree data structure on which L+C operates.

Tree structures can be represented within an L-system string us-
ing special branch symbols[and]. The symbol[denotes the start
of a branch and the symbol] denotes the end of a branch. The
branches can be nested to create trees. For example, we interpret
the stringA [[B] C [D]] as the tree in Figure 5.

Figure 5: The tree represented by the string A [[B] C [D]].

Below we present, step-by-step, the operation of an L-system
that performs the topological changes that occur during multireso-
lution analysis. The L-system converts a string of modules which

represent points into a string in which every other module repre-
sents detail information. It then associates each piece of detail in-
formation with a point and repeats the process, storing detail infor-
mation in a tree structure. During synthesis, we need to strips off
layers of branching in order to access the detail information that is
associated with each point.

Figure 6 shows changes in a string and the topological changes it
represents.C is a point andD is detail information. The downward
arrow shows the topology changes during analysis. The upward
arrow shows the topology changes during the synthesis.

Figure 6: Topology changes during synthesis and analysis. (a) The
original points. (b) and (d) Every other point is converted to detail
information. (c) and (e) Each piece of detail information is asso-
ciated with a point. Detail information from the previous steps is
stored as branches of the detail trees. (f) Original string at start of
synthesis. (g) and (i) Outer branches are stripped away. (h) and (j)
Detail information is converted back into points.

4.2 L-systems Rules for Multiresolution

In this section we present our L+C implementation of multiresolu-
tion curves. This implementation is limited to closed curves. The
full code listing for closed curves is given in Appendix A.

4.3 Analysis

During analysis the symbolC represents a point. The symbolDt
represents a point that is about to become a detail vector. The sym-
bol D represents a detail vector.

We begin with a sequence of points that represents the original
curve:

C C C C C C C ... C C

During analysis, even points become detail information and odd
points become a point on the coarsened curve. There are two sepa-
rate analysis phases.

During phase zero, we change the type of every other point to
a type that represents detail information. The L+C production that
changes every other point,C, into a point that is about to be con-
verted into detail information,Dt, is:

C(vl)<< C(v) : {
produce Dt(v);

}

If the module to the left of the strict predecessor in the produced
string is aC, this rule replaces the strict predecessor with aDt. After
this phase, the string has the form:

C Dt C Dt C Dt C Dt...

In phase one we calculate the positions of the coarse points and
the value of the detail vectors. The two main rules are the reverse
subdivision rule, corresponding to the application of filter A, and
the detail-storage rule, corresponding to the application of filter B.
The reverse subdivision rule coarsens a set of fine points. An L-
system implementation of reverse subdivision has been presented
in [Prusinkiewicz et al. 2003]. This implementation replaces a pair
of points with a single point. Our implementation replaces a single
point with a point. This difference arises because we convert every
other point to detail information, whereas in plain reverse subdivi-
sion, we do not need to store the detail information. Our L+C code
to perform reverse subdivision is:

Dt(vl) < C(v) > Dt(vr):{
produce EB() C(-0.5*vl + 2*v + -0.5*vr) SB() H();

}

This production calculates the new location of a point, based on the
reverse subdivision coefficients given by the A matrix in equation
8. An end branch module is inserted before the new coarse point
and a start branch module is inserted after the new coarse point.
This puts the detail information to the right of each point into a
tree associated with that point. AnH module is placed after each
start branch module as a block that prevents modules within the
tree from “seeing” modules outside the tree.

The detail information lost in the reverse subdivision process is
stored within theD modules. The following L+C production imple-
ments the detail storage filter B:

Dt(vll) C(vl) < Dt(v) > C(vr) Dt(vrr) :{
produce
D(0.25*vll + -1*vl + 1.5*v + -1*vr + 0.25*vrr);

}

This production calculates the detail information to store based on
coefficients given by the B matrix in equation 9.

For example, after the first iteration of analysis, the string has the
form:

C [D] C [D] C [D] C [D]... ,

and after three iterations of analysis the string has the form:

C [[[D] D [D]] D [[D] D [D]]]... .

4.4 Synthesis

There are two synthesis phases. In phase zero, the productions strip
away one layer of bracketing. In phase one, detail information is
used to replace each coarse point by one of its two original fine
points. The corresponding detail vector is replaced with the other
fine point.

The production rule that strips away the start brackets is:

C(v) < SB() H() : {
produce ;}

This production rule removes all starting brackets that are directly
to the right of a point. Only the outer brackets are removed.

The production rule that strips away the end brackets is:

EB() > C(v) : {
produce ;}

This production rule removes all end brackets that are to the left of
a point. Again, only the outer brackets are removed.

For example, the string with the form:

C [[[D] D [D]] D [[D] D [D]]] C...

will have the form:

C [[D] D [D]] D [[D] D [D]] C...

after one iteration of phase zero. Notice that only the outer brackets
have been removed. Now the leftmostC can “see” the fourthD from
the left.

In phase one, subdivision is performed on the coarse points,C.
Detail information stored in adjacentD vectors are added to the sub-
divided points to restore the original fine points. The two produc-
tions for this phase calculate the new location of a fine point using
coefficients from the P and Q matrices given in equation 10.

This is the rule that replaces each coarse point with one of the
restored fine points:

C(vll) D(vl) < C(v) > D(vr) C(vrr) : {
produce C(0.125*vll + 0.75*v + 0.125*vrr

+ 0.25*vl + 0.25*vr);}

The fine point is a combination of a point created by subdivision:
0.125∗ vll + 0.75∗ v+ 0.125∗ vrr, and detail information, 0.25∗
vl +0.25∗vr.

This is the rule that replaces each module representing detail
with a module representing a restored fine point

C(vl) < D(v) > C(vr): {
produce C(0.5*vl + 0.5*vr + v);}

The fine point is a combination of a point created by subdivision,
0.5∗vl +0.5∗vr, and detail information,v.

After one iteration of phase one, the string has the form:

C [[D] D [D]] C [[D] D [D]] C... .

Once synthesis has been performed the same number of times anal-
ysis was performed, the original fine curve is restored.

The productions we discussed above deal with closed curves (we
assume the required left and right context is always present). The
complete listing of the L+C code for multiresolution representation
of closed curves based on the above productions is given in Ap-
pendix A.

5 Extensions

5.1 Open Curves

We have also implemented multiresolution for open curves. The
difference between the code for the open curve case and the closed
curve case is that there are special endpoint rules for the open curve
case. These special endpoint rules are included in Appendix B.

5.2 Aligning Detail with Normal

When we restore detail during synthesis, it has the same x-y orien-
tation as the detail in the original curve. If the modified curve has a
different slope than the original curve, the detail will look incorrect.
To address this problem, Finkelstein and Salesin [finkelstein:multi]
also introduced the idea of aligning the detail with the normal of the
curve.

We approximate the normal,~N at a given point,v, by finding
the vector perpendicular to an approximated tangent vector,~T. We
approximate~T by taking the difference of the two points adjacent
to v:

~T = vr −vl (11)

During synthesis, instead of adding the detail directly back into the
curve, we multiply the signed magnitude of the detail by the normal
vector and add this aligned detail to the curve.

We have included the modified synthesis rules for aligning detail
with the normal in Appendix C.

6 Results

Figure 7 shows a open curve which is coarsened, has its sweep mod-
ified, then is reconstructed. Figure 8 shows a branching structure
with a modified sweep. Figures 9 shows a leaf with two different
modified sweeps. Figure 10 compares the results of sweep modi-
fication of a curve (a). In 10 (b), the detail is not aligned with the
normal. In 10 (c), the detail is aligned with the normal.

Figure 7: (a) Original curve. (b) Coarsened curve. (c) Modified
coarse curve. (d) Reconstructed curve.

References

BARTELS, R. H., AND SAMAVATI , F. F. 2000. Reversing subdi-
vision rules: Local linear conditions and observations on inner
products. Journal of Computational and Applied Mathematics
119, 1–2, 29–67.

FINKELSTEIN, A., AND SALESIN, D. 1994. Multiresolution
curves. InProceedings of SIGGRAAPH ’94, 261–268.

Figure 8: A branching structure with modified sweep.

Figure 9: A scanned leaf with two modified sweeps.

Figure 10: (a) Original curve. (b) Curve with modified sweep and
detail not aligned with normal. (c) Curve with modified sweep and
detail aligned with normal.

KARWOWSKI, R. 2002. Improving the Process of Plant Model-
ing: The L+C Modeling Language. PhD thesis, University of
Calgary.

L INDENMAYER , A. 1968. Mathematical models for cellular in-
teraction in development, Parts I and II.Journal of Theoretical
Biology 18, 280–315.

PRUSINKIEWICZ, P., AND L INDENMAYER , A. 1990. The Algo-
rithmic Beauty of Plants. Springer, New York.

PRUSINKIEWICZ, P., SAMAVATI , F., SMITH , C., AND KAR-
WOWSKI, R. 2003. L-system description of subdivision curves.
To appear in the International Journal of Shape Modeling.

ROZENBERG, G. 1973. T0L systems and languages.Information
and Control 23, 357–381.

SAMAVATI , F. F., AND BARTELS, R. H. 1999. Multiresolution
curve and surface representation by reversing subdivision rules.
Computer Graphics Forum 18, 2, 97–120.

7 Appendix A - The L+C Code for Mul-
tiresolution B-spline Representation of
Closed Curves

#include <lpfgall.h>

//Step at which to switch between coarsing and
refinement
#define SWITCH 8
#define NUMSTEPS 16

// The phase types
#define ANALYSIS_0 0
#define ANALYSIS_1 1
#define SYNTHESIS_0 2
#define SYNTHESIS_1 3

// String end marker
module E();
// An obstacle for context-matching purposes
module H();

// A point module
module C(V2f);
// Detail information module
D(V2f);
// A point that is about to be converted to detail
Dt(V2f);

int step;

Start: { step = 0;} StartEach: {
// set the phase based on the step
if(step < SWITCH)

if(step%2==0) UseGroup(ANALYSIS_0);
else UseGroup(ANALYSIS_1);

else
if(step%2==0) UseGroup(SYNTHESIS_0);
else UseGroup(SYNTHESIS_1);

}

EndEach: { step++;}

derivation length: NUMSTEPS;

ring L-system: 1;

// axiom that defines initial curve goes here

/**
* Analysis (Reverse Subdivision)
***/

///
// ANALYSIS_0: change every other C into a D
///
group ANALYSIS_0:

C(vl) << C(v) : {
produce Dt(v) ;

}

///
//ANALYSIS_1: Analysis (Perform reverse
// subdivision)
// (Store coarse points in C’s and detail in D’s)
///
group ANALYSIS_1:

// C rule
Dt(vl) < C(v) > Dt(vr): {

produce EB() C(-0.5*vl + 2*v -0.5*vr) SB() H();
}

// D rule
Dt(vll) C(vl) < Dt(v) > C(vr) Dt(vrr) : {

produce D(0.25*vll -1*vl + 1.5*v -
1*vr + 0.25*vrr);

}

/**
* Synthesis (Subdivision)
***/

///
// SYNTHESIS_0: Eliminate outermost brackets
// [Branch] S [Branch]] --> [Branch] S [Branch]
///
group SYNTHESIS_0:

C(v) < SB() H() : {
produce ;

}

EB() > C(v) : {
produce ;

}

///
// SYNTHESIS_1: Synthesis (Perform subdivision)
// (Use information from coarse points, C, and
// details, D, to restore original points, C)
///
group SYNTHESIS_1:

// C rule
D(dl) C(vll) D(vl) < C(v) > D(vr) C(vrr) D(dr) : {

produce C(0.125*vll + 0.75*v + 0.125*vrr
+ 0.25*vl + 0.25*vr);

}

// D rule
D(dl) C(vl) < D(v) > C(vr) D(dr): {

produce C(0.5*vl + 0.5*vr + v);
}

endgroup

/***
* Drawing
***/

interpretation:

C(v) : {
produce SetColor(7) MoveTo2f(v) Circle(0.1) ;

}

Dt(v) : {
produce SetColor(4) MoveTo2f(v) Circle(0.1) ;

}

8 Appendix B - Special Rules for Multires-
olution B-spline Representation of Open
Curves

/**
* Analysis (Reverse Subdivision)
**

/* Left-most endpoint rules */

// C rules
E() < C(v) : {

produce C(v);
}

E() C(vl) < C(v): {
produce C(-1*vl + 2*v) SB() H();

}

// D rule

E() C(vll) C(vl) < Dt(v) > C(vr) Dt(vrr): {
produce D(0.75*vll -1.5*vl + 1.125*v -

0.5*vr + 0.125*vrr);
}

/* Right-most endpoint rules */

// C rules

C(v) > E(): {
produce C(v);

}

C(v) > C(vr) E(): {
produce EB() C(-1*vr + 2*v);

}

// D rule

Dt(vll) C(vl) < Dt(v) > C(vr) C(vrr) E(): {
produce D(0.75*vrr -1.5*vr + 1.125*v -

0.5*vl + 0.125*vll);
}

/**
* Synthesis (Subdivision)
**/

/* Left Endpoint Rules */

// C rules

E() < C(v): {
produce C(v);

}

E() C(vl) < C(v) : {
produce C(0.5*vl + 0.5*v);

}

E() C(d) C(vll) D(vl) < C(v) > D(vr) C(vrr): {
produce C(0.1875*vll + 0.6875*v + 0.125*vrr

+ 0.25*vl + 0.25*vr);
}

// D rule

E() C(d) C(vl) < D(v) > C(vr) : {
produce C(0.75*vl + 0.25*vr + v);

}

/* Right Endpoint Rules */

// C rules

C(v) > E(): {
produce C(v);

}

C(v) > C(vr) E(): {
produce C(0.5*vr + 0.5*v);

}

C(vll) D(vl) < C(v) > D(vr) C(vrr) C(d) E(): {
produce C(0.1875*vrr + 0.6875*v + 0.125*vll

+ 0.25*vr + 0.25*vl);
}

// D rule

C(vl) < D(v) > C(vr) C(d) E(): {
produce C(0.75*vr + 0.25*vl + v);

}

9 Appendix C - Synthesis Rules for Align-
ment of Detail with Normal Vectors

// returns the length of vec
double vecLength(V2f vec) {

double length = sqrt(vec.x*vec.x + vec.y*vec.y);
return length;

}

// calculate a normal vector given a tangent vector
V2f normalFromTangent(V2f tangent) {

// find the length of the tangent so we can
// normalize
double length = vecLength(tangent);

V2f normal;
if(length != 0){

// the normal is the normalized tangent
// rotated by pi/2
normal.x = -(1.0/length)*tangent.y;
normal.y = (1.0/length)*tangent.x;

} else{
normal.x = 0.0;
normal.y = 1.0;

}
return normal;

}

// calculate the point with detail restored in the
// normal direction
V2f getDetailAddedPoint(V2f point, V2f detail,

V2f vLeft, V2f vRight) {
// approximate the tangent based on
// neighboring points
V2f tangent = vRight - 1*vLeft;

// get the approximate normal vector
V2f normal = normalFromTangent(tangent);

// get the magnitude and direction of the
// detail vector
double length = vecLength(detail);
if(detail.y < 0) length = -length;

// produce the point
return (point + length*normal);

}

///
// Phase 1: Synthesis (Perform subdivision)
// (Use information from coarse points, C, and
// details, D, to restore original points, C)
///
group SYNTHESIS_1:

/* Main Rules */

// C rule

D(dl)
C(vll) D(vl) < C(v) > D(vr) C(vrr)

D(dr) : {
V2f point = 0.125*vll + 0.75*v + 0.125*vrr;
V2f detail = 0.25*vl + 0.25*vr;
V2f dPoint =

getDetailAddedPoint(point, detail, vll, vrr);
produce C(dPoint);

}

// D rule

D(dl)
C(vl) < D(v) > C(vr)

D(dr): {
V2f point = 0.5*vl + 0.5*vr;
V2f detail = v;
V2f dPoint =

getDetailAddedPoint(point, detail, vl, vr);
produce C(dPoint);

}

Relational Specification

of Surface Subdivision Algorithms

Colin Smith, Przemyslaw Prusinkiewicz, and Faramarz Samavati
Department of Computer Science

University of Calgary

Abstract

Many polygon mesh algorithms operate in a local manner, yet are
formally specified using global indexing schemes. We address this dis-
crepancy by defining a set of local operations on polygon meshes in
relational, index-free terms. We also introduce the vv programming
language to express these operations in a machine-readable form. We
then apply vv to specify several surface subdivision algorithms. These
specifications can be directly executed by the corresponding modeling
software.

1 Introduction

Ideally, a problem description should clearly reflect its nature. The data
should be organized to reflect the relations inherent in the problem, and the
language used to describe the solution should focus on its essence. Superflu-
ous elements should be avoided, as they obfuscate the nature of the problem
and its solution. When the data and relations are elegantly organized, the
solution often becomes simple and easy to understand and implement.

The particular problem that we address in this paper is that of dealing
with local properties and local transformations of polygon meshes. Locality
is one of the most fundamental characteristics of systems. It means that:
(a) a neighborhood relation is defined on the elements of the system, and (b)
each element of the system changes its state according to its own state and
the state of its neighbors, to the exclusion the elements positioned farther
away. The search for, and study of, local mechanisms that underpin observed
phenomena has been one of the central and fruitful directions in natural
sciences, from physics to biology.

3-31

Many computer graphics algorithms also have local character. A good
example is given by subdivision algorithms in geometric modeling. Their
locality is intuitively captured when subdivision algorithms are described in
terms of masks [31] (also referred to as stencils [27]). The prevalent formal
definitions of subdivision algorithms, however, do not take advantage of
the simplicity and locality of the masks, but rely on a global enumeration
(indexing) of the polygon mesh elements. The appeal of indices is that they
are a standard mathematical notation, and are closely coupled with the array
data structures supported by most programming languages. Unfortunately,
they are deficient in several respects:

• The use of indices does not adhere to the philosophy of describing local
processes in local terms. For example, one can write the expressions
i − 1 or i + 1, which refer to the immediate neighbors in a linear
structure, as easily as i − 100 or 2i, which do not.

• The indexed elements are often not arranged into a regular grid. This
complicates the indexing scheme and index arithmetic, and makes
them error-prone.

• The indexed elements must be dynamically renumbered as their num-
ber and arrangement change.

• Indexed notation has questionable value from the viewpoint of algo-
rithm implementation, which may use a different indexing scheme than
that used to specify the algorithm, or rely on pointers rather than in-
dex arithmetic when identifying neighbors.

• Index-heavy notation is hard to read.

We address these deficiencies by introducing the vertex-vertex polygon
mesh representation, and the corresponding set of operations, the vertex-
vertex algebra, which make it possible to describe local operations on poly-
gon meshes in relational terms. This means that we identify elements of the
structure with respect to each other, avoiding absolute identifiers such as
coordinates or indices. We also introduce vv, an extension of the C++ pro-
gramming language, for expressing these operations in a machine-readable
form. This results in the language + engine modeling paradigm, which
simplifies the implementation of individual algorithms by treating them as
input to a multi-purpose modeling program. We demonstrate the usefulness
of this paradigm by presenting concise vv specifications of several subdivision
algorithms.

3-32

2 Background

Local modifications to structured objects are the essence of development.
Consequently, the problem of referring to the neighbors often occurs in
biologically-motivated models of computation. In cellular automata, for
example, the neighbors of a given cell may be specified using index arith-
metic, or in a relational manner, using the directions north, south, east
and west. Giavitto and Michel [10] explored the advantages of the rela-
tional approach and generalized it to arbitrary regular tessellations (group-
based fields). They have also proposed a programming language to capture
locally defined structures that, unlike cellular automata and group-based-
fields, may grow and dynamically reconfigure [11].

Growing geometric structures with linear and branching topology, have
been constructed since the late 1960s as models of multicellular organisms,
in particular plants. The relational approach to the identification of the
elements of these structures is exemplified by the formalism of L-systems [19,
24]. A structure is represented by a sequence of symbols. This sequential
arrangement automatically determines the neighborhood relations between
the elements.

L-systems with affine geometry interpretation have recently been shown
to provide a compact formal specifications of subdivision algorithms for
curves [25]. For example, Chaikin’s corner-cutting algorithm [6] is given
by the production:

P (vl) < P (v) > P (vr) → P (1
4
vl + 3

4
v)P (3

4
v + 1

4
vr) . (1)

Here P (x) denotes a point at location x; symbols <, > and → separate the
left context, the strict predecessor, the right context, and the successor of
the production; and the arithmetic operators specify the affine combinations
of the argument points. In a process akin to cell division in a developing or-
ganism, this production replaces the parent point by two descendant points,
with the locations dependent on the context (Figure 1).

The simplicity, clarity, and compactness of the L-system specification
of subdivision curves, combined with the possibility of executing them us-
ing an L-system-based modeling software [25], have motivated our quest for
an extension that could be applied to polygon meshes as well. Unfortu-
nately, the existing grammar-based formalisms fall short of this goal. Map
L-systems [20, 24] can generate the topology of some polygon meshes, but
do not offer flexible control over the resulting geometry and are difficult
to specify. Similarly, graph grammars [26] extend formal grammars from

3-33

a) b) c)

Figure 1: Chaikin subdivision process described by an L-system produc-
tion (Equation 1). a) The initial polygon. Labels refer to an arbitrarily
chosen point P (v). b) The result of the first iteration of the algorithm. c)
The curve after several subdivision steps.

strings to graphs. However, the development of graph theory has been fo-
cused on the context-free case, and more general formulations are difficult
to use.

We attribute the deficiencies of graph grammars to the loss of informa-
tion that occurs during production application. The predecessor is removed
from the structure before the successor is inserted into it, and thus details
of the predecessor’s connections are not available for reconnecting the suc-
cessor. To address this problem, we propose to operate in a more gradual
manner, possibly adding new nodes and edges before the old ones have been
removed. The old elements may thus serve as a scaffolding for introduc-
ing the new ones. This technique preserves the purely local operation of
the grammar-based approaches, but departs from their declarative charac-
ter, because modifications to structures are now specified as sequences of
imperative operations.

The ease of performing local operations on polygon meshes depends on
the mesh representation, which should be conducive to relational informa-
tion gathering and mesh transformations. Well known examples of such
representations include the winged-edge [4], and quad-edge [12] representa-
tions. Pursuing objectives closer to ours, Egli and Stewart [9] applied cel-
lular complexes [23] to specify Catmull-Clark [5] subdivision in a relational
manner. Lienhardt [18] showed that local operations involved in subdivision
algorithms can be defined using G-maps [16, 17]. More recently, Velho [29]
developed a method for describing subdivision algorithms using stellar op-
erators [15] that act on a half-edge structure [22].

We have selected yet another representation, based on the mathematical
notion of graph rotation systems [8, 30]. A rotation system associates each
vertex of a polygon mesh with an oriented circular list of its neighboring
vertices. A set of these lists, defined for each vertex, completely represents

3-34

the topology of a 2-manifold mesh [30]. Graph rotation systems have been
introduced to computer graphics by Akleman, Chen and Srinivasan [1, 2, 3]
as a formal basis for the doubly linked face list representation of 2-manifold
meshes. Akleman et al. have also defined a set of operations on this repre-
sentation, which they used to implement interactive polygon mesh modeling
tools. Below we introduce vertex-vertex systems as a different data structure
related to the graph rotation systems. It makes it possible to implement a
set of graph manipulation operations in an intuitive and efficient manner.

3 Vertex-vertex systems

3.1 Definitions

Figure 2: A poly-
gon identification
in a graph rota-
tion system.

Let U be an enumerable set, or the universe, of ele-
ments called abstract vertices. We assume that U is
ordered by a relation <; this assumption simplifies the
implementation of many algorithms (Section 4). Next,
let N : U �→ 2U be a function that takes every ver-
tex v ∈ U to a finite subset v� ⊂ U of other vertices
(v �∈ v�). We call the set v� the neighborhood, and its
elements the neighbors1 of v. Finally, let the vertex set
S ⊂ U be a finite subset of the universe U , and NS be
the restriction of the neighborhood function N to the

domain S; thus NS(v) = v� if N(v) = v� and v ∈ S (the elements of v� may
lay outside S). We call the pair 〈S, NS〉 a vertex-vertex structure over the
set S with neighborhood NS .

An undirected graph over a vertex set S is a vertex-vertex structure
over S, in which: (a) all neighborhoods are included in S (the vertex set
S is closed with respect to the function N), and (b) vertex u is in the
neighborhood of v if an only if vertex v is in the neighborhood of u (u ∈ v�

if and only if u ∈ v�, the symmetry condition). The pairs (u, v) of vertices
that are in the neighborhood of each other are called edges of the graph. An
edge is oriented if the pair (u, v) is considered different from (v, u).

A vertex-vertex rotation system, or vertex-vertex system for short, is a
vertex-vertex structure in which the vertices in each neighborhood form a
cyclic permutation (i.e., are arranged into a circular list). A graph rotation
system is a vertex-vertex system that is both a graph and a vertex-vertex

1Our terminology is motivated by the practice of referring to adjacent cells in a grid
as neighbors. It should not be confused with the definition of neighborhood in topology.

3-35

rotation system.
A polygon mesh is a collections of vertices, edges bound by vertex pairs,

and polygons bound by sequences of edges and vertices. A mesh is a closed
2-manifold if it is everywhere locally homeomorphic to an open disk, and
a 2-manifold with boubdary if it is everywhere locally homeomorphic to an
open disk or half-disk. A manifold is orientable if it has two sides [30].

Figure 3: Relations
between notions perti-
nent to vertex-vertex
systems

A polygonal interpretation of a vertex-vertex
system maps it into a polygon mesh. The interpre-
tations that we consider in this paper are variants
of the Edmonds’ permutation technique [8, 30, 2],
which is defined for connected graph rotation sys-
tems. It defines polygons of the mesh using the
following algorithm (Figure 2). Given an oriented
edge (u, v) in S, we find the oriented edge (v, w)
such that w immediately follows u in the cyclic
neighborhood of v. Next, we find the oriented
edge (w, z) such that z immediately follows v in the
neighborhood of w. We continue this process until
we return to the starting point u. The resulting
orbit (cyclic permutation) of vertices u, v, w, z, . . .
and the edges that connect them are the bound-
aries of a polygon. By considering all such orbits
in S, we obtain a polygon mesh with polygons on
both sides of each (unoriented) edge. From this
construction it immediately follows that the result-
ing mesh is a uniquely defined, orientable, closed
2-manifold (see [30] for a formal proof).

A function f defined on a vertex set S assigns
a property f(v) to each vertex v ∈ S. In addition to the neighborhoods
defined above, vertex properties may include for example a label (drawn
from a finite or an infinite set), position, normal vector, and color.

Vertex positions are a crucial aspect of the geometric interpretation of
vertex-vertex systems. We will consider geometric interpretations in which
edges are drawn as straight lines between vertices, and polygons are properly
defined if their vertices and edges are coplanar.

The above progression of notions is summarized in Figure 3. It suggests
that polygon meshes can be manipulated using operations defined on sets
(set-theoretic operations), vertex-vertex systems and graphs (topological op-
erations), and polygon meshes (geometric operations). The crucial problem
is the manipulation of topology. We address it by introducing a set of op-

3-36

erations that modify at most one neighborhood at a time, and transform a
vertex-vertex system into another vertex-vertex system. The individual op-
erations do not necessarily transform graphs into graphs, because they may
create incomplete neighbors that violate the symmetry condition (u ∈ v�

but v �∈ u�).

3.2 The vertex-vertex algebra

The vertex-vertex algebra is the class of vertex-vertex rotation systems with
a set of operations defined on them. We introduce these operations using
a mathematical notation that combines standard and new mathematical
symbols. We also present the equivalent expressions and statements of the
vv language. A further description of this language and its implementation
is given in Section 3.3.

3.2.1 Set-theoretic operations

In the vv language, vertex sets are a predefined data type. A set S is created
using the declaration mesh S, and is in existence according to the standard
scoping rules of C++. The vv language supports a subset of the standard
set operations, listed in Table 1. In addition to operations that return a set
as the result, vv includes iteration operators for flow control in vv programs.

Name Math. notation vv statement
set creation let S ⊂ U mesh S
assignment S = T S = T
union S = S ∪ T merge S with T
addition of an element S = S ∪ {v} add v to S
removal of an element S = S − {v} remove v from S
iteration over a set ∀v ∈ S forall v in S
iteration over neighbors ∀x ∈ v� forall x in v

Table 1: Set-theoretic operations supported by the vv language

3.2.2 Topological operations

Topological operations are the core of the vertex-vertex algebra. They are
divided into three groups: query, selection, and editing operations. Query
operations return information about vertices. Selection operations return
an element of a vertex neighborhood. Editing operations modify a vertex-

3-37

vertex system. Definition of these operations are given in Table 2. The last
column in this table refer to the illustrations in Figure 4.

a) b) c) d)
v� = {a, b, c, d, e, f} b = v� ↑ a f = v� ↓ a v� = v� − a

e) f) g)
v� = v� − b + x v� = v� + x � a v� = v� + x ≺ a

Figure 4: Examples of operations in the vertex-vertex algebra. a) Setting
the initial neighborhood of vertex v. b-g) The results of selection and editing
operations applied to v.

3.2.3 Geometric operations

We use the standard functional notation f(v) or vv expression v$f to asso-
ciate property f with a vertex v. A special case is the position of a vertex,
denoted v or v$pos. Positions can be assigned explicitly, by referring to an
underlying coordinate system, or result from affine geometry combinations
and vector operations applied to the previously defined points. We use the
standard C++ operator overloading mechanism to extend arithmetic oper-
ators to positions and vectors.

3.2.4 Coordination operations

Operations of the vertex-vertex algebra are commonly iterated over vertex
sets. This raises important questions concerning the sequencing of these in-
dividual operations. For example, if the same operation is to be performed
on a pair of neighboring vertices u and v, the results may be different de-
pending on whether u is modified first, v is modified first, or both vertices
are modified simultaneously. To eliminate the unwanted dependence on the
execution sequence, we introduce the coordination operation synchronize S,
which creates a copy ‘v of each vertex v in the set S. All subsequent op-
erations on the vertices v ∈ S (until the next synchronize statement) do
not affect the vertices ‘v, which continue to store the “old” values of vertex

3-38

Name Math. notation vv statement Description Note Fig
Query operations

membership v ∈ x� is x in v true iff vertex x
is in the neigh-
borhood of v

order x < v x < v true iff vertex x
precedes vertex
v in the uni-
verse U

valence |v�| valence v returns the
number of
neighbors of
vertex v

Selection operations
any let v ∈ x� any in v returns a ran-

dom neighbor
of v

1

next v� ↑ x nextto x in v returns vertex
that follows x
in the neigh-
borhood of v

2 b

previous v� ↓ x prevto x in v returns vertex
that precedes x
in the neigh-
borhood of v

2 c

Editing operations
create let v ∈ U vertex v create vertex
set neighborhood v� = {a, b, c} make {a, b, c} nb of v set the neigh-

borhood of v to
the given circu-
lar list

3 a

erase v� = v� − x erase x from v remove x from
the neighbor-
hood of v if
v ∈ x�

4 d

replace v� = v� − a + x replace a with x in v substitute x for
a in the neigh-
borhood of v

5 e

splice after v� + x � a splice x after a in v insert x imme-
diately after a
in the neigh-
borhood of v

5 f

splice before v� + x ≺ a splice x before a in v insert x imme-
diately before a
in the neigh-
borhood of v

5 g

1) returns the null vertex if v� is empty.
2) returns the null vertex if x �∈ v�.
3) not defined (error reported) if v appears in the list, or the same vertex in listed twice.
4) no effect if v �∈ x�.
5) no effect if v �∈ a�; not defined (error reported) if x = v or v ∈ x�.

Table 2: Topological operations of the vertex-vertex algebra

3-39

attributes. For example, ‘v$pos denotes the position of vertex v at the time
when the synchronize statement was last issued, whereas v$pos denotes the
current position of v. Similarly, ‘v� and v� denote the old and current neigh-
borhoods of v. The use of old attributes instead of the current ones makes it
possible to iterate over the elements of a set in any order without affecting
the iteration results.

3.3 Implementation of vertex-vertex systems

The software implementation of vertex-vertex systems is a set of programs
and libraries collectively called the vv environment. The central component
of this environment is vvlib, a C++ library containing data structures and
functions implementing the vertex-vertex polygon mesh representation and
algebra. The user can refer to these structures and functions directly from
a program written in C++, or from a program written in the vv language.

The vv language extends C++ with keywords and expressions specific
to the vertex-vertex algebra. In order to be executed, a vv program is first
translated to a C++ program, with the keywords and expressions specific
to vv translated into calls to the vvlib library. This C++ program is then
compiled into a dynamically linked library (DLL). The modeling program,
called vvinterpreter, loads this DLL, runs, and produces the graphical output.
This whole processing sequence is automated: from the user’s perspective,
the vvinterpreter treats the vv program as an input and runs accordingly. The
methodology that we have used to implement the vv language closely follows
that developed for L+C, an extension of C++ with programing constructs
based on L-systems [13].

4 Subdivision algorithms

To illustrate the usefulness of the vertex-vertex algebra, we provide com-
pact descriptions of several subdivision algorithms. These descriptions are
expressed in the vv language and can be directly executed by vvinterpreter.

4.1 Insertion of a Vertex

One particularly simple routine that also happens to be of mush use in
writing subdivision algorithms is the insertion of a new vertex between two
neighbouring vertices. So, we first define a function that creates a new vertex
x and inserts it between two given vertices p and q (Algorithm 1).

3-40

1 vertex insert(vertex p, vertex q) {
2 vertex x;
3 make {p, q} nb_of x;
4 replace p with x in q;
5 replace q with x in p;
6 return x;
7 }

Algorithm 1: Code and illustration of the insertion of a vertex x between
vertices p and q. Vertex x replaces p as the neighbor of q and q as the
neighbor of p; vertices p and q become neighbors of x.

4.2 Polyhedral Subdivision

One of the simplest possible subdivision schemes is polyhedral subdivi-
sion [28] for triangular meshes. The scheme simply inserts a new vertex
at the midpoint of each edge such that each triangle in the mesh is subdi-
vided into four co-planar triangles. While the geometry of the polygon mesh
does not change, the topology is subdivided.

The program (Algorithm 2) that implements polyhedral subdivision con-
sists of two loops. The first loop (lines 5 to 12) considers iterates over the
existing pairs of neighbouring vertices in the set S and inserts a new vertex
between them (Figure 5a). The new vertices are added to the set NV and
are assigned a position at the midpoint of the pair of vertices.

The second loop (lines 13 to 18) inserts new edges by redefining the
neighborhoods of the new points. The intervening neighborhoods and the
result of insertion are shown in Figure 5b,c.

b) c) d)

Figure 5: Illustration of the polyhedral subdivision algorithm implemented
using vertex-vertex systems. a) The vv identification of points involved in
the application of the mask to a new vertex x. b) The vv identification of
vertices that will become neighbors of v. c) The mesh with all the new edges
of v added.

3-41

1 void polyhedral(mesh& S) {
2 synchronize S;
3 mesh NV;
4
5 forall v in S {
6 forall p in ‘v {
7 if (p < v) continue;
8 vertex x = insert(v, p);
9 x$pos = (p$pos + v$pos) / 2.0;
10 add x to NV;
11 }
12 }
13 forall v in NV {
14 vertex a = any in v;
15 vertex b = nextto a in v;
16 make {nextto v in b, b, prevto v in b,
17 nextto v in a, a, prevto v in a} nb_of v;
18 }
19 merge S with NV;
20 }

Algorithm 2: The polyhedral subdivision algorithm.

4.3 Loop algorithm

The Loop subdivision scheme [21] is topologically equivalent to the polyhe-
dral subdivision scheme, in the sense that both operate on triangular meshes
and subdivide a triangle into four triangles in an iteration step. The vertex-
vertex implementations of both schemes have, therefore, a similar structure.
The difference is in the placement of vertices. The Loop uses a mask to place
new vertices and uses another mask to adjust the positions of old vertices
(Figure 6). The implementation of the Loop subdivision algorithm is given
by Algorithm 3.

4.4 Butterfly algorithm

The butterfly subdivision scheme for surfaces [7] is an interpolating scheme
for triangular polygon meshes. The complete vv program that implements
it for closed surfaces is given by Algorithm 4.

The algorithm for butterfly subdivision, like that for Loop subdivision,

3-42

1 void loop(mesh& S) {
2 double pi2 = 6.2832;
3 synchronize S;
4 mesh NV;
5
6 forall v in S {
7 double n = valence v;
8 double w = (0.625-pow(0.325 + 0.25*cos(pi2/n),2.0))/n;
9 v$pos *= (1.0 - (double(n) * w));
10 forall p in ‘v {
11 v$pos += w * ‘p$pos;
12 if (p < v) continue;
13 vertex x = insert(v, p);
14 x$pos = 3.0/8.0 * ‘v$pos + 3.0/8.0 * ‘p$pos
15 + 1.0/8.0 * ‘(nextto p in ‘v)$pos
16 + 1.0/8.0 * ‘(prevto p in ‘v)$pos;
17 add x to NV;
18 }
19 }
20 forall v in NV {
21 vertex a = any in v;
22 vertex b = nextto a in v;
23 make {nextto v in b, b, prevto v in b,
24 nextto v in a, a, prevto v in a} nb_of v;
25 }
26 merge S with NV;
27 }

Algorithm 3: The Loop subdivision algorithm.

is topologicaly similar to the polyhedral subdivision. However, unlike Loop
subdivision, the mask for the placement of new vertices requires the posi-
tions of vertices beyond the 1-ring. This mask and the corresponding vv
identification of the intervening vertices are shown in Figure 7a,b.

4.5
√

3 algorithm

Kobbelt’s
√

3-subdivision [14] changes the topology of a triangular mesh in
a manner different from the butterfly and Loop schemes (Figure 9). The
corresponding vv implementation is given by Algorithm 5. In the first loop

3-43

a) b) c)

Figure 6: a) The Loop mask for a new vertex. b) The vv identification of
points involved in the application of the mask to a new vertex x. c) The
Loop mask for old vertices.

a) b)

Figure 7: Illustration of the butterfly algorithm implemented using vertex-
vertex systems. a) The mask. b) The vv identification of points involved in
the application of the mask to a new vertex x.

of the algorithm, a new vertex c is created at the centroid of each triangle
(lines 11 to 15). The neighborhoods are then updated such that each triangle
is divided into three, that is each vertex v, x, y of the original triangle is
connected to c, and the vertices v, x, y form the neighborhood of c (lines 16
to 19, c.f. Figure 9b). In the second loop (lines 23 to 31, Figure 9c), the
topology is updated by flipping all the edges between pairs of old vertices.

5 Conclusions

We have addressed the problem of specifying polygon mesh algorithms in a
concise and intuitive manner. To this end, we introduced a set of operations
for locally changing the topology of a mesh, and we defined these operations
in terms of relations between mesh elements. We have focused on subdivision
algorithms as an application area, and we have shown that the resulting
vertex-vertex algebra leads to a very compact and intuitive specifications of
some of the best known algorithms.

3-44

1 void butterfly(mesh& S) {
2 double k = 1.0/16.0, l = 1.0/8.0, m = 1.0/2.0;
3 synchronize S;
4 mesh NV;
5
6 forall v in S {
7 forall p in ‘v {
8 if (p < v) continue;
9 vertex x = insert(v, p);
10 x$pos = m * ‘v$pos + m * ‘p$pos
11 + l * ‘(prevto p in ‘v)$pos
12 + l * ‘(nextto p in ‘v)$pos
13 - k * ‘(nextto (nextto p in ‘v) in ‘v)$pos
14 - k * ‘(nextto (nextto v in ‘p) in ‘p)$pos
15 - k * ‘(prevto (prevto p in ‘v) in ‘v)$pos
16 - k * ‘(prevto (prevto v in ‘p) in ‘p)$pos;
17 add x to NV;
18 }
19 }
20 forall v in NV {
21 vertex a = any in v;
22 vertex b = nextto a in v;
23 make {nextto v in b, b, prevto v in b,
24 nextto v in a, a, prevto v in a} nb_of v;
25 }
26 merge S with NV;
27 }

Algorithm 4: The butterfly subdivision algorithm.

a) b)

Figure 8: The butterfly algorithm in action. (a) An initial polyhedron and
the vertex-vertex specification of its topology. (b) The polyhedron after
three subdivision steps.

3-45

a) b) c)

Figure 9: Mesh topology changes in the
√

3 scheme. a) A portion of the orig-
inal mesh. b) The mesh after the insertion of central points, and subdivision
of triangles. c) The mesh after the flip operation.

We have also designed vv, a programming language based on the vertex-
vertex algebra, and we implemented a modeling environment in which vv
programs can be executed. In addition to the subdivision algorithms de-
scribed in this paper, we used vv to generate fractals and aperiodic tilings,
simulate growth of multicellular biological structures, and create procedural
textures on non-regular meshes. In these tests, we found vv programs ex-
tremely conducive to rapid prototyping and experimentation with polygon
mesh algorithms.

Our implementation of the vertex-vertex algebra was guided by the el-
egance of programming constructs, rather than performance. For example,
profiling of vv programs showed that approximately 50% of the algorithm
execution time is spent on dynamic memory management. It is an inter-
esting open question, if vertex-vertex systems could reach the speed of the
fastest implementations of polygon mesh algorithms.

Another interesting class of problem is related to the temporal coordina-
tion of vertex-vertex operations. The synchronization mechanism introduced
in Section 3.2.4 is in fact a method for simulating parallelism on a sequential
machine. This suggests that it may be useful to extended vv with constructs
for explicitly specifying parallel rather than sequential execution of opera-
tions. Such an extension could further clarify vv programs, and lead to their
effective implementation on parallel processors with a suitable architecture.

References

[1] E. Akleman and J. Chen. Guaranteeing the 2-manifold property for
meshes with doubly linked face list. International Journal of Shape
Modeling, 5(2):149–177, 2000.

3-46

1 void sqrt3(mesh& S) {
2 synchronize S;
3 mesh NV;
4
5 forall v in S {
6 double pi2 = 6.28;
7 double n = valence ‘v;
8 double w = (4.0 - 2.0 * cos(pi2 / n)) / 9.0;
9 v$pos *= (1.0 - w);
10 forall x in ‘v {
11 v$pos += ‘x$pos * w / n;
12 vertex y = nextto x in ‘v;
13 if (x < v || y < v) continue;
14 vertex c;
15 c$pos = (‘v$pos + ‘x$pos + ‘y$pos) / 3.0;
16 make {v, x, y} nb_of c;
17 splice c after x in v;
18 splice c after y in x;
19 splice c after v in y;
20 add c to NV;
21 }
22 }
23 forall v in S {
24 forall p in ‘v {
25 if (p < v) continue;
26 vertex x = nextto p in v;
27 vertex y = prevto p in v;
28 splice y after v in x; splice x after p in y;
29 erase p from v; erase v from p;
30 }
31 }
32 merge S with NV;
33 }

Algorithm 5: The algorithm for
√

3 subdivision.

[2] E. Akleman, J. Chen, and V. Srinivasan. A new paradigm for changing
topology during subdivision modeling. In Pacific Graphics 2000, pages
192–201, October 2000.

3-47

[3] E. Akleman, J. Chen, and V. Srinivasan. A prototype system for robust,
interactive and user-friendly modeling of orientable 2-manifold meshes.
In Proceedings of Shape Modeling International 2002, pages 43–50, May
2002.

[4] B. Baumgart. Winged edge polyhedron representation. Technical Re-
port STAN-CS-320, Stanford University, 1972.

[5] E. Catmull and J. Clark. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer Aided Design, 10(6):350–355,
1978.

[6] G. Chaikin. An algorithm of high speed curve generation. Computer
Graphics and Image Processing, 3:346–349, 1974.

[7] N. Dyn, D. Levin, and J. Gregory. A butterfly subdivision scheme
for surface interpolation with tension control. ACM Transactions on
Graphics, 9(2):160–169, 1990.

[8] J. Edmonds. A combinatorial representation of polyhedral surfaces
(abstract). Notices of the American Mathematical Society, 7:646, 1960.

[9] R. Egli and N. F. Stewart. A framework for system specification using
chains on cell complexes. Computer-Aided Design, 32:447–459, 2000.

[10] J.-L. Giavitto and O. Michel. Declarative definition of group indexed
data structures and approximations of their domains. In Proceedings
of the 3rd ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming PPDP-01, 2001.

[11] J.-L. Giavitto and O. Michel. MGS: A programming language for the
transformation of topological collections. Research Report 61-2001,
CNRS - Université d’Evry Val d’Esonne, Evry, France, 2001.

[12] L. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams. ACM Transactions
on Graphics, 4(2):74–123, 1985.

[13] R. Karwowski. Improving the process of plant modeling: the L+C mod-
eling language. PhD thesis, University of Calgary, August 2002.

[14] L. Kobbelt.
√

3-subdivision. In Computer Graphics, 2000.

[15] W. Lickorish. Simplicial moves on complexes and manifolds. In Pro-
ceedings of the Kirbyfest, volume 2, pages 299–320, 1999.

3-48

[16] P. Lienhardt. Subdivisions de surfaces et cartes généralisées de dimen-
sion 2. Informatique Théorique et Applications, 25(2):171–202, 1991.

[17] P. Lienhardt. Topological models for boundary representation: a com-
parison with n-dimensional generalized maps. Computer-aided Design,
23(1):59–82, 1991.

[18] P. Lienhardt. Subdivision par opérations locales, 2001. Manuscript,
Université de Poitiers, November 2001.

[19] A. Lindenmayer. Mathematical models for cellular interaction in de-
velopment, Parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

[20] A. Lindenmayer and G. Rozenberg. Parallel generation of maps: Devel-
opmental systems for cell layers. In V. Claus, H. Ehrig, and G. Rozen-
berg, editors, Graph grammars and their application to computer sci-
ence; First International Workshop, Lecture Notes in Computer Science
73, pages 301–316. Springer-Verlag, Berlin, 1979.

[21] C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, The University of Utah, August 1987.

[22] M. Mäntylä. An Introduction to Solid Modeling. Computer Science
Press, Rockville, Maryland, 1988.

[23] R. Palmer and V. Shapiro. Chain models of physical behavior for engi-
neering analysis and design. Research in Engineering Design, 5:161–184,
1993.

[24] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants.
Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia,
D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[25] P. Prusinkiewicz, F. Samavati, C. Smith, and R. Karwowski. L-system
description of subdivision curves. Submitted, June 2002.

[26] G. Rozenberg, editor. Handbook of graph grammars and computing by
graph transformation. World Scientific, Singapore, 1997.

[27] M. Sabin. Subdivision surfaces, 2002. Shape Modeling International
2002 Tutorial Notes, 25 pp.

[28] E. Stollnitz, T. DeRose, and D. Salesin. Wavelets for Computer Graph-
ics. Morgan Kaufman Publishers, Inc., 1996.

3-49

[29] L. Velho. Stellar subdivision grammars. Submitted, January 2003.

[30] A. White. Graphs, groups and surfaces. North-Holland, Amsterdam,
1973.

[31] D. Zorin, P. Schröder, A. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. Subdivision for modeling and animation, 2000. SIG-
GRAPH 2000 Course Notes 23.

3-50

4-1

Design and implementation
of the L+C modeling language

Radoslaw Karwowski and Przemyslaw Prusinkiewicz

Department of Computer Science
University of Calgary

Abstract

L-systems are parallel grammars that provide a theoretical foundation for a class of programs
used in procedural image synthesis and simulation of plant development. In particular, the
formalism of L-systems guides the construction of declarative languages for specifying input
to these programs. We outline key factors that have motivated the development of L-system-
based languages in the past, and introduce a new language, L+C, that addresses the shortcom-
ings of its predecessors. We also describe the implementation of L+C, in which an existing
language, C++, was extended with constructs specific to L-systems. This implementation
methodology made it possible to develop a powerful modeling system in a relatively short pe-
riod of time.

1. Background
L-systems were conceived as a rule-based formalism for reasoning on developing
multicellular organisms that form linear or branching filaments [Lindenmayer, 1968].
Soon after their introduction, L-systems also began to be used as a foundation of visual
modeling and simulation programs, and computer languages for specifying the models
[Baker and Herman, 1972]. Subsequently they also found applications in the generation
of fractals [Szilard and Quinton, 1979; Prusinkiewicz, 1986] and geometric modeling
[Prusinkiewicz et al., 2003]. A common factor uniting these diverse applications is the
treatment of structure and form as a result of development. A historical perspective of
the L-system-based software and its practical applications is presented in [Prusinkiewicz,
1997].
According to the L-system approach, a developing structure is represented by a string of
symbols over a predefined alphabet V. These symbols represent different components of
the structure (e.g., points and lines of a geometric figure, cells of a bacterium, apices and
internodes of a plant). The process of development is characterized in a declarative man-
ner using a set of productions over the alphabet V. During the simulation of development,
these productions are applied in parallel steps to all symbols of the string, thus capturing
the development in discrete time slices.
Lindenmayer [1971] observed that L-system productions can be specified using standard
notation of formal language theory. In the simplest, context-free case, productions have
the form:

predecessor successor
where predecessor is a letter of alphabet V and successor is a (possibly empty) word over
V. For example, the division of a cell A into cells B and C can be written as A BC. In
the context-sensitive case, productions are often written as

4-2

lc < predecessor > rc successor ,
where symbols < and > separate the strict predecessor from the left context lc and the
right context rc [Prusinkiewicz and Hanan,1989]. Both contexts are words over V. For
example, the production pair:

Y < A > O LYS
O < A > Y SYL

describes asymmetric division of a mother cell A into a short daughter cell S and long
daughter cell L, separated by a cell wall Y. The sequence of these cells in the filament is
guided by the state of the walls that delimit the mother cell, which may be young (Y) or
old (O). Obviously, a complete description of the filament's development would also re-
quire productions that characterize the growth of cells and walls over time.
Early L-system-based programming languages closely followed the above notation
[Baker and Herman, 1982; Prusinkiewicz and Hanan, 1989]. The needs for expressing
increasingly complex models led, however, to the addition of constructs found in other
programming languages. A pivotal moment in this evolution was the introduction of pa-
rametric L-systems [Prusinkiewicz and Hanan, 1990; Hanan, 1992] and related constructs
[Chien and Jurgensen, 1992], which associated numerical attributes to L-system symbols,
similar to those found in attribute grammars [Knuth, 1968]. This created a need for cal-
culating new parameter values (in the production successor) on the basis of old ones
(found in the predecessor and its context). According to the original definition of para-
metric L-systems [Prusinkiewicz and Hanan, 1990; Hanan, 1992], these calculations were
specified as arithmetic operations on the argument parameters, e.g.

A(x) < B(y) > C(z) D(x+y) E(y+z) .
In modeling practice, however, entire procedures soon became needed to calculate new
parameter values. Recognizing this need, Hanan [1992] introduced the following syntax
for L-system productions:

lc < predecessor > rc {α} : cond {β} successor .

Here α and β are C-like compound statements, and cond is a logical expression that
guards production application. A production is applied in stages. First, it is determined
whether production predecessor pred, surrounded by the left context lc and the right con-
text rc, matches the given symbol in the string. If this is the case, the compound state-
ment α is executed, and condition cond is evaluated. If the result of this evaluation is
non-zero (‘true’), the second compound statement β is executed. On this basis, parame-
ters values in the production successor are then determined, and the successor is inserted
into the resulting string. For example, the following is a valid production:

A(x) < B(y) > C(z) {r =x*x+ y*y+z*z;} : r> 2 {t = x+y+z;} D(t) E(2*t).

At the top level, an L-system with productions in the above form operates in a declarative
fashion, by rewriting elements of a string according to their type, context, and the associ-
ated parameters. Within each production, however, calculations are performed sequen-
tially, using constructs borrowed from an imperative language. This combination of
paradigms suggests two strategies for translating L-system-based languages into a repre-
sentation directly used by simulation programs [Prusinkiewicz and Hanan, 1992]:

4-3

• extend the formal notation for productions with constructs borrowed from an im-
perative language, or

• extend an existing imperative language with constructs inherent in L-systems.
The modeling program cpfg [Hanan, 1992] and its modeling language [Prusinkiewicz et
al., 2000] are representative of the first approach. The interpreter of the cpfg language
was constructed following the standard steps of lexical analysis, parsing, and object code
generation. Nevertheless, in spite of well-developed methodology for translator construc-
tion (e.g. [Aho et al, 1986]), construction of a compiler for a comprehensive language is a
large task. Consequently, the cpfg language only includes a limited subset of C-like
statements; for example, it does not support user-definable functions and typed parame-
ters associated with the modules. As a result, while simple L-system models can be ex-
pressed using cpfg language in an elegant, compact manner, specification and mainte-
nance of larger models becomes difficult.
An alternative approach, first suggested in [Prusinkiewicz and Hannan 1992], is to create
an L-system-based programming environment by extending an existing language with
support (classes, libraries) specific to L-systems. Using this approach, Hammel [1996]
implemented differential L-systems [Prusinkiewicz et al., 1993] in SIMULA, and Erstad
[2002] implemented an L-system-based programming environment in LISP. Both im-
plementations preserve the syntax of the underlying languages (SIMULA and LISP). In
contrast, Karwowski [2002] implemented the L-system-based programming language
L+C by extending the syntax of C++ [Sievanen]. We describe here the design and im-
plementation of this language.

2. The L+C modeling language
The key new elements introduced in the L+C modeling language are:

• typed module parameters, including all primitive and compound data types (struc-
tures) supported by C++

• productions with multiple successors
• extension of the notion of context-sensitivity with the ‘new context’ constructs,

which speed up information transfer across simulated structures.
In addition, by virtue of being based on the C++ language, L+C has the full expressive
power of C++. In particular, user-defined functions are supported as in C++.
At the top level, an L+C program is a set of declarations for:

• Structures and classes,
• Global variables,
• Functions,
• Modules,
• The axiom,
• The derivation length,
• Productions,
• Decomposition rules,
• Interpretation rules,
• Control statements.

The declarations of structures, classes, variables and functions have exactly the same syn-
tax and meaning as in C++. The remaining declarations are specific to L+C, and are de-
scribed below.

2.1. Module declarations
Modules are the elements of the L-system string. A module consist of an identifier
(which must follow the C++ syntax [Stroustroup, 1991]) and an optional list of parame-
ters. In L+C modules have to be declared before they can be used. Declaration specifies
the number and types of parameters that are associated with the given module type using
the following syntax:

module identifier (parameter-listopt);
Examples of valid module declarations are:

module A(); // module A with no parameters
module N(float); // module N with one parameter of type float
module Metamer(int, MetamerData); // module Metamer with a

 // parameter of type int and
 // a user-defined type MetamerData

2.2. Axiom declaration
The axiom declaration specifies the initial L-system string using the following syntax:

axiom: parametric-string;
where the parametric-string must be non-empty. Assuming that the modules have been
declared as in Section 2.1, and s_init is a structure of type MetamerData, the following
is a valid axiom declaration:

axiom: Metamer(1,s_init) N(0.25) A();

2.3. Derivation length specification
Derivation length is the number of derivation steps for the simulation. It is specified us-
ing the syntax:

derivation length: integer-expression;

2.4. Specification of productions
The syntax of productions is a combination of the formal L-system notation and the C++
syntax for function definition. In general, it has the syntax:

predecessor:
{

 production body
}

The predecessor has one of the following forms:
new-left-context << left-context < strict-predecessor > right-context :
left-context < strict-predecessor > right-context >> new-right context:

4-4

The strict predecessor specifies the part of the string being rewritten by the production. It
can be a single module, as assumed in the usual definition of L-systems, or a string of
several modules, as defined for pseudo-L-systems [Prusinkiewicz, 1986]. The optional
left and right contexts are strings of modules that need to be in the neighborhood of the
strict predecessor in order for the production to apply. The new contexts specify the
modules that must be present in the neighborhood of the production successor, in the
string being derived. This information is easily available if the string is being rewritten
in a particular direction: from left to right in the case of new left context, and from right
to left in the case of new right context (Figure 1). In theory, two-sided new context could
also be defined, but its implementation is more difficult and, therefore, it is not supported
by L+C.

Left context

*

A CB

G F …

Left new
context

String

New string

… … D

Left context

*

A C B… … D

G F

Current module

…

Current module’s
successor to-be

Right context

Right new
context

String

New string

Current module

Right context

Current module’s
successor to-be

Figure 1. Context of L-system productions. Left new context is available if the successor string is
built left-to-right (left figure). Right new context is available if the successor string is built right
to left (right figure).

The parameters that appear in the production predecessor are formal parameters. All the
formal parameters of every module in a production predecessor must be listed, even if
they are not used in the production body. An example of a valid production predecessor
that uses the modules declared in Section 2.1 is:

Metamer(i_l, d_l) N(w) < Metamer(i, d) > A()
Formal parameters have types determined by the declarations of the respective modules.
They are bound to the actual parameters in the string during production application [Prus-
inkiewicz and Hanan, 1990]. The scope of the formal parameters is the same as the
scope of formal parameters in C++ functions.
The production body is a compound statement that may contain any code allowed inside
a C++ function. In addition, the production body may include one or more produce
statements, which specify possible successors of the production. The produce statement
has the syntax:

produce parameteric-stringopt;
where parameteric-string is defined as in the axiom (Section 2.2). Each produce state-
ment is implicitly followed by a return statement. Thus, if several produce statements
are present in the production body, the first statement executed terminates the production
application. Typically, the choice of alternative successors is controlled by C++ condi-
tional statements.

4-5

4-6

2.5. Decomposition rules
As defined by Lindenmayer [1968], L-systems operate in discrete derivation steps. Each
step consists of a (conceptually) parallel application of suitable productions to all sym-
bols in the predecessor string. This parallelism is intended to capture progression of time
by a given interval, the same for all components of the modeled structure. Thus, for ex-
ample, the L-system production A BC expresses the idea “module A develops into
modules B and C over a given time interval.” In practice, it is also often necessary to ex-
press the idea that a given module is a compound module, consisting of several elements.
A logical analysis of the notions “develops over time” and “consists of” was presented by
Woodeger [1937]. Prusinkiewicz et al. [2000, 2001] showed that, in a grammar setting,
these notions correspond to L-system productions and Chomsky context-free productions,
respectively. In L+C, Chomsky productions are called decomposition rules. They are
specified using the same syntax as context-free L-system productions, and are identified
using the keyword decomposition, as in the following example:

decomposition:
Metamer(i, d) : { produce Internode(i, d) Leaf(d) Bud();}

This production characterizes a Metamer as a compound module consisting of an In-
ternode, a Leaf, and a Bud. Obviously, all modules must have been declared earlier in
the L+C program.
The integration of decomposition rules into the L-system framework affects the way in
which a derivation step is performed [Prusinkiewicz et al., 2000]. In L+C, decomposition
rules are applied recursively, after the definition of the initial string by the axiom state-
ment (Section 2.2) and after each step of standard L-system production applications (Sec-
tion 2.4).

2.6. Interpretation rules
Structures generated with L-systems may be visualized by assigning a graphical interpre-
tation to a predefined set of modules [Szilard and Quinton, 1979; Prusinkiewicz, 1986,
Prusinkiewicz et al., 2003]. For example, in L+C, a predefined module F(float) draws
a line of a given length in the current direction (as defined in the turtle geometry [Abel-
son and diSessa, 1982]); Line2D (point2D, point2D) draws a line between two
given points, and SetColor(int) assigns a color to geometric primitives. From the
user perspective, however, it is often more convenient to express the model in terms of
modules inherent in the modeling domain (e.g., apices, internodes, and leaves in the case
of plant models) rather than directly in terms of modules with a geometric interpretation
(e.g., points, lines, and polygons). In order to separate these conceptual and visual as-
pects of model specification, Kurth [1994] introduced the notion of interpretation rules.
Interpretation rules are similar to decomposition rules in that they are context-free Chom-
sky productions, and are applied recursively, after each derivations step (specifically, af-
ter the decomposition rules have been applied). In contrast to decomposition rules, how-
ever, interpretation rules do not affect the outcome of the following derivation steps. In-
stead, they are applied “on the side”, producing modules that are passed to the graphical
part of the modeling program, and discarded once they have been interpreted (Figure 2).

4-7

ω
G*
⇒ µ0

L
⇒ µ'1

G*
⇒ µ1

L
⇒ µ'2

G*
⇒ …

 ⇓I* ⇓I*
 v0 v1 ...

Figure 2. Generation of a developmental sequence using an L-system with decomposition and in-
terpretation rules. Beginning with the axiom ω, the progressions of strings µ1, µ2, µ3,… results
from the interleaved application of decomposition rules G and L-system derivation steps L. The
interpretation rules I map strings µi into strings νi , which are interpreted graphically.

In L+C, interpretation rules are identified using the keyword interpretation, as in
the following example:

interpretation:
Internode(i, d) : { produce SetColor(1) F(d.length); }

The above production specifies that module Internode will be represented graphically
as a straight line, (F) drawn using color with index 1. The line length is specified by field
length in data structure d.

2.7. Control statements
Control statements were introduced by Hanan [1992] (see also Prusinkiewicz et al.,
2000]) to specify procedures that are executed at specific points during an L-system-
based derivation. In L+C, they are specified using the syntax:

Start|StartEach|EndEach|End:
{

 compound statement
}

The control statements are executed as follows:

• Start is executed at the beginning of the program,
• StartEach is executed before every derivation step,
• EndEach is executed after every derivation step,
• End is executed after the last derivation step.

Any code that is allowed inside a C++ function can be specified as the compound state-
ment. Typical uses of the control statements include initialization of global variables,
opening and closing of I/O streams, and reporting of simulation statistics after each simu-
lation step.

2.8. Example
A sample L+C program that generates a branching structure is presented below:

1
2
3
4
5
6
7
8

#include <lpfgall.h>
#include <math.h>

const int Delay = 1;
const float BranchingAngle = 45.0;
const float LengthGrowthRate = 1.33;

derivation length: 17;

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

struct InternodeData
{ float length, area; };

module A(int,float);
module Metamer(float);
module Internode(InternodeData);

Start: { Backward(); }
ignore: Right;

axiom: A(0,BranchingAngle);

A(t,angle) :
{
 if (t<0) // young apex
 produce A(t+1,angle);
 else // mature apex
 produce Metamer(angle) A(0,-angle);
}

Internode(id) >> SB() Internode(id2) EB() Internode(id3) :
{
 id.area = id2.area + id3.area;
 id.length *= LengthGrowthRate;
 produce Internode(id);
}

Internode(id) >> Internode(idr) :
{
 id.area = idr.area;
 id.length *= LengthGrowthRate;
 produce Internode(id);
}

Internode(id) >> A(t,angle):
{
 id.length *= LengthGrowthRate;
 produce Internode(id);
}

decomposition:
Metamer(angle) :
{
 InternodeData id = {1, 1};
 produce
 Internode(id)
 SB() Right(angle) A(-Delay,angle) EB()
 Internode(id);
}

interpretation:
Internode(id) :
{
 produce SetColor(2) SetWidth(pow(id.area,.5)) F(id.length);
}

The modeled structure consists of three types of modules, which are given biologicaly
meaningful names A, Metamer, and Internode (lines 13-15). The process of string
derivation is performed backward (from right to left) as indicated in the Start statement
(line 17). In the process of context matching module Right (used to specify the branching
angle in line 56) is ignored (line 18). The initial structure defined by the axiom is a single

4-8

apex. Its parameters characterize the developmental stage and the branching angle of the
next branch that will be produced by this apex. According to the first production (lines
22-28), an immature apex will grow older, and a mature apex will produce a metamer,
over the time interval associated with a derivation step. The decomposition rule (lines
51-58) specifies that the metamer consists of two internode segments, and a lateral branch
delimited by the language-predefined modules SB() (start branch) and EB() (end
branch). The branch initially consists of a lateral apex, placed at a given angle with
respect to its supporting internode. The development of internodes is described by the
three productions in lines 30 to 48. These productions specifies that an internode will
grow in length by factor LengthGrowthRate per derivation step. They also determine
the cross-section area of each internode as the sum of the cross-sections of internodes
supported by it. Specifically, the new context construct is used to accumulate the cross-
section of branches when moving from the apices toward the base of the structure.
Finally, the interpretation rule (lines 61-64) specifies that each internode will be
visualized as a line of length and width determined by the internode parameters. The
structure generated by this L-system is shown in Figure 3.

Figure 3. Example of a structure generated by the sample L-system.

3. Implementation of the L+C translator
The main difference between L+C and C++ is not at the level of syntax, but at the level
of the programming paradigm: L+C is a declarative language, whereas C++ is an impera-
tive language. Furthermore, L+C programs operate in a specific topological space [Gia-
vitto and Michel, 2001, 2002] of a linear or branching string, whereas C++ does not pre-
suppose any such space. Despite these differences, most of the L+C grammar is the C++
grammar. Given that, the process of compiling and executing an L+C program consists of
translating some specific L+C constructs into C++, while leaving other constructs are left
intact. This leads to the modeling system design shown in Figure 4.

4-9

4-10

L+C

Translated
code

Generator

Unmodified
C++ code

L+C to C++
translator

Compiled DLL C++

compiler

DLL-generator
interface

Figure 4. Components of our modeling system

Based on this design, the translator divides the input L+C code into two categories: the
constructs specific to L+C are translated into C++ code, while the remaining C++ code is
passed verbatim to the compiler. The resulting C++ code is then compiled using a stan-
dard C++ compiled as a DLL (dynamic link library). The actual execution of the L+C
program is performed by a fixed component of a modeling program, called the generator
(Figure 4). For the user’s convenience, modified L+C program can be translated, com-
piled and ran without a need for restarting the modeling program. Consequently, the L-
system string derivation is performed based only on the information that can be provided
by the DLL at run-time (since the generator is a fixed component and is not recompiled
for every L+C program).
The DLL includes the interfacing information that makes the generator and the compiled
L+C program communicate. We present this interface from the perspective of string
derivation by the generator. The core of the generator is the Execute() function:

void Execute()
{

 Start();
 Axiom();
 DecomposeString();
 for (int i=0; i<DerivationLength(); ++i)
 {
 StartEach();
 Derive();
 DecomposeString();
 EndEach();
 }
 End();

}

where the functions written in boldface are defined in the process of translating the L+C
program to C++ as follows:

• Start(), StartEach(), EndEach() and End() execute the compound state-
ments specified in the corresponding L+C control statements (Section 2.7);

• Axiom() creates the initial L-system string (Section 2.2),
• DerivationLength() returns the value specified in the L-system derivation

length statement (Section 2.3).

4-11

The translation of the L+C control statements into C++ functions is straightforward. For
example, the L+C Start statement is translated as follows:

Original code Translated code
Start:
{
 …
}

void Start()
{
 …
}

Analogous substitutions are made for the other L+C control statements. To process the
derivation length statement, the translator replaces the L+C keyword with a C++
function prototype:

Original code Translated code
derivation length: 3; int DerivationLength() { return 3; }

In order to present the translation of productions, let us consider the following L+C pro-
duction as an example:

 module A(data, float);
 module B(int, float);

A(dl, xl) < B(n, a) :
{

 if (a>xl)
 produce B(n+1, xl);
 else
 produce B(n-1, xl);

}
Elements of the production typical for L+C are highlighted in boldface. The process of
translation is based on the fact that productions are similar to functions in imperative pro-
gramming languages. The similarities can be summarized into the following:

• A production is a piece of code to be executed,
• Its input is its predecessor and optionally, parameters of the predecessor’s mod-

ules, and

• Its output is the successor.
The differences between productions and functions are as follows:

• L-system programs do not call productions explicitly. The general mechanism of
matching productions determines which production should be applied and when.

• Productions do not return a value in the traditional sense. Instead, their output
modifies the contents of the L-system string.

The first step in translating a production into a C++ function is to declare a function pro-
totype, using the types declared in the relevant modules. For example, the following sub-
stitution is made:

Original code: Translated code:
A(dl, xl) < B(n, a) void P1(data dl, float xl, int n, float a)

Another element in the production code that needs to be translated is the produce state-
ment. The code resulting from the translation of this statement must add the successor to
the new string, and terminate the production. In our example, the produce statement is
translated into code similar to this:

Original code: Translated code:
produce B(n+1, x); {App(B_id); App(n+1); App(x); return;}

It should be noted that the translation process, as so far described, does not retain all the
necessary information. In particular, the modules in the strict predecessor and the context
information are not present in the generated code. It is then necessary to add information
that bridges the generator and the translated L+C code. However, as this is of a purely
technical concern of program implementation, the additional code is not further discussed
here.

4. Conclusions
We have described a modeling language L+C, which incorporates C++ into the frame-
work of L-systems. We have also implemented a modeling system that uses L+C pro-
grams as input. To implement the L+C translator, we have introduced a methodology
based on the separation of the constructs specific to L-systems from the C++ code. This
methodology made it possible for a single person to implement the L+C translator in one
month. The L-system-specific code is translated into C++ and combined with the C++
code taken verbatim from the L+C programs. The resulting code is translated into a DLL
module using a standard C++ compiler. This module is linked with the generator that
executes the L-systems. In practice, the DLL module is small in size compared to the
generator and the graphical interpreter associated with it. Consequently, the DLL module
compiles and links fast (of the order of one second on the current Windows and Linux
workstations), which allows for interactive manipulation and modification of the models.
The increased expressiveness of L+C, compared to the previous L-system based lan-
guages, makes it possible to create models of a relatively greater complexity. L+C is
currently being used to model aspects of plant genetics, physiology, and biomechanics.

References
Abelson, H. and diSessa, A. [1982]: Turtle geometry. M.I.T. Press, Cambridge.
Aho 1986: Aho, A., Sethi, R. and Ullman, J. [1986], Compilers: Principles, techniques

and tools. Addison-Wesley, Reading.
Baker R. and Herman G. T. [1970]: Simulation of organisms using a developmental

model, parts I and II. International Journal of Bio-Medical Computing 3, pp. 201-215
and 251-267.

Chien, T. and Jurgensen, H. [1992]: Parameterized L systems for modelling: Potential
and limitations. In: G. Rozenberg and A. Salomaa (Eds.): Lindenmayer systems: Im-

4-12

pacts on theoretical computer science, computer graphics, and developmental biol-
ogy. Springer, Berlin, pp. 213—229.

Erstad, K. [2002]: L-systems, twining plants, Lisp. M. Sc. thesis, University of Bergen.
Giavitto, J.-L. and Michel, O. [2001]: MGS: A programming language for the transfor-

mation of topological collections. Research Report, 61-2001, CNRS – Universite
d’Evry Val d’Esonne.

Giavitto, J.-L. and Michel, O. [2002]: Data structures as topological spaces. Proceedings
of the 3rd International Conference on Unconventional Models of Computation
UMC02, Lecture Notes in Computer Science 2509, pp. 137-150.

Hammel, M. [1996]: Differential L-systems and their application to the simulation and
visualization of plant development. Ph. D. thesis, University of Calgary.

Hanan, J. [1992]: Parametric L-systems. Ph. D. thesis, University of Regina.
Karwowski, R. [2002]: Improving the process of plant modeling: The L+C modeling lan-

guage. Ph. D. thesis, University of Calgary.
Knuth, D. [1968]: Semantics of context-free languages. Mathematical Systems Theory 2,

pp. 191-220.
Kurth, W. [1994]: Growth grammar interpreter (GROGRA 2.4): A software tool for the

3-dimensional interpretation of stochastic, sensitive growth grammars in the context
of plant modeling. Introduction and reference manual. Forschungszentrum Waldoko-
systeme der Universitat Gottingen.

Lindenmayer, A. [1968]: Mathematical models for cellular interaction in development.
Journal of Theoretical Biology 18, pp. 280-315.

Lindenmayer, A. [1971]: Developmental systems without cellular interaction, their lan-
guages and grammars. Journal of Theoretical Biology 30, pp. 455-494

Prusinkiewicz, P. [1986]: Graphical applications of L-systems. Proceedings of Graphics
Interface ’86 – Vision Interface ’86, pp. 247-253.

Prusinkiewicz, P. and Hanan, J. [1989]: Lindenmayer systems, fractals and plants. Lec-
ture Notes in Biomathematics 79, Springer, Berlin.

Prusinkiewicz, P. and Hanan, J. [1990]: Visualization of botanical structures and proc-
esses using parametric L-systems. In: D. Thalmann (Ed.), Scientific visualization and
graphics simulation, J. Wiley & Sons, Chichester, pp. 183-201.

Prusinkiewicz, P. and Hanan, J. [1992]: L-systems: From formalism to programming lan-
guages. In: G. Rozenberg and A. Salomaa (Eds.), Lindenmayer systems: Impacts on
theoretical computer science, computer graphics and developmental biology.
Springer, Berlin, pp. 193-211.

P. Prusinkiewicz, P., Hammel, M. and Mjolsness, E. [1993]: Animation of plant devel-
opment. Proceedings of SIGGRAPH 93, pp. 351-360.

Prusinkiewicz, P. [1997]: A look at the visual modeling of plants using {{L}-systems. In
R. Hofestadt and T. Lengauer and M. Loffler and D. Schomburg (Eds.): Bioinformat-
ics. Lecture Notes in Computer Science 1278, Springer, Berlin, pp.11-29.

4-13

4-14

Prusinkiewicz, P., Hanan, J., and Mech, R. [2000]: An L-system-based plant modeling
language. In M. Nagl, A. Schuerr and M. Muench (Eds.): Applications of graph
transformation with industrial relevance. Lecture Notes in Computer Science 1779,
Springer, Berlin, pp. 395-410.

Prusinkiewicz, P., Muendermann, L., Karwowski, R. and Lane, B. [2001]: The use of po-
sitional information in the modeling of plants. Proceedings of SIGGRAPH 2001, pp.
289-300.

Prusinkiewicz, P., Samavati, F., Smith, C. and Karwowski, R. [2003]: L-system descrip-
tion of subdivision curves. To appear in the International Journal of Shape Model-
ing.

Sievanen R., Perttunen J., Prusinkiewicz P., Karwowski R., Modeling language L, unpub-
lished report.

Stroustroup, B. [1991]: The C++ Programming Language, Addison-Wesley, Reading.
Szilard, A. and Quinton, R. [1979]: An interpretation for D0L systems by computer

graphics. The Science Terrapin 4, pp. 8-13.
Woodger J. [1937]: The axiomatic method in biology, University Press, Cambridge.

Generating subdivision curves with L-systems on a GPU∗

Radomı́r Měch† Przemyslaw Prusinkiewicz†

SGI University of Calgary

Abstract

The introduction of floating-point pixel shaders has initiated
a trend of moving algorithms from CPUs to graphics cards.
The first algorithms were in the rendering domain, but re-
cently we have witnessed increased interest in modeling al-
gorithms as well.

In this paper we present techniques for generating subdi-
vision curves on a modern Graphics Processing Unit (GPU).
We use an existing method for generating subdivision curves
with L-systems, we extend these L-systems to implement
adaptive subdivision, and we show how these L-systems can
be implemented on a GPU.

We chose L-systems because they can express many mod-
eling algorithms in a compact way and are parallel in na-
ture, making them an attractive paradigm for programming
a GPU.

1 Introduction

In recent years subdivision curves became an important al-
ternative to parametric curves in computer aided design. For
a modeler they are very attractive because a complex curve
can be defined using a small number of control points.

The new programmable graphics hardware with capabil-
ities of executing a set of instructions during the vertex or
fragment processing has proven to be capable of solving dif-
ficult processing tasks. Various algorithms have been imple-
mented on these Graphics Processing Units (GPUs), rang-
ing from ray-tracing [6] to solving differential equations [2].
Considering the parallel nature of subdivision algorithms the
new graphics hardware is a suitable candidate for implement-
ing them.

In this note we review L-systems that capture differ-
ent subdivision scheme, we extend the L-systems presented
in [5] with support for adaptive subdivision of curves, and
we show how to implement these L-systems on a GPU1.

GPUs can be programmed using assembler level lan-
guages or higher level languages, such as Cg [3] or Direct
X 9.0 HLSL2. We chose to implement L-systems using the
assembler level language.

∗This is an extended version of a sketch to be presented at SIGGRAPH
2003.

†rmech@sgi.com, pwp@cpsc.ucalgary.ca
1Our implementation and description are based on the ATI Radeon 9700

card (http://www.ati.com/developer).
2http://msdn.microsoft.com/directx/

2 Generating subdivision curves

Subdivision curves can be described using context-sensitive
parametric L-systems [5]. Control points of the curve are
stored as symbols in the initial string, with parameters spec-
ifying point locations3. L-system productions are used to re-
place each point with new points according to a given subdi-
vision scheme. For example, Chaikin subdivision of a closed
curve is captured by a single production [5],

L-system 1:
P (vl) < P (v) > P (vr) → P (1

4
vl + 3

4
v)P (3

4
v + 1

4
vr),

which replaces one point, the strict predecessor, with two
new points, forming the successor. The location of each new
point is an affine combination of the locations v, vl and vr of
the predecessor point and its context (neighbors).

It is easy to modify L-system 1 to express different subdi-
vision schemes. Each scheme is using different affine com-
bination of the neighbors. Some schemes presented in [5] are
using more than one neighbor on each side of the point, but
not more than two. Thus we can combine these L-systems in
a single scheme:

L-system 2:
P (v0)P (v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=0
a[i].vi)P (

∑4

i=0
b[i].vi),

where arrays a and b store parameters of the affine com-
bination for each new symbol. L-system 2 can express
Chaikin subdivision scheme using values a = {0, 1

4
, 3

4
, 0, 0}

and b = {0, 0, 3

4
, 1

4
, 0}, cubic B-spline subdivision using

a = {0, 1

8
, 3

4
, 1

8
, 0} and b = {0, 0, 1

2
, 1

2
, 0}, and Dyn-Levin-

Gregory (4-point) subdivision using a = {0, 0, 1, 0, 0} and
b = {0,− 1

16
, 9

16
, 9

16
,− 1

16
}.

In the case of open subdivision curves, end points of the
curve do not change location and the rules for creating new
points in their neighborhood are different from those operat-
ing farther from the endpoints. If we denote the endpoints
by symbol E, we can expand L-system 1 to open curves as
follows [5]:
L-system 3:
p1: E(vl) < P (v) > P (vr) → P (1

2
vl + 1

2
v)P (3

4
v + 1

4
vr)

p2: P (vl) < P (v) > E(vr) → P (1

4
vl + 3

4
v)P (1

2
v + 1

2
vr)

p3: P (vl) < P (v) > P (vr) → P (1

4
vl + 3

4
v)P (3

4
v + 1

4
vr)

p4: E(v) → E(v)

L-system 3 can be generalized in a similar manner to L-
system 1. To this end, we extend L-system 3 with two new
productions, in which the symbol E is two symbols away

3We make here a distinction between the location of a point (three coor-
dinates) and its position in the string (an index value).

smithco
4-15

Figure 1: Operation of L-system 5. Points of type 0 are
marked as R.

from the predecessor, and we define arrays a and b for each
production:

L-system 4:
p1: E(v0)P (v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=0
a[0][i].vi)P (

∑4

i=0
b[0][i].vi)

p2: E(v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=1
a[1][i].vi)P (

∑4

i=1
b[1][i].vi)

p3: P (v0)P (v1) < P (v2) > P (v3)E(v4)

→ P (
∑4

i=0
a[2][i].vi)P (

∑4

i=0
b[2][i].vi)

p4: P (v0)P (v1) < P (v2) > E(v3)

→ P (
∑3

i=0
a[3][i].vi)P (

∑3

i=0
b[3][i].vi)

p5: P (v0)P (v1) < P (v2) > P (v3)P (v4)

→ P (
∑4

i=0
a[4][i].vi)P (

∑4

i=0
b[4][i].vi)

p6: E(v) → E(v)

L-systems provide a compact way of defining subdivision
curves and they are easy to modify. For example, let us
expand L-system 3 to support adaptive subdivision of open
curves (see L-system 5). For this purpose, we add a second
parameter t specifying the type of a point to each symbol
P . This parameter is equal to 1 (the default) if the point is
to be subdivided and 0 if it should not be subdivided any
further. We also extend L-system 3 with three new produc-
tions. Productions p1 and p2 make sure that the point of type
0 next to a point of type 1 creates only one new point and
not two. Production p3 tests whether the point is close to the
midpoint between its neighbors, in which case the newly cre-
ated points are of type 0. Our approach is similar to the one
described by Xu et al. [7]. Here is the resulting L-system:

L-system 5:
p1: P (vl, tl) < P (v, t): t = 0 & tl = 1 → P (1

4
vl + 3

4
v, 0)

p2: P (v, t) > P (vr, tr): tr = 1 & t = 0 → P (3

4
v + 1

4
vr, 0)

p3: P (vl, tl) < P (v, t) > P (vr, tr): |v − vl+vr

2
| < T

→ P (1

4
vl + 3

4
v, 0)P (3

4
v + 1

4
vr, 0)

p4: E(vl) < P (v, t) > P (vr, tr)
→ P (1

2
vl + 1

2
v, t)P (3

4
v + 1

4
vr, t)

p5: P (vl, t + l) < P (v, t) > E(vr)
→ P (1

4
vl + 3

4
v, t)P (1

2
v + 1

2
vr, t)

p6: P (vl, tl) < P (v, t) > P (vr, tr)
→ P (1

4
vl + 3

4
v, 1)P (3

4
v + 1

4
vr, 1)

p7: E(v) → E(v)

In this L-system we are taking advantage of the assumption
that if more than one production can be used to rewrite the
predecessor, the one that appears first in the production list
is chosen. For example, the third production is applied only
to symbols to which the first or second production cannot be

Figure 2: An L-system on GPU, algorithm 1: each symbol is
replaced by two new symbols.

applied. Figure 1 illustrates the operation of L-system 5.
In the next section we implement these L-systems directly

on a GPU.

3 L-systems on a GPU

Algorithm 1. An L-system in which each symbol is replaced
by a constant number of k symbols (for example, L-system 1
or L-system 2) is easy to implement on graphics hardware
that supports floating-point fragment programs (also known
as pixel shaders) (Figure 2). We store the initial string in
one line of a texture4. The letter symbol of each point is
in the alpha channel, and the coordinates are in the RGB
channels. Given an input string of length n, we draw a line
of length kn into a P-buffer, off-screen memory located on
the graphics card. A pixel of the line at position i represents
the i%k-th point of the successor of the i/k-th symbol in the
input string. As the line is rendered, the fragment program
reads texel values at positions (i/k − 1)%n, (i/k)%n and
(i/k + 1)%n (the left context, the strict predecessor, and the
right context), and sets the value of pixel i as defined for the
i%k-th point of the production successor. The positions of
the predecessor and neighbors are deduced from three sets of
texture coordinates. The texture coordinates of neighbors are
shifted to the left and right from the predecessor coordinates.
The value of i used to determine the symbol of the successor
is set using a 1D texture coordinate with values of 0 and kn
assigned with the two vertices of the line.

Once the symbol of the successor is identified, the frag-
ment program has to compute symbol’s parameters. If the
computations for all successor’s symbols are similar, such
as in case of L-system 2, they can be performed by a single
fragment program. This program uses a set of local fragment
program parameters or an input texture to specify different
parameters for each computation (equivalent to arrays a and
b in L-system 2). The correct set of parameters is selected
based on the symbol’s position i in the final string. If the
computations vary significantly, they cannot be expressed by
a single formula that uses different parameters for different
symbols of the successor. In this case we can apply a frag-
ment program that computes all symbols of the successor

4If one line is not enough, we modify the neighbor selection process in
order to store the string in a 2D texture.

smithco
4-16

and selects the one identified by the position i. If these com-
putations do not fit into a single fragment program, we can
use a set of fragment programs applied one after another,
each setting only a particular symbol of the successor. This
will be less of an issue in the future, because the maximum
length of a fragment program will be significantly larger.

In each subsequent iteration of the algorithm, we bind the
P-buffer as the input texture and use another P-buffer as the
output. Finally, we read the final string using glReadPix-
els, and render the vertices. In the near future, the drivers
will support rendering into a vertex array, which will make it
possible to avoid the readback.

Algorithm 2. If an L-system has more than one produc-
tion, and they have successors of different length (for exam-
ple, L-system 3) there are two issues: to find a production
for each symbol, and to position the successor in the output
string. There are two approaches to finding the production.
If the productions are of a similar form and the coefficients
used to compute the successor’s parameters can be tabulated,
such as in L-system 3, 4 or 5, two fragment programs can be
used, one to find an applicable production and one to ap-
ply it. These programs use textures that specify the corre-
spondence between a specific predecessor and its successor,
given the predecessor’s context (see below for more details).
If L-system productions vary significantly, it is necessary to
represent each production or a group of similar productions
using a separate fragment program.

The first approach is more desirable because it is easy for
a user to modify the L-system by changing texture data with-
out any changes to fragment programs. All productions are
specified using two textures, the predecessor texture and the
successor texture. Each row of the predecessor texture stores
information on the context of all productions with the same
strict predecessor. The productions are specified one after
another, each production is specified by its four neighbors,
the successor length and the index of the first symbol of the
successor in the successor texture (see Figure 3). Optionally,
for each production, the row can also store coefficients used
to evaluate the production’s condition. Each column of the
successor texture stores the symbols and affine combination
coefficients for one successor symbol of one production.

Figure 3 illustrates the operation of an L-system using tex-
tures organized as described above. Fragment program 1
finds the matching production for each point in the predeces-
sor string, and outputs the successor length l and the index
s of the first symbol of the successor, stored in the succes-
sor texture. Since the program tests one set of neighbors at
a time, this takes up to M passes, where M is the maximum
number of productions with the same strict predecessor.

To determine the position of each successor in the out-
put string, we simulate the scan-add operation defined as
foolows [4]: if y =scan-add(x), then y[i] =

∑i−1

j=0
x[j] (and

y[0] = 0)5. Before the productions are applied we run frag-
ment program 2, which sums the lengths of all successors to

5We use the version of the scan-add operation, in which we do not add
the value at the given position to the sum.

Figure 3: An L-system on GPU, algorithm 2: productions
specified using textures, successor lengths vary. Texture data
correspond to L-system 3.

the left of a given symbol. This can be done in blog2(n)c
passes. These sums are read with glReadPixels and used to
create a set of line segments on a CPU, each starting at the
pixel given by a sum. Again, the readback can be avoided
once rendering into vertex arrays is supported in drivers.

The 1D texture coordinates at vertices of each line seg-
ment are set to s and s + l. Fragment program 3, executed
for each pixel of each line segment, accesses the successor
texture column identified by the 1D texture coordinate. It
retrieves the symbol and its affine combination coefficients
from the texture, computes the affine combination of the pre-
decessor point and its neighbors, and sets the new symbol
and the computed value.

If we have a set of productions whose successors have the
same length, the scan-add step can be skipped. A single line
of length kn is drawn as in algorithm 1 and the position i is
used to determine the symbol of the successor in fragment
program 3. Sometimes we can determine the successor from
the position i even if the productions have successors of dif-
ferent length. In L-system 3, for example, only the first and
last symbol in the string produce one new symbol, all other
symbols produce two, and therefore the position of each suc-
cessor can be determined in advance.

In the subsequent iteration of the subdivision process, the
P-buffer is used as a input texture for the fragment programs.
The final string is read with glReadPixels, and the vertices
are rendered as in the closed curve case.

4 Results

Figures 4 and 5 show sample subdivision curves gener-
ated using L-systems 2, 3 and 4 implemented on the ATI’s

smithco
4-17

Figure 4: Closed and open subdivision curves generated in
3 steps using L-system 2 and L-system 3 implemented on a
GPU.

Figure 5: Adaptive subdivision curves generated in 5 steps
using L-system 5 implemented on a GPU. T = 0.025 and
0.05.

Radeon 9700.
In the case of the closed curve in Figure 4, we used al-

gorithm 1. A single fragment program generates both new
points of the successor in a single rendering pass. The ar-
rays a and b (L-system 2) are set using local parameters of
the fragment program. The program has 15 instructions (12
arithmetic instructions and 3 texture reads). It took 0.4 ms
to generate the closed curve in Figure 4, out of which 0.3
ms were spent in switching the rendering context from one
P-buffer to another6. One context switch took about 0.1 ms,
but the future drivers should significantly reduce this unnec-
essary overhead [1]. The overhead of context switches is
also reduced if several curves are evaluated at once. Subdi-
viding a curve defined by 4 control points 8 times (subdivi-
sion level 8) resulted in 1024 points and took (8*0.1 + 0.2)
ms. These times do not include the final readback, which for
1024 points takes about 0.17ms.

Using a software implementation on a 2.4 GHz Pentium
4 CPU to generate three levels of subdivision took about
the same time (0.1 ms), but at higher subdivision levels the
GPU implementation became faster (if we ignore the context
switch overhead). At subdivision level 8, the GPU was about
twice as fast as the CPU.

In the case of open curves we used algorithm 2. The L-
system is automatically converted into the predecessor tex-
ture and successor texture. Fragment program 1 has 45 in-

6We have to alternate between two P-buffers because a single P-buffer
cannot be used both as an input and output.

structions (35 arithmetic instructions + 10 texture reads),
fragment program 2 has 24 instructions (16+8)7, and frag-
ment program 3 has 18 instructions (15+3). It took 2.1 ms
to generate the open curve in Figure 4, out of which 1.35
ms were spent on 11 context switches and 0.3 ms on 3 read-
backs after each scan-add operation. The overall time of 2.1
ms can be reduced by 0.9 ms (5 context switches + 0.4 ms)
by skipping the scan-add operation, because in L-system 3
the position of each production successor can easily be de-
termined (see Section 3). The timings for the two adaptive
curves in Figure 5 are 3.8 ms (2.4 ms for 20 context switches,
0.5 ms for 5 scan-add readbacks) and 3.7 ms (2.3 ms for 19
context switches, 0.5 ms for 5 scan-add readbacks). In this
case we cannot skip the scan-add step.

The software implementation of open subdivision curves
is faster than the GPU implementation for a small number of
control points. Subdividing a non-adaptive open curve from
Figure 4 up to level 8 was 4 times faster in software (ignor-
ing the cost of context switches). The GPU disadvantage is
caused by having to perform several rendering passes to find
a production, and several passes to perform scan-add opera-
tion, while dealing with a relatively small number of pixels.
Once we increase the number of pixels by evaluating several
curves in parallel the GPU algorithm becomes faster. Evalu-
ating 16 non-adaptive open curves (8 subdivision levels) took
about the same time on the CPU and the GPU, and for 32
curves the GPU was about 50% faster. Consequently, using
the GPU for evaluating subdivision curves is better only if
one needs to evaluate many of them at once.

5 Conclusions

We created a set of fragment programs on ATI’s Radeon
9700 that implement L-systems capable of generating sub-
division curves. We implemented not only selected basic
schemes, but also an adaptive scheme.

We chose L-systems as a conceptual basis for our imple-
mentation because they compactly express many subdivision
schemes and they can easily be modified by changing few pa-
rameters or adding a few new productions. Our approach is
similar to the implementation of L-systems on the Connec-
tion Machine by Ortiz et al. [4]. In contrast to Ortiz et al.,
however, our implementation supports parametric L-systems
and uses different data structures, more suitable for fast ac-
cess by a GPU.

As the results indicate, if we have to perform more than
one rendering pass for a single subdivision step the GPU
implementation becomes faster compared to a CPU imple-
mentation when many curves are evaluated at once. An ad-
ditional problem is the fact that current drivers do not imple-
ment switches of rendering context very efficiently and that
the API for rendering to vertex arrays has not been finalized
yet and thus the drivers lack the support for this functionality.

7We observed that it is faster to use a longer fragment program 2 that
sums 8 values at once and reduce the number of passes needed for the scan-
add operation than to use a shorter program in more passes (even if we
ignore the cost of context switches).

smithco
4-18

An intriguing problem for further research is an extension
of this work to subdivision surfaces, where the advantage
of a GPU implementation is likely to be more significant,
because we are dealing with larger numbers of points.

Acknowledgemens

We would like to thank Sylvain Lefebvre for helpful com-
ments on this note.

References
[1] J. Bolz and P. Schröder. Evaluation of subdivi-

sion surfaces on programmable graphics hardware.
http://www.multires.caltech.edu/pubs/GPUSubD.pdf.
Submitted for publication.

[2] N. Goodnight, G. Lewin, D. Luebke, and K. Skadron.
A multigrid solver for boundary-value problems using
programmable graphics hardware. Technical Report CS-
2003-02, Univ. of Virginia Dept. of Computer Science.,
January 2003.

[3] W. R. Mark, S. Glanville, and K. Akeley. Cg: A System
for Programming Graphics Hardware in a C-like Lanu-
age. ACM Transactions on Graphics, 22(3), July 2003.
To appear.

[4] L.F. Ortiz, R.Y. Pinter, and S.S. Pinter. An array lan-
guage for data parallelism: Definition, compilation, and
applications. The Journal of Supercomputing, (5):7–29,
1991.

[5] P. Prusinkiewicz, F. Samavati, C. Smith, and R. Kar-
wowski. L-system description of subdivision curves. In-
ternational Journal of Shape Modeling. To appear..

[6] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan.
Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics, 21(3):703–712, July 2002.

[7] Z. Xu and K. Kondo. Local Subdivision Process with
Doo-Sabin Subdivision Surfaces. SMI 2002:Interna-
tional Conference on Shape Modelling and Applications,
May 2002.

smithco
4-19

	sigcourse2003.pdf
	multilevel.pdf
	Introduction
	Previous work
	Local-to-global modeling of plant distribution
	Multiset L-systems
	Self-thinning
	Plant succession
	Plant propagation

	Global-to-local modeling of plant communities
	The deformation-kernel method
	Extensions

	Conclusions

	2-50-circuit-5diag-2.pdf
	Solving Linear Algebraic and Differential Equations
	with L-Systems.
	Pavol Federl
	University of Calgary
	1. Introduction
	2. The circuit
	Figure 1: A circuit segment.
	Figure 2: The overall circuit assembled from segments connected in series.
	2.1. Continuous equations
	The general case:
	Eq.1 .
	Eq.2 .
	Eq.3 .
	Eq.4 .

	The right boundary case:
	Eq.5 ,
	Eq.6 .

	The left boundary case:
	Eq.7 .
	Eq.8 .

	3. Discretization of time
	Eq.9 for all .
	Eq.10 and .
	Eq.11 , and .
	Eq.12 ,
	Eq.13 ,
	Eq.14 ,
	Eq.15 ,
	Eq.16 , and
	Eq.17 .
	3.1. 5-diagonal system of linear equations
	Eq.18 ,
	Eq.19 ,
	Eq.20
	Eq.21 .

	4. Solving 5-diagonal systems of linear equations using L-Systems
	4.1. First phase - elimination below diagonal
	Eq.22 where .

	4.2. Second phase - elimination above diagonal
	Eq.23 where .

	5. The complete L-System implementation
	Phase 0: reading in the data-file

	B
	Phase I: setting up the matrix representation

	S
	Phase II and Phase III: solving the system of equations

	M
	Phase IV: extracting the solution

	S
	Rendering
	6. Results and conclusions
	Figure 3: Example I - simple circuit composed of 4 different segments.
	Figure 4: Example II - circuit with some resistances set to 0.
	Figure 5: Example III - simulated diffusion, with decay.
	Figure 6: Example III - simulated diffusion without decay.

	Appendix A: The complete L+C source code
	1 #include <cmath>
	2 #include <cstdlib>
	3 #include <lpfgall.h>
	4 #include <cstdio>
	5 #include <cstdlib>
	6 #include <string>
	7 #include <cassert>
	8 #include <stdarg.h>
	9
	10 using std::string;
	11
	12 const string fname = "circuit-1.dat"; FILE * fp;
	13 double dt, curr_time, Vs, Rs; // time step, curr. time, Rs & Vs
	14 float x, vscale; // used for rendering
	15 bool draw_circuit; // whether to draw circuit
	16
	17 struct Segment
	18 { double Rh, Rv, Rp, Cap; // the resistances and the capacitance of a single segment
	19 double I, V; // current and voltage
	20 Segment () { Rh = Rv = Rp = Cap = I = V = 0.0; }
	21 };
	22
	23 struct Row
	24 { double a1, a2, a3, a4, a5, rhs;
	25 Segment seg;
	26 Row () { a1 = a2 = a3 = a4 = a5 = rhs = 0.0; }
	27 Row (double pa1, double pa2, double pa3, double pa4, double pa5, double prhs, Segment & pseg)
	28 { a1 = pa1; a2 = pa2; a3 = pa3; a4 = pa4; a5 = pa5; rhs = prhs; seg = pseg;}
	29 };
	30
	31 module B(); // marks the beginning of the string
	32 module E(); // marks the end of the string
	33 module L(string); // module that will load the file
	34 module C(); // closes the file
	35 module R(long); // reads the file
	36 module S(Segment); // contains the information about the segment
	37 module M(Row); // represents one row of coeff. matrix & RHS
	38 module Capacitor(double, double, double); // renders a capacitor
	39 module ResistorV(double, double, double); // renders a vertical resistor
	40 module ResistorH(double, double, double); // renders a horizontal resistor
	41 module Emf(double, double, double); // renders EMF
	42 module Rectangle(double, double, double, double); // draw empty rectangle
	43 module RectangleF(double, double, double, double); // draw filled rectangle
	44 module LabS(double, double, string); // draw a string
	45
	46 // phases of computation
	47 #define SETUP 1
	48 #define LEFT_TO_RIGHT 2
	49 #define RIGHT_TO_LEFT 3
	50 #define COLLECT 4
	51 int phase;
	52
	53 Start: { phase = SETUP; Forward(); }
	54 StartEach: { UseGroup (phase); }
	55 EndEach:
	56 { switch (phase)
	57 {
	58 case SETUP: phase = LEFT_TO_RIGHT; Forward(); break;
	59 case LEFT_TO_RIGHT: phase = RIGHT_TO_LEFT; Backward(); break;
	60 case RIGHT_TO_LEFT: phase = COLLECT; Forward(); break;
	61 case COLLECT: phase = SETUP; Forward(); break;
	62 }
	63 }
	64
	65 Axiom: B() L(fname) E();
	66 // ==
	67
	68 decomposition:
	69 maximum depth: 1000;
	70 // ==
	71 L(fname) : // open the file for reading
	72 { fp = fopen (fname . c_str (), "r");
	73 bool error = (fp == NULL);
	74 long nseg;
	75 error = error || (4 != fscanf (fp, "%lf %ld %lf %lf", & dt, & nseg, & Vs, & Rs));
	76 if (error) {
	77 Printf ("Cannot open/read file %s.\n", fname . c_str ());
	78 produce ;
	79 }
	80 draw_circuit = nseg < 10;
	81 vscale = nseg;
	82 curr_time = 0.0;
	83 produce R(nseg) C();
	84 }
	85 C() : // Close the file
	86 { fclose (fp);
	87 produce ;
	88 }
	89 R(n) : // Read another segment from the file
	90 { if (n == 0) produce ;
	91 Segment s;
	92 if (4 != fscanf (fp, "%lf %lf %lf %lf", & s.Rh, & s.Rv, & s.Rp, & s.Cap))
	93 {
	94 Printf ("Cannot read segment.\n");
	95 produce ;
	96 }
	97 produce S(s) R(n-1);
	98 }
	99
	100 production:
	101 derivation length: 4;
	102 // ==
	103 group SETUP:
	104 // --
	105 S(sL) < S(sC) > S(sR) : // general case
	106 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, -sC.Rv, 0, sC))
	107 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
	108 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
	109 }
	110 B() < S(sC) > S(sR) : // left boundary case
	111 { produce M (Row (0,0,1,0,0,0,sC))
	112 M (Row (0, 0, Rs+sC.Rh+sC.Rv, 1,-sC.Rv, Vs, sC))
	113 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, dt*sC.Rp, 0
	114 , (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I-dt*sC.Rp*sR.I, sC));
	115 }
	116 S(sL) < S(sC) > E() : // right boundary case
	117 { produce M (Row (-sL.Rv, -1, sL.Rv+sC.Rh+sC.Rv, 1, 0, 0, sC))
	118 M (Row (0, -dt*sC.Rp, 2*sC.Rp*sC.Cap+dt, 0, 0, (2*sC.Rp*sC.Cap-dt)*sC.V+dt*sC.Rp*sC.I, sC))
	119 M (Row (0,0,1,0,0,0,sC));
	120 }
	121 group LEFT_TO_RIGHT:
	122 // --
	123 M(r1) M(r2) << M(r3) :
	124 { double k1 = r3.a1 / r1.a3;
	125 double k2 = (r1.a3 * r3.a2 - r1.a4 * r3.a1) / (r1.a3 * r2.a3);
	126 produce M(Row(0, 0, r3.a3-k1*r1.a5-k2*r2.a4, r3.a4-k2*r2.a5, r3.a5, r3.rhs-k1*r1.rhs-k2*r2.rh...
	127 }
	128 group RIGHT_TO_LEFT:
	129 // --
	130 M(r1) >> M(r2) M(r3) :
	131 { produce M(Row(0, 0, r1.a3, 0, 0, r1.rhs - r1.a4 * r2.rhs / r2.a3 - r1.a5 * r3.rhs / r3.a3, ...
	132 }
	133 group COLLECT:
	134 // --
	135 B() < M(r) : // discard the first phony row
	136 { produce ;
	137 }
	138 M(r) > E() : // discard the last phony row
	139 { produce ;
	140 }
	141 M(r1) M(r2) : // convert two equations to a circuit segment
	142 { r1.seg.I = r1.rhs / r1.a3;
	143 r1.seg.V = r2.rhs / r2.a3;
	144 produce S (r1.seg);
	145 }
	146 E() :
	147 { curr_time += dt;
	148 }
	149
	150 interpretation:
	151 maximum depth: 1000;
	152 // ==
	153 B() : // draw the intial voltage & resistor
	154 { nproduce SetWidth(2);
	155 x = -1;
	156 if (draw_circuit)
	157 { nproduce SetColor(7)
	158 Line2d(V2d(-0.33,0),V2d(-0.33,1))
	159 Line2d(V2d(-0.33,1),V2d(0,1))
	160 Line2d(V2d(-0.33,0),V2d(0,0))
	161 ResistorV(-0.33,0.75,Rs)
	162 Emf (-0.33, 0.25, Vs);
	163 }
	164 produce SetColor(6) Line2d(V2d(0,1.2),V2d(0,1.2+vscale*Vs));
	165 }
	166 S(s) : // draw the segment and corresponding portion of the graph
	167 { x = x + 1;
	168 if (draw_circuit)
	169 { static char buff1 [4096]; sprintf (buff1, "I=%.3f", s.I);
	170 static char buff2 [4096]; sprintf (buff2, "V=%.3f", s.V);
	171 nproduce SetColor (1)
	172 Line2d(V2d(x,1),V2d(x+1,1))
	173 Line2d(V2d(x+1,1),V2d(x+1,0))
	174 Line2d(V2d(x+0.5,0.5),V2d(x+1,0.5))
	175 Line2d(V2d(x+0.5,0.5),V2d(x+0.5,0))
	176 Line2d(V2d(x,0),V2d(x+1,0))
	177 Capacitor(x+1,0.25,s.Cap)
	178 ResistorV(x+0.5,0.25,s.Rp)
	179 ResistorV(x+1,0.75,s.Rv)
	180 ResistorH(x+0.5,1,s.Rh)
	181 SetColor(5) MoveTo(x+0.65,1.02,0) Label(buff1)
	182 SetColor(4) MoveTo(x+1.04,0.5,0) Label(buff2);
	183 }
	184 produce SetColor(6) Line2d(V2d(x,1.2),V2d(x+1,1.2)) // axis
	185 SetColor(5) RectangleF(x+0.5,1.2,x+1,1.2+vscale*s.I) // Render calculated current
	186 SetColor(4) RectangleF(x,1.2,x+0.5,1.2+vscale*s.V); // Render calculated voltage
	187 }
	188 E() : // draw the time
	189 { static char buff [4096]; sprintf (buff, "Time: %.3f", curr_time);
	190 produce SetColor(1) LabS (vscale,1.2,buff);
	191 }
	192 Capacitor(cx, cy, val) : // draw a capacitor
	193 { static char buff [4096]; sprintf (buff, "%.2f", val);
	194 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
	195 SetColor(1) Line2d(V2d(cx-0.1,cy-0.02),V2d(cx+0.1,cy-0.02))
	196 Line2d(V2d(cx-0.1,cy+0.02),V2d(cx+0.1,cy+0.02))
	197 SetColor(6) LabS(cx+0.02,cy+0.04,buff);
	198 }
	199 ResistorV(cx, cy, val) : // draw a vertical resistor
	200 { if (val == 0) produce ;
	201 static char buff [4096]; sprintf (buff, "%.2f", val);
	202 produce SetColor(2) RectangleF(cx-0.02,cy-0.1,cx+0.02,cy+0.1)
	203 SetColor(1) Rectangle (cx-0.02,cy-0.1,cx+0.02,cy+0.1)
	204 SetColor(6) LabS(cx+0.04,cy,buff);
	205 }
	206 ResistorH(cx, cy, val) : // draw a horizontal resistor
	207 { if (val == 0) produce ;
	208 static char buff [4096]; sprintf (buff, "%.2f", val);
	209 produce SetColor(2) RectangleF(cx-0.1,cy-0.02,cx+0.1,cy+0.02)
	210 SetColor(1) Rectangle (cx-0.1,cy-0.02,cx+0.1,cy+0.02)
	211 SetColor(6) LabS(cx-0.1,cy+0.04,buff);
	212 }
	213 Emf cx, cy, val) : // draw EMF
	214 { static char buff [4096]; sprintf (buff, "%.2f", val);
	215 produce SetColor(1) MoveTo(cx,cy,0) Circle(0.1) SetColor(2) Circle(0.09)
	216 SetColor(6) LabS(cx+0.12,cy,buff);
	217 }
	218 RectangleF(x1, y1, x2, y2) : // draw filled rectangle
	219 { produce SP () MoveTo(x1,y1,0) PP() MoveTo(x2,y1,0) PP() MoveTo(x2,y2,0) PP()
	220 MoveTo(x1,y2,0) PP() EP ();
	221 }
	222 Rectangle(x1, y1, x2, y2) : // draw outline of a rectangle
	223 { produce Line2d (V2d (x1, y1), V2d (x2, y1)) Line2d (V2d (x2, y1), V2d (x2, y2))
	224 Line2d (V2d (x2, y2), V2d (x1, y2)) Line2d (V2d (x1, y2), V2d (x1, y1));
	225 }
	226 LabS(x, y, s) : // draw label
	227 { produce MoveTo(x,y,0) Label(s.c_str ());
	228 }

	2-66-biomechanics.pdf
	Integrating biomechanics into developmental plant models expressed using L-systems
	Abstract
	Introduction
	Conclusions
	Acknowledgments
	References

	4-1-L+C.pdf
	Abstract
	1. Background
	2. The L+C modeling language
	2.1. Module declarations
	2.2. Axiom declaration
	2.3. Derivation length specification
	2.4. Specification of productions
	2.5. Decomposition rules
	2.6. Interpretation rules
	2.7. Control statements
	2.8. Example

	3. Implementation of the L+C translator
	4. Conclusions
	
	
	References

