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Abstract

This thesis introduces a class of algorithms for modeling biological patterns with
branching (tree-like) and network (with loops) topologies. The key idea behind these
algorithms is the marking and subsequent colonization of empty space. Models are
formulated in terms of iterative geometric operations on sets of points representing
the elements of the pattern and markers of free space. This concept is formalized as
the space colonization algorithm.

The practical value of this approach is demonstrated by modeling the architecture
of trees and vasculature in plants. Trees are modeled using markers of empty space
to mediate competition between branches. When vascular patterns are modeled, the
markers of empty space represent sources of a vein inducing signal (auxin). Several
algorithms are introduced to simulate vein development in a growing leaf blade.
Additionally, a model simulating vasculature patterning in the stem is proposed and
used to examine the relation between phylotaxis and stem vasculature

The applications explored in this thesis demonstrate that a common mechanism,
competition for space, is sufficient to recreate both the development of vascular

patterns and the architecture of trees.
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Chapter 1

Introduction

Nature abounds with patterns. Ubiquitous and inescapable, they provide texture to
our surroundings, from the grand majesty of river networks to the elegant branch-
ing structure of trees and to the elaborate crack patterns observed in drying mud.
Each class of patterns may exhibit remarkable variation while maintaining consis-
tent global characteristics. Considering that these structures arise primarily through
local interactions, they represent curious visual enigmas. Unravelling the apparent
complexity of these patterns and their development into a small set of rules is a joy
and a challenge. On one hand, such enquiries provide insights into the processes
governing a pattern and help to connect disparate phenomena. On the other hand,
from a computer graphics perspective, these investigations provide methods suitable
for image synthesis in computer games and animation.

Two intriguing classes of natural patterns are those composed of linear elements
arranged into branching or network patterns. Branching patterns have a tree-like
structure and can be seen in the architecture of trees and the river drainage patterns
(fig.1.1 top row). In contrast, the elements of network patterns reconnect to form
cycles and loops, as is seen in leaf vasculature and crack-patterns (fig.1.1 bottom
row). In many cases the arrangement of elements in these patterns arises from a
number of spatial or functional constraints (e.g. each branch on a tree is constrained
in its growth by the spatial arrangement of other branches [147, 109]).

For branched and networked patterns observed in biological systems an interest-



Figure 1.1: Examples of branching and networked patterns in nature. Top left to
bottom right: Leaf less tree, Lichtenberg figure (a branching electrical discharge
within an insulating material, here a block of clear acrylic) [59], river net in southern
Yemen(Courtesy of NASA), leaf vein pattern, cracks in mud [35]



ing question is whether developmental and genetic factors can be represented ab-
stractly as competition for space during growth. Historically, this question has been
explored, for example, in the scope of studies of phyllotaxis, for which competition
for space determines the position of new organs at the growing apex of a plant [158].
In ecology this question has been addressed for plant populations using spatial com-
petition models [78, 83]. In the context of branched and networked patterns the
current body of work is less extensive, and many questions remain unanswered.

Choosing the correct level of abstraction to answer these questions is difficult.
The visual complexity and variability of the patterns addressed in this thesis, such as
vasculature in leaves and the branching structure of trees, makes concise descriptions
difficult. This limits the power of a quantitative or descriptive approach (such as that
employed by Miindermann et al. to model Arabidopsis[106]). Conversely, simulating
patterns at the cellular level based on molecular data suffices for recreating some
features of observed patterns, but does not directly yield or relate to macroscopic
observations [123].

In this thesis I investigate a new model for generating branching and networked
patterns, using competition for space as the driving force of pattern formation. In-
teraction between elements is formulated geometrically, allowing developmental and
genetic factors to be represented abstractly. Modeling phenomena at the geometric
level provides a compromise between the extremes of descriptive and molecular-level
models, which allows spatial relations between pattern elements to be expressed
concisely and examined directly.

Working above the level of individual cells allows the algorithmic essence of pat-

terns to be discussed without simulating cellular and molecular processes, the details



of which can detract from higher-level observations. Additionally, processes that are
different at the genetic level can be related at the geometric level, providing in-
sight into factors common to distinct patterning processes. On a more practical
note, geometric models tend to permit efficient implementations, allowing for eas-
ier experimentation, and are more intuitive than cellular and chemical models (for
macroscopic observations).

The key-idea behind the approach presented in this thesis is to mark unoccupied
space, which is subsequently colonized by extension of the existing structure into
empty regions. This approach is formalized as the Space Colonization Algorithm
(SCA). Unoccupied regions are represented by a set of points, which interact with
the pattern. The pattern is extended iteratively towards the markers of free space,
which are removed as the pattern advances, until the final pattern is produced.
The algorithm is efficiently implemented using a Voronoi diagram to perform space
subdivision [121]. The basic algorithm is extended to recreate several categories of
biological patterns plausibly, in two or three dimensions.

Historically, the SCA was first applied to model leaf vein patterns [142]. These
patterns are a functionally important and visually complex part of the plant. In
this context, SCA simulates the interplay of three processes, which govern the de-
velopment of leaf venation patterns: development of veins towards hormone (auxin)
sources embedded in the leaf blade; modification of the hormone source distribution
by the proximity of veins; and modification of both the vein pattern and source
distribution by leaf growth. In this sense, the algorithm is biologically motivated.

To recreate leaf venation patterns, three variants of the basic algorithm are used:

the open algorithm for recreating patterns when veins in a leaf blade do not recon-
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Figure 1.2: Examples of vascular patterns in leaves. Images demonstrating (left to
right) an open pattern, a closed pattern, and the blindly terminating veins seen in
otherwise closed patterns (final image courtesy of C.C. Chinappa).

nect (open patterns, fig.1.2a), the closed algorithm for recreating reconnecting veins
that form a networked pattern (closed patterns, fig.1.2b), and the areole algorithm,
which can generate blindly terminating veins observed in otherwise closed patterns
(fig.1.2¢).

Leaf growth plays an important role in vascular development [75, 149]. To take
this into account, several techniques were used to simulate leaf-blade growth. Initial
work focused on reproducing the final pattern of leaves, and the leaf was grown using
accretive, or uniform growth. To recreate the temporal development of patterns
more precisely required more sophisticated techniques, and two approaches were
considered. The first, uses a growth field specified over the leaf-blade. By growing
the leaf according to this field the form of the leaf emerges. Although technically
possible, the observed forms of developing leaves were difficult to reproduce using this
technique, so I developed a second, more controllable approach. The latter approach,

takes as input the form of the leaf at various stages and blends the surfaces over time,



to grow the leaf. This proved easier to control and allowed for the recreation of the
developmental progression observed by Scarpella et al. [150] for Arabidopsis thaliana.

In addition to the visually conspicuous venation of the leaf, plants contain vas-
culature within the tissues of the stem. This vasculature is comprised of a network
of veins originating at the base of the stem [34, 76]. Running the length of the
stem, they connect all organs to the roots. I recreated these patterns by extending
the closed algorithm for veins in the leaf blade to operate in the stem. Though the
geometry of stem vasculature has not been well described in biological literature,
the topology has been documented for several species [76, 84, 46, 165, 68] and is
recreated by the proposed model.

Finally, I extended the algorithm for open patterns in the leaf to three dimensional
branching structures, especially the branching structure of trees and shrubs [143].
Visual modeling of tree architecture is usually addressed by exploiting the recursive
structure of tree development, often using a formalism such as L-systems [109, 128].
Additional factors, such as stochastic elements [25], shedding [109], tropisms, and
mechanical bending are incorporated as modifiers [70] on a fundamentally recursive
model. In contrast to these approaches, the SCA models trees using competition
for space between branches as the dominant factor determining the form of trees
and shrubs. This algorithm produces surprisingly realistic trees, with parameters
corresponding to visually relevant tree characteristics identified in landscaping. Thus,
offering convenient control of tree shape and structure. Although the method for
generating trees was developed after the techniques for modeling vasculature, it is
presented first in this thesis, as this application is conceptually simpler.

The correspondence of generated patterns to those observed in nature was pri-



mary validated using visual inspection. Objective validation of these patterns is a
difficult and important problem and has only been partially addressed in the litera-
ture. For example, in the scope of leaves, the work of Bohn et al. provides relations
between the branching angle and width of veins [13], and for branching structures
an objective comparison is possible at the topological level using the edit-distance
measures developed by Ferraro et al. [36]. Unfortunately, using these measures
in a meaningful way requires real-world data. Acquiring sufficient data is an open
problem in itself. Thus this topic was deemed to be beyond the scope of this thesis,

but it is an important direction of future-work.

1.1 Organization of Thesis

This thesis comprises seven chapters. In Chapter 2, I provide a general background
in models of pattern formation, emphasizing models that produce branching or net-
work patterns (Section 2.2). In Chapter 3, I introduce a method for modeling trees.
The space colonization algorithm is presented, and used to generate the branching
structure of trees. An efficient implementation of the SCA using Voronoi diagrams is
described, and generalized surfaces of revolution are proposed to model tree crowns
(Section 3.2). In Chapter 4, the space colonization algorithm is adapted to model leaf
venation patterns. In this chapter, I propose algorithms for generating open (branch-
ing, Section 4.2) and closed (networked, Section 4.3) venation patterns in growing
leaf blades. In Chapter 5, I focus on precisely recreating the developmental pro-
gression of actual leaves, using Arabidopsis thaliana as a case study. The algorithm

for generating closed patterns is reformulated to reflect the observed progression of



differentiation (Section5.2.3). Then I introduce two techniques for simulating non
uniform leaf growth (Section5.2.1) and discuss the resulting developmental progres-
sions (Section5.3). In Chapter 6, I extend the closed model for leaves to the volume
of the stem. Using this model the observed topology of several patterns is recreated
(Section 6.3). Finally, Chapter 7 summarizes my contributions and discusses possible

directions for further research.



Chapter 2

Background

Simulation models of pattern formation have been the subject of substantial research.
This large body of research, and the variety of methodologies used to model the
formation of natural patterns makes it difficult to place models of morphogenesis in
a consistent frame work. Nevertheless, a characterization of this work is useful in
discussing the relations between models. A classification of the features of models of
pattern formation was proposed by Prusinkiewicz [122]. A subset of these features
are described here, and aid in the discussions of previous work presented in the
following sections.

The first category discussed by Prusinkiewicz differentiates models based on the
topology of the elements comprising a pattern. Elements can have a linear topol-
ogy, creating a non-branching filament, as in the developmental models of Anabaena
catenula proposed by Hammel and Prusinkiewicz [53], and Cieslak [18]. Alterna-
tively, elements may be connected into a branching structure (as in architectural
plant models [128]), a network (graph with cycles) (as in models of vascular devel-
opment [49] and fracture formation [35]), a 2D surface (as in models of the pigmen-
tation of animal coats [167, 170]), or a 3D solid object (as the voxel automata used
by Greene to model the details of tree architecture [50]).

Prusinkiewicz also distinguished between modes of communication between pat-
tern elements. Expanding on a categorization proposed by Bell [8], he identified three

key categories. The first mode operates through lineage with information transfered
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from an element to the elements that replace it. The remaining categories involve
interactions, both between the elements of a pattern (endogenous) and between ele-
ments and their environment (ezogenous). Endogenous communication occurs com-
monly in biological patterns when signals travel along specialized tissues; such as
vasculature, and in plants enable spatio-temporal coordination of flowering [128, 66|
and the hormonal control of bud fate [127]. Many natural pattens also represent
responses to exogenous factors. For example, lichens have little internal coordina-
tion, but are affected by lighting and moisture [28]. The many tropisms in plants
fall in this category, as well as the tendency of corals and sponges to grow towards
dissolved nutrients [74]. Physical fields also provide environmental cues, such as the
electrostatic field that guides lightning and determines Litchenburg figures [111].
Local properties of the medium surrounding a pattern, such as the stresses that gov-
ern crack formation, are also considered to be environmental cues. An analogous
biological situation occurs when hormonal cues in surrounding tissues guide further
development, as in axons [45] and vascular patterns in plants [144].

Finally, models may occupy constant space or expand (grow). Growth decreases
the locality of information by creating distance between elements that were once
close to each other. Leaf venation displays a global organization that implies a hier-
archy of veins, but this global organization likely results from growth [75]. Similarly,
phyllotaxis positions organs on the scale of a few cells, but through growth this ar-
rangement governs the placement of leaves and petals on a much larger scale. Growth
plays a significant role in the development of numerous natural patterns including
the shells of sea urchins [95], the petals of Anirrhinum majus (snapdragon) [95] (see

also [20]), and the wavy edge of many leaves [22].
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In practise, determining the impact of factors in different categories can be dif-
ficult due to equivalences between categories at a theoretical level [122, 124, 57].
For example, determining the impact of exogenous vs endogenous factors in trees is
difficult due to theoretical equivalences [61] (e.g. different mechanisms can produce
the same patterns).

Prusinkiewicz examined these relations formally from the perspective of informa-
tion flow during morphogenesis [124]. He showed that giving a pattern-forming agent
access to environmental cues, internal cues, or incorporating growth all increased the
range of patterns that the agent could produce. Additionally, he demonstrated that
identical patterns could be produced using only one of these factors. Equivalences
among categories can be exploited when modeling pattern formation, and under-

standing these equivalences is helpful when establishing relations between models.

2.1 Models of biological pattern formation

Choosing the appropriate abstraction when modeling a biological pattern is difficult,
due to the diversity of phenomena and various scales at which they can be mod-
elled. As a result, many formalisms have been developed to model the formation of
biological patterns. A few of the most prominent are discussed below.

Lindenmayer considered the growth and development of organisms using a rewrit-
ing system called L-systems [86]. L-systems represent an object as a string of sym-
bols, which is rewritten in parallel using a set of rules. These rules can specify the
development of an organism over time. A wide range of biological structures, in par-

ticular plants [128], have been examined and recreated using L-systems. Many exten-
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sions of the formalism proposed by Lindenmayer have been developed, allowing for
inclusion of parameters [126], stochastic phenomena, and environmental cues [127],
to highlight a few. However, the descriptive power of L-systems is limited to linear
and branching topologies. Thus, to simulate a wider range of topologies a number of
generalizations have been developed. Lindenmayer proposed Map-L-systems, which
extend L-systems to work on graphs with cycles [87], and Smith et al. [154] pro-
posed another formalism in the form of a vertez-vertex system (vv) operating on 2D
surfaces. Both extensions allow for the structure of cells to be represented, and in
particular vv was used as the basis for a molecular model of phyllotaxis [157].

Another paradigm, emphasizing chemical interactions as the cause of morphogen-
esis, is reaction-diffusion, proposed by Turing [166]. In reaction-diffusion, patterns
are generated by simulating the diffusion and interaction of chemicals, described by
partial differential equations. This formalism can account for some natural patterns,
such as the pigmentation patterns of animal coats [101, 167] and seashells [102, 39].

In contrast to the basic assumption of reaction-diffusion (that the chemicals re-
sponsible for establishing patterns propagate by diffusion alone), Sachs proposed
that the hormone controlling differentiation of vascular tissues in plants may instead
be actively transported out of cells [144]. Sachs formalized this observation as the
canalization hypothesis, stating that veins form in a feedback process whereby auxin
causes a cell to begin to differentiate, but differentiation increases the ability of a
cell to transport auxin.

Based on Sachs’ experimental results, Mitchison proposed two mathematical
models [105]. The first models auxin transport as facilitated diffusion, whereby

flux through a cell wall increases the wall’s permeability. The second models polar
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auxin transport, whereby flux of a hormone through a cell wall further encouraged
the flux of hormone in the same direction (allowing auxin to be transported against
the gradient of diffusion). Subsequently, Mitchison’s models have been the subject of
much study [140, 38, 37| establishing correspondences with molecular data. Mitchi-
son’s model and its variants are of great relevance to modeling vascular development,
and are discussed in greater detail in Chapter 4.

A complementary formalism to reaction-diffusion and polar-transport is that of
positional information, proposed by Wolpert [178]. According to this model, cells
have access to positional information, in the form of a coordinate system, based
on their genetic and developmental history. This approach was used to explain the
development of limbs in vertebrates [180], and most notably the segmentation of
Drosophila embryos [179).

Branching and network patterns, in both physics and biology, have garnered sig-
nificant attention, leading to the development of a more specialized set of techniques
and formalisms. These are of particular relevance to the models presented in this

thesis and are discussed in more detail in the following section.

2.2 Branching and network patterns

2.2.1 Diffusion limited aggregation

Many structures, such as bacterial colonies [94], lichens [28], and metal-particle aggre-
gates [177], can be modeled as a random aggregation of elements. This process was
formalized mathematically by Witten and Sander [177] as diffusion limited aggrega-

tion (DLA). DLA simulates the formation of an aggregate from a single immobile
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particle. The aggregation grows by adding mobile particles iteratively. Fach mo-
bile particle performs a random walk until it is adjacent to an immobile particle,
when it sticks to the aggregate, becoming immobile. As the structure grows, com-
plex branches form, blocking interior regions from wandering mobile points. Conse-
quently, the likelihood that exposed branches will be extended increases, creating a
feedback of the growth of a branch on itself (i.e. as the branch grows it is encouraged
to grow further). This process creates an irregularly branching structures (fig.2.1a).
The emergent properties and simple formulation of DLA make it possible to achieve
different patterns by slightly modifying the basic model and have lead to the cre-
ation of many variants based on Witten and Sander’s original model. The following
discussion is limited to the variants of particular relevance to the work outlined in
this thesis.

Desbenoit et al. [28] modeled the formation of lichens using Open-DLA (similar
connotation to Open L-systems [109]) using environmental cues, such as the local
density of pattern elements and access to sunlight and moisture, to allow elements
to interact over a greater distance. These cues are used to modify the probability of
aggregation for wandering particles in diffusion limited aggregation (fig.2.1d).

A variant of DLA proposed by Meakin [99, 98] uses internal cues to increase the
distance over which interactions occur. The aggregation initially forms as in DLA,
but branches of the aggregation that grow slower than a given threshold are removed.
The growth at each point is determined by summing the number of particles added
to the sub-tree of the element during a given number of iterations. The removal
of slow-growing branches creates a more hierarchical structure in the final pattern

(fig.2.1 b). Meakin’s variant allows communication across arbitrary distances in the
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a b c
Figure 2.1: DLA and variants. a)DLA [177] b) Meakin’s variant [99] ¢) Roberts’
variant [135] d)Open-DLA (lichen) [28]

aggregate.

The distance over which interactions occur can be extended similarly using en-
vironmental cues; as in Roberts’ model [135] (fig.2.1¢). This model incorporates the
assumption that a new particle immediately affixes to the closest side of the nearest
particle in the aggregation. This process is equivalent to assuming that the particle
will join the aggregation at the expected, or most probable, destination of its random
walk. Thus, each particle in Robert’s model can interact with another particle in the
aggregate, regardless of the distance separating the two. Like the patterns produced
by Meakin’s model, a more pronounced hierarchy emerges, where the feedback of a
branch’s growth on itself, as seen in DLA, is amplified. Roberts’ work served as an
initial inspiration for the SCA, particularly the image shown in figure 10 of [135],

which resembles leaf vein patterns near the margin.

2.2.2 Laplacian Growth

Diffusion-limited aggregation is one example of a broader set of patterns generated

by Laplacian growth. Laplacian growth is related to the Laplace equation

V6 =0,
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where ¢ is a scalar field defined over the space of the simulation (making V2¢ the
sum of all the unmixed partial derivatives of ¢). Here, the elements of the pattern
serve as one of potentially many boundary conditions on the Laplace equation. The
pattern represents an evolving interface, which responds to the Laplacian field ¢.
Laplacian growth can be defined algorithmically, as is specified in Alg.1 and discussed
below.

The simulation takes an initial pattern, often referred to as the seed, as input.
Boundary conditions are initialized using the elements of the seed (in addition to
a number of boundary conditions associated with the phenomena being modeled).
The Laplace equation is then solved with respect to these boundary conditions over
the space of the simulation, yielding the function ¢ (line 2). The pattern is extended
using ¢ (line 3). The new element(s) of the pattern are now considered to be part of
the boundary conditions and change the solution to the Laplace equation (line 4).
The simulation of growth continues by solving the Laplace equation with respect to
the new boundary conditions and extending the pattern as described in lines 2-5.

This process is repeated until the final pattern is produced.

Initialize boundary conditions including the initial pattern
Solve the Laplace equation with respect to boundary conditions to obtain ¢
Extend the pattern based on ¢
Add the new element(s) to the boundary conditions
Goto step 2

T W N =

Algorithm 1: Algorithm for Laplacian growth

Meakin proposed a model of Laplacian growth simulating the differentiation of a

tissue towards a point source of hormone [97] on a square lattice. The source pro-



17

duces hormone at a constant rate, and differentiated tissue removes all the hormone
locally, establishing a diffusion gradient between source and differentiated tissue. The
hormone-concentration field must be recalculated every time the pattern is extended.
During each iteration the pattern is extended by one cell. First a cell adjacent to
a differentiated cell is chosen. The cell then differentiates with some probability
(dependent on the concentration of the hormone in the cell). Varying the impact of
concentration on this probability produces a range of patterns from a circular Eden
cluster [33] to a single branch connected to the source.

Several physical phenomena are examples of Laplacian growth. A particularly
well studied form of Laplacian growth is dielectric breakdown, of which lightning and
Lichtenberg figures are noteworthy examples. To reproduce these patterns Niemeyer
et al. [111] proposed the dielectric breakdown model (DBM). The pattern in DBM
is assumed to consist of a perfect conductor, initially a single point, surrounded by
a perfect insulator. A spherical shell with an electric charge opposite to that of
the conductor is assumed to surround the initial seed at some radius; this provides
the initial boundary conditions (although other boundary conditions are also possi-
ble [79]). The pattern is expanded by converting part of the perfect insulator into
a perfect conductor, thus modifying the previous boundary conditions. During each
iteration the electric field at each point in space is determined (line 2). A cell adja-
cent to the existing pattern is chosen randomly, and then added to the pattern. The
probability of choosing cell i, denoted p;, is calculated by raising its field value v; to

the n th power, and normalizing this value,

bi = Z;nzlvgl
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[terative addition of elements recreates patterns similar to that of lightning (fig.2.2a),
or even DLA. Different patterns can be obtained by varying n, ranging from circular
Eden clusters for low powers through to hierarchical branching patterns or even a
single straight line for higher powers.

Interestingly, the converse process (the breakdown of a perfect conductor into an
insulator) produces similar visual results, but the resulting boundary conditions can
be solved much more efficiently yielding a faster simulation [80].

Fracture patterns are not generally considered to be examples of Laplacian growth,
but Federl et al.’s [35] model of this phenomenon is analogous to the Laplacian al-
gorithm presented here. Federl et al. simulated crack formation using the finite
element method, with cracks providing the boundary conditions. First the strain
is calculated throughout the material (line 2). If the strain exceeds the material
strength at any point a crack is introduced (line 3), and strains recalculated (line
4). Cracks propagate as indicated by the strain in the material, with new cracks
introduced as specified by this calculation, producing elaborate crack patterns (lines
2-5 and fig.2.2b). The quality of results and efficiency of calculation are increased

significantly through an adaptive re-meshing strategy:.

2.2.3 Biological models with growing tips

The growth of many branching structures, such as corals, trees, and axons, is re-
stricted to branch tips. In spite of this limitation, a rich variety of forms arise.
Models of these structures can often be differentiated by how growth is directed at
branch tips, and where branching occurs.

An example of a model with growing tips was proposed by Ulam [168]. He con-
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Figure 2.2: Models of Laplacian growth. a) Dielectric Breakdown Model [111] b)
Model of crack formation [35]

sidered tree patterns emerging from extremely local competition for space. These
patterns were constrained to a grid and initially consisted of a single grid-tile. Ad-
jacent tiles are added synchronously to the pattern during each iteration, provided
the resulting branches would not collide. This simple rule emulates competition for
space using environmental cues, and yields fractal patterns with a highly structured
spatial organization (fig.2.3 €). An equivalent interpretation of Ulam’s model is that
tips grow in the same direction while unblocked, and branching occurs at predefined
angles when there is enough space to support a branch.

The models of coral formation developed by Abraham [1], and Kaandorp [74, 73]
simulate the growth of the coral’s structure at the developing tips. The model
proposed by Kaandorp, uses radial accretive growth [74, 73]. In Kaandorp’s model
the surface of the coral is represented as a connected set of edges in 2D, or faces in
3D. An axis of growth is associated with each growing tip, with growth occurring
along the normal of each edge (2D) or face (3D). Growth is varied so that elements

facing away from the axis grow less. The presence of light and nutrients affect growth
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and modify the axis of growth over time. A tip bifurcates when two distinct growth
maxima emerge. This creates bifurcating structures reminiscent of many corals, and
sponges (fig.2.3a).

In contrast to Kaandorp’s model, which represents the surface of the coral, Abra-
ham [1] models the skeleton of the coral structure as a tree graph. Branch tips
follow a gradient of nutrients in their environment. Nutrients are assumed to diffuse
through the environment and are consumed by branches. As branches grow, the
pattern and distribution of nutrients are updated, directing the path of tips away
from each other over time. Tips branch when there is enough nutrients to the left
and right of the tip to support additional branches. The resulting patterns resemble
some corals, and the pattern of vasculature observed in Ginkgo biloba. This model
is closely related to Laplacian growth, and follows the algorithmic interpretation of
Laplacian growth provided in the previous section (Alg 1). In contrast to models
of Laplacian growth, the pattern is explicitly represented as a tree graph and is
extended only at branch tips.

Radial accretive growth tends to be the exception, instead of the rule, in the
class of biological models with growing tips, in that the surface geometry and their
interactions with the environment are modeled explicitly. The approach taken by
Abraham of modeling the structure of a branching pattern as linear segments (rep-
resenting the skeleton of the pattern) is much more common. Branching and growth
is then handled via some decision process at each element, providing a higher level
of abstraction, whereby endogenous and exogenous factors affect development and
growth directly, rather than as the outcome of a secondary process.

Cohen proposed a related simulation of biological pattern generation [21]. The
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model operates on tree graphs and distinguishes between apices and internal nodes.
Additionally, the impact of internal and environmental cues are incorporated as a
small set of growth and branching rules. Each tip grows away from nearby pattern
elements guided by a continuous density field. Additionally, tips grow with some
inertia, causing the direction of the tip to change slowly over time. Branching oc-
curs probabilistically and can occur at any internal node during any timestep. The
probability that a branch will be produced is increased in less dense regions, and at
elements distant from branch tips and branching points. Cohen’s patterns suggest a
hierarchical structure and spatial organization similar to that seen in trees and the
vein patterns of leaves (fig.2.3 b).

The growth of tips in Cohen’s model is guided by the density field of pattern
elements. The model of axon formation proposed by Gierer [45] also uses a field to
direct growth, but does not consider the feedback of the pattern on the field. His
model was based on several observations of axon growth. Specifically, he used the
observations that axons grow towards a target, meandering and bifurcating along
this path, with many branches near the target.

In Gierer’s model the axon follows a global gradient with a minimum at the
target. Meandering results from random local fluctuations in the global gradient.
The axon branches when moving forward no longer minimizes the gradient. This
leads to emergent branching at the target, as any forward movement will be up the
gradient. Gierer’s model convincingly recreates the pattern of a single axon based
on a small number of geometric observations (fig.2.3c).

The models of Abraham, Cohen and Gierer all rely on a field to guide develop-

ment. As this field is defined over the space containing the pattern, it is difficult
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to grow the interior of this space. In contrast, Gottlieb formulated a model of vas-
cular development in which the outcome of chemical interactions was interpreted
geometrically [49], which eliminates the reliance on a field to guide development and
allows growth to be considered. This model starts with a set of lines representing
vasculature embedded in a coarse grid. Growth is simulated by refining the grid
during each iteration of the model, and extending veins to the centres of new grid
cells within a predefined radius, which decreases over time. Cell centres in this con-
text represent new sources of a vein-inducing hormone. Refining the grid for a few
iterations produces complex patterns reminiscent of vascular patterns in plants and
animals (fig.2.3d).

Gottlieb’s model demonstrates the interplay between growth and the range of
exogenous communication. Over time, the distance over which elements can com-
municate decreases. This process is conceptually equivalent to growing the pattern
uniformly while keeping this distance constant. The geometric reasoning applied
in Gottlieb’s model is very similar to that employed in SCA, making this work of

particular relevance.
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C

Figure 2.3: Biological models with growing tips a) Radial accretive growth [73] b)
Cohen’s simulation of biological pattern generation. The structure on the left is
shown at a later stage of development on the right [21]. ¢) Grierer’s model of axon
formation [45] d) Gottlieb’s model of vascular patterning [48|. Four iterations of the
model are shown. e) An example of Ulam’s growing figure [168].



Chapter 3

Modeling trees with the Space Colonization

Algorithm'

Visual modeling of tree architecture began with the work of Honda [60]. He proposed
a model of trees as recursive branching structures characterized by a small number
of geometric attributes: branching angles and length ratios of consecutive branch
segments (internodes). The basic tenet of Honda’s approach — treating a tree as
a recursive branching structure — underlies most generative tree models proposed
to date. Early examples include a direct adaptation of Honda’s model to computer
graphics [4] and tree models proposed by Bloomenthal [11] and Oppenheimer [116].
Reeves and Blau [131], Weber and Penn [175], Lintermann and Deussen [88], and
Prusinkiewicz et al. [129] improved the visual realism of recursive tree models by
introducing random and organized variation of parameter values as a function of
position of the affected branches within the tree structure.

Biologically, the view of a tree as a recursive structure is justified by the process
of tree development [176, 25]. For temperate-climate trees, development typically
begins with a single stem that carries leaves and lateral buds, arranged in a regular
phyllotactic pattern. These buds may in turn give rise to new branches.

Without doubt, the regular pattern of bud distribution and the repetitive char-

acter of their potential development are important determinants of the architecture

IThis chapter is based on [143]
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of young trees. These factors, however, play a reduced role when considering more
mature trees and shrubs [147]. The first reason is the diversity of the fates of buds:
only some buds produce branches, whereas others produce flowers, remain dormant
or abort. These different fates break the regularity implied by the initial bud ar-
rangement. Second, branches differ significantly in their growth and development:
some twigs become major limbs, whereas others remain small or are shed. Third, the
initial directions of branch growth, determined by bud arrangement and branching
angles, are significantly modified by branch reorientation, tropisms, and mechanical
bending.

These phenomena have been considered in plant models constructed for biolog-
ical and computer graphics purposes alike. A statistical description of the fates of
buds is the cornerstone of the models of de Reffye et al. [25]. A combination of
a statistical and hormone-driven control of the fate of buds was incorporated into
topiary tree models by Prusinkiewicz et al. [127]. Competition for light was used
to control bud fate and branch shedding by Teak [162] and reproduced by Méch
and Prusinkiewicz [109]; a related approach was proposed by Chiba et al. [17]. Fur-
ther work considered the impact of light quality [44] and the effects of gravity and
tropisms [70].

Although these models incorporated a variety of processes, they preserved the
fundamental role of recursive branching; the other factors were just modifiers. In
the structure of a mature tree, however, the regularity of the recursive branching
is largely lost, overridden by subsequent development. This phenomenon was high-

lighted by Sachs and Novoplansky [147, page 206]:
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Only a small proportion of available apices actually develops. The excess
developmental capacity is evident in the presence of many undeveloped
buds and small branches, many of which could develop to entire trees
if other apices were removed. There is often no strict determination of
the precise location and number of shoot apices that develop into large

branches.

As indicated above, the fates of buds do not seem to follow a strictly predeter-
mined genetic program. To account for this, Sachs and Novoplansky hypothesized
that the environment strongly influences the fates of buds, reflecting the develop-
mental plasticity of the tree. They suggested that characterizing the mature form
of a tree as a recursive structure provides an incomplete picture, arguing that en-
vironmental factors play a major role in determining the detailed structure of tree
canopies. They proposed that the developmental plasticity of a tree could be ex-
plained by competition between branches to grow. To provide a plausible mechanis-
tic basis for this argument, they proposed that this competition is regulated by apical
dominance and enhanced by the response of branches to local shading. The spatial
arrangement of branches thus significantly influences their subsequent development
and, consequently, the architecture of a tree.

Using the point of view of Sachs and Novoplansky as the point of departure, we
explore below the Space Colonization Algorithm as an alternative to the recursive
branching process as the basis for modeling trees. Our model considers the competi-
tion of branches for space, mediated by environmental cues, as the dominant factor

determining the form of trees and shrubs.
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Competition for space has been used previously to generate bifurcating structures,
including generic branching patterns [21], vascular patterns [48], and corals [74,
1]. Even the concept of explaining tree architecture in terms of competition for
space is not new; in fact, it precedes the recursive model of Honda [60]. As early
as 1962, Ulam [168] exploited competition for space to formulate a 2D cellular-
automaton model of abstract tree-like branching structures. Stevens [159] augmented
the topologies created by Ulam’s model with biologically-motivated geometric at-
tributes (branch widths and branching angles), obtaining visually realistic models
of young trees. More recently, Rodkaew et al. [136] proposed an algorithm that dis-
tributes particles within the shape of a tree crown, then traces their motion down
to the root. The converging paths of the particles, which are attracted both to their
neighbours and toward the tree base, form a tree. Rodkaew’s algorithm and its re-
cent extension [110] produce surprisingly realistic-looking tree models in spite of the
disregard for the processes of tree development (the algorithm generates branches
from the tips inward).

These results provide the background for the procedural tree generation method
presented here. Our key idea is an iterative addition of new elements (nodes) to
the tree structure formed in previous steps. This process is guided by the proximity
of points marking the availability of free space. Historically, the proposed method
was developed as a 3D extension of the algorithm for generating leaf veins described
in Chapter 4. (Interestingly, Rodkaew et al. [136] also derived their tree-generation
algorithm from a vein-generation method.) Although developed later, in this thesis
the algorithm for trees is presented first, as this application is conceptually simpler

(unlike leaf blades, where vein patterns are formed, the space in which trees grow
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does not expand).

3.1 The method

3.1.1 Procedure overview

The steps of the procedure are shown in Figure 3.1. A three-dimensional envelope of
the tree crown is provided as an input (a). It can be specified using any method that
makes it easy to test whether a point lies inside or outside the enclosed volume. In
this thesis a generalized surface of revolution is used, which is obtained by rotating a
planar generating curve (possibly with a changing shape) around a vertical tree axis
(Section 3.2.1). At the beginning of tree generation, the space within the envelope
is seeded with a set of attraction points (b), which signal the availability of empty
space for growth and are removed when reached by a branch. The distribution of
the attraction points is a user-controlled attribute of the method; some possibilities
are outlined in Section 3.2.2. Given the attraction points, the tree skeleton is formed
iteratively, beginning with a single node at the base of the tree (b). During each
iteration, new nodes, delimiting short branch segments, extend the skeleton toward
nearby attraction points (¢, d). This process terminates when all attraction points
have been removed, when no nodes are within the radius of influence of the remaining
attraction points, or after a user-specified number of iterations.

The resulting tree skeleton may now be manipulated further. First, the skeleton
nodes may be decimated to reduce the amount of data representing the tree geometry
(e). Moving each remaining node in parallel half way toward its more basal neigh-

bour reduces the branching angles (compare the insets in Figures e and f) and can



29

AN

Figure 3.1: Key steps of the proposed method for generating trees. a) Specification
of the input envelope; b) Placement of the initial tree node and attraction points
in the envelope; ¢, d) Generation of the tree skeleton; e) Node decimation; f) Node
relocation; insets show the modified branching angle; g) Subdivision; h) Construction
of generalized cylinders; i) Addition of organs.
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significantly impact the overall appearance of the tree. Curve subdivision, extended
to branching structures [130], may be applied to the original or decimated skeleton
to create more smoothly curved limbs (g). Once these steps are completed, the tree
geometry is modeled using generalized cylinders [11] centred on the axes of the skele-
ton (h), with the diameter of each limb calculated using the pipe model [152](Section
3.2.3). If needed, organs, such as leaves, flowers and small branches, are added to

the tree (i).

3.1.2 The space colonization algorithm.

The cornerstone of the proposed method is the space colonization algorithm (Fig-
ure 3.1b and c¢), which treats competition for space as the key factor determining
the branching structure of trees. The structure of the tree is represented as a tree
graph G = (V, E). The nodes v € V of this graph represent small internode seg-
ments, which we refer to as tree nodes. Adjacent nodes are connected by edges
e € F CV xV. The edges are oriented from the base of the tree to its extremi-
ties. Connections between tree nodes play a key role when determining branch width
using the pipe model (Section 3.2.3).

The operation of the algorithm begins with an initial configuration of N attraction
points (usually hundreds or thousands) and one or several tree nodes. The tree is
generated iteratively. During each iteration, an attraction point may influence the
nearest tree node. This influence occurs if the distance between the point and the
closest node is less than the radius of influence d;. There may be several attraction
points that influence a single tree node v: this set of points is denoted by S(v).

If S(v) is not empty, a new tree node v’ will be created and attached to v by the
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segment (v,v’). The node v’ is positioned at distance D from v, in the direction
defined as the average of the normalized vectors toward all the sources s € S(v).

Thus, v' = v + Dn, where

n =

and i= Y HS;” (3.1)

s—uvl’
seS(v)

E‘ St

The distance D serves as the basic unit of model and provides control over the
resolution of the resulting structure.

Once the new nodes have been added, a check is performed to test which, if any,
of the attraction points should be removed due to the proximity of tree branches that
have grown toward these points. Specifically, attraction point s is removed when at

least one tree node v is closer to s than a threshold kill distance dj,.

Discussion of 7
The definition of 7 may seem somewhat arbitrary, but it has some biological justifi-
cation. Trees transport water and nutrients between the roots and leaves along their
branches. Reducing the total length of branches decreases the cost of building and
maintaining this transport system. As such, it is plausible that the architecture of
trees attempts to minimize the total length of branches. This has been postulated
previously by Leopold, who found that the most probable arrangement of branches
appears to minimize this value, while respecting other constraints (such as light
capture) [85].

When tree node v is selected by S(v), the branch segment stemming from it
extends towards the empty space indicated by the points in S(v). As the branch is
extended it should do so in as economical a fashion as possible (i.e. it should colonize

the space using the smallest number of tree nodes). An infinitesimal extension of v in
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direction n minimizes the sum of the Euclidean distances between v and the points in
S(v) (This is stated formally in the following theorem, and the accompanying proof
is provided in Appendix A). This property is well approximated by a finite segment
provided that it is short in relation to the distance between attraction points. Given
this result, extending v in the direction of n thus helps minimize the lengths of

current and subsequent branches, in accordance with Leopold’s postulate.

Theorem 1. Let v € R" and S(v) be as defined above, let E : R* — R be the scalar
field defined as the sum of the Fuclidean distances between v and each point in S(v):

E= Y |s—vl (3.2)
)

seS(v

Then

1s equal to —V E, the direction in which E decreases fastest.

Although the algorithm operates in 3d when trees are modeled, this property
holds in any finite-dimensional Euclidean space.

The relation between F and n is illustrated in Figures 3.2 and 3.3 using two and
three attraction points, respectively. The scalar field E, and the direction vector
n are visualized in (a) and (b). In (c) of both figures the initial tree node extends
along the direction field shown in (b) until a bifurcation occurs (bifurcation is an
emergent property of the algorithm and is demonstrated in the example provided in
Section 3.1.3). In Figure 3.2(c) the resulting branches are selected by a single at-
traction point, and subsequently extend directly towards the two attraction points.

In Figure 3.3(c), following the first bifurcation the left branch is only selected by the
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left-most attraction point, causing the branch to extend directly towards the select-
ing point. The right branch is selected by two attraction points, and the scenario

described above for two attraction points applies.

Application of a directional bias to growth
Optionally, the direction of growth can be biased by a vector ¢ representing the
combined effect of branch weight and tropisms using the equation

n+g

ST (3.3)
17+ g

n =

The impact of varying ¢ is shown for a single branch in Figure 3.4. Introducing a
small bias causes the branch to curve slightly as it approaches the attraction point
((b) and (d)). Larger biases cause the branch to curve away from the attraction

point before following an almost vertical path to the attraction point ((c) and (e)).

3.1.3 Example

The SCA is illustrated in Figure 3.5. We begin following its operation at the stage
when the tree structure consists of six nodes (black disks with white centres) and
there are four attraction points (blue disks) (a). First, each attraction point is asso-
ciated with the closest tree node, provided that it is within the radius of influence (b,
blue lines); this establishes the set of attraction points that influence each node. The
normalized vectors from each tree node to each source that influences the node are
then found (c, black arrows). These vectors are added and their sum is normalized
again according to Eq. 3.1 (d, red arrows), providing the basis for locating new tree
nodes (d, red circles). No bias is used in this simple example. The new nodes are in-

corporated into the tree structure, in this case extending the main axis and initiating
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T

(a) § = (0,0,0), no bias is ap- (b) § = (0,0.35,0), slight up- (¢) § = (0,0.7,0), strong up-
plied. ward bias ward bias

&

(d) § = (0,-0.35,0), slight (¢) § = (0,—0.7,0), strong (f) Effect of varying § from
downward bias downward bias (0 0.8,0) (top curve) to
(0,—0.8,0) (bottom curve).

Figure 3.4: Sub-figures illustrate the impact of varying ¢. In each image the simu-
lation is initialized with a single tree node (the black disk with a white centre) and
attraction point (blue disk). Adding additional tree nodes using Eq.3.3 generates
the curves connecting the initial tree node to the attraction point.
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Figure 3.5: The space colonization algorithm. A detailed description is provided in
the text.
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a lateral branch (e). The neighbourhoods of the attraction points (blue circles) are
now tested for the inclusion of (the centres of) tree nodes (f). The neighbourhoods of
the two leftmost sources have been penetrated by the new branches, as indicated by
the bolder representation of the corresponding circles. The affected attraction points
are thus removed (g). The tree nodes closest to these points are now identified (h),
beginning the next iteration of the algorithm.

Note that the top and the right attraction points jointly influence the top tree
node in Figure 3.5b, but the same two attraction points influence different tree
nodes in Figure 3.5h. Such splits in the set of attraction points, which at some stage
influence the same tree node, but later affect different points, are an essential feature

of the algorithm, as they lead to the emergence of branches.

3.2 Design considerations

The algorithm involves repetitively testing the set of attraction points for proximity
to the tree nodes. Specifically, the closest tree node to each attraction point must be
determined. The straightforward algorithm for determining the closest node to an
attraction point checks the distance from each tree node to the attraction point. If
k attraction points and n tree nodes exist during an iteration, then performing this
calculation for all attraction points requires O(kn) calculations.

We perform these calculations by constructing a three-dimensional Voronoi dia-
gram of the set of nodes and testing the resulting domains for the inclusion of attrac-
tion points, which improves run times considerably. To this end, we employed the

3D Delaunay triangulation routines included in the Computational Geometry Algo-
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rithms Library [118]. The complexity and run-time of the algorithm are discussed
in detail in Section 3.2.4.

The space colonization algorithm (steps a—c in Figure 3.1) has been implemented
using the vv relational modeling system [155], which provides convenient operations
for manipulating structures with dynamically changing topology. The generated
skeletons are further processed (steps d-h in Figure 3.1) using L-systems [77]. In fact,
the entire procedure for generating trees can be implemented using L-systems. The
primary reason the SCA was implemented in vv is historical, as the implementation
for trees was developed as an extension of the model used to generate veins in leaves,
which was implemented in vv. Additional details important to implementation of

the proposed method are provided below.

3.2.1 Crown Specification

The crown of a modeled tree, where attraction points are placed, is specified by
enclosing a volume within a surface. The surface used to specify this volume must
meet several requirements:

1. have an efficient, and easy to implement, inside/outside test;

2. be easy to specify; and

3. allow most tree crowns to be modeled (using one or several surfaces).
Optionally, the surface should provide a measure of distance of a point to the bound-
ary. In this work generalized surfaces of revolution were used, although in principal
many surfaces, such as implicit surfaces, are suitable for this purpose.

A generalized surface of revolution is obtained by rotating a planar generating

curve around a vertical axis. The generating curve may change size and shape during
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rotation, as for envelopes that are not axially symmetric. This can be contrasted
with surfaces of revolution where the generating curve remains constant.

In our implementation, this variation was captured by interpolating between a set
of curves placed at specific rotation angles around the z-axis (fig.3.6). The resulting
surface, parameterized by two variables, Q(6, 2) : [0, 27] X [a,b] — %2 is defined by

a set of 1D curves with associated angles:
C= {(Cl> 91), (C2> 92)> Ty, (Cm Qn)},

where C; : [a,b] — R, and 6; < 0;1;. C; defines the profile of the surface at angle 6;.

We compute the function Q(0, z) from C' as
Q(0, z) = Catmull Rom(z, 0)(cos(0),sin(f), z),

where Catmull Rom interpolates between the z values of the curves in C as 6 is
varied using Catmull-Rom splines [15]. Catmull-Rom splines are piecewise cubic
polynomials that interpolate a set of control points, here the z value of generating
curves, while maintaining first-order continuity. Tangents at each control point are
calculated using neighbouring control points, which makes them less flexible than
Hermite splines, but allows for easier user specification.

To define the function CatmullRom(z,0) : [a,b] x [0,27] — R let us consider a
given 0, and let i € {1,2,--- ,n} such that §; < 6 < 0;,;. If i + 1 is greater than n,

then ) + 27 is used in place of #;.1. Now let:

0 —0;

t=—"
92‘-}-1_92'

This makes t = 0 when § = 6;, and t = 1 when 6 = 6,,;. Using ¢ the function
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CatmullRom is:

CatmulRom(z,0) = Ci(2)hi(t) + Ciy1(2)ha(t) (3.4
_‘_C¢+1(2);Ci71(2) ha(t) + Ci+2(zé—ci(z)h4(t)

where hy, ho, hy and hy are the cubic polynomials
hy(t) = 2t3 — 3t 41,

hy(t) = —2t3 + 3t%,
hy(t) = 3 — 22 + ¢,
ha(t) = t3 — 2.

According to equation 3.4, polynomial coefficients h; and hsy interpolate between the
values at C;(z) and C;11(2) as t increases from 0 to 1, whereas the remaining coef-
ficients, hs and hy, are applied to the tangents calculated from neighbouring points,
allowing first-order continuity to be maintained as 6 is varied. Figure 3.7 shows a
slice through the crown in Figure 3.6 and illustrates the interpolation performed
using Catmull-Rom splines.

The surface @), as defined above, produces points between z = a and z = b. The
axis of () can then be modified by rotating, and translating the output of Q.

More complex crowns can be created by generating several generalized surfaces
of revolution and combining the surfaces using simple constructive solid geometry
operations (such as the union, intersection, and difference operators). These opera-
tions may be applied repeatedly to obtain increasingly complex crowns based on a

small number of simpler crowns.
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b C

Figure 3.6: A generalized surface of revolution and associated generating curves. a)
The three curves defining the generalized surface of revolution. b) The curves placed
at regular angles around the z-axis. c¢) The surface generated by sweeping the curves
around the axis as described in the text. The arrow indicates the location of the
slice illustrated in the following figure.

Figure 3.7: A slice of the generalized surface of revolution shown in the previous
figure. This slice was created by holding z constant and rotating through all 4. Red
disks mark points on the three generating curves and the black disk marks the axis
of rotation.
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3.2.2 Attraction point generation

To place attraction points in ) a function indicating whether a point lies inside or
outside the volume enclosed by the surface is needed. This inside/ouside function
can be phrased concisely using the C'atmull Rom function discussed above.

To this end we define the characteristic function for @, denoted by xo(P) : R* —
{1,0}. This function takes a value of 1 at any point in the region bounded by ) and
0 at all other points. Specifically, given point P € #? with associated cylindrical

coordinates (7,0, z),

1 CatmullRom(z,0) > r
Xq(P) =
0 otherwise.

Attraction points are generated iteratively by generating point P randomly with
a 3D uniform distribution!, and verifying that it lies in the crown of the tree using
Xq(P).

Optionally, a minimum distance between attraction points, denoted by, can be
enforced. In this case, when point P is generated it is placed in the tree crown only
if it is further than b; from the attraction points that have already been placed,
producing an overdispersed point distribution [23, 104].

The specifics of attraction-point generation are a parameter of the simulation,

and are discussed further in Section 3.3.

IThe algorithm uses a random distribution of points as opposed to a regular grid as a way of
introducing variation into the model. The advantage of this approach is its simplicity compared to
biologically more sound methods [161]
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d — e

Figure 3.8: Decimation of a single branch, 7, is indicated by the red line in each
sub-figure. The tree-node being considered for decimation is shown as a red disk.

3.2.3 Modeling the branching structure of the tree

Post processing
The tree-graph generated by the SCA provides the skeleton of the tree. This skeleton
can be further manipulated using the post-processing steps outlined in (e-g) of Figure
3.1. Stages (f), branch point modification, and (g), subdivision, have been described
already, but the details of stage (e), decimation, require further explanation.
Decimation is performed on each branch independently, as illustrated in Figure
3.8. A branch is decimated from the base (b) to the tip (e). The decimation procedure
uses a threshold, 74, denoting the desired minimum spacing between adjacent tree-
nodes in a branch. Nodes are processed sequentially, and the distance between nodes
is accumulated in d4. At each node the accumulated distance is compared to 74. If
dy < 74 then the node is removed from the branch, otherwise dy4 is reset to 0 and
the node is kept (b-e). Decimation decreases the number of points in a branch while

maintaining a uniform density of points along the branch (compare (a) and (e)).
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Determination of the diameter of branches
Once the final skeleton of a tree has been generated, the diameters of the limbs are
determined according to the pipe model [152], which relates the cross-section of a
limb below a branching point to the combined cross-sections of the limbs above.
The pipe model assumes that each leaf is connected by a pipe to the base of the
tree, supplying the leaf with water, and that the cross-sectional area of this pipe is
constant. At any point in the tree there must be enough pipes to supply the leaves
above it; so the cross-section at this point is determined by the number of leaves it
must support.

In accordance with the preceding discussion: calculation begins with the assump-
tion that all branch tips have the same initial radius ry, and proceeds basipetally,
from the branch tips toward the tree base. If branches of radii ; and ro meet at a

branching point, the radius r of the supporting branch is found using the formula
" =r+ry, (3.5)

where n is a parameter of the method (usually between 2 and 3 [92, pages 131-135]).
The relation given by Eq. 3.5 was proposed by Murray [108] based on measurements

obtained from several tree species.

The geometry of branches

Generalized cylinders [11] are used to model the branching structure of the tree.
The geometry at each branch is created by sweeping a 2d generating curve along the
skeleton of the tree, while varying the scaling factor applied based on the diameter
calculated by the pipe model. During this process a parallel transport frame [55,

129] is calculated to orient the generating curves (cross-sections of the generalized
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cylinder) in a manner that minimizes the twist between consecutive cross-sections.
If needed, organs, such as leaves, flowers and small branches, are added to the tree;
their spatial distribution is determined with respect to the parallel transport frame

and /or absolute directions in the world space in which the tree has been placed.

3.2.4 Algorithm run-time

Typically, generation of an entire tree using the SCA takes a few seconds or minutes.
A significant portion of the algorithm’s execution time is spent testing the proximity
of attraction points to tree nodes and updating the Voronoi diagram containing the
set of tree nodes. Thus, the runtime of each iteration of the algorithm depends
primarily on the number of tree nodes and attraction points considered. Varying
the parameters controlling these quantities changes the resulting pattern as well,
and causes a trade-off between achieving particular visual effects and optimizing the
runtime of the algorithm. The visual impact of parameters is discussed in greater
detail in the results section (Section 3.3).

The run-time of our implementation was tested experimentally. In each experi-
ment a unit sphere was filled with attracting points and a tree node was placed at
the origin. The simulation ran until no attraction points remained. Each experi-
ment was run 10 times, with default parameters of N = 3000 (number of attraction
points), d = 2 (kill distance), and D = 0.01 (the basic unit of the model). These
experiments serve as a basis for discussing the impact of pertinent parameters on
the run-time of our implementation.

Several parameters affect, directly or indirectly, the number of attraction points

and tree nodes tested during a simulation. As the number of attraction points is a
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Figure 3.9: Process run time plotted as a function of the number of attraction points
(N). (Top) The average, maximum, and minimum run-times are plotted as N is
varied. (Bottom) The average run-time is plotted in the same chart as the best fit
quadratic polynomial described below the legend.
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parameter itself it can be varied directly. Reducing the number of attraction points
decreases the runtime, because fewer tree nodes are produced and fewer attraction
points must be tested during each iteration (Figure 3.9). The second graph in Figure
3.9 shows the best fit quadratic curve. The coefficient of the quadratic term is several
orders of magnitude smaller then the coefficient on the linear term. This tends to
indicate that the relationship between N and run-time is approximately linear when
N e {1,---,4000}.

Unlike the number of attraction points, the number of tree-nodes is not specified
directly. Instead the number of tree nodes present during an iteration is determined
indirectly by several parameters. First, the basic unit D used in the model is of
particular interest. As D increases, fewer tree nodes are needed to reach the same
set of sources (as this decreases the resolution of the model), thereby reducing the
number of iterations needed to reach each attraction point (as well as the number of
tree-nodes that exist during each iteration).

Instead of using D directly, the relation of runtime of to 1/D is examined (the
number of nodes needed to span one unit, Figure 3.10), because as D goes to zero the
runtime of the algorithm tends towards infinity, making analysis difficult. As with
N, the coefficient on the quadratic term of the polynomial is very small compared
to the linear term, indicating that the runtime may be a sub-quadratic function of
1/D when 0 < 1/D < 150 (the values of D used in this chapter all fall in this range).
D significantly impacts the algorithm’s run-time. Presently, D is a user-specified
constant and it is an interesting question whether an adaptive step could be used
instead.

The other parameter to note is dj, the kill distance used to remove sources.
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Figure 3.10: Process run time plotted as a function of the number of nodes per unit
(1/D). (Top) The average, maximum, and minimum run-times are plotted as 1/D
is varied. (Bottom) The average run-time is plotted in the same chart as the best fit
quadratic polynomial described below the legend.
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Figure 3.11: Process run time plotted as a function of the kill distance (dj). The
average, maximum, and minimum run-times for each value of dj are plotted.

Increasing d; causes attraction points to be removed earlier, thus decreasing the
computational cost of subsequent iterations. Additionally, as branches need not
penetrate the space surrounding attraction points as closely, fewer tree nodes are
needed to reach the same number of attraction points. Figure 3.11 reveals that in
this experiment increasing dj decreases the run-time of our implementation, but in
a diminishing manner.

The run-time of a single iteration can be discussed more rigorously. Let k be
the current number of attraction points, n the number of tree nodes present at the
beginning of the iteration, and r the number of tree nodes created during the iter-
ation. Asymptotically, runtime depends on the calculation of the nearest tree node
to each attraction point and the insertion of new tree nodes in the Voronoi diagram

containing all tree nodes. This diagram can be constructed “from scratch” during
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each simulation step in O(nlogn) time [114]; however, the run-time is improved
by updating the diagram incrementally from one simulation step to the next [114].
The calculation of the nearest neighbour in the Voronoi diagram takes logarithmic
time [121], thus the search for the tree nodes that are nearest to k attraction points
require O(klogn) time, and the insertion of r new tree nodes then takes O(rlogn)
time, resulting in a combined run-time of O((k + r)logn). As each new tree node
must be selected by an attraction point and each attraction point can select only
one tree node, it follows that £ must be an upper bound for r. Therefore, a single
iteration of the SCA takes O(klogn) time.

3.3 Exploration of the parameter space!

3.3.1 Kill Distance and Attraction Points

The proposed method generates a wide variety of trees and shrubs, controlled by
a small number of parameters and algorithm variations. Figure 3.12 illustrates the
impacts of the number of attraction points N and kill distance dj (parameters of
the pipe model and decimation were also adjusted). Decreasing N and increasing dy,
yields crowns that are increasingly sparse. In addition fewer attraction points lead
to irregular branches. The reason is that, in this case, the addition or removal of
a single attraction point to or from the set affecting a branch tip can significantly
change the direction of branch growth. In contrast, with larger kill distances the set
of attraction points affecting individual branch tips increases. The individual points

matter less, and smoothly curved branches result.

IParameters used to generate selected models are collected in Table 3.1.
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(a) N = 12000, dy, = 2D (b) N = 12000, d;; = 20D (¢) N = 12000, dj = 40D

(d) N = 1500, d; = 2D (e) N = 375,dy = 20D (f) N = 375,dj, = 40D

Figure 3.12: Impacts of the number of attraction points, /N, and the kill distance,
dj, on the tree form. The Kkill distance is expressed as a multiple of D, the distance
between adjacent nodes of the tree skeletons.
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3.3.2 Radius of Influence

Figures 3.13 and 3.14 illustrate the role of the third numerical parameter of the
algorithm, the radius of influence d; on trees and shrubs. As d; decreases, branch
tips tend to meander between attraction points, coming into, then leaving their zones

of influence, resulting in a wiggly or gnarly appearance.

3.3.3 Crown Shape

Figures 3.13 and 3.14 also illustrate the impact of the envelopes on crown shape: the
shrubs in Figure 3.13 were generated using fan-shaped envelopes, whereas the trees
in Figure 3.14 were generated using conceptually infinite envelopes (the simulations
were stopped after a prescribed number of steps before any branch tips were closer
than the radius of influence to the top of the tree crown). Further examples of the
impact of the envelopes are given in Figure 3.15, which shows two trees generated
using highly elongated cylindrical and conical envelopes. Comparison of Figures 3.14
and 3.15 also shows that narrower trees have a clearly delineated trunk, whereas in
widely spread trees even the main limbs are highly ramified. This correlation between
the overall form of the trees and their branching habits is an interesting emergent
property of the algorithm, and captures the defining properties of excurrent (with
the main stem) and decurrent (without a distinct main stem) tree forms [133].

In all examples considered so far, attraction points had a uniform distribution
within the tree crowns, resulting in approximately uniform branch densities. How-
ever, in many trees and shrubs the branch density increases near the crown surface
due to better access to light. We generate the resulting forms by only placing at-

traction points near the envelope. For example, Figure 3.16 shows a shrub generated
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Figure 3.13: Impact of the radius of influence d; on the form of shrubs.
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Figure 3.14: Impact of the radius of influence d; on the form of trees. (Top) d; = oc;
(Bottom) d; = 8D.
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Figure 3.15: Impact of the envelope on the crown shape. a) columnar crown; b)
conical crown.

with attraction points located exclusively near the envelope. The structure has an

open, sparse branch system, with small twigs limited to the crown surface.

3.3.4 Addition of attraction points during simulation

The tree shown in Figure 3.17 was synthesized using an overdispersed point distri-
bution generated using the method described in Section 3.2.2. Furthermore, new
points were added while the tree structure was forming, with a gradually decreasing
distance between the points (b, is decreased with time). This led to the emergence
of small twigs that filled the space between large branches. The resulting hierarchy
of branch sizes gives the resulting structure the appealing appearance of a large,

mature tree.
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Figure 3.16: A shrub generated with attraction points placed exclusively near the
envelope.

3.3.5 Tropisms

Tropism — the tendency of branches to turn in a particular direction — is a distinc-
tive feature of tree architecture identified by Hallé, Oldeman and Tomlinson [52].
Tropisms and bending of branches due to their weight are incorporated into the
models by vertically biasing the direction of branch growth (Equation 3.3). A slight
upward or downward bias adds subtle curving to the branches of the tree, and is
used in most examples.

In contrast, strong biases overcome the impact of attraction points and create
particularly interesting effects. An upward bias may cause the branches to grow
above their attraction points, before eventually turning down, resulting in a pendu-
lous form (Figure 3.18a). This simple approximation of tropisms can create slightly
pendulous forms, but is incapable of recreating the strongly pendulous form of some
trees (such as weeping willows). When a strong downward bias is applied branches

turn downwards away from the attraction points selecting them, leading to the emer-
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Figure 3.17: A tree generated using continuously added attraction points.
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Figure 3.18: The impact of strong tropisms on the resulting form: a) a tree with pen-
dulous branches resulting from a strong upward tropism; b) a model of a “crooked”
tree (strong downward tropism); c¢) a low-lying bush or creeping plant (strong down-
ward tropism)

gence of relay shoots on top of existing branches. This behaviour is observed in some
shrubs (such as the Sambucus nigra), and crooked or twisted trees (such as Fagus
sylvatica var. tortuosa, and the “crooked” mutant of Populus tremuloides) [134, 43]

which is recreated in Figure 3.18b-c.
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Figure 3.19: Two trees competing for space

3.3.6 Competition

In addition to the arrangement of branches within a single tree or shrub, the pre-
sented method can automatically capture the adaptation of the shape of the plants
to the presence of their neighbours. This is illustrated in Figure 3.20, in which
shrubs in a hedge (each initialized with a separate tree node) compete for space with
their neighbours, and in Figure 3.19, where the same phenomena is recreated with
two trees. The method can also account for the presence of obstacles to growth, by

eliminating the attraction points beyond the surfaces of collision.
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Figure 3.20: A hedge of shrubs competing for space.

3.3.7 Post-Processing

The described algorithm produces realistic-looking tree structures without any post-
processing of skeletons. However the algorithm does not provide direct control over
branching angles, which tend to be close to 90 degrees (especially in minor branches).
To provides more control over the final form of trees and shrubs post-processing was
used. The impact of moving the branching points and subdividing the skeleton is
illustrated in Figure 3.21. In order to have a visual impact, these operations were
applied to a decimated skeleton, with perceivably spaced nodes. The branches of the
post-processed structure are smoother, and the branching angles are smaller, than
in the original tree.

During the last stage of model construction the branching structure can be com-
plemented with the addition of organs. In the case of the shrub shown in Figure 3.16,
flowers were positioned and oriented on the branches using the parallel transport
frame as a reference. This is sufficient to achieve a wide range of visual effects as

demonstrated in Figures 3.22-3.24. In 3.22 and 3.23 leaves are positioned using the
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parallel transport frame, and in 3.24 compound leaves are placed at the tip of each
branch. In Figure 3.25 the impression of pine trees of different age is created by
placing a collar of pine needles at each internode of the thinnest branches. The size
of these organs provides a sense of scale, and in Figure 3.26 many small leaves are
used to give the impression of a haze of foliage in a large oak tree. Finally, in the tree
shown in Figure 3.27, leaves were arranged around their supporting branches using
the parallel transport frame, then brought to an approximately horizontal orientation

in the world coordinate system.

3.4 Discussion

We have introduced an algorithm that generates trees and shrubs by simulating com-
petition for space between growing branches. The initially empty space is represented
as a set of attraction points, which are gradually removed as they are approached by
the branches. Attributes and parameters of the model specify the shape and granu-
larity of the empty space, the distance from which the branches can sense it, and the
degree to which it can be penetrated by the branches. Additional parameters control
the spatial and temporal distribution of the attraction points, allowing for increased
branch density near the boundary of the tree crown and the formation of a hierar-
chy of branches with different sizes. A directional growth bias makes it possible to
approximate the effects of tropisms and branch bending due to their weight. Model
parameters correlate well with the notions used to characterize the appearance of
trees and shrubs in landscaping (e.g., spreading or columnar crown shape, excurrent

or decurrent branching habit, open or dense branch system, ascending or pendulous
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Figure 3.21: The effect of post-processing a tree skeleton. (Top) The original struc-
ture. (Bottom) The structure obtained obtained by decimating the skeleton, moving
the branch points, and subdividing the skeleton.
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Figure 3.23: A tree with dense foliage.
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Figure 3.25: Four trees representing pine trees of different ages.
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Figure 3.26: An Oak tree.
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Figure 3.27: A tree with leaves.
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branch orientation [133]), and can be tuned to generate diverse branching structures.

The proposed method is particularly useful in simulating irregular forms of temper-
ate-climate deciduous trees. These forms are difficult to capture with older modeling
methods, which emphasize recursive aspects of tree structure [109, 128, 25, 70]. The
models generated with the space colonization algorithm are visually plausible even
as bare trees and shrubs, without leaves that could potentially mask shortcomings
of the branching structures. In particular, branch intersections are prevented by the
nature of the algorithm. When needed, the generated branching structures can be
complemented with leaves, flowers, buds, and fruits.

Although the space colonization algorithm has been formulated in abstract geo-
metric terms, it is biologically justifiable. In nature, competition for space is likely
mediated by quantity and quality of light [113, 5]. It has been previously postu-
lated [147, 162, 109, 44] that this competition significantly affect plant form, and
therefore should be incorporated into plant models. Our results amplify the obser-
vation of Novoplansky and Sachs that competition for space plays an important role
in determining the overall branching structure of temperate-climate trees and shrubs

and in fact suggest that it is the dominant mechanism.
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Chapter 4

Modeling leaf venation patterns I: Basic models

with marginal and uniform growth'

Venation is a functionally important and visually conspicuous component of plant
leaves. Together with spiral phyllotaxis and the branching structures of tree architec-
ture, venation patterns are among the most admirable aspects of the natural beauty
of plants. Yet, in comparison, venation patterns and their development are poorly
understood [27], which makes the visual modeling of venation patterns a particularly
challenging and timely problem. As a step toward its solution we propose a model
inspired by the current theories of hormonal control of vein morphogenesis. To this
end, the geometric assumptions introduced to model trees are re-interpreted to make
the model consistent with current understanding of vascular patterning.

The model presented in this chapter generates visually realistic venation patterns,
reproduces in part their natural diversity, and captures the close relation between
venation and leaf shape. For image synthesis applications, this model offers a useful
alternative to scanned textures when leaf specimens are not readily available, leaves
are not flat (and therefore are difficult to scan), a large number of leaf models with
different yet related venations is needed, leaf development is animated, or when the
topology of the leaf venation is needed. The model can also be used as a stepping

stone to study and visualize leaf venation patterns for biological purposes. As when

!This chapter is based on [142]
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Figure 4.1: Terms pertinent to the description of leaf shapes.
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Figure 4.2: Varieties of leaf growth. A sample leaf (a) and the results of its: (b)
marginal growth, (c¢) uniform isotropic (isogonic) growth, (d) uniform anisotropic
growth, and (e) non-uniform anisotropic growth.

trees were modeled, realistic visualization plays a critical role as an element of model
evaluation and validation [123], since current objective measures for comparing com-
plex venation patterns with reality capture only a limited set of features [13]. This
chapter outlines the basic algorithm using simple growth, and the essence of de-

veloping patterns is not addressed. Modeling the development of vascular patterns

benefits from more sophisticated techniques and is discussed in the following chapter.



71

4.1 Background and related work

4.1.1 Leaf shape

Venation patterns are strongly correlated with leaf shapes [27] and thus must be
considered in that context. A useful summary of the terminology for describing
leaf shape is given by Judd et al. [72]. A typical leaf consists of a blade (lamina),
attached by a petiole (stalk) to the stem (Figure 4.1). Simple leaves have a single,
connected blade. A simple leaf is entire if its margin (edge) forms a smooth arc,
toothed if the margin has small protrusions, and lobed if the margin is significantly
indented, dividing the blade into distinguishable lobes. Lobed leaves are further
categorized as dissected, with the indentation approximately perpendicular to the
leaf axis, and digitate, with the lobes organized radially (like fingers on a hand). In
contrast to simple leaves, compound leaves have blades partitioned into separate sub-
units called leaflets. Compound leaves are not considered directly, as it is assumed

that their venation can be modeled at the level of individual leaflets.

4.1.2 Taxonomy of leaf growth.

The development of venation patterns is correlated with the growth of leaf blades. In
this chapter a number of simple growth types are considered. Growth is marginal if it
is concentrated on the border and diffuse if it is spread throughout the surface [141].
Diffuse growth is isotropic if expansion is equal in all directions at each point in the
leaf blade, and anisotropic otherwise. Furthermore, growth is uniform if the growth
is the same at all points of the surface, and non-uniform if it is not. A uniform

isotropic growth is called isogonic [20]. These variations are illustrated in Figure 4.2.
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Figure 4.3: Some terms pertinent to the description of venation patterns.

4.1.3 Venation patterns

Leaf venation patterns are described in this work using the terminology of Hickey [58]
and its simplification by Judd et al. [72]. A fundamental notion is that of vein order.
Generally, first-order veins are the widest veins originating at the leaf base (the point
of attachment to the petiole), and finer veins and veinlets have progressively higher
orders (Fig. 4.3). Venation patterns are correlated with the taxonomic groups of
plants and with the shapes of leaves. Leaves of monocotyledons (Fig. 4.5) usually
have approximately parallel primary (first-order) veins, which is consistent with the
highly elongated leaf shape and wide leaf base. Dicotyledons with simple entire leaves
often have pinnate venation, characterized by a single primary vein (the midvein)
that originates at the base and extends towards the leaf tip (Fig. 4.4). Dicotyledons
with digitate leaves typically have actinodromous venation, in which three or more

primary veins diverge radially from a single point (Fig. 4.6). Primary veins support
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Figure 4.4: Examples of venation patterns obtained from dicotyledons. On the left
is a closed pattern, and an open pattern is shown on the right

sequences of secondary (lateral) veins, which may branch further into higher-order
veins. The secondary veins and their descendants may be free-ending, which produces
an open, tree-like venation pattern, or they may connect (anastomose), forming
loops characteristic of a closed pattern. Tertiary and higher-order veins usually

link the secondaries, forming a ladder-like (percurrent) or netlike (reticulate) pattern

(Fig. 4.3, 4.7).

4.1.4 Mechanism of vein pattern development

The most widely accepted theory of vein pattern formation is the canalization hy-
pothesis, proposed by Sachs [145]. According to this hypothesis, vein patterning is

initiated by a signal that propagates in the leaf blade, and converges on future veins.



Figure 4.5: Examples of venation pattern in monocotyledons

Figure 4.6: Example of a venation pattern with actinodromous venation
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Figure 4.7: Examples of tertiary and higher-order veins. (Left) High-order reticulate
network with free-ending veins. (Right) Ladder-like percurrent tertiary veins.

At least part of this signal is the plant hormone auzin [153, 146]. Auxin is thought
to originate in the leaf blade and flow toward existing veins, which transport it to
the leaf base. During this flow, auxin is canalized into narrow paths, in a manner
analogous to water carving riverbeds in soft terrain [146]. These paths will differ-
entiate into new vein segments. Experimental evidence suggests that auxin sources
may be discrete [2].

Sachs’ analogy between vascular pattering and canalization implies that the tissue
of the leaf can respond to and enhance auxin flux anisotropically. This hypothesis is
supported by the expression of the protein PINI observed in developing leaves, which
is expressed in larger regions that are eventually refined to vascular precursors [150].
Additionally, PINT1 is localized non-uniformly on cell walls and is thought to export
auxin from the cell, thus indicating the direction of auxin transport in the leaf [150].

The canalization hypothesis is supported by increasing amounts of molecular data,
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but work is hindered by the difficultly of measuring auxin concentration directly [10].
Additionally, the details of vascular patterning are still not well understood from
either a biological [27] or modeling [140] standpoint, and are further obfuscated by
the complex and apparently contradictory roles that auxin and PIN1 play in other

patterning processes in plants [10].

4.1.5 Models of vein pattern development

The first computational model of venation patterns was a four-substance reaction-
diffusion model proposed by Meinhardt [100]. This model postulates that auxin is
produced everywhere in the leaf blade and diffuses towards veins, which remove it
from the system. The resulting gradient of auxin concentration directs differentia-
tion of new veins towards regions where vein density is low. This model generates
branching networks with occasional anastomoses, but these networks are not visually
similar to real venation patterns.

The canalization hypothesis was the basis of a computational model developed
by Mitchison [105]. Mitchison assumed that the transport depend on the flux itself.
The resulting feedback loop between transport characteristics and flux leads to the
formation of high-flux canals between sources of auxin and sinks (the existing veins)
distributed throughout the leaf blade; these high-flux canals become new veins. This
model is particularly attractive due to its consistency with the putative molecular
mechanisms of active auxin transport [139]. As a result, there has been significant
work extending Mitchison’s model to examine the range of phenomena it can repro-
duce [140], the relation between PIN1 and auxin [38], the establishment of loops [37],

and the impact of marginal growth and differentiation on pattern formation [41]. A
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related model, which modeled the formation of higher order veins, was proposed by
Dimitrov et al. [29]. This model forms veins by following the auxin gradient towards
a maximum.

Somewhat troublesome is the apparent contradiction between the dynamics of
auxin transport as proposed by Mitchison and those observed by Reinhardt et al [132]
in phyllotactic patterning, where PIN1 is thought to respond to auxin concentration
and transport it up the gradient (as opposed to with the flux). Simulating the
dynamics proposed by Reinhardt in a growing cellular space is sufficient to recreate
the positioning of primordia as observed in the shoot apex of a plant [158, 71]. Merks
et al. attempted to reconcile this inconsistency by modifying the dynamics of auxin
transport proposed by Jonsson et al. [71] and Smith et al. [158] to operate in the
leaf blade [103]. Their model recreates the formation of a midvein by creating an
auxin maximum that travels as a wave from the tip to the base of the leaf leaving a
polarized file of cells in its wake.

In contrast to Mitchison’s and Merks et al.’s models, which simulate the transport
processes leading to vein formation, the model of angiogenesis (vasculature forma-
tion) proposed by Gottlieb [49] directly simulates the outcome of these processes:
the insertion of new veins. In Gottlieb’s model the venation pattern is embedded
in a growing medium. Growth increases the distance between the existing veins,
allowing new sources of an auxin-like signal to be inserted in the resulting spaces.
New veins form by connecting these sources to the closest older veins, or — in the
case of anastomoses — to all veins within some distance range. The expression of the
algorithm in geometric terms allowed Gottlieb to generate complex patterns, approx-

imating diverse vascular systems in animals and plants. Nevertheless, the realism
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of these patterns is limited by several simplifying assumptions. Positions of sources
are constrained to the grid, which results in a visible regularity in the layout of vein
endings. Veins grow only to a single source and reach them in a single step making
all vein segments straight. Growth is simulated by doubling the (linear) grid size
in every simulation step, which precludes continuous simulation of growth. As vein
segments are straight, and segments double in length in each growth step, artificial-
looking long straight lines are produced running through the pattern. Unnatural
sharp angles may form between anastomosing veins.

Leaf growth also plays an essential role in the biomechanical model of vein pat-
tern formation proposed by Couder et al. [24]. This model exploited a hypothetical
analogy between vein pattern formation and fracture propagation in a stretched ma-
terial. Although the authors used physical experiments to test their model, the same
analogy could underlie computer simulations, for example based on the fracture-
simulation software described in [35].

Rodkaew et al.[137] proposed an algorithm specifically for the purpose of gener-
ating vein patterns for the synthesis of realistic leaf images. Their algorithm begins
with a set of particles distributed over the leaf blade. These particles move towards
a sink placed at the base of the leaf; in their motion they are attracted towards each
other and merge if a threshold distance between particles has been reached. The ve-
nation pattern is formed by the particle trajectories. Some of the generated patterns
suggest the appearance of primary and secondary veins in leaves with open vena-
tion. However, the conceptual framework and the resulting generating procedure
have not been related to the current biological understanding of vein morphogene-

sis. Consequently, it is difficult to improve the results by incorporating biological
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Figure 4.8: Hypothetical causal relations underlying vein pattern development.

knowledge.

4.2 Generation of open venation patterns

We assume that leaf venation patterns develop in a feedback process, coupled with
leaf growth, in which discrete auxin sources direct the development of veins, and the
veins reciprocally affect the placement of sources (Figure 4.8). Specifically, auxin
sources are assumed only to appear far from the existing veins and other sources.
Although different parts of this process have been described in the biological litera-
ture and included in previous models, the only explicit reference to the feedback loop
between source placement and vein development was made by Gottlieb [49]. Like
Gottlieb’s model, the model presented here is expressed in geometric terms and uses
proximity criteria to determine new vein locations. However, the algorithm operates
in continuous space, and does not rely on the simplifying assumptions introduced by
Gottlieb. As a result, the venation patterns generated and presented here are very
different from those created using previous methods.

Another key inspiration for this work is the model of vascular patterning proposed
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by Mitchison [105]. Although Mitchison’s model operates at the scale of individual
veins, it offers valuable insights for constructing models of whole patterns. This
model was reimplemented and the experiment shown in Figure 4.9 demonstrates
that it tends to create a canal between a source and the vein node that is closest
to it. These observation relate directly to Gottlieb’s model, which in turn is the
cornerstone of our model.

Below, the version of the algorithm that generates open venation patterns is
described. The modifications that extend it to closed patterns are presented in

Section 4.3.

4.2.1 Preliminaries

Input to the algorithm consists of: (1) the initial state (the initial shape of the leaf
and the placement of the “seed” vein node or nodes), (2) functions and/or parameters
characterizing leaf growth, and (3) parameters characterizing the interplay between
the auxin sources and vein development.

The algorithm and data structures used to model open patterns are the same
as those described previously for trees (Section 3.1.2), but additional parameters
incorporating the impact of growth and affecting the placement of sources are used
as well. In the context of vein patterning a slightly different terminology is used.
Auxin sources are represented by a set S of attraction points s embedded in the leaf
blade. As such, attraction points are referred to as sources and tree nodes become
vein nodes. Additionally, the graph G containing the structure of the vein pattern

is now called the venation graph.
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Figure 4.9: An experiment performed using Mithcison’s model with two sinks and
one source (courtesy of Anne-Gaglle Rolland-Lagan). a) Explanation of the symbolic
representation: The shade of blue in a cell indicates the concentration of auxin, with
dark blue indicating high concentrations. The width of arrows denotes the flux
between two cells, and the black lines on the edge of the cell indicates the polarity of
the cell. b) The initial state of the model with two sinks, circled in green. ¢) When
a source, circled in red, is added closer to the left sink than the right sink, a strand
forms to the left sink. d) The process shown in (c) is repeated with the source placed
closer to the sink at the right hand side. This time the strand connects to the sink
on the right. Taken together these simulations show that when a source is added it
tends to form a strand connecting it to the closest sink.
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4.2.2 The initial state of the model

The initial leaf shape is specified interactively by the user, as a parametric curve that
defines the leaf contour. In the case of toothed leaves, protrusions are introduced
algorithmically, by summing triangular waveforms of different amplitudes and fre-
quencies. The initial venation graph usually has a single vein node, which coincides
with the attachment point of the blade to the petiole. In the case of leaves with
parallel venation, the initial graph includes several isolated nodes, positioned along

the leaf base. In all cases, positions of the initial points are specified by the user.

4.2.3 The simulation loop

Our algorithm consists of simulating within an iterative loop the three processes
shown in Figure 4.8: leaf blade growth, the placement of auxin sources, and the
addition of new vein nodes. We assume that the pattern of veins and auxin sources
in the leaf blade does not affect leaf growth. This is a simplifying assumption that
allows growth to be modeled using a purely descriptive approach.

Leaf-blade growth. Given the initial leaf shape at time ¢y and the growth
description, the leaf-growth model must be able to determine leaf shape at any time
t; > to and, for any material point p embedded in the leaf blade at time t; > t,
to find the position of that point at any time ¢, > ¢;. Two methods to model leaf
growth are outlined here, which allow the development of patterns to be simulated.
However, this chapter focuses on producing realistic final patterns. The problem of
precisely matching the sequence in which veins and sources emerge is addressed in
Chapter 5, where non-uniform anisotropic growth is considered.

Marginal growth is modeled by scaling the leaf edge with respect to the attach-
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ment point of the leaf to the petiole, without modifying the position of sources
or vein nodes. We assume that the scaling factor ¢ is a linear function of time,
orinr = 0y + Ao, where Ao > 0 is a constant describing the increase of margin size
per simulation step. This model is not applicable to dissected leaves, since in this
case the scaling of the edge may gradually erode parts of the leaf blade.

Uniform growth (isogonic) can be regarded as a scaling of the entire leaf, including
veins and auxin sources that exist at time ¢, using the same formula as above,
orint = 0 + Aco. For computational efficiency, instead of scaling up the leaf, we
scale down the unit distance A used while inserting and removing auxin sources:
At = Ao - 00/ 0y

Auxin source placement. Auxin sources are assumed to emerge at locations
farther than a threshold birth distance b, from the set of all other sources, and farther
than a threshold birth distance b, from the set of all vein nodes. These points are
computed using the dart-throwing algorithm [23, 104]. This algorithm consists of
repeatedly generating points distributed at random (with a uniform distribution)
within a given domain, then testing each new point s’ against all points already in
the set. A point is accepted as a new member of the set if it is sufficiently far from
other points. In this application of the SCA, it is necessary to “throw darts” at every
iteration of the algorithm. The number of darts per step per unit area of the leaf,
denoted p, controls the regularity of the venation pattern (Section 4.5).

In practise, computation of the set of auxin sources depends on the assumed
leaf-growth kinetics. For uniform growth, the initial set is usually empty, and new
sources are added using dart throwing after each growth step, whereas for marginal

growth, new sources appear only 