
UNIVERSITY OF CALGARY

Improving the Process of Plant Modeling:

The L+C Modeling Language

by

Radosław Mateusz Karwowski

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2002

© Radosław Mateusz Karwowski 2002

ii

Approval page
University of Calgary

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled �Improving the Process of Plant Modeling: the L+C

Modeling Language� submitted by Radosław Karwowski in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Supervisor, Dr. Przemyslaw Prusinkiewicz, Department of Computer Science

Dr. Brian Wyvill, Department of Computer Science

Dr. Robin Cockett, Department of Computer Science

Dr. Lawrence Harder, Department of Biological Sciences

External examiner: Dr. Jean-Louis Giavitto, Laboratoire de Méthodes

Informatiques, Université d�Evry

Date

iii

Abstract
In this thesis I present the modeling language L+C. L+C is a language based on the

formalism of L-systems. It has been created to address the need for a formalism that would

allow the expression of complex plant models. Current plant models require the

components of the model (organs or cells) to include many parameters to describe the state

of the model. Also the need to express complex calculations has been addressed.

Signal propagation has been traditionally expressed using context-sensitive L-systems.

L+C extends the formalism of L-systems by introducing new concepts: derivation direction

and new context. These two concepts are the foundation of a new method of propagating

signals in plant models: fast information transfer. Fast information transfer is an alternative,

faster method of propagating signals in linear and branching structures represented by L-

system strings.

The L+C modeling language is implemented in a plant modeling program lpfg, which

together with cpfg (another L-system-based modeling program developed at the University

of Calgary) are the core part of the modeling environment L-studio.

iv

Acknowledgements
I would like to thank my supervisor, Dr. Przemyslaw Prusinkiewicz. I want to thank for

his advice and assistance during my stay at the University of Calgary. It was a great honour

and pleasure to work with him. I would like also to thank the members of my examining

committee for their valuable comments on my research and this thesis.

v

Table of contents

APPROVAL PAGE.. II

ABSTRACT ...III

ACKNOWLEDGEMENTS.. IV

TABLE OF CONTENTS..V

TABLE OF FIGURES .. IX

TABLE OF LISTINGS... XII

1. INTRODUCTION.. 1

1.1. MOTIVATION AND SCOPE OF WORK ... 1

1.2. ORGANIZATION OF THE DISSERTATION.. 3

1.3. DOCUMENT CONVENTIONS.. 4

2. LINDENMAYER SYSTEMS ... 5

2.1. D0L-SYSTEMS... 5

2.2. BRACKETED L-SYSTEMS ... 6

2.3. GRAPHICAL REPRESENTATION OF L-SYSTEMS ... 7

2.4. PARAMETRIC L-SYSTEMS .. 9

2.5. CONTEXT-SENSITIVE L-SYSTEMS .. 10

2.5.1. How the productions are matched ... 11

2.5.2. Ignored and considered modules ... 15

2.6. L-SYSTEMS WITH PROGRAMMING STATEMENTS .. 17

2.7. INTERPRETATION RULES.. 21

2.8. DECOMPOSITION RULES .. 24

2.9. ENVIRONMENTALLY SENSITIVE L-SYSTEMS AND OPEN L-SYSTEMS.................. 27

2.10. SUMMARY... 34

3. NEW CONCEPTS AND FEATURES IN L-SYSTEMS 35

3.1. USER-DEFINED DATA TYPES .. 35

vi

3.2. FUNCTIONS ... 37

3.3. FAST INFORMATION TRANSFER.. 38

3.3.1. Information transfer in linear structures ... 39

3.3.2. Information transfer in branching structures .. 41

3.4. SUMMARY... 51

4. THE MODELING LANGUAGE L+C... 52

4.1. DERIVATION LENGTH .. 53

4.2. MODULE DECLARATIONS .. 53

4.3. AXIOM .. 54

4.4. PRODUCTIONS ... 55

4.5. THE PRODUCE STATEMENT.. 57

4.5.1. Multiple successors .. 59

4.5.2. Empty successor ... 60

4.6. DECOMPOSITION RULES .. 60

4.7. INTERPRETATION RULES.. 62

4.8. CONTROL STATEMENTS... 63

5. IMPLEMENTATION CONSIDERATIONS AND STRATEGIES.................. 65

5.1. INTERPRETER VS. TRANSLATOR... 65

5.2. L-SYSTEM STRING REPRESENTATION... 68

5.2.1. Traditional approach ... 68

5.2.2. Proposed solution .. 70

6. THE L+C TO C++ TRANSLATOR .. 72

6.1. TOP LEVEL PARAMETERS AND STATEMENTS.. 74

6.2. L-SYSTEM GLOBAL PARAMETERS .. 74

6.3. L-SYSTEM CONTROL STATEMENTS .. 75

6.4. MODULE DECLARATION .. 76

6.5. PRODUCTIONS ... 77

6.6. THE PRODUCE STATEMENT .. 86

6.7. OTHER ELEMENTS ... 88

vii

6.7.1. Ignore, consider ... 88

6.7.2. Axiom.. 88

6.7.3. Production, decomposition, interpretation .. 88

7. APPLICATION EXAMPLES .. 90

7.1. MODEL OF ANABAENA.. 90

7.2. BORCHERT-HONDA MODEL... 96

8. THE L-STUDIO MODELING ENVIRONMENT ... 102

8.1. OBJECT ORGANIZATION... 103

8.1.1. Animation parameters editor ... 103

8.1.2. Colormap editor ... 104

8.1.3. Material editor, gallery of objects ... 105

8.1.4. Surface editor ... 107

8.1.5. Contour editor.. 108

8.2. CONTINUOUS MODELING MODE... 108

8.3. VISUALLY CONTROLLED PARAMETERS.. 110

8.4. VISUALLY DEFINED FUNCTIONS .. 113

8.5. VISUAL INTERACTION WITH THE MODEL ... 117

9. CONCLUSIONS .. 120

9.1. SUMMARY OF CONTRIBUTIONS.. 120

9.1.1. Evaluation of L+C ... 120

9.1.2. Visual and interactive aspects of modeling.. 123

9.2. FUTURE WORK .. 124

9.2.1. Missing elements .. 124

9.2.2. Problems worth revisiting.. 124

9.3. CLOSING REMARKS ... 127

A. LPFG USER�S GUIDE.. 128

A.1. HARDWARE REQUIREMENTS.. 128

A.2. SOFTWARE REQUIREMENTS ... 128

viii

A.3. INSTALLATION .. 128

A.4. COMMAND LINE OPTIONS .. 128

A.5. USER INTERFACE... 130

A.5.1. View manipulation ... 130

A.5.2. Menu commands... 130

A.6. L-SYSTEM FILE .. 132

A.6.1. Mandatory elements ... 132

A.6.2. Include files .. 132

A.6.3. derivation length: ... 133

A.6.4. Declarations of data structures and functions 134

A.6.5. Module declaration .. 134

A.6.6. Axiom.. 135

A.6.7. ignore, consider statements.. 136

A.6.8. Start, End, StartEach and EndEach control statements 137

A.6.9. Productions .. 137

A.6.10. produce statement .. 139

A.6.11. Decomposition rules .. 139

A.6.12. Interpretation rules .. 140

A.6.13. Predefined functions and structures... 142

A.6.14. Predefined modules.. 143

A.7. OTHER INPUT FILES ... 148

A.7.1. Animation parameters file.. 148

A.7.2. Draw/view parameters file... 149

A.7.3. Environment parameters file.. 151

A.7.4. Miscellaneous input files.. 151

B. LISTINGS... 153

B.1. ITERATING L-SYSTEM STRING IN THE TRADITIONAL REPRESENTATION 153

B.2. ITERATING L-SYSTEM STRING IN THE NEW REPRESENTATION.......................... 154

B.3. PREDEFINED TYPES PROVIDED BY LPFG IN THE FILE LINTRFC.H 155

REFERENCES .. 157

ix

Table of figures
Figure 1 Branching structure generated by L-system in Listing 2... 7

Figure 2 Turtle orientation defined by vectors H L and U (pointing to the viewer) 8

Figure 3 Koch snowflake generated by the L-system in Listing 3 .. 8

Figure 4 Isosceles right triangle ... 9

Figure 5 Matching right context, lateral branches are implicitly ignored............................ 13

Figure 6 Matching right context, remainder of lateral branch is implicitly ignored............ 13

Figure 7 Problem with multiple lateral branches when matching the right context 13

Figure 8 Explicit enumeration of lateral branches in the right context................................ 14

Figure 9 Matching left context, beginning of the branch implicitly ignored 14

Figure 10 Matching left context, lateral branches implicitly ignored.................................. 14

Figure 11 Propagation of acropetal signal � output from L-system in Listing 4 15

Figure 12 Matching right context with ignored modules... 16

Figure 13 Matching left context with ignored modules ... 17

Figure 14 Sample image generated by the L-system from Listing 7 20

Figure 15 Image generated by the L-system presented in Listing 8 23

Figure 16 Developmental sequence of a model with interpretation rules............................ 24

Figure 17 Developmental sequence of a model with decomposition rules.......................... 24

Figure 18 Structure generated by L-system in Listing 9.. 25

Figure 19 Decomposition rule applied recursively .. 27

Figure 20 Image generated by the L-system from Listing 11 for two values of SENS....... 30

Figure 21 Conceptual model of interaction between plant and environment (after

[Mec1997])... 31

Figure 22 Phyllotactic pattern as generated by the L-system from Listing 12 33

Figure 23 Results of the simulation from Listing 12 ... 34

Figure 24 A sample branching structure .. 42

Figure 25 Information transfer in a branching structure from the root to the tips 43

Figure 26 Information transfer in a branching structure from the tips to the root 44

x

Figure 27 Sample branching structure ... 46

Figure 28 Left context, right context and new left context .. 48

Figure 29 Left context, right context and new right context.. 49

Figure 30 Apex producing internodes and new apices .. 59

Figure 31 Parser as a module of cpfg ... 65

Figure 32 Schematics of the new design.. 66

Figure 33 From L+C to compiled executable file, phases of translation............................. 67

Figure 34 Traditional memory representation of L-system string 68

Figure 35 Algorithms to find the next and previous module for the traditional string

representation ... 69

Figure 36 New L-system string memory representation, attempt one 69

Figure 37 New L-system string memory representation.. 70

Figure 38 Relation between the components: code in L+C, L-system generator and

compiled DLL. ... 72

Figure 39 Sample source code in L+C, L+C to C++ translation units 73

Figure 40 CallerData makes it possible to access a production�s actual parameters 84

Figure 41 Mapping parameters locations into a CallerData structure........................... 84

Figure 42 Modules generated by productions are first stored in the Successor storage, then

transferred to the new string... 85

Figure 43 L+C to C++ translator, translation units.. 89

Figure 44 Image generated by the model in Listing 37 ... 96

Figure 45 Two images generated by the L-system from Listing 38 for two values of σ0 . 101

Figure 46 L-studio project tabs .. 103

Figure 47 Animate parameters editor... 104

Figure 48 Screenshot of the colormap editor ... 105

Figure 49 Screenshot of the material editor ... 106

Figure 50 Screenshot of the surface editor... 107

Figure 51 Screenshot of the contour editor .. 108

Figure 52 Edit-reread-regenerate scheme used when modeling .. 109

xi

Figure 53 Model of Lychnis coronaria (from [Pru1990]) generated for three different

branching angles: 10°, 30° and 50°.. 110

Figure 54 Model controlled by numerical parameters. The parameters are controlled by a

panel. .. 111

Figure 55 Communication flow involving the panel manager (after [Mer1991]) 112

Figure 56 Visual design commands in the panel editor ... 112

Figure 57 Functions used in the model in Listing 39... 115

Figure 58 Model controlled by function parameters. The functions are controlled by the

function editor .. 116

Figure 59 Models of Pellaea falcata and Indian paintbrush created using graphically

defined functions (from [Pru2001]) ... 117

Figure 60 Information flow between cpfg and ilsa .. 117

Figure 61 Module X inserted interactively .. 118

Figure 62 Lpfg menu .. 130

xii

Table of listings
Listing 1 Development of Anabaena catenula filament. ... 6

Listing 2 L-system generating simple branching structure .. 7

Listing 3 L-system generating Koch snowflake .. 8

Listing 4 Acropetal signal propagation implemented using context-sensitive L-system 15

Listing 5 Acropetal signal propagation implemented using the ignore statement. 16

Listing 6 Acropetal signal propagation implemented using the consider statement............ 16

Listing 7 L-system with control statements and predefined functions 19

Listing 8 L-system from Listing 2 with interpretation rules .. 23

Listing 9 L-system with decomposition and interpretation rules... 25

Listing 10 Decomposition rule used to generate a sequence of modules 27

Listing 11 L-system generating a model of Horneopython ligneri...................................... 29

Listing 12 Phyllotactic pattern and canalization of number of ray florets 32

Listing 13 A sample parametric production... 35

Listing 14 A sample production with many parameters .. 36

Listing 15 Production from Listing 14 with only four parameters in module D 37

Listing 16 Production from Listing 14 with parameters packed into structures 37

Listing 17 Information transfer in linear structure using context-sensitive productions 39

Listing 18 Fast information transfer in a linear structure, using a global variable 40

Listing 19 Fast information transfer applied to a developmental signal in a branching

structure.. 45

Listing 20 Fast information transfer in a branching structure using a global stack 47

Listing 21 Developmental labelling scheme implemented using fast information transfer

with new context .. 50

Listing 22 Functional labelling scheme implemented using the new context 50

Listing 23 Examples of module declarations ... 53

Listing 24 Example of production predecessor in L+C ... 55

Listing 25 Sample production predecessors in L+C .. 56

xiii

Listing 26 L-system generating simple branching structure .. 58

Listing 27 Production with multiple successors... 59

Listing 28 L-system based on Listing 26 using decomposition rules 60

Listing 29 L-system based on Listing 26 with interpretation rules...................................... 62

Listing 30 L-system based on Listing 26 using control statements and file I/O.................. 63

Listing 31 Function executing L+C program... 74

Listing 32 Array moduleData is generated based on the module declarations 77

Listing 33 Function Derive .. 77

Listing 34 Sample production with multiple successors.. 81

Listing 35 translation of a production predecessor into a function prototype 82

Listing 36 Sample production caller .. 83

Listing 37 Model of Anabaena in L+C .. 93

Listing 38 Borchert-Honda model implemented in L+C using fast information transfer.... 98

Listing 39 Model of a simple branching structure with lateral branches length and

branching angle controlled by functions. Image generated by the L-system is on the

right. ... 114

Listing 40 L-system implementing simple interactive pruning ... 118

Listing 41 Example of a complex successor written in cpfg.. 123

Listing 42 Equivalent of code from Listing 41 rewritten in L+C 123

Listing 43 A typical L-system in L+C ... 132

Listing 44 Function FindNextModule � traditional string representation 153

Listing 45 Function FindPreviousModule � traditional string representation 153

Listing 46 Function FindNextModule � new string representation 154

Listing 47 Function FindPreviousModule � new string representation 154

1

1. Introduction

1.1. Motivation and scope of work

Since their introduction in 1968 by Aristid Lindenmayer [Lin1968], L-systems have

evolved from a mathematical formalism into a modeling language. Initially L-systems were

designed to express development of multi-cellular organisms at the level of individual cells.

One of the early applications was a simple model of a bacteria filament [Lin1968]. In

addition to linear structures, branching structures could be modeled using bracketed string

notation [Lin1968].

As L-systems became more expressive the models became more complex. The growing

complexity of the models put new demands on the expressive power of the L-systems. This

reciprocal interaction has been developing and L-systems have become rich in elements

that make it possible to develop models controlled by lineage [Lin1968, Lin1971], signals

[Lin1968], allocation of resources [Pru1997a] and interaction with the environment

[Mec1996]. The ability to integrate both plant growth and physiological processes allows

simulation of plant development with accuracy and fidelity to mechanisms that can be

observed in nature [Pru1990, Mec1996] and has led to scientifically valuable models which

Room et al. have called virtual plants [Roo1996].

The main motivation for my research is a need for a formalism that will enable

expression of more complex models, which can capture more phenomena, include

additional elements and consider new factors to produce scientifically valid and interesting

results. The experience gathered by scientists who model of plants shows that there is a

need to define a common modeling platform. This platform will serve as a basis for further

development of the modeling methodology. The research presented in my thesis is designed

to address the L-systems part of this modeling platform.

L-systems as a modeling formalism can capture a class of dynamic systems with

dynamic structures [Gia1997]. A dynamic system means that the quantitative information

associated with the model, or elements of the model can change over time. For example in a

plant structure leaves change in size and area, branches grow longer etc. In addition, the

2

structure itself can change: apices produce new branches; some branches may die and fall

off.

The focus of my research was to extend the framework of L-systems to address the

growing needs of the ever more complex functional-structural models. To address these

needs I have extended some concepts present in L-systems as a formalism, added concepts

known from other programming languages, and introduced new ones, not found in other

formalisms.

Specifically the notion of parametric L-systems has been extended. Originally

parametric L-systems allowed any number of numerical parameters to be associated with

modules. This has been extended to allow parameters of any type. In particular, a parameter

can be a user-defined structure. To address the need to express complex algorithms and

calculations I have added user-defined functions, a concept common in other programming-

languages.

An extension that is not found in other formalisms is the concept of fast information

transfer. L-systems have supported information transfer using context-sensitive

productions. This is a universal method for transferring any type of information: the

propagation of hormones, nutrients and other signals through the plant. An inherent feature

of this method is that the number of simulation steps required to transfer information from

point A to point B is proportional to the distance between these points measured as the

number of modules between them. This feature becomes a limitation when the speed of

signal propagation is high compared to the growth rate of the structure (for example

propagation of forces and torques in biomechanical models). Fast information transfer

removes this limitation making it possible to transfer signals throughout the whole structure

represented by the L-system string in one simulation step.

The number and weight of extensions postulated in my research made it justified to

design a completely new modeling language. The new language would combine elements

from L-systems and an imperative programming language. For the elements known from

general-purpose programming, such as functions and user-defined data types (structures),

the syntax from C++ was chosen. Rather than extending a modeling language with more

programming elements, my approach is to add L-system elements to C++. Prusinkiewicz

3

and Hanan [Pru1992] presented a similar idea for adding L-systems to C. Their work was

limited to context-free L-systems, without parameters.

By adding elements of L-systems to C++ the whole power of C++ can be used to

describe algorithms and data structures required for a model. Yet the introduction of L-

system constructs changes the structure of the language: the models are declarative in

nature and consist of productions. Therefore the language has been renamed L+C.

In addition to the language, I have designed and implemented the modeling program

lpfg. It executes models specified in the L+C modeling language. The results can be

rendered as a three-dimensional visualization of the model or stored in an external file for

further analysis. I have also created a comprehensive modeling system, L-studio. L-studio

was inspired by the vlab modeling environment originally created by Mercer [Mer1990,

Mer1991] and then extended by Federl [Fed1999]. L-studio combines the functionality of

several programs to create and render complex models, and is compatible with vlab. The

system has proved to be useful for biologists (it is currently being used in approximately

100 locations worldwide).

1.2. Organization of the dissertation

This section outlines the organization of the thesis.

Chapter 2 presents the history of L-systems, including the main concepts, definitions and

applications that are essential to understanding my research. In chapter 3 the new concepts

that I have added to L-systems are presented. The new modeling language created to

include these concepts is presented in chapter 4. Chapter 5 is devoted to some

considerations on how to implement the language and internal representation of the L-

system string. Chapter 6 discusses the interface which is used to communicate between the

modeling program (lpfg) and the translated L+C model. Chapter 7 contains examples that

demonstrate the benefits of using L+C over traditional L-system language.

Chapter 8 describes the L-studio plant modeling environment which I have created in the

scope of my research. There were two principal reasons for creating this environment. First,

there were several ideas related to interactive and visual modeling techniques that could be

tested. In addition there was considerable interest in a system that would work in the MS

Windows environment coming from biologists who use L-system-based simulations as one

4

of their research tools. The description of L-studio emphasizes the interactive and visual

modeling concepts I have introduced or extended.

The conclusions, including a summary of contributions and issues for further research

are presented in chapter 9. Appendix A contains the user�s manual of lpfg modeling

program, based on L+C modeling language.

1.3. Document conventions

Source code listings are printed using fixed-width font.

5

2. Lindenmayer systems
Lindenmayer systems (or L-systems) are a mathematical formalism introduced by

Aristid Lindenmayer in 1968 [Lin1968] to model multi-cellular organisms. Ability to

express branching structures (with bracketed strings) made L-systems particularly useful in

modeling plants. The following sections describe the main concepts of L-systems.

2.1. D0L-systems

The simplest type of L-systems are D0L-systems: Deterministic, context-free (0), L-

systems. The formal definition of D0L-systems is given below (based on the definition

given in [Roz1980]):

• An alphabet is a finite set of letters denoted as V. The letters are also called

modules.

• A word is a sequence of letters over an alphabet. The set of all words over alphabet

V is denoted as *V .

• A production is a pair (a, u) denoted as ua → , where a is a letter and u is a word. a

is called predecessor and u is called successor.

• A D0L-system is a triplet PVG ,,ω= , where V is an alphabet, *V∈ω is a word

called the axiom, and P is a set of productions such that PpVa a ∈∃∈∀
1

: , where pa

denotes a production that has module a as its predecessor.

Production ua → is said to match module a. By convention it is assumed that if no

production is specified for a module a explicitly then the identity production)(aa → is

added implicitly. A production can also specify that the current module should be removed

from the string. This is expressed by specifying an asterisk (*) or ε (in formal notation) as

the successor.

The process of applying productions and creating a new string is called string rewriting.

Execution of an L-system consists of a series of string rewritings, which are then called

derivation steps. In L-system rewriting the productions are applied in parallel to all

6

modules in the string. The productions in L-systems are sometimes labelled (pn:) for

presentation or discussion purposes, but the labels do not appear in the actual code.

A classical example of a D0L-system describes the growth of the vegetative segment of

Anabaena catenula [DeK1987, Lin1971]. A vegetative segment consists of cells that can be

in one of two states � young (shorter) or ready to divide (longer). The cells also have two

possible polarities. The polarity specifies which of the daughter cells will be shorter. In the

following L-system (reproduced after [Pru1990]) the letters a and b specify the two states

and the subscripts l and r specify cell polarities.

Listing 1 Development of Anabaena catenula filament.

axiom: ar

p1: ar ! albr

p2: al ! blar

p3: br ! ar

p4: bl ! al

The developmental sequence determined by the L-system in Listing 1 begins with the

axiom ar, and produces a new word with each derivation step:

ar

albr

blarar

alalbralbr

blarblararblarar

2.2. Bracketed L-systems

To represent a branching structure using a string of letters (which by definition is a

linear structure), two reserved modules were introduced as a part of the original definition

of L-systems [Lin1968]. These modules are the left bracket ([) and the right bracket (]) and

they specify the beginning and the end of a branch, respectively.

The following L-system generates a simple branching structure (after [Pru1990], p. 25)

consisting of two types of modules: apices (A) and internodes (I):

7

Listing 2 L-system generating simple branching structure

axiom: A

A ! I[A][A]IA
I ! II

Figure 1 visualizes the structures generated by the L-system in Listing 2 with both

modules visualized as straight lines of unit length. Modules A (apex) are drawn in green, I

(internode) modules are drawn in black. Lateral branches are rotated relative to the parent

branch. The images are scaled to the same size to better visualize the growing complexity

of the structure.

Figure 1 Branching structure generated by L-system in Listing 2

2.3. Graphical representation of L-systems

The desire to represent plant structures graphically led to new interpretations of L-

systems. For example, the L-system in Listing 2 does not specify the directions or angles

between the parent branch and lateral branches. Yet branch orientation is a fundamental

feature of plants. In Lindenmayer�s early work [Lin1971], lateral branches were drawn as

alternately left and right. Hogeweg and Hesper [Hog1974] represented geometric aspects

(branching angles, length of branches) according to externally defined rules. This concept

was later extended to include 3D structures [Smi1984].

The most common interpretation used today is based on the LOGO-style turtle

[Abe1982], as introduced by Prusinkiewicz [Pru1986]. The main concept is that some

modules in the L-system string are interpreted as commands executed by a turtle. In 2D the

state of the turtle is characterized by its position and orientation. A vector called the

heading vector specifies the orientation. Basic commands executed by the turtle are:

8

• F � move forward one unit in the direction specified by the heading vector and draw

a line

• f � move forward one unit in the direction specified by the heading vector without

drawing a line

• + (plus), � (minus) rotate left, right around the position by a predefined angle.

To represent three-dimensional structures the state of the LOGO-style turtle has been

extended. In the 3D systems the orientation of the turtle is defined by three mutually

perpendicular vectors called heading, left and up.

L � left

H � heading

U � up

Figure 2 Turtle orientation defined by vectors H L and U (pointing to the viewer)

The L-system presented below (after [Pru1990]) generates the Koch snowflake using

basic turtle commands. The rotation angle associated with the rotate commands + and � is

specified externally to be 60 degrees.

Listing 3 L-system generating Koch snowflake

Axiom: F--F--F
F ! F+F--F+F

Figure 3 Koch snowflake generated by the L-system in Listing 3

Additional commands were also introduced [Pru1986] to make it possible to generate

three-dimensional structures. These commands are

• rotation around the left vector (^ � pitch up, & � pitch down)

• rotation around the heading vector (\ � roll left, / � roll right).

9

When drawing branching structures specified by bracketed L-systems, the modules [and

] are interpreted as follows:

•] � the turtle state is pushed on a stack

• [� the turtle state is popped from the stack.

In addition to the position and orientation the turtle state can also include drawing

parameters, such as drawing colour, line width etc.

2.4. Parametric L-systems

D0L-systems, as presented in the previous sections, can represent qualitative

information in which each type of module represents a different type of components in the

model, such as a cells or organ. Some quantitative information (such as the length of

internodes or the magnitude of angles of rotation) can also be specified by the D0L

formalism using multiple modules to express different lengths of lines or rotation angles.

For example in Listing 3 the two modules + or � are used to represent a rotation of 120

degrees left and right respectively.

However it is impossible to express such a simple figure as an isosceles right triangle

where the line lengths do not have a common denominator. This limitation has been

addressed by parametric L-systems [Pru1990, Han1992].

1

1 2

Figure 4 Isosceles right triangle

The essence of parametric L-systems is that each module consists of a symbol together

with associated numerical parameters. In the productions parameter values are referred to

using formal parameters. Additionally, formal parameters can be used in arithmetic

expressions. The expressions can be used to calculate new values of parameters in the

production�s successors.

The formal definition of parametric D0L-systems is as follows (after [Pru1990]):

10

• V is the alphabet.

• ∑ is the set of formal parameters.

• ()∑C is the set of all logical expressions with parameters from ∑.

• ()∑E is the set of all arithmetic expressions with parameters from ∑.

• ()+ℜ×∈ *Vω is a nonempty parametric word called the axiom.

• P is a finite set of ordered productions of the form pred: condopt ! succ such that

*∑×∈ Vpred ,)(∑∈ Ccond and ()()**∑×∈ EVsucc . The components of

productions are called predecessor, condition and successor respectively. If the

condition cond is omitted in a production it is assumed to evaluate to true.

In the case of parametric L-systems, the process of matching productions during string

rewriting is more complex than for D0L-systems. For a production to match a module in

the string, the following conditions must be met:

1) The module�s letter must match the letter in the predecessor,

2) The number of actual parameters associated with the module and the number of

formal parameters in the predecessor must be the same,

3) The condition cond must evaluate to true.

For example, production

 A(t) : t>5 ! B(t+1)A(t/2)

can be applied to module A(6) and will produce parametric word consisting of two

modules: B(7) A(3).

2.5. Context-sensitive L-systems

In context-free L-systems productions are applied regardless of the context in which the

predecessor module appears. Context-sensitive L-systems make it possible to specify what

modules must be in the neighbourhood of the modules being replaced for the production to

be applied. Context-sensitive L-systems are necessary to express information flow in the

modelled structure. For example the transfer of nutrients or hormones throughout a plant

11

structure can be modelled using context-sensitive L-systems [Lin1968]. Context-sensitive

productions have the form:

lc < pred > rc : cond ! successor

The symbols < and > separate the three components of the predecessor: the left context

(lc), the strict predecessor (pred), and the right context (rc).

The process of matching productions in context-sensitive L-systems is governed by a set

of rules that are discussed in the following section.

2.5.1. How the productions are matched

When rewriting the string it is necessary to determine which production must be applied

to each module in the string. The process of determining the applicable production is called

production matching. For every module in the string, productions are checked for

matching. The productions are checked in the order in which they are specified in the L-

system.

For a production to match, all three components of the predecessor (left context, strict

predecessor and right context) must match. The rules for matching each of these

components are different. This is because the L-system string is a means of representing

branching structures and symmetric operations on the string do not (in general) correspond

to symmetric operations on the branching structure. No good definition of context in

branching structure can be found in the L-systems literature. One of partial definition is the

work by Prusinkiewicz et al. [Pru1988].

This section contains a detailed explanation of rules that control the process of

production matching. Good understanding of these rules is necessary for proper

understanding of the concept of fast information transfer in branching structures (described

in 3.3.2).

When the strict predecessor is compared with the contents of the string in the current

position in order for it to match the modules in the strict predecessor have to match exactly

the modules in the string.

12

When matching the right context and a module in the context is not the same as module

in the string the following rules apply:

• If a module in the string is [and the module expected is not [then the branch is

skipped. This rule reflects the fact that modules may be topologically adjacent, even

though in the string representation of the structure the two modules may be

separated by modules representing the lateral branch B (see Figure 5).

• When a branch in the right context ends (with a right bracket) then the rest of the

branch in the string is ignored by skipping to the first unmatched]. This rule also

reflects the topology of the branching structure, not its string representation. For

example in Figure 6, module C is closer to A than D.

• If multiple lateral branches start at a given branching point, then the predecessor in

Figure 6 would check the first branch (see Figure 7). To skip a branch it is

necessary to specify explicitly which branch at the branching point should be tested

(see Figure 8). This notation is a simple consequence of the rule presented in Figure

6. In the current L-system notation there is no shortcut to specify the second, third

etc. lateral branch in a branching point without explicitly including pairs [] in the

production predecessor. There is also no way to specify �any of the lateral

branches�.

13

 Skipped
branch

Right
context

B
C

A
Current position

String: A [B] C

A > C

Skipped branch
Strict
predecessor

Strict
predecessor

Right
context

Figure 5 Matching right context, lateral branches are implicitly ignored

 Ignored part
of the branch

Right
context

D

Rest of the branch
ignored

B
C

A
Current position

String: A [B D] C

A > [B] C

Figure 6 Matching right context, remainder of lateral branch is implicitly ignored

No match

C D

A
Current position

String: A [C] [B] D

A > [B] D

B

Figure 7 Problem with multiple lateral branches when matching the right context

14

Branch explicitly ignored

C D

A
Current position

String: A [C] [B] D

A > [] [B] D

B

Figure 8 Explicit enumeration of lateral branches in the right context

When matching the left context the following rules apply:

• Module [is always skipped, since the preceding module will be topologically

adjacent (see Figure 9).

• If the module indicates the end of a branch then the entire branch is skipped (Figure

10).

C

B
AC < A

Ignored module

String: C [A] B

Current position

Left context

Figure 9 Matching left context, beginning of the branch implicitly ignored

C

B
A

C < B

Ignored branch

String: C [A] B

Current position

Left context

Ignored branch

Figure 10 Matching left context, lateral branches implicitly ignored

15

The rule illustrated in Figure 9 is a pronounced manifestation of asymmetry in the left

context � right context relationship: module C is left context of both A and B. But C�s right

context is B (unless [] delimiters are used explicitly). The relation of the left context can be

thought of as the parent module: the module before (below) the branching point. It is then

natural to say that C is parent module for both A and B. The distinction between main

branches and lateral branches can appear to be an implementation dependent artefact, but it

actually can be biologically justified (see for example [Bor1984]).

2.5.2. Ignored and considered modules

The L-system presented below (Listing 4) describes the propagation of an acropetal

signal using a context-sensitive production. This signal can be, for example, a hormone. J

represents an internode where the hormone is present (red line), and I represents an

internode where it is not present (black line).

Listing 4 Acropetal signal propagation implemented using context-sensitive L-system

Axiom: I[+J][-J]J[+J][-J]J[+J][-J]J
p1: I < J ! I
p2: I+ < J ! I
p3: I- < J ! I

Figure 11 Propagation of acropetal signal � output from L-system in Listing 4

The L-system consists of three productions: p1 is responsible for transferring the signal

to the main branches; p2 and p3 are responsible for transferring the signal to the lateral

branches. They are necessary because every J is preceded by a + or a � (the modules that

specify rotation, see section 2.3) and the left context in p1 doesn�t match the sequence of

modules I[+J] or I[-J].

16

Productions p2 and p3 do not add any new information to the model. They have to be

present because of the geometric properties of the model. To be able to abstract from such

details, the notion of ignored modules was introduced. It makes it possible to specify a list

of modules that are ignored when checking for matching context so that Listing 4 can be

rewritten as follows:

Listing 5 Acropetal signal propagation implemented using the ignore statement.

ignore: +-
Axiom: I[+J][-J]J[+J][-J]J[+J][-J]J
I < J ! I

If the list of ignored modules is long it may be more practical to list only the relevant

modules that appear in the left or right context. This is done using the consider statement.

Consequently Listing 4 can be then rewritten as follows:

Listing 6 Acropetal signal propagation implemented using the consider statement

consider: I
Axiom: I[+J][-J]J[+J][-J]J[+J][-J]J
I < J ! I

In summary: the presence of ignored and considered modules adds two rules to the test

for matching context.

• When the right context is checked, modules that are not to be considered (those

listed after the ignore keyword or those not listed after the consider keyword) are

skipped (Figure 12).

• Similarly, when checking the left context, ignored modules are skipped (Figure 13).

ignore: X

 A > C

Ignored module

String: A X C

Current position

Figure 12 Matching right context with ignored modules

17

 ignore: X

C < A

Ignored module

String: C X A

Current position

Figure 13 Matching left context with ignored modules

2.6. L-systems with programming statements

As the models created using parametric L-systems became more complex, Hanan

[Han1992] extended L-systems to include some programming language constructs (see also

[Pru1992, Pru1996]).

Programming constructs include:

• Assignment of variables (local and global),

• Calls to predefined functions,

• Conditional statements (if � else),

• Loops.

Global variables can be used to store global information about the model e.g. the number

of leaves, flowers. Expressions used in parametric L-systems productions can be

complicated and they are often used in more than one module within one production.

Therefore, local temporary variables were introduced that could store a calculated value

that could be used throughout a production.

A(n) ! F[+A(n+1)][-A(n+1)] (1)

Hanan extended the cpfg language [Han1992] to include the following syntax for

productions:

lc < pred > rc : { α }opt cond { β }opt ! succ

18

where α and β are optional C-like compound statements, and cond is a logical expression.

During the string rewriting if the production predecessor (strict predecessor, left context

and right context) matches the current string position (see section 2.5.1) the statement α (if

present) is executed and cond evaluated. Thus, the production (1) can be rewritten as:

A(n) : { new_n = n+1; } 1 ! F[+A(new_n)][-A(new_n)] (2)

If cond evaluates to true (non-zero) value then β (if present) is executed and the

production applied (the successor added to the new string). But if cond evaluates to zero

then the production is not applied. In this case the next production declared is tested for

matching. This makes it possible to specify more than one production that has the same

predecessor but produces different modules depending on the value of cond. The condition

can depend on the global state of the model (global variables), local conditions (actual

parameters of modules in the predecessor) or both.

Other elements added to the cpfg language by Hanan [Han1992] are predefined

functions that include mathematical functions, pseudo-random number generators etc. They

are used in computations or in file and console I/O operations (results of simulations can be

stored in external files for further analysis using other programs or simply displayed in a

console).

In addition to productions, programming statements can be used in control statements.

Control statements are procedures, which are called during the execution of L-system

program. There are four control statements.

Start: { code } Executed at the beginning of the simulation

StartEach: { code } Executed before each derivation step

EndEach: { code } Executed after each derivation step

End: { code } Executed at the end of the simulation

All control statements are optional.

Listing 7 presents an L-system program that creates a simple branching structure (with

some randomness). The control statements are used to gather statistical data about the

19

model. The data are stored in an external file. Because the L-system source file is

preprocessed using a standard C preprocessor, #define is used to define constants.

Listing 7 L-system with control statements and predefined functions

#define STEPS 50
#define MATURE 1
#define dt 0.2

derivation length: STEPS

Start: {
fp = fopen("output.dat", "w");
db = 0;
step = 0;
}

StartEach: {
ap = 0;
step = step+1;
}

EndEach: {
if (ap>0)
 { fprintf(fp, "%.0f apices created in step %.0f\n", ap, step); }
}

End: {
fprintf(fp, "Total: %.0f dead buds\n", db);
fclose(fp);
}

Axiom: A(0)

p1: A(t) : t<MATURE ! A(t+dt)
p2: A(t) : ran(1)<0.8 { ap = ap+2; } ! F(0.2)[+A(0)][-A(0)]
p3: A(t) : 1 { db = db+1; } ! ,G(0.2);

p4: F(t) ! F(1.08*t)

20

Figure 14 Sample image generated by the L-system from Listing 7

There are three global variables declared in the Start statement: fp (file pointer), db

(dead buds counter) and step (step number). Before every derivation step global variable

ap (apex counter) is set to 0 and step is incremented.

Initially the model consists of a young apex A(0). Production p1 increases the age of the

apex until it reaches the mature state (condition t<MATURE). When the apex is mature

production p2 is applied with a 0.8 probability (condition ran(1)<0.8, where ran is a

pseudo-random number generator with uniform distribution). If applied, p2 produces an

internode (module F) and two lateral branches with young apices. It also increments the

global variable ap by two. This variable stores the number of apices produced in every

derivation step. If p2 is not executed then production p3 is applied. In that case the apex is

replaced with a dead bud drawn in an alternate colour1 and the global variable db is

incremented. Production p4 increases the internode length by a constant factor of 1.08. Thus

internodes created earlier will be longer than those created later.

A sample output generated by the L-system from Listing 7 is given below.
2 apices in step 6
4 apices in step 12
6 apices in step 18
8 apices in step 24
12 apices in step 30

1 In cpfg language modules , and ; change the current drawing colour.

21

22 apices in step 36
32 apices in step 42
46 apices in step 48
Total dead buds 21

2.7. Interpretation rules

When creating a plant model it is important to distinguish two elements in the process:

the structure of the plant model and its visualization. For example, during the development

and testing of a model, organs can be visualized simply: stems as straight lines, leaves as

polygons, etc. Once the model generates the correct structure and topology, the visual

aspect can be extended: lines can be replaced with cylinders, and polygons replaced with

3D surfaces (such as Beziér parametric surfaces). If these two aspects can be separated the

model is clearer and easier to maintain. This goal was achieved by introducing

homomorphisms for interpreting the string.

In formal language theory, a homomorphism defines a mapping from an alphabet V to

words in another alphabet Vh [Roz1980]. Formal definition of non-parametric L-systems

with homomorphisms is as follows (after [Pru1997]):

• V and Vh are two alphabets

• PVG ,,ω= is an L-system over alphabet V

• **: hVVh → is a homomorphism

• The ordered quintuplet hPVVH h ,,,, ω= is an L-system with a homomorphism

with the support G and homomorphism h.

Elements of h are called interpretation rules. Interpretation rules are applied only during

the interpretation of the string (for example when visualizing the model2). These rules are

not applied when deriving the string.

The syntax for interpretation rules is the same as productions, except that interpretation

rules are always context-free. During interpretation, modules in the string are replaced with

their image specified by the interpretation rules. By convention, if no interpretation rule is

specified for a module then its image is the module itself. Interpretation rules are applied

2 The string is also interpreted in other cases, for example see 2.9

22

recursively on the resulting words until the word contains only modules that are mapped

into themselves (terminal symbols) or until a predefined recursion depth is reached.

The interpretation rules are more closely related to Chomsky grammars than L-systems.

In Chomsky grammars the productions do not define development but the structure. Also,

productions in L-systems are applied in parallel, whereas productions in Chomsky

grammars are applied sequentially.

The following L-system is an extension of the program presented in Listing 2. It

includes interpretation rules that specify how to draw the organs. An apex is visualized as a

line and a circle3, both drawn using an alternative colour (orange). Internodes are visualized

as straight lines drawn using the default colour (green). In the cpfg language interpretation

rules are preceded by the keyword homomorphism.

3 In cpfg language @o draws a circle

23

Listing 8 L-system from Listing 2 with interpretation rules

#define STEPS 4
derivation length: STEPS
axiom: A
A ! I[+A][-A]IA
I ! II
homomorphism
A !!!! ;F@o
I !!!! F

Figure 15 Image generated by the L-system presented in Listing 8

Figure 16 shows the developmental sequence of a model with interpretation rules. When

the initial string µ0 is visualized, the interpretation rules (h) map this string into the string

v0, which contains the graphical information. After the visualization a derivation step is

performed (P) that applies the productions to the original string µ0 and produce string µ1.

This string is again mapped using the interpretation rules into the string v1 and so on.

24

 µ0
P
⇒ µ1

P
⇒ µ2

P
⇒ µ3

P
⇒ �

 ⇓h ⇓h ⇓h ⇓h
 v0 v1 v2 v3 ...

Figure 16 Developmental sequence of a model with interpretation rules.

Interpretation rules do not always have to be applied after every derivation step. In some

cases for example the simulation is performed but only the final string is visualized.

2.8. Decomposition rules

Decomposition rules are formally and syntactically related to interpretation rules.

Decomposition rules are context-free. They are also applied recursively. The two

fundamental differences between decomposition and interpretation rules are that the

successor of a decomposition rule is inserted into the string, and decomposition rules are

always applied after each derivation step. Whereas the interpretation rules express the idea

�module looks like this�, decomposition rules express the idea �module consists of the

following�.

 µ0
P
⇒ µ0�

D
⇒ µ1

P
⇒ µ 1�

D
⇒ µ2 �

 Derivation step Derivation step
Figure 17 Developmental sequence of a model with decomposition rules.

Figure 17 shows the developmental sequence of a model with decomposition rules. First

productions (P) are applied and the initial string µ0 is replaced with string µ0�. Then the

decomposition rules (D) are applied and produce string µ1. The string µ0� can be considered

an intermediate state and the application of the decomposition rules can be thought of as a

post-processing phase of the derivation step.

The L-system presented below implements a developmental model of a simple

branching structure.

25

Listing 9 L-system with decomposition and interpretation rules

#define max_t 2
#define dt 0.4

derivation length: 30

Axiom: A(0)

p1: A(t) --> A(t+dt)
p2: I(t) --> I(t+dt)

decomposition

d1: A(t) : t>max_t --> I(max_t)[+A(t-max_t)][-A(t-max_t)]

homomorphism

i1: A(t) --> ;(1)F(t)@o(0.8)
i2: I(t) --> ;(2)F(t)

Figure 18 Structure generated by L-system in Listing 9

The model consists of two types of modules: A (apex) and I (internode). Both module

types have one parameter, that represents the age. Initially the model consists of a young

26

apex A(0). The productions p1 and p2 advance time. The actual development is

implemented in the decomposition rule d1. This rule specifies that a mature apex produces

an internode and two lateral apices. This decomposition rule is very similar to the

production p1 from the model presented in Listing 7. The main difference is that the age of

the new apices (as well as the age of the iternode) is calculated as the difference between

the current age of the apex and maximum age. This expresses the idea: if there is an apex of

age t and t>max_t then this apex must have produced an internode and two apices t-

max_t time ago. So the internode and the apices are already that old. This idea can be also

expressed using a production. A production however will not produce correct results if t-

max_t>max_t. For example if max_t=1 then using a production string A(3) would be

replaced with I(2)[+A(2)][-A(2)]. This is wrong because an apex cannot be older than 1,

but because decomposition rules are applied recursively the string A(3) will be properly

decomposed into:

A(3)

I(2)[+A(2)][-A(2)]

I(1)[+A(1)][-A(1)] I(1)[+A(1)][-A(1)]

effectively producing:

I(2)[+I(1)[+A(1)][-A(1)]][-I(1)[+A(1)][-A(1)]]

The fact that decomposition rules are applied recursively makes it possible to create for

example a model of a tree, where every derivation step corresponds to a time step equal to

several years, while branches are produced every year.

Another application of decomposition rules is to generate a sequence of the same (or

similar) modules or groups of modules. For example the decomposition rule in Listing 10

generates n repetitions of the sequence F @o(0.1).

27

Listing 10 Decomposition rule used to generate a sequence of modules

axiom: A(4)
decomposition
A(n) : n>0 ! F @o(0.1) A(n-1)

After the string is initialized the module A is decomposed into pairs of modules F and @o

followed by an A. The number of repetitions is specified by the value of the actual

parameter of A in the axiom (see Figure 19).

 A(4)

F @o(0.1) A(3)

F @o(0.1) A(2)

F @o(0.1) A(1)

F @o(0.1) A(0)

Figure 19 Decomposition rule applied recursively

Effectively the module A(4) is replaced by

F @o(0.1) F @o(0.1) F @o(0.1) F @o(0.1) A(0)

Another decomposition rule can be added to remove the trailing module A(0):
A(n) : n==0 ! *

2.9. Environmentally sensitive L-systems and Open L-
systems

To model the impact of the environment on plants, and the mutual interaction between

plants and their environment, two extensions to L-systems were made: environmentally

sensitive L-systems and Open L-systems.

28

Environmentally sensitive L-systems [Pru1994] make it possible to pass information

from the environment to the model. Query modules make it possible to access geometric

information about the location and orientation of organs in the model. Query modules are

produced in the axiom or in the production successors. After each derivation step the actual

parameters of all query modules are set and then are used in the next derivation steps.

There are four main query modules: ?P(x, y, z), ?H(x, y, z), ?L(x, y, z) and

?U(x, y, z). They correspond to geometric properties of the LOGO-style turtle: position,

heading vector, left vector and up vector. When a query module is produced its parameters

are set to arbitrary values. After each derivation step the string is interpreted (without

drawing) and if a query module is found its actual parameters are set to the values

corresponding to the current properties of the turtle. This phase is called interpretation for

the environment.

Let us consider the following L-system:
Axiom: A
p1: A ! F ?P(0, 0, 0) F ?P(0, 0, 0)
p2: F > ?P(x,y,z) : 1

{ printf(“Line ends at (%f,%f,%f)\n”, x, y, z); } ! F

Initially the string contains a single module A. During the first derivation step the

contents of the string is replaced with the sequence of four modules:

F ?P(0, 0, 0) F ?P(0, 0, 0).

The query modules ?P have parameters set to 0 as specified in p1. Then the interpretation

for the environment follows. Let�s assume that the turtle�s initial position is (0,0,0) and the

heading vector is (0,1,0). The first module found in the string during the interpretation is F.

This module causes the turtle to move forward in the direction specified by its heading

vector (see 2.3), so its position becomes (0,1,0). The next module found in the string is ?P.

Its three parameters will now be set to the values that represent the turtle�s current position.

So the contents of the string is modified and contains:

F ?P(0, 1, 0) F ?P(0, 0, 0).

29

Then the third module in the string is interpreted (F). It causes the turtle to move forward

again. Now the turtle�s position is (0,2,0). So when the next module is found (?P) its

parameters are changed to contain (0,2,0). After the interpretation for the environment the

string contains:

F ?P(0, 1, 0) F ?P(0, 2, 0).

This ends the first derivation step. During the interpretation for the environment the

contents of the string was changed and the information from the environment acquired. In

the second derivation step the production p2 is applied twice. It doesn�t change the string,

but it prints two messages:

Line ends at (0,1,0)

Line ends at (0,2,0)

To illustrate the use of an environmentally-sensitive L-system a model4 of an extinct

plant Horneophyton ligneri is presented in Listing 11. The main feature captured in the

model is the visible preference of the plant�s branches to grow upwards rather than

horizontally, which results in the characteristic shape of the plant�s crown.

Listing 11 L-system generating a model of Horneopython ligneri

#define SENS 1.0 /* sensitivity to orientation */

derivation length: 7
Axiom: A(10)?H(0,0,0)

A(l)> ?H(x,y,z) ! F(l)T

[-(20)/(90)A(l*0.95*y^SENS)?H(0,0,0)]
[+(20)/(90)A(l*0.95*y^SENS)?H(0,0,0)]

T ! *

homomorphism

T ! [-(20)/(90)F(3)][+(20)/(90)F(3)]

4 Unpublished model by P. Prusinkiewicz

30

SENS=0

SENS=1

Figure 20 Image generated by the L-system from Listing 11 for two values of SENS

The presented model proposes a simple mechanism to capture this preference. It

assumes that the length of branches produced by an apex depend on the vertical component

of the apex�s heading vector. It is possible to test the sensitivity of apices to the heading

vector by manipulating parameter SENS that can accept any real-number values. The

length of new branches is multiplied by the expression ySENS, where y is the vertical

component of the apex orientation vector. If, for example, SENS is equal to 0 (no

sensitivity to the orientation), the generated structure presents no directional preference (see

Figure 20 left). When SENS is set to 1 (Figure 20 right) the branches that grow more

horizontally are visibly shorter than the ones growing more vertically.

To obtain the orientation vector of the apex, the query module ?H is used. This module

provides the model with the three components of the heading vector.

Where environmentally sensitive L-systems provide one-way communication from the

environment to the plant model, Open L-systems [Mec1996] make it possible to model bi-

directional interaction between plant and its environment. In this case, the task of modeling

the environment is entrusted to an external program (usually written in a general purpose

programming language such as C). The conceptual model behind open L-systems is

presented in Figure 21.

31

 Environment Plant

Reception

Internal processing

Response Reception

Internal processing

Response

Figure 21 Conceptual model of interaction between plant and environment (after [Mec1997])

The internal processing phase in the plant model corresponds to a derivation step (cf.

Figure 21). After each derivation step the string is scanned and communication modules

together with optional additional information (e.g. position and orientation of the module in

3D) are sent to environment. The environment receives this information (reception),

processes the data, and sends its response to the plant model. The plant model receives the

response and is ready for the next derivation step. This feedback loop is continued

throughout the simulation.

The exchange of information between the plant and its environment is done using

communication modules ?E. These modules are similar to the query symbols introduced in

environmentally sensitive L-systems. The main difference is that when communication

modules are generated their actual parameters are the input for the environment. This

information is passed to the environment, which determines its response and sends back

new values of parameters of the communication modules. These new values are then used

in the productions.

To demonstrate how Open L-systems work, I am presenting a real-life example that

demonstrates a phenomenon of canalization [Wad1942]: some organs (petals, primordia) in

capitula are more likely to occur in certain quantities than in others. The model5 presented

in Listing 12 generates a planar, spiral phyllotactic pattern using the algorithm proposed by

5 Unpublished model by P. Prusinkiewicz

32

Vogel in [Vog1979]. The algorithm places consecutive elements of the pattern (the

primordia) using the following formulas:

αϕ ∗= n ncr =

These formulas give the coordinates of pattern elements in the polar coordinates (r,φ). n

is the ordering number and c is a scaling factor. Numbering starts at the centre and proceeds

outward. Battjes and Prusinkiewicz [Bat1995] noticed that when generating phyllotactic

pattern that contains N primordia using the Vogel formula the number of outermost

primordia is usually a number from the Fibonacci series6.

The L-system in Listing 12 generates phyllotactic patterns and demonstrates the effect of

canalization of the number of organs.

Listing 12 Phyllotactic pattern and canalization of number of ray florets

Axiom: A(0)

C?E(x): x==0 --> @c
C?E(x): x==1 --> ;@c

decomposition

A(n) : n < NUMBER -->
 [+(n*137.5)f(0.5*n^0.5)C?E(n)]A(n+1)

6 Fibonacci series is defined as follows: a1=1, a2 =1, an=an-1+an-2 for n>2. The beginning of the series is: 1,

1, 2, 3, 5, 8, 13, 21, 34, 55�

33

Figure 22 Phyllotactic pattern as generated by the L-system from Listing 12

The whole pattern is generated at once in the decomposition rule. Primordia are

represented by modules C followed by a communication module ?E. Each consecutive

primordium has a parameter defining its vigour (n). The vigour is increasing as we move

outward.

To determine which primordia are outermost, an environmental program is used. There

are two pieces of information sent with every communication module ?E: the position of

the primordium (sent implicitly) and its vigour (n). The environment collects this

information and determines which organs are dominant. A dominant organ is one that

collides (occupies the same location in space as another organ) and has vigour that is

greater than the organ with which it collides. The environment sends this information back

by setting the value of the communication module ?E parameter to 0 if the organ is

dominated or to 1 if it is dominant. The dominating primordia are rendered using a different

colour (red).

The simulation presented in Listing 12 was executed for the value of NUMBER in the

range from 2 to 500. The results are shown on the chart on Figure 23. It can be seen that

34

most of the time the number of dominating primordia is a number from the Fibonacci

series. These values are marked on the chart with the thick horizontal lines.

0

10

20

30

40

50

60

2 27 52 77 102 127 152 177 202 227 252 277 302 327 352 377 402 427 452 477

No. of primordia

N
o.

 o
f r

ay
 fl

or
et

s

Figure 23 Results of the simulation from Listing 12

2.10. Summary

This chapter presented an overview of L-systems. It presents the main concepts that

were incorporated into L-systems and turned a mathematical formalism into a powerful

plant modeling language. All the concepts and the features presented in this chapter have

been implemented in a plant modeling program cpfg [Mec1998, Pru1999]. This overview is

intended to prepare the reader for the next chapter, where I present new concepts and

features I have added to L-systems.

35

3. New Concepts and Features in L-systems
This chapter presents new concepts and features I have added to L-systems. Sections 3.1

and 3.2 describe why it is useful to extend parametric L-systems with user-defined data

types, and user-definable functions, and how these extensions can be incorporated into the

L-system formalism. In section 3.3 I present further extensions: control of derivation

direction, fast information transfer and a modification of the notion of context: the new

context.

3.1. User-defined data types

The introduction of parametric L-systems [Pru1990, Han1992] made it possible to

include into the models quantitative information that can be expressed by real numbers.

Examples of such information are:

• Geometric properties (length of an internode, diameter of a branch),

• Biologically relevant information (concentration of hormones, amount of nutrients

produced/consumed),

• Biomechanical information (forces, torques, deformations),

For example, let us consider the production:

Listing 13 A sample parametric production

A(x,y) ! B(x+y) C(x-y)

In this production a module of type A with two numerical parameters (x and y) is

replaced by two modules, B and C, which have one parameter each. The values of the

parameters associated with the newly created modules B and C are expressed using standard

arithmetic notation. Specifically, the value of the parameter of module B equals the sum of

parameters x and y of module A, and the parameter of C equals the difference, x-y.

Parametric L-systems made it possible to implement new classes of models. A module

can have any number of parameters. However, n practice, if the number of parameters

36

associated with a module becomes too large it is very difficult to develop and maintain the

model. For example:

Listing 14 A sample production with many parameters

A(xl1, xl2, xl3, xl4, xl5)
< B(x1, x2, x3, x4, x5) >
C(xr1, xr2, xr3, xr4, xr5)
! D(x1, x2, x3, x4, x5+1)

Such a complex production is difficult to read and comprehend, although the concept is

fairly straightforward: if a module B with five parameters has module A with five

parameters as its left context and module C with five parameters as its right context, it is to

be replaced with module D with five parameters. The values of the D�s parameters should

be the same as those of B�s except that the last one that should be increased by 1.

According to the definition of parametric L-systems it is necessary to list all the formal

parameters of each module involved in a production: both in the successor and in the

predecessor. There are two main reasons for this:

• parameter passing is based on the position of the parameter, not its name,

• the modules are distinguished by the number of parameters, e.g. two modules

labelled with the same letter but with a different number of parameters are

considered to be two different modules. This is similar to the concept of overloaded

functions [Str1991].

Although sometimes convenient, this formulation may also lead to bugs that are very

difficult to find and fix. For example, it would be very easy to miss one of the parameters in

a complex production such as Listing 15:

37

Listing 15 Production from Listing 14 with only four parameters in module D

A(xl1, xl2, xl3, xl4, xl5)
< B(x1, x2, x3, x4, x5) >
C(xr1, xr2, xr3, xr4, xr5)
! D(x1, x2, x3, x5+1)

From the syntactical point of view the production would still be correct, therefore the

parser would have no reason to indicate an error. But as a result every time the production

in Listing 15 is applied, for example, it will produce a module D with four instead of five

parameters. Consequently all the productions that have a module D with five parameters in

their predecessors (whether in the strict predecessor or in the context) will never apply.

The solution proposed in this research is to allow the user to define compound data

types, in particular structures. Using the syntax known from the C++ programming

language the data type associated with modules in Listing 14 can be written as:
struct Data
{ float x1, x2, x3, x4, x5 };

The Listing 14 can then be expressed as follows:

Listing 16 Production from Listing 14 with parameters packed into structures

A(dl) < B(d) > C(dr) : { d.x5 += 1; } ! D(d)

This production specification is significantly clearer than the previous one. It is

important to notice that the type of parameters is not specified in productions. Looking at

Listing 16 there is no way to say that dl, d and dr are of type Data. To avoid this kind of

ambiguity the modules have to be declared before they can be used in productions (see 4.2).

3.2. Functions

As models developed using L-systems require more and more complex calculations the

need for user-defined functions becomes apparent. In general the same reasons apply as in

any other programming language.

38

• Functions encapsulate calculations. When a function is defined the calculations are

separated from the rest of the program. At the same time the complexity of the

calculations does not obstruct the main code.

• Functions are reusable: some formulas (or algorithms) are used in more than one

place in a model. A simple call to the function can be used rather than repeating the

details of the algorithm each time.

 Well-designed functions have meaningful names and good parameters that can give

information about what the function actually does and what is the meaning of the

parameters. When an algorithm is included in the main code it is necessary to look

at the implementation to find out what it does. By using a function, a person reading

the model can understand what the algorithm does, without having to know how it

does it.

• Functions can be much more expressive than arithmetic formulas. Some languages

that do not support functions include simple macros (in the C preprocessor sense)

for representing calculations7. For example:

 #define VectorLength(x, y, z) sqrt(x*x+y*y+z*z)

 However no loops or conditional statements can be used in macros.

• Functions can be combined into libraries: Some functions are used in different

models. For example functions that calculate the dot product of vectors and the

length of vectors are general in nature and are used in different models. Instead of

rewriting them one can group such functions into a library that can be linked to

different models.

The calculations of L-systems do not require any special syntax. It is therefore

reasonable to assume that the syntax from any general-purpose language is acceptable.

3.3. Fast information transfer

The importance of information transfer in biological models cannot be overstated. For

example, information transfer (or signal propagation) in L-system models is used to model

7 C preprocessor is used for example by rayshade. A mechanism similar to C preprocessor is also used in

POV-ray.

39

the transport of substances in the plant, such as hormones, nutrients. It is also used for

collecting information about the structure, such as number of apices supported by a given

branch, and biomechanical information such as the: sum of forces, momentums, and

torques acting on a branch. Information can be transferred using context-sensitive

productions but this mechanism may not be fast enough in some applications. In the

following sections I present the traditional approach to the problem and then introduce a

new method, which I call fast information transfer.

3.3.1. Information transfer in linear structures

This section discusses the problem of information transfer in linear structures. First the

traditional approach using context-sensitive productions is presented in 3.3.1.1. Then the

new method using fast information transfer is shown in 3.3.1.2.

3.3.1.1. Traditional approach

Context-sensitive L-systems as introduced by Lindenmayer [Lin1968] have been a

natural choice for expressing information transfer. For example the L-system in Listing 17

moves a signal from left to right through the series of A modules, counting the number of

A�s.

Listing 17 Information transfer in linear structure using context-sensitive productions

axiom: S(0) AAAAAAAA
S(n) < A ! A S(n+1)
S(n) > A ! ε
S(n) ! R(n)

S has one parameter, which represents the number of A�s counted so far. In the axiom

this value is set to 0. After the first derivation step module S will move past the leftmost A

and the value of its parameter will be 1:

AS(1) AAAAAAA

After the next derivation step S will move past the second A and the value of its

parameter will increment:

40

AAS(2) AAAAAA

Eventually after eight steps module S will reach the end and will be replaced with

module R representing the final result.

AAAAAAAA R(8)

It takes N derivation steps to transfer the signal (the counter module S) from one end of

the string to the other, where N is the number of A�s. Because the time required to perform a

single derivation step is also proportional to N, this method of transferring information is

O(N2).

3.3.1.2. Fast information transfer

According to the original formulation of L-systems the modules in the string are

replaced with their successors simultaneously. Nevertheless, in practice the process of

derivation is usually performed sequentially. The original string is scanned, module by

module, and as the productions are applied the new string is built. If the user knows that the

process of derivation is performed in a given direction (for example from left to right) it is

possible to rewrite Listing 17 as follows:

Listing 18 Fast information transfer in a linear structure, using a global variable

n = 0;
axiom: AAAAAAAA
p1: A > A : { n++; } ! A
p2: A : { n++; } ! A R(n)

In a single derivation step, the first production replaces each module A that has another

module A to the right with itself, while the second production handles the end case. Both

productions increment n as each A is replaced. The table below shows the execution of a

single derivation step. The first column shows the contents of the original string and the

current module is shown in boldface.

41

Original string Production applied n Resulting string

AAAAAAAA p1 1 A

AAAAAAAA p1 2 AA

AAAAAAAA p1 3 AAA

AAAAAAAA p1 4 AAAA

AAAAAAAA p1 5 AAAAA

AAAAAAAA p1 6 AAAAAA

AAAAAAAA p1 7 AAAAAAA

AAAAAAAA p2 8 AAAAAAAA R(8)

In this way the signal propagates through the string in a single derivation step and the

string is only scanned once. Since the time required to perform a derivation step is

proportional to the number of modules in the string, this method is O(N).

If a signal needs to be propagated from right to left, the analogous method can be

applied as long as the derivation can be performed from right to left. So here I am

introducing the term derivation direction. I assume that the process of string rewriting is

done sequentially. The derivation direction specifies whether during rewriting the string is

scanned from left to right (forward) or from right to left (backward).

The information propagation presented in this section is an example of using the fast

information transfer in a linear structure. The only overhead in this method compared to the

traditional method is the need for a global variable (n). To use the fast information transfer

method, the derivation direction must be controlled by the user.

3.3.2. Information transfer in branching structures

Examples from the previous sections can be extended to branching structures where it is

often necessary to count the branching order to determine features such as the age of a

branch or its distance from the base. Berntson [Ber1997] presented a number of topological

ordering schemes, which can be divided into two broad categories: (developmental)

centrifugal and (functional) centripetal.

When labelling segments according to a developmental scheme, the process starts at the

base of the system and orders are assigned in increasing magnitude away from the base.

The name developmental reflects the direction of growth of the branching (or root) system.

42

When a functional scheme is used, the process starts at the tips of the branches (or root

tips) and orders of increasing magnitude are assigned toward the base. This scheme reflects

the distance (especially topological distance) to the base and is usually correlated with age

of the organ.

Two different labelling schemes will be applied on simple branching structures. One of

the schemes requires a signal to be propagated from tips of branches to the root and the

other requires the signal to go from the base of the structure to the tips. Both labeling

schemes will be first implemented using context-sensitive L-systems and then using fast

information transfer.

Here is a sample branching structure:

a
b

A

B

C

D

E

c
e

d

Figure 24 A sample branching structure

The structure in the Figure 24 corresponds to the following string:
I[I[IAe]IAd]I[IAc]I[IAb]IAa

Modules I represent internodes (lines). Modules A represent apices (circles). The indices

associated with modules of type A have been added only to help identify the modules on the

diagram and those in the string. Branching points are visualized as diamonds and are

labelled with capital letters. Internodes that are lateral to their parent branch are thinner

than main branches. For example the internode between the branching points D and B is a

main branch, whereas the internode from B to the apex c is lateral. On the other hand

internode D C is lateral to its parent (E D), but the internode from C to apex d is the main

43

branch for D C. The distinction between the main and lateral branches will become relevant

when implementing developmental labelling scheme in the section 3.3.2.2.

3.3.2.1. Traditional approach

Developmental labelling scheme

In the case of developmental labelling schemes the signal needs to be propagated from

the root to the tips. The root as the oldest part of the plant has number 1. All child branches

(main or lateral) have numbers based on the label of their parent incremented by one.

The L-system that performs the labelling contains two productions:

 Axiom: I[I[IAe]IAd]I[IAc]I[IAb]IAa

p1: I(parent)< I(n) ! I(parent+1)

p2: I(n) ! I(1)

And this is how it proceeds:

1

1

1

1

1
1

1

1

1

(a)

a

b

A

c

d

e

B

C

E

D

2

2

2

2

2
2

2

2

1

(b)

a

b

A

c
e

dB

C

D

E

3

3

3

3

3
3

2

2

1

(c)

a

b

A

c
e

dB

C

D

E

3

3

3

3

4
4

2

1

(d)

a

b

A

c
e

dB

C

2 D

E

Figure 25 Information transfer in a branching structure from the root to the tips

Red lines represent the internodes, which contain updated information. The number of

steps required to propagate the information is equal to the length of the longest branch.

Functional labelling scheme

This labelling scheme can be used to calculate the number of apices supported directly

or indirectly by every internode. Every module representing an internode I will have a

44

parameter for storing this information. Using context sensitive L-systems the solution can

be described as follows:

1) The initial value of the internode�s parameter is equal to 0 for all modules I.

2) Where internodes directly support an apex the value of the parameter is set to 1.

3) For all other internodes the parameter is calculated by adding the parameters from

the internodes to their right

p1: I(n) > A ! I(1)
p2: I(n) > [I(n1)] I(n2) ! I(n1+n2)

If the structure contains any sequences of two consecutive internodes without a

branching point an additional production is required:

p3: I(n) > I(n1) ! I(n1)

As the productions are applied in each derivation step the information about the number

of apices supported propagates downwards until it reaches the base:

1

0

1

1
1

0

0

0

(a)

a

b

A

c
e

d

1 C

B

D

E

1

1

2

1

1
1

2

1

0

(b)

a

b

A

e

dB

C

D

E

c

1

1

2

1

1
1

2

3

3

(c)

a

b

A

c
e

dB

C

D

E

1

1

2

1

1
1

2

3

5

(d)

a

b

A

c
e

dB

C

D

E

Figure 26 Information transfer in a branching structure from the tips to the root

Figure 26 shows how the information propagates. The red lines indicate internodes to

which the information has been propagated. The numbers indicate the actual values of

parameters of I.

In the case of asymmetric branching structures (as the one presented in this example) the

information may not come simultaneously to branching points. For example in Figure 26

45

(a) the information has reached point B only from c but not from A. In (b) the information

has reached the point B but D is still waiting, etc.

It is imperative to be able to determine whether information has reached a certain point

and yet this is a non-trivial task. For example, checking if the value is non-zero can be

misleading (e.g. the parameter of internode DB in figure (b) or the parameter of internode ED

in figure (c) are non-zero but do not contain the correct values). In practice it is necessary to

use an additional parameter (flag) to indicate if the information has reached the given point.

The number of steps required to propagate a signal in a branching structure is equal to

the length of the longest branch (main or lateral).

3.3.2.2. Fast information transfer with a stack

In the case of a branching structure, a single variable is usually not enough to apply fast

information transfer. Instead a stack is required. It is assumed that there is a data structure

theStack, which implements a stack of integers. theStack implements three methods:

void Push(int) and int Pop() (removes the top element from the stack) and int Top()

(returns the value of the top element without removing it).

Developmental labelling scheme

To propagate a developmental signal in a branching structure it is necessary to be able to

distinguish between main and lateral branches. The derivation must be performed forward.

In the following L-system the second parameter of I indicates main and lateral internodes.

It is true (1) for the main internodes and false (0) for the lateral ones:

Listing 19 Fast information transfer applied to a developmental signal in a branching structure

p1: I(nl, sl) < I(n,s) :
{
 if (s==true)
 newn = theStack.Pop()+1;
 else
 newn = theStack.Top()+1;
 theStack.Push(newn);
} ! I(newn, s)

p2: I(n,s) < A() :
{ theStack.Pop(); } ! A

46

p3: I(n,s) :
{ theStack.Push(1); } ! I(1,s)

When a new value of I�s first parameter is set (p1 and p3) this value is pushed on the

stack. When the value of the previous label is needed (p1) it is accessible as the top element

on the stack.

This value is only read when the current internode is a lateral branch and is read and

removed from the stack when the current internode is a main branch. This is because every

lateral branch precedes a main branch in the string. To analyze how this L-system works a

simpler branching structure was chosen (see Figure 27).

I3

I2

I1

I1[I2A]I3A

Figure 27 Sample branching structure

The table below shows the progress of a single derivation step performed on the string

representing the branching structure (Figure 27). In the first column the current module is

indicated in boldface. The third column shows the contents of the stack after the production

specified in the second column has been applied.
Original string Production

applied
Stack Resulting string

I1(0,1)[I2(0,0)A]I3(0,1)A p3 1 I1(1,1)

I1(0,1)[I2(0,0)A]I3(0,1)A p1
2
1

I1(1,1)[I2(2,0)

I1(0,1)[I2(0,0)A]I3(0,1)A p2 1 I1(1,1)[I2(2,0)A
I1(0,1)[I2(0,0)A]I3(0,1)A p1 2 I1(1,1)[I2(2,0)A]I3(2,1)
I1(0,1)[I2(0,0)A]I3(0,1)A p2 Empty I1(1,1)[I2(2,0)A]I3(2,1)A

Every internode (except the first one) uses the information from the stack to calculate its

own order. Also productions push the order value on the stack to be used by the next

internode. Terminal internode values are not used; therefore they must be removed from the

stack (p2). Also every production for a main internode removes the top element from the

stack, as it is no longer used.

47

Functional labelling scheme

This L-system implements the functional scheme presented in 3.3.1.2 using fast

information transfer.

Listing 20 Fast information transfer in a branching structure using a global stack

p1: I(n) > A : { theStack.Push(1); } ! I(1)

p2: I(n) > [I(nl)] I(ns) :
{
 n = theStack.Pop() + theStack.Pop();
 theStack.Push(n);
} ! I(n)

This L-system assumes that the derivation is performed backwards � from right to left.

This is how the process proceeds on the branching structure presented in Figure 27.
Original string Production

applied
Stack Resulting string

I1(0)[I2(0)A]I3(0)A p1 1 I3(1)A

I1(0)[I2(0)A]I3(0)A p1
1
1

I2(1)A]I3(1)A

I1(0)[I2(0)A]I3(0)A p2 2 I1(2)[I2(1)A]I3(1)A

The algorithm is based on the fact that the branch tips are visited before the branching

points. When a branching point is visited, the stack contains the values pushed by the

productions applied for the internodes at the tips. Every internode pushes the value of its

parameter on the stack. Internodes at the tips (those that have an apex in the right context)

set the value of the parameter to 1. Internodes at the branching points calculate the value of

the parameter based on two topmost values on the stack. This method resembles the way

arithmetic expressions are calculated using the reverse Polish notation.

3.3.2.3. Fast information transfer using the new context

The method presented in the previous sections requires a global data structure � the

stack. The stack contains data that are a subset of the information that is generated in

successors. But in fact these data are redundant as they are already present in the new string

being created.

48

Left context

*

A CB� � D

GF

Current module

� Current module�s
successor to-be

Right context

Left new
context

String

New string

Figure 28 Left context, right context and new left context

In Figure 28 the current module is A. Modules in the immediate neighbourhood to the

left of module A are its left context. Modules in the immediate neighbourhood to the right

of module A are its right context.

Here I introduce a new concept: new context.

To determine if a module or modules are in left new context of module A the same rules

for matching apply as described in 2.5.1. The only difference is that matching is performed

in the new string (the one being currently created) starting at the last module added to the

new string so far. Left new context is defined only when the derivation is being performed

forward (from left to right).

Similarly right new context is defined only when deriving from right to left. Also the

rules described in 2.5.1 apply. In Figure 29 the string is being derived backwards (from

right to left). Modules FG etc. are the right new context of the current module A.

49

Left context

*

A CB� � D

GF

Current module

�

Current module�s
successor to-be

Right context

Right new
context

String

New string

Figure 29 Left context, right context and new right context

The stack as it is used in the fast information transfer can be thought of as a method of

indirectly reading the contents of the string being generated. But once the formalism makes

it possible to explicitly refer to the newly created modules, L-systems that implement fast

information transfer are simpler and there is no need for the global stack. I am introducing

new meta-symbols: << and >>. These symbols specify the new left and new right context,

respectively. The introduction of these meta-symbols adds four new types of production

predecessors:

left new context << strict predecessor

left new context << strict predecessor > right context

strict predecessor >> new right context

left context < strict predecessor >> new right context

It makes sense to match productions with left new context only when the string is being

derived forward (from left to right). Similarly, productions that have new right context can

be matched only when deriving the string backwards (from right to left). Obviously it

makes no sense to have a production that would have both left and right new contexts as the

string cannot be derived in both directions at the same time. We are now ready to re-

implement the two labelling schemes (Listing 19 and Listing 20) without using the global

stack.

50

Developmental labelling scheme

An L-system using the fast information transfer with new context that implements the

developmental labelling scheme contains two productions is presented below:

Listing 21 Developmental labelling scheme implemented using fast information transfer with new

context

p1: I(nl) << I(n) ! I(nl+1)
p2: I(n) ! I(n+1)

The process of rewriting is shown in the table below:
Original string Production applied Resulting string

I(0)[I(0)A]I(0)A p2 I(1)

I(0)[I(0)A]I(0)A p1 I(1)[I(2)

I(0)[I(0)A]I(0)A identity I(1)[I(2)A

I(0)[I(0)A]I(0)A p1 I(1)[I(2)A]I(2)

I(0)[I(0)A]I(0)A identity I(1)[I(2)A]I(2)A

The L-system using the new context has the following advantages:

• There is no need for the stack

• It needs just one production (production p2 merely initializes the first internode�s

parameter to 1)

• There is no need for an extra parameter to distinguish between main and lateral

branches

Functional labelling scheme

The L-system in Listing 22 implements the functional labelling scheme using the new

context. The derivation is performed backwards.

Listing 22 Functional labelling scheme implemented using the new context

p1: I(n) > A ! I(1)
p2: I(n) >> [I(nl)] I(ns) ! I(nl+ns)

The table below shows the process of rewriting

51

Original string Production applied Resulting string
I(0)[I(0)A]I(0)A identity A

I(0)[I(0)A]I(0)A p1 I(1)A

I(0)[I(0)A]I(0)A identity A]I(1)A

I(0)[I(0)A]I(0)A p1 I(1)A]I(1)A

I(0)[I(0)A]I(0)A p2 I(2)[I(1)A]I(1)A

3.4. Summary

This chapter presents the extensions I have added to the formalism of L-systems. The

extensions include two features known from general purpose languages: user-defined data

types and functions. These features extend the capabilities of L-systems in expressing

models that require many parameters and complex calculations.

A new concept, not found in other formalisms is the concept of fast information transfer.

Fast information transfer together derivation direction and new context make it possible to

transfer signals through the structure represented by the L-system string in a single

derivation step.

All these extensions and concepts have been incorporated in the modeling language

L+C, which is described in the following chapter.

52

4. The Modeling language L+C
The number and significance of the new features and concepts that I have added to the

formalism of L-systems made it desirable to design a new language instead of extending the

existing implementation of the plant modeling language cpfg. This is why I have designed

modeling language L+C8. This language is a declarative language based on the formalism

of L-systems.

L+C combines constructs, which can be divided into two categories:

a) constructs specific to L+C

b) constructs known from other programming languages, in particular the C++ general

purpose programming language.

The syntax of the constructs that are not characteristic to L-systems has been borrowed

from C++. This includes rules for scoping. Contents specific to L-systems have syntax,

which is partially inherited from the traditional notation of L-systems, but also some effort

has been made to use syntax that would not look too alien to C++. The decision of

designing L+C based on the syntax of C++ gives the following benefits:

• the learning curve is gentle for people who already know C++,

• the expressive power of C++ together with existing methodologies and libraries can

be used directly in an L+C program,

• no documentation is needed for the C++ part of the language.

A program in L+C consists of a series of declarations:

• Structures, classes

• Global variables

• Functions

• Derivation length

• Modules

8 First draft of the language specifications, has been prepared together with P. Prusinkiewicz, R. Sievänen

and J. Perttunen and described in an unpublished manuscript.

53

• Axiom

• Productions

• Decomposition rules

• Interpretation rules

• Control statements

This chapter discusses the syntax of L+C. As the syntax of C++ constructs is the same as

in C++, only the syntax of constructs specific to L+C will be presented. Listings in this

chapter show sample uses of the constructs being presented.

4.1. Derivation length

Derivation length specifies the number of derivation steps.

derivation length: expression;

4.2. Module declarations

L+C requires that all modules used in a model must be declared. Modules are identified

by their names (identifiers). Two modules are predefined in L+C: SB and EB. SB is the start

of a branch and EB is the end of a branch. These modules correspond to the modules [and]

in the traditional notation.

Module declaration has the following syntax:

module identifier(parameter-listopt);

The identifier must be a valid C++ identifier. The parameter list is an optional list of

type identifiers separated by commas. The following listing presents some sample module

declarations:

Listing 23 Examples of module declarations

struct data
{
 int n;
 float arr[3];

54

};

// module without parameters
module A();
// module with two parameters
module C(int, float);
// module with a parameter of user-defined structure type data
module Internode(data);

Types that are used as module parameter types must be defined beforehand.

4.3. Axiom

Axiom defines the initial contents of the L-system string. There must be exactly one

axiom declared in every L-system. The syntax of the axiom is as follows:

axiom: parametric-wordopt;

A parametric word is a sequence of one or more parametric modules:

identifier(expression1, expression2, ...)

Where identifier must be name of a previously declared module. The number of

expressions in the parenthesis must be the same as the number of parameters in the

module�s declarations. Also, the types of expressions must correspond to the types of

parameters in the module�s declaration. If the parameter is declared to have no parameters

(as module A in Listing 23), then the module�s identifier is followed by (). Optionally the

parentheses might be skipped altogether.

If modules A, C and Internode are declared as in Listing 23 a sample axiom may look

like this:

axiom: A C(i, 2.3) Internode(d);

Here, i must be an integer and d must be a variable of type data. The same syntax of

parametric word is also used in the produce statement.

55

4.4. Productions

Productions define the way the structure represented by the L-system string develops

over time by specifying the fate of every module. Declaration of a production starts with

the predecessor. The predecessor consists of three components: the strict predecessor, the

left context and the right context (see 2.5). The left context and the right context are

optional. Also, one of the new contexts (left or right) can be specified in a production

predecessor (see section 3.3.2.3). The strict predecessor specifies which module(s) in the

string will be replaced.

Left and right context specify which modules must be present in the neighbourhood of

the strict predecessor. The general syntax for productions is:

leftcontextopt < newleftcontextopt << strictpred >> newrightcontextopt > rightcontextopt:

{

production body
}

All components of a production predecessor are sequences of one or more modules with

formal parameters, such as those shown in the following example:

Listing 24 Example of production predecessor in L+C

A() < C(i, r) > Internode(d)

This predecessor specifies that the production should be applied to module C if there is a

module A to the left of C and a module Internode to the right. The types of parameters are

determined by the declarations of modules, which have to appear before the modules are

used in a production. If the modules A, C and Internode are declared as in Listing 23 then

i will be an integer, r will be a float and d will be a structure of type data. All formal

parameters of every module must be listed, even if they are not used in the production

body. The identifiers of formal parameters must be unique within a production. Their scope

is the same as the scope of formal parameters in C++ functions.

56

Formal parameters are similar to formal parameters of functions. When a production is

applied they are given values. These values can be used inside the production body.

In the case of a production, the formal parameters get the values from the actual

parameters of modules in the string. For example, if the string contains the following

sequence:

A C(5, 2.5) I({ 2, { 0, 0.4, 0.6 }})

the production from Listing 24 can be applied. The production formal parameters will be

assigned the following values:

i = 5, r = 2.5, d = { 2, { 0, 0.4, 0.6 }}

A program in L+C can define more than one production for the same module. In other

words more than one production can refer to the same module in the strict predecessor.

Listing 25 Sample production predecessors in L+C

A() < C(i, r) > Internode(d) :
{ … }

C(i, r) > Internode(d) :
{ … }

C(i, r) :
{ ... }

When more than one production is declared for a given module, the order in which these

productions are specified is important. When the string is being rewritten, then for every

module in the string a production must be applied. If there is more than one production for

a given module then the productions will be tested for matching in the order in which they

are declared. In Listing 25 there are three productions for module C. The first one specifies

both the left and right context, the second specifies only the right context and the third one

is context-free.

57

According to the original definition [Lin1968] productions are applied in parallel. In

L+C the derivation is performed sequentially9. It can be performed in one of two directions:

forward (from left to right) or backward (from right to left) (see 3.3).

Because the derivation is performed in a specified direction and this direction can be

controlled, L+C allows the use of the new context (see 3.3.2.3). The syntax used for

specifying the new context is the same as that used with ordinary context. Checking for

new and ordinary context can be mixed in one production, as in the following examples:

A() < C(i, r) >> Internode(d) : …
A() < A() << C(i, r) > Internode(d) : …
A() << C(i, r) : ...
A() < C(i, r) >> Internode(fd) > Internode(d) : ...

etc.

As explained in section 3.3.2.3 checking for right new context makes sense and is

possible only when the string is being derived from right to left. If the derivation is being

performed in the opposite direction, these productions are ignored. Similarly, checking for

the left new context is possible only when the string is being derived from left to right and

this is the only time when these productions are tested for matching. The derivation

direction is controlled by the user form within L-system (see A.6.13). Discussion of the use

of new context is presented in section 3.3.2.3.

A production successor is specified using the produce statement. The syntax of the

produce statement is presented in the following section.

4.5. The produce statement

A production consists of the predecessor and the body. The production body is a

compound statement that can contain any code allowed inside a C++ function. In addition,

9 As a matter of fact, the introduction of the cut module [Han1992] silently implies that the process of

derivation is performed sequentially from left to right.

58

productions specify successors. In L+C the successor of a production is specified in the

produce statement.

The produce statement has the following syntax:

produce parametric-wordopt;

The parametric word has the same syntax as in the axiom (see 4.3). In addition to

specifying the successor the produce statement also terminates the production.

In general production execution can be terminated in one of two ways:

1) by a produce statement,

2) by control flow leaving the scope of the production in any other way (such as end of

code, return statement)

If a production is not terminated by the execution of a produce statement, the production

is considered as not applied and another production will be searched for matching.

The syntax of L+C constructs presented so far allows one to write a simple model. The

following program specifies the development of a branching structure:

Listing 26 L-system generating simple branching structure

#define dt 0.03
#define t_max 1.0

module A(float);
module I(float);

axiom: A(0);

derivation length: 100;

p1: A(t) :
{
 float new_t = t+dt;
 if (new_t<=t_max)
 produce A(new_t);
}

p2: A(t) :
{
 float new_t = t+dt;
 if (new_t>t_max)
 {
 float t_init = new_t - t_max;
 produce

59

 I(t_init) SB A(t_init) EB
 SB A(t_init) EB
 I(t_init) A(t_init);
 }
}

p3: I(t) : { produce I(t+dt); }

The model implemented by this program is expressed using two types of modules:

apices (module A) and internodes (module I). Each of these modules has one numerical

parameter, which corresponds to the age of the organ. Initially the structure consists of a

single apex of age 0. At every derivation step the age of apex is increased by dt (p1). When

an apex reaches mature age (p2) it produces an internode, two lateral apices and another

internode followed by an apex (see Figure 30). The last production specifies that internodes

grow older at every time step by dt.

Figure 30 Apex producing internodes and new apices

4.5.1. Multiple successors

The code in Listing 26 includes a feature that deserves more attention. Two productions

are defined for module A (p1 and p2). In (p1) a local variable new_t is declared and its value

calculated based on the value of A�s parameter t. If condition (new_t<=_max) evaluates to

true then a produce statement is executed. Otherwise the control flow leaves the scope of

the production. In this case the production is considered not applied which means that the

next production (p2) will be tested for matching. p2 defines and initializes new_t as in the

previous production and if condition (new_t>t_max) is met then the produce statement is

executed.

In L+C it is possible to combine these two productions into one production:

Listing 27 Production with multiple successors

60

A(t) :
{
 float new_t = t+dt;
 if (new_t<=t_max)
 produce A(new_t);
 else // (new_t>t_max)
 {
 float t_init = new_t - t_max;
 produce
 I(t_init) SB A(t_init) EB
 SB A(t_init) EB
 I(t_init) A(t_init);
 }
}

Because every produce statement defines the successor this production has two

successors. In general the ability to define multiple successors in a single production is a

significant improvement in the expressiveness of L-systems.

4.5.2. Empty successor

To remove a module from the string the production must specify an empty successor. In

L+C the keyword produce followed by a semicolon specifies empty successor.

4.6. Decomposition rules

Decomposition rules express the concept of compound modules (see 2.8).

Decomposition rule

A() : { produce B C; }

states that module A consists of modules B and C. Decomposition rules can also be defined

for modules B and C, and they will be applied recursively as long as there are modules that

can be further decomposed.

In L+C decomposition rules are always context-free. Decomposition rules are preceded

by the decomposition: keyword. The result of decomposition is stored in the L-system

string permanently. The model below is the same as the one presented in Listing 26 but it

uses a decomposition rule to divide an apex into internodes and new apices.

Listing 28 L-system based on Listing 26 using decomposition rules

61

#define dt 0.03
#define t_max 1.0

module A(float);
module I(float);

axiom: A(0);

derivation length: 100;

p1: A(t) : { produce A(t+dt); }

p2: I(t) : { produce I(t+dt); }

decomposition:

d1: A(t) :
{
 if (t>t_max)
 {
 float t_init = t - t_max;
 produce
 I(t_init) SB A(t_init) EB
 SB A(t_init) EB
 I(t_init) A(t_init);
 }
}

The decomposition rule (d1) in Listing 28 contains a condition (t>t_max), which makes

sure that apices are not decomposed infinitely by imposing a terminating condition. If a

decomposition rule does not contain a terminating condition (or if there is a bug and the

condition is never satisfied), an infinite recursion could result. To avoid infinite recursion a

safeguard parameter called maximum decomposition depth can be specified using the

following syntax:

maximum depth: expression;

If no maximum depth is specified then a default value is used. If the maximum depth is

reached during the execution of a program then a run-time warning message will be

printed.

62

4.7. Interpretation rules

Interpretation rules are used to separate the visual aspect of models from the

developmental aspect (see 2.7). Modules generated by interpretation rules are interpreted

directly by the graphics engine.

Below is the third version of the model presented in Listing 26, which includes

geometrical information about the organs (apex and internode) as well as their graphical

representation.

Listing 29 L-system based on Listing 26 with interpretation rules

#define dt 0.03
#define t_max 1.0
#define angle 35

module A(float);
module I(float);

axiom: A(0);

derivation length: 100;

A(t) : { produce A(t+dt); }

I(t) : { produce I(t+dt); }

decomposition:

A(t) :
{
 if (t>t_max)
 {
 float t_init = t - t_max;
 produce
 I(t_init) SB Left(angle) A(t_init) EB
 SB Right(angle) A(t_init) EB
 I(t_init) A(t_init);
 }
}

interpretation:

A(t) : { produce SetColor(1) Circle(0.2*t); }

I(t) : { produce SetColor(2) F(t); }

The graphical aspects of the model�s representation include:

63

1) Lateral apices are orientated relative to the main branch (modules Left and Right

in the decomposition rule)

2) Interpretation rules specify that apices should be visualized as circles and internodes

as lines (module F). Apices and internodes are rendered using two different colours

(modules SetColor in the interpretation rules).

4.8. Control statements

There are four control statements in L+C: Start, StartEach, EndEach and End. Control

statements are procedures that are called at specific points of the execution of an L+C

program: at the beginning, before every derivation step, after every derivation step and after

the last step, respectively. The following sample program demonstrates how to use control

statements to output results of a simulation to an external file. This program is another

modification of the model presented in Listing 26:

Listing 30 L-system based on Listing 26 using control statements and file I/O

#define dt 0.03
#define t_max 1.0

module A(float);
module I(float);

axiom: A(0);

derivation length: 100;

int stepno, apexcount;
FILE* fpOutput;

Start:
{
 fpOutput = fopen(“output.dat”, “w”);
 stepno = 0;
}

StartEach:
{
 apexcount = 0;
 stepno++;
}

EndEach:
{
 fprintf(fpOutput,
 “Step: %d\t, Number of apices: %d\n”,

64

 stepno, apexcont);
}

End:
{
 fclose(fpOutput);
}

A(t) :
{
 float new_t = t+dt;
 if (t<=t_max)
 {
 apexcount++;
 produce A(new_t);
 }
 else // (t>t_max)
 {
 float t_init = t - t_max;
 apexcount += 3;
 produce
 I(t_init) SB A(t_init) EB
 SB A(t_init) EB
 I(t_init) A(t_init);
 }

}

I(t) : { produce I(t+dt); }

In addition to generating the branching structure this program also stores some statistical

information in an external file (output.dat). In the Start statement it opens the external

file output.dat and sets the stepno (step number) variable to 0. Before every derivation

step StartEach is executed where apexcount (apex counter) is set to 0 and stepno is

incremented. After every derivation step EndEach is executed which writes to the output

file current step number and the number of apices in the model. At the end of the simulation

the End statement is executed, which closes the output file.

65

5. Implementation considerations and strategies
The task of implementing L+C posed some design problems. This chapter discusses two

problems:

a) what kind of tool should be created to compile the source code in L+C,

b) what data structure should be used internally to represent the L-system string?

5.1. Interpreter vs. translator

A strategic decision that must be made is what kind of approach should be taken when

implementing the new modeling language. One possible approach is to write a parser for

the new language. If an existing L-system-based modeling program is available (as was the

case during my research), the task of adding the new features would require extending the

existing parser. Another possible approach is to extend an existing C++ parser to

accommodate L-system-specific constructs.

The central part of an L-system-based modeling program is the generator, which derives

the L-system string based on the current string and the set of productions.

Generator

Internal representation
of the L-system

L-system file

Parser

L-system string

Figure 31 Parser as a module of cpfg

In cpfg modeling software, the parser is a component of the program. The parser takes

the L-system file as its input and produces some internal representation of the L-system. In

this representation data structures represent all the productions: their predecessors as well

66

as their code. The code (sequence of statements to be performed) is stored as a list of

structures that represent individual statements; expressions are stored as arithmetic trees

etc. In this approach the developer has the full control over the parser. But at the same time

this approach requires the developer to write parser for elements that are not typical to L-

systems but common to other programming languages: arithmetic expressions,

programming statements such as assignments, loops, conditional statements, etc. Also the

execution of interpreted code is known to be usually slow compared to compiled code.

A translator incorporates the following design:

Translation phase

Generator
L-system file

Compiled executable

L-system string

Figure 32 Schematics of the new design

For practical purposes the L-system file is not compiled into a standalone program, but

into a DLL (dynamic-link library), to which a modeling program can connect at run-time.

The translation phase can be designed to consist of the following steps:

C++ compiler and linker

L+C to C++ translator (L2C)

C++ preprocessor

Preprocessed code

L+C code

Translated C++ code

Compiled executable file (DLL)

67

Figure 33 From L+C to compiled executable file, phases of translation

The second step � translating from the pre-processed L+C code to valid C++ code �is of

main interest here, because all the other steps can be accomplished using existing tools

(C++ preprocessor and compiler). The L+C to C++ translator will be also called L2C.

The main advantages of the translator approach is:

• only L+C specific elements must be identified and replaced with equivalent code in

C++,

• the translator can pass verbatim all other elements of the program to the C++

compiler,

• the compiled code can be expected to execute faster than interpreted code,

especially in domains in which the interpreted code is particularly slow (for

example, numerical calculations).

Before the specifications of the translator can be defined fully it is necessary to discuss

the problem of representing an L-system string internally.

68

5.2. L-system string representation

5.2.1. Traditional approach

Hanan [Han1992] proposed that the parametric L-system string be represented verbatim.

In general a module with numerical parameters is stored internally in the form presented in

Figure 34.

One module with parameters

More float
parameters

A (,) B

sizeof(float)

Figure 34 Traditional memory representation of L-system string

In Figure 34, every frame represents one byte. To represent a module A with some

numerical parameters the first byte will be letter A (or actually the number that corresponds

to the letter A in ASCII code). The next byte contains the left (opening) parenthesis. The

actual parameters are stored as their binary representation in the following bytes. If the

numerical parameters are of type float stored in the IEEE format they occupy four bytes (or

in general sizeof(float) bytes). Consecutive parameters are separated with bytes

containing comma �,�. The last parameter is followed by the right (closing) parenthesis. If

a module doesn�t have any parameters then its symbol is immediately followed by the next

module. In addition it is assumed that the last module is followed by the null character and

that the pointer to the beginning of the string is known.

To perform string derivation it is necessary to iterate forward and backward through the

string � find the next and the previous module (if there is one).

The internal representation described above allows such iterations (for the actual listings

see B.1). Figure 35 presents the corresponding algorithms:

69

no

no

yes

yes

Start

�(� found?

Skip sizeof(float)+1 forward

�,� found?

Skip one byte forward

Skip one byte forward

Next module
found

no

no

yes

yes

Start

�)� found?

Skip sizeof(float)+1 back

�,� found?

Skip one byte back

Skip one byte back

Previous module
found

Figure 35 Algorithms to find the next and previous module for the traditional string representation

An important question is whether this representation can be extended to support modules

that have parameters of user-defined types. A naïve approach could be to store user-defined

type parameters in the same way as implemented previously:

Any number of bytes

A (,) B

Any number of bytes

One module with parameters

,

Figure 36 New L-system string memory representation, attempt one

When trying to formulate algorithms for iterating the string the following problems

arise:

1. The size of parameters is not fixed. Parameters can be of arbitrary type, so they can

also be of arbitrary size. Therefore it is impossible to skip a parameter forward to

check whether it is followed by a comma (indicating presence of another parameter

70

following the comma) or the closing parenthesis. This problem might be addressed

if the sizes of parameters for a given module are known.

2. When iterating backwards (searching for the beginning of the previous module)

information about the sizes of parameters is not enough for two reasons. First, the

size information is not available until the module has been identified. Second, a

module cannot be identified until the parameters have been skipped to read its

name.

5.2.2. Proposed solution

Module id as
short int

Module id as
short int

0x12 0xAB

One module with parameters

Binary representation of the module�s
parameters

0x12 0xAB 0xE1 0x2B

Figure 37 New L-system string memory representation

The proposed solution is presented in Figure 37. The main differences between the

previous and new representation are:

1. the module�s name is encoded as a fixed size identifier. Here it is assumed to be a C

short int � an integral type stored in two bytes,

2. the identifier is present at both the beginning and end of the module,

3. parameters are not comma separated. They occupy a continuous region of memory,

4. if a module does not have any parameters it is represented as its identifier of type

short int,

5. the format does not provide an end-of-string character. Information about the total

length is stored separately.

With this representation the string can be iterated both forward and backward if access

to the total size of parameters for every module type is provided.

Listing 46 and Listing 47 in appendix B contain the code that moves the current pointer

in the L-system string to the next and previous module. The code in Listing 46 and Listing

47 refers to function GetParametersSize. This function is part of the interface that

71

communicates between the dynamic part of the program (L-system) and fixed generator.

This interface defines how the generator manipulates the string, what code should be

generated by the L+C to C++ translator and how this code should cooperate with the

generator. The interface is presented in the next chapter.

72

6. The L+C to C++ translator
When designing the translator it is crucial to identify its top-level requirements:

1. the translator must generate valid C++ code

2. the code generated by the translator must conform to guidelines that allow for the

generator to access the information required to perform production matching as well

as other information specific to L-systems (derivation length, axiom, etc.)

The first requirement is obvious and requires no further explanation. The second

requirement demands that some sort of interface be defined to link the translated (and

compiled) L+C program with the generator.

The L+C translator divides its input (code in L+C) into three categories (see Figure 38):

1. Code that needs to be translated,

2. Code that requires additional code to be generated (bridge code),

3. C++ code that is not modified and passed verbatim to the C++ compiler.
 L+C

Translated
code

Bridge data
and code

L-system engine
(generator)

Unmodified
C++ code

L+C to C++
translator

Compiled DLL C++

compiler

Figure 38 Relation between the components: code in L+C, L-system generator and compiled DLL.

The elements of an L+C program that are specific to L-systems and need to be translated

are:

1. Global L-system parameters (derivation length, maximum decomposition depth,

maximum interpretation depth),

2. Axiom,

3. Control statements,

4. Definitions of modules,

73

5. Productions,

6. Consider/ignore statements.

Figure 39 presents a sample code in L+C. Translation units belonging to different

categories are highlighted. The following sections discuss in more detail how different

statements are translated into C++ code.

L+C code

Intact code

module A(int, float);
module B(float, ModuleData);

axiom: A(1, 0.5);

derivation length: 5;

void Func(float, int*)
{
 …
}

A(n, f) < B(f, d) :
{
 if (n>0)
 produce B(f/2, d);
 else
 produce A(n, f*1.5);
}

class ModuleData
{
public:
 ModuleData();
 …
private:
 int n;
 float x;
 …
};

C++ data declarations

C++ functions

Intact code

C++ function prototypes.

Bridge code (production callers)

Bridge data (callers table)

C++ function calls

Products of
translation

Figure 39 Sample source code in L+C, L+C to C++ translation units

The following sections identify different elements of programs written in L+C and

explain how they are translated by the L2C translator and then used by lpfg.

74

6.1. Top level parameters and statements

This Execute function is the core of the generator component of lpfg.

Listing 31 Function executing L+C program

void Execute()
{
 Start();
 Axiom();
 DecomposeString(MaximumDecompositionDepth());
 for (int i=0; i<DerivationLength(); ++i)
 {
 StartEach();
 Derive();
 DecomposeString(MaximumDecompositionDepth());
 EndEach();
 }
 End();
}

This simplified code refers to functions, highlighted in bold, that are not part of the

generator. These functions are created by the L2C translator and provide information from

the L-system or perform actions specified in the L-system.

• Start() executes the Start control statement,

• Axiom() initializes the L-system string ,

• MaximumDecompositionDepth() returns the value of an expression that specifies

maximum decomposition depth in the L-system,

• DerivationLength() returns the value of an expression that specifies the number

of derivation steps to be performed as specified in the L-system,

• StartEach() executes the StartEach control statement,

• EndEach() executes the EndEach control statement,

• End() executes the End control statement.

The following sections discuss how these functions are created during translation from

L+C to C++.

6.2. L-system global parameters

Every program in L+C defines the following numeric parameters:

75

• Derivation length

• Maximum decomposition depth

• Maximum interpretation depth

These parameters are always defined. If they are not specified explicitly (maximum

decomposition and interpretation depth are optional), then the translator provides default

values. These global parameters are integers. They are accessible to the generator through

functions. The prototypes of the functions are:

int DerivationLength();

int MaximumDecompositionDepth();

int MaximumInterpretationDepth();

Each of the three global parameters (derivation length, maximum decomposition and

interpretation depth) is specified in the L+C file by a keyword (derivation length,

maximum depth) followed by an arithmetic expression and terminated with a semicolon.

The translator replaces the keyword with a C++ function prototype. The expression is

copied verbatim and the closing (right) curly brace is appended. Here the replaced elements

are printed in boldface while the elements copied verbatim are in italic.

Original code: Translated code:
derivation length: i+3; int DerivationLength() { return i+3; }

Analogous substitutions are done in case of maximum decomposition and interpretation

depth.

6.3. L-system control statements

L-system control statements are statements that are executed at specific points of the

simulation, and they are: Start, End, StartEach, EndEach. These statements are actually

procedures without parameters. In C++ such procedures are functions that take no

76

parameters and return void. Because the body of the control statements can contain any

valid C++ code, the L2C translator must only replace control statement keywords with C++

function prototypes to create a valid C++ function definition:

Original code: Translated code:
Start:
{
…
}

void Start()
{
…
}

Analogous substitutions are made for the other control statements.

6.4. Module declaration

A module declaration contains two pieces of information: the name of the module and

the parameters� types. The code in Listing 31 does not use any of this information

explicitly. From the discussion on the internal representation of the L-system string (see

section 5.2) it is known that information about the total size of the parameters is required to

iterate over the string and carry out the derivation. From the same discussion it is also

known that the modules in the string are not identified by their names, but by numerical

identifiers. The L2C translator replaces module declarations with the declarations of

module identifiers:

Original code: Translated code:
module A(int, float); short int A_id = 101;

The identifier name is created by appending _id to the module�s name. The identifiers�

values are consecutive integers.

This substitution does not contain information about the size of parameters of the

module. Instead, size information is stored in an array, which is generated after the L+C

source file has been parsed:

77

Listing 32 Array moduleData is generated based on the module declarations

struct ModuleData
{
 char* name;
 int size;
};

ModuleData moduleData[] =
{
…
 { “A”, sizeof(int)+sizeof(float) },
…
};

The index of every element in the moduleData array is equal to the module�s identifier

value. In the above example the entry for module A has index 101, which is the value of

A_id. The module�s name included in the array moduleData is not used during the

execution of the L-system program. It is included for debugging purposes only.

6.5. Productions

Analysis of the process of string rewriting best illustrates how productions are translated,

what kind of information is generated by the translator and how this information is used by

the generator.

The Execute function in Listing 31 calls the Derive function. Derive performs the

actual derivation based on the set of productions specified in the L-system. In the L+C

programming language, each step of string rewriting can be performed: forward (from left

to right) or backward (from right to left), which requires two versions of the function

Derive. But these functions use the same interface to communicate with the code generated

from the L+C source, so it is enough to analyze only one case. Function Derive presented

in Listing 33 performs the derivation forward.

Listing 33 Function Derive

void Derive()
{
 targetstring.Clear();
 for (LstringIterator iterator(lsystemstring);
 !iterator.AtEnd(); ++iterator)
 {

78

 bool applied = false;
 for (int i=0; i<NumOfProductions(); ++i)
 {
 const ProductionPredecessor& predecessor =
 GetPredecessor(i);
 CallerData cd;
 if (TestMatch(iterator, predecessor, cd))
 {
 Production p = GetProduction(i);
 if (p(cd))
 {
 applied = true;
 break;
 }
 }
 }
 if (applied)
 targetstring.Append(successorStorage);
 else
 targetstring.Append(iterator.CurrentModule());
 }
}

The elements of the L-system � generator interface present in function Derive are:

• NumOfProductions() returns the number of productions specified in the L-system.

• GetPredecessor(int) returns data structure of type ProductionPredecessor that

represents the predecessor of a production.

• CallerData is a data structure. It provides productions with the values of their

formal parameters. It is initialized by function TestMatch, which determines

whether the production described by predecessor matches the current position in

the string pointed to by the iterator.

• Production is a pointer-to-function type. Functions pointed to by variables of type

Production represent actual productions.

• GetProduction(int) returns a pointer to a function of type Production that is

called to execute a production.

• successorStorage is a data structure that stores the modules produced by

productions. If a production is applied the contents of successorStorage are added

at the end or at the beginning of the new string, depending on the direction of

derivation (see Figure 42).

79

Below is a detailed description of the interface elements present in Listing 33.

NumOfProductions

Function int NumOfProductions() is generated by L2C after the source file has been

parsed. As the translator parses the L+C program it counts the number of productions and

can generate the function:

int NumOfProductions()
{ return 7; }

ProductionPredecessor, GetPredecessor

Before the structure ProductionPredecessor can be defined it is necessary to identify

what information is necessary to determine if a given production matches the current

module. Matching a production requires a comparison of modules in the string and modules

in the production�s predecessor. The modules in the string are identified by numbers (see

section 5.2). This means that a production�s predecessor is fully defined by three sets of

module identifiers: one set each for left context, the strict predecessor and the right context.

struct ProductionModules
{
 short int module_ids[maxModules];
 int count;
};

struct ProductionPredecessor
{
 ProductionModules lcntxt;
 ProductionModules strict;
 ProductionModules rcntxt;
};

L2C translator generates an array of structures of type ProductionPredecessor.

Elements of this array are returned by the function GetPredecessor(int).

For example, if a program contains a production with the following predecessor:

80

A() B() < B() > D() : …

the translator will generate the following entry in the production predecessors array:

ProductionPredecessor predecessors[] =
{
…
 {
 { { A_id, B_id }, 2 },
 { { B_id }, 1 },
 { { D_id }, 1 }
 },
…
};

Productions as procedures, CallerData, production callers

Two problems must be addressed to execute a production:

• there must be a function that represents the production, and

• there must be a way of passing actual parameters to this function.

Prusinkiewicz and Hanan [Pru1992] noted that productions are somewhat similar to

functions (or actually procedures), as they are known from imperative programming

languages. The similarities are:

• A production is a piece of code,

• It takes an input: its predecessor and (optionally) parameters of the predecessor�s

modules,

• It has output: the successor.

The main differences are:

• Productions are not called from anywhere explicitly. The general mechanism of

matching productions determines which production should be applied and when.

This is a general feature of declarative programming-languages.

• Productions don�t return the value in the traditional sense. Instead their output

modifies the contents of the L-system string.

81

Consider the following example (elements specific to L+C have been highlighted with

boldface):

Listing 34 Sample production with multiple successors

struct data
{
 float l;
 int n;
};

module A(data, float);
module B(int, float);

A(dl, xl) < B(n, a) :
{
 float x = f(n, dl.l);
 if (a>xl)
 produce B(n+1, x);
 else
 produce B(n-1, xl);
}

The production in Listing 34 has two modules in its predecessor. The first line of this

production will be regarded as corresponding to the C++ function prototype. A function

prototype contains the following elements:

• name,

• parameters,

• return type.

In L-systems there is no return type of productions, because they don�t return values. In

C++ the function name and parameters identify the function. In L-systems, on the other

hand, the names of the modules in the predecessor (and the order of their appearance in all

the three parts of the predecessor: left context, strict predecessor and right context) identify

a production. The parameters are implicit, the modules have to be declared beforehand.

A production predecessor is a distinctive element of L+C. On one hand, it identifies the

part of the string that is to be replaced (the strict predecessor) and optionally the context �

the neighbour modules of the strict predecessor. On the other hand, the production

predecessor corresponds to a procedure (or function) prototype: it specifies the input

82

parameters of the production. The translator�s task is to replace the production predecessor

with a syntactically valid prototype of a function:

Listing 35 translation of a production predecessor into a function prototype

Original code: Translated code:
A(dl, xl) < B(n, a) void P1(bool& res, data dl, float xl,

int n, float a)

This substitution creates a valid C++ function prototype. The function name is of the

form Pnn, where nn is the ordinal number of the production being translated. All the

parameters have the same names as in the production predecessor (the meaning of the first

parameter res will be explained soon). It is important to notice, that information

concerning which parameters belong to which modules is lost. Are dl, xl, n and a all

parameters of a single module in the strict predecessor? Maybe dl is a parameter of a

module in left context, xl and n are parameters of a module in the strict predecessor and a

is a parameter of a module in the right context? This information cannot be deduced from

the function prototype. But the modules in every component of the predecessor are known

because they are present in the predecessors array. Therefore it is possible to reconstruct

which parameters of function P1 correspond to which module.

The remaining problem that needs to be solved is a way of passing actual parameters

from the generator to the production. Obviously the generator cannot call a production

directly because it doesn�t know its prototype. So there must be a unified way of passing

parameters to productions regardless of their prototypes.

To address this problem production callers are introduced. Production callers are a

bridge between the generator and productions. Production callers have fixed prototype:

bool (*Production)(CallerData*);

The production callers that are actually returned by GetProduction(int). The return

value of a production caller indicates whether the production was applied (if the produce

statement was executed). CallerData is a structure, which contains pointers to the modules

83

in the string being rewritten (see Figure 40). TestMatch initializes CallerData while

determining whether a given production matches the current position in the string.

Production callers are functions generated by the translator and their responsibility is to

extract the parameters from the string and pass them to the actual production. Production

callers also inform the generator whether the production was applied. A sample production

caller corresponding to the production from Listing 35 looks as follows:

Listing 36 Sample production caller

bool PC1(CallerData* pCD)
{
 // extract parameters for the left context
 data dl;
 const char* pX = pCD->lcntxt.Addr[0];
 // first data
 memcpy(&dl, pX, sizeof(data));
 // skip sizeof(data) bytes
 pX += sizeof(data);
 float xl;
 // and extract a float
 memcpy(&xl, pX, sizeof(float);
 // now extract parameters for the strict predecessor
 int n;
 pX = pCD->strict.Addr[0];
 memcpy(&n, pX, sizeof(int));
 pX += sizeof(int);
 float a;
 memcpy(&a, pX, sizeof(float));
 // if there were any modules in the right predecessor
 // the parameters would be extracted here
 bool res = false; // assume that the production did not apply
 // call the production-function
 P1(res, dl, xl, n, a);
 return res;
}

84

Current module

CallerData

Strict predecessor Left context Right context

String

Pointers to
modules in left

context

Pointers to
modules in strict

predecessor

Pointers to
modules in right

context

� � �

Figure 40 CallerData makes it possible to access a production�s actual parameters

 A_id A_id Y_id Y_id I_id Z_id Z_id 1 2 0.5

CallerData
{
…
 strict { … }, count = 1;

 rcntxt { …}, count = 2;

}

String

Figure 41 Mapping parameters locations into a CallerData structure

The actual definition of CallerData is as follows:

struct ActualParameters
{
 char* Addr[MaxParameters];

85

 int count;
};

struct CallerData
{
 ActualParameters lcntxt;
 ActualParameters strict;
 ActualParameters rcntxt;
};

Successor storage

Modules generated by the produce statement are not added to the string immediately but

are first stored in a data structure called successor storage. The reason for this is that the

modules in the successor are always generated in order from left to right. When the string is

being derived from right to left, the modules should be added in the reverse order to that in

which they were created. There are two possible approaches: one is to change the order in

which the elements of the successor are generated, depending on the direction of derivation.

The other is to use an intermediate buffer � once the successor is created it is added to the

string (in front or at the end depending on the derivation direction).

 Generator

add

L-system

Production

produce statement

Successor storage

Successor
created

New string

Figure 42 Modules generated by productions are first stored in the Successor storage, then transferred

to the new string.

The first solution complicates the code generating the successor. The second involves

some time overhead � an additional copy operation. In the current implementation the

second solution was chosen. Profiling indicates that the use of the successor storage

accounts for about 0.5% to 2% of the program�s run-time, which judged to be acceptable.

86

6.6. The produce statement

The produce statement plays two roles, specifying the successor of the production, and

implying that the execution of the production should terminate (return statement)10. While

building a successor, the DLL generated from the L+C source file needs to modify data that

belongs to the main program.

SuccessorStorage is the data structure where the successor is created by a production.

After the production is applied, the complete successor is added to the string. The generator

has to provide a function that will let the DLL (or the productions to be exact) add data to

the SuccessorStorage. This function is called Add:

void Add(const void*, int);

The first parameter is a pointer to the data to be added and the second parameter is the

number of bytes to be added. The code calling Add takes full responsibility that the data

stored in the SuccessorStorage are correct, e.g. it follows the specifications of the L-

system string. If the data to be added are contained in variables, the Add function could be

used directly:

Add(&B_id, sizeof(short int));
Add(&n, sizeof(int));
Add(&x, sizeof(float));
Add(&B_id, sizeof(short int));

But in general this is not the case. Both produce statements in Listing 34 generate

modules with their parameters specified using expressions. C++ does not allow one to

obtain the address of an expression. Consequently the following construct is not valid in

C++:

10 The two functions could be split, so that the keyword produce just produced the successor, but did not

terminate the production. Alternatively another keyword (for example insert) could be introduced to

generate the successor, but not terminating the production, making it possible to build the successor in a series

of insert statements. This idea seems worth considering in the future research.

87

Add(&(n+1), sizeof(int));

One possible solution is to declare local variables that store the values of parameters and

use them in the call to Add:

Add(&B_id, sizeof(short int));
int n1 = n+1;
Add(&n1, sizeof(int));
Add(&x, sizeof(float));
Add(&B_id, sizeof(short int));

This approach is acceptable but would complicate the implementation of the L+C parser.

A more effective and general solution has been chosen. A template function

Produce is defined as follows:
template<class T>
void Produce(T t)
{ Add(&t, sizeof(T)); }

Now the translation of the produce statement is straightforward:
Produce<short int>(B_id);
Produce<int>(n+1);
Produce<float>(x);
Produce<short int>(B_id);

This solution takes advantage of the C++ compiler�s optimizing capabilities and greatly

simplifies both the L+C parser and the generated code. Note the explicit types in the

instantiation of Produce, so that the type used is the same as the type of the parameter

being produced. Otherwise the C++ compiler could perform an implicit type conversion

and generate Add for a wrong type. For example, it is common to use a literal like 1 where a

float is expected instead of 1.0f. But in this case the compiler would assume that <int>

instance is required. This kind of mistake could result in a corrupted string.

Finally, the production caller must be informed if the production was actually applied.

This is done by assigning true to the parameter res (see Listing 35 and Listing 36). Finally

all the code generated in place of the produce statement is enclosed in curly braces, so that

it actually forms a single (compound) statement:
{
 Produce<short int>(B_id);

88

 Produce<int>(n+1);
 Produce<float>(x);
 Produce<short int>(B_id);
 res = true;
 return;
}

6.7. Other elements

6.7.1. Ignore, consider

The ignore and consider statements are mutually exclusive. Each of these statements

is replaced by a declaration of an array of module identifiers and a function that returns the

number of elements in the array. For example:

Original code: Translated code:
ignore: A B Left Right; short int ignored[] =

{ A_id, B_id, Left_id, Right_id };
int NumOfIgnored() { return 4; }

6.7.2. Axiom

Axiom is a special type of production that does not have a predecessor. It is replaced by

a function named Axiom. Contents of the axiom are expanded as if it were a produce

statement. This function can be called directly by the generator.

Original code: Translated code:
Axiom: F(1) Left(90) F(1); void Axiom()

{
 Produce<short int>(F_id);
 Produce<float>(1);
 Produce<short int>(F_id);
 …
}

6.7.3. Production, decomposition, interpretation

These keywords are not actually translated. Instead, they change the internal state of the

translator that determines the allowed types of the productions (if context-sensitive

productions are allowed). Also, in the case of decomposition and interpretation rules there

is no array of ProductionPredecessor. Instead there are two arrays of ProdCallers: one

for interpretation and one for decomposition rules.

89

The specifications of the translator presented in this chapter can be summarized in a

form of a diagram. Figure 43 shows how L+C input is divided into standard C++ code and

L+C specific code. The L+C constructs are translated into C++ declarations and definitions

depending on their type.

Bridge data
(callers table)

Bridge code
(production

callers)

C++ function
declarations

C++ data
declarations

C++ function
definitions

C++ function
calls

C++ function
prototype

C++ function
definitions

C++ data
declarations

Production
predecessor

produce
statement

Axiom,
derivation
length, etc.

Module
declarations

Start,
StartEach,
End, etc.

L+C specific
code

Standard C++
code

L+C code

Figure 43 L+C to C++ translator, translation units

90

7. Application examples
This section presents examples that demonstrate the use of the L+C modeling language.

They have been selected to demonstrate the use of concepts and features introduced in

L+C.

7.1. Model of Anabaena

This example implements a developmental model of a filamentous cyanobacterium

Anabaena catenula. The distribution of heterocysts (term described below) in the filament

tends to form a pattern. The model captures this tendency by operating on genes�

expression: production of two proteins. This model extends the model presented in Listing

1 in section 2.1 and was written by P. Prusinkiewicz (unpublished). It employs user-defined

structures to store the parameters that describe cells and user-defined functions to perform

calculations.

In the model presented in Listing 37, the cells are characterized by the following

parameters:

• Concentration of protein hetR,

• Concentration of protein patS,

• Length,

• Polarity,

• Differentiation degree.

Initially the model consists of two cells. During the simulation the concentration of the

activator hetR and inhibitor patS controls cell development. The concentration changes as

the result of the following processes:

1. diffusion of patS (transfer of the substance from a cell of high concentration to cells

of lower concentration),

2. production,

3. decay.

91

Diffusion

The change of concentration caused by diffusion of patS from a cell of size x over the

time increment ∆t is expressed by formula:

t
xw

patSpatSDpatSdiff ∆





 −=∆ 2 ,

where D is diffusion constant, w is the width of the cell, and patS2 is the concentration in

the neighbouring cell. If the concentration in the current cell is greater than that in the other

cell, then the substance will diffuse to the other cell and the concentration will decrease (the

numerator patS2-patS is negative). If the concentration in the current cell is lower it will

increase.

If the current cell has two adjacent neighbours (labelled l and r), diffusion equals the

sum of the diffusions between the cell and both of its neighbours. Diffusion is then

expressed by formula:

t
xw

patSpatSpatSDpatS rl
diff ∆







 −+
=∆

2

Production

The amount of patS produced in the time interval ∆t depends on the concentration of

hetR in the cell. It is expressed by the formula

x
th

hetR
hetRpatS prod

∆








+

⋅+
=∆ 02

2

1 κ
ρ ,

where ρ, κ and h0 are parameters, x is the size of the cell. HetR acts as the activator.

The amount of hetR during the time interval ∆t depends on the concentration of both

hetR and patS. HetR is an activator and patS is an inhibitor as expressed by the formula

below:

92

x
ta

hetR
hetR

patS
hetR ∆









+

⋅+
=∆ 02

2

1 κ
ρ

If the concentration of hetR exceeds a threshold, the cell becomes a heterocyst.

Heterocysts do not divide.

Decay

The decay of proteins during ∆t is expressed by the following formulas:

thetRhetR ∆−=∆ µ tpatSpatS ∆−=∆ ν ,

where µ and ν are decay parameters. Decay is implemented in the decomposition rule d1.

Growth and division

During every time step cells grow in length (decomposition rule d1), resulting in

decreased concentration of hetR and patS. Cells grow during the simulation and divide

(except for heterocysts) if their size exceeds a threshold. Polarity of the cells determines

which of the daughter cells is longer.

Implementation of the model

Modules of type Cell represent cells. The information associated with every cell is

stored in the Cell parameter of type CellData.

Diffusion is controlled by productions p1, p2 and p3. p2 and p3 apply when a cell has only

one neighbour. During the derivation, diffusion of patS is calculated. The successors of the

productions are modules of type TempCell, to distinguish between the cells before and after

the growth phase handled by decomposition. This distinction avoids infinite recursion in

the decomposition rules.

The growth phase of the simulation (decomposition d1) involves three stages. First, the

new concentrations of both patS and hetR are determined as a result of their production by

the cell using the HetR and PatS functions. Then the decay of the substances is calculated.

93

Finally, the cells grow and those that reach the maximum size and are not heterocysts

divide.

Listing 37 Model of Anabaena in L+C

enum Polarity
{ plRight, plLeft };

// daughter cell length coefficients
const float longer = 0.55f;
const float shorter = 1.0f - longer;

const float rho = 3; // protein production parameter

const float a0 = 0.01; // base activator production
const float h0 = 1; // base inhibitor production

const float mu = 0.1; // hetR decay rate
const float nu = 0.45; // patS decay rate
const float D_patS = 0.0045; // diffusion coefficient
const float kappa = 0.001; // protein production coefficient
const float dt = 0.5; // time step
const float w = 0.01; // diffusion w parameter
const float lm = 1.0; // cell maximum size
const float gr = 1.002; // growth rate of cells
const float thr = 0.5; // treshold hetR value for heterocysts

struct CellData
{
 float hetR, patS; // protein concentrations
 float x; // cell size (length)
 Polarity p; // plLeft or plRight
 float vph; // differentiation degree
 // vegetative-pro-hetero
};

// Definition of modules used in the model
module Cell(CellData);
module TempCell(CellData);

// Production of proteins
float HetR(float hetR, float patS)
{
 return rho/patS*(hetR*hetR/(1+kappa*hetR*hetR) + a0);
}

float PatS(float hetR)
{
 return rho*(hetR*hetR/(1+kappa*hetR*hetR) + h0);
}

// Parameters of the initial two cells
CellData icd1, icd2;

94

Start:
{
 icd1.hetR = 0.1;
 icd1.patS = 100.0;
 icd1.x = longer;
 icd1.p = plRight;
 icd1.vph = 0;

 icd2 = icd1;
 icd2.x = shorter;

}

Axiom: Right(90) Cell(icd1)Cell(icd2);

// Interaction between cells (diffusion of patS)
p1: Cell(cdl) < Cell(cd) > Cell(cdr) :
{
 cd.patS += (D_patS*(cdl.patS+cdr.patS-2*cd.patS)/(cd.x*w))*dt;
 produce TempCell(cd);
}

p2: Cell(cd) > Cell(cdr) :
{
 cd.patS += (D_patS*(cdr.patS-cd.patS)/(cd.x*w))*dt;
 produce TempCell(cd);
}

p3: Cell(cdl) < Cell(cd) :
{
 cd.patS += (D_patS*(cdl.patS-cd.patS)/(cd.x*w))*dt;
 produce TempCell(cd);
}

decomposition:

d1: TempCell(tcd) :
{
 CellData cd = tcd;

 // Proteins production
 cd.hetR += HetR(tcd.hetR,tcd.patS)*dt/cd.x;
 cd.patS += PatS(tcd.hetR)*dt/cd.x;

 // Decay of proteins
 cd.hetR -= mu*tcd.hetR*dt;
 cd.patS -= nu*tcd.patS*dt;

 // If did not reach max size, grow
 if(cd.x < lm)
 {
 cd.hetR /= gr;
 cd.patS /= gr;
 cd.x *= gr;
 // differentiation degree of heterocyst

95

 // is identified with its size
 if(cd.hetR>thr)
 cd.vph=cd.x;
 }

 // If maximum size not reached, or heterocyst, that's it
 if (cd.x<lm || cd.hetR>thr)
 produce Cell(cd);

 // otherwise, divide
 else
 {
 CellData cd1 = cd;
 CellData cd2 = cd;
 cd1.p = plLeft;
 cd2.p = plRight;
 // take polarity into account
 if (cd.p==plRight)
 {
 cd1.x *= longer;
 cd2.x *= shorter;
 }
 else
 {
 cd1.x *= shorter;
 cd2.x *= longer;
 }
 produce Cell(cd1) Cell(cd2);
 }
}

interpretation:

// Display the cell
i1: Cell(cd) :
{
 float width;
 width = max(shorter, cd.vph);
 produce SetWidth(width) f(width/2)
 Circle(width/2)F((cd.x-width)/2)
 SB()
 Right(90) SetColor(2)
 SetWidth(shorter/4)F(log(cd.patS))
 EB()
 SB()
 Left(90) SetColor(3)
 SetWidth(shorter/4)F(log(1000*cd.hetR))
 EB()
 F((cd.x-width)/2)Circle(width/2)f(width/2);
}

96

Figure 44 Image generated by the model in Listing 37

Figure 44 presents the visualization of the model. Rounded lines, with the length

proportional to the size of the cell, represent the cells (interpretation i1). Large, round cells

are heterocysts. In addition the vertical lines represent the concentrations of both patS and

hetR in the cells. The length of the dark lines is proportional to the concentration of hetR,

while the length of lighter lines is proportional to the concentration of patS.

The ability to store parameters in a user-defined structure allows one to easily extend the

model by adding new members to the structure. In parametric L-systems it would have

been necessary to rewrite all the productions that involve the module Cell (that represents

individual cells) to include additional parameters.

7.2. Borchert-Honda model

This example implements a developmental model of a branching structure presented by

Borchert and Honda in [Bor1984]. It uses a user-defined type as a module�s parameter;

user-defined functions and fast information transfer to propagate acropetal and basipetal

signals throughout the plant structure. The L+C implementation in Listing 38 is based on an

L-system implementation presented in [Pru1997a].

The objective of the original model was to propose a mechanism that controls the

number of branches created by a tree and prevents the exponential grow of the number of

the branches.

97

The program operates on three types of modules: apices A, internodes I and an auxiliary

module N. Each internode has a parameter of type InternodeData. InternodeData is a

structure type that contains the following fields: segment type (st), flux value (flux) and

apex count (count).

In this model, plant development is controlled by the amount of substances that

propagate acropetally (from the base of the structure towards the apices). The process of

development is modeled in discrete time steps. The development starts with a single

internode and an apex. This internode is called the base of the tree. Development of the

plant depends on the flux (flow of substances) available for every apex in the plant. At the

beginning of the simulation the base of the tree contains the initial concentration of growth

substances.

Each time step is divided into three phases. Each phase corresponds to a derivation step.

Variable stepType of type PhaseType controls the current phase. Its value is changed at

the beginning of every derivation step (StartEach statement) and cyclically assumes

values BSP (basipetal signal phase � counting apices), ASP (acropetal signal phase �

distributing flux) and GP (growth phase).

Growth phase

The age of the base is incremented (production p1). The amount of growth substances

available for every apex is checked. If this amount exceeds a threshold, the apex produces

two new branches: main and lateral (production p2).

Basipetal signal phase

During this phase the derivation is performed backward (see StartEach statement). The

number of apices supported by each internode is calculated (production p3). This includes

the apex following the internode in question or apices supported indirectly by the daughter

branches of the internode. The number of apices supported by internodes is considered an

acropetal signal and is transferred using fast information transfer.

98

Acropetal signal phase

In this phase the derivation is performed forward (see StartEach statement). The

amount of flux available for all internodes is determined. At the base the flux is calculated

(production p4) using the formula proposed by Borchert and Honda: () kkv ησ 1
0 2 −= (see

function BaseFlux). This formula simulates a sigmoidal increase of flux over time. Starting

from the base internode, the flux is divided between the daughter branches (production p5).

The amount of flux available for a daughter internode depends on the number of apices

supported by the branch. Main branches are preferred over lateral branches in the sense that

they are assigned more flux. If two branches support the same number of apices then the

main branch is assigned λ (constant lambda) of the flux reaching the branching point and

the lateral branch obtains the remainder (1- λ) of flux. If the number of apices supported by

the main and lateral branch is different, then the flux reaching the lateral branch is

multiplied by the ratio c/cs, where c is the number of apices supported by the lateral branch

and cs is the number of apices supported by the main branch. The fraction of flux available

for a branch is calculated in the function Flux.

Listing 38 Borchert-Honda model implemented in L+C using fast information transfer

#include <math.h> // required for pow
#include <lpfgall.h> // predefined modules and data structures

const float Alpha1 = 10.0f; // branching angle - main segments
const float Alpha2 = 32.0f; // branching angle - lateral segments
const float sigma0 = 17.0f; // initial flux
const float eta = 0.89f; // input flux change parameter
const float vth = 5.0f; // threshold flux for branching
const float lambda = 0.7f; // flux distribution factor

derivation length: 36;

int StepNo; // Step number counter

enum PhaseType
{ BSP = 0, ASP, GP };

PhaseType steptype;

enum SegType
{ stBase, stStr, stLat };

struct InternodeData
{
 SegType st;

99

 float flux;
 int count;
};

InternodeData iBase = { stBase, 0.0, 1 };

Start: { StepNo = 0; }

StartEach:
{
 steptype = (PhaseType) (StepNo % 3);
 switch (steptype)
 {
 case BSP :
 Backward(); // Derive backward
 break;
 case ASP :
 Forward(); // Derive forward
 break;
 }
}

EndEach:
{ StepNo++; }

module A();
module I(InternodeData);
module N(int);

ignore: Left Right RollR;

// flux at the base
float BaseFlux(int age)
{ return sigma0*pow(2.0, (age-1)*pow(eta,age)); }

// flux distribution
// count – number of apices supported by the internode
// pcount – number of apices supported by the parent internode
// internode type (lateral or main)
float Flux(int count, int pcount, SegType st)
{
 if (stLat == st)
 return (1-lambda)*(1.0*count/(pcount-count));
 else // stStr == st
 return 1-(1-lambda)*(1.0*(pcount-count)/count);
}

Axiom: SetWidth(0.1) N(1) I(iBase) A;

p1: N(k) :
{
 if (steptype == GP)
 produce N(k+1);
}

100

p2: I(idata) < A() :
{
 if ((steptype == GP) && (idata.flux>vth))
 {
 InternodeData iLat = { stLat, idata.flux*(1-lambda), 1 };
 InternodeData iStr = { stStr, idata.flux*lambda, 1 };
 produce
 RollR(180)
 SB Right(Alpha2) I(iLat) A EB
 Left(Alpha1) I(iStr) A;
 }
}

p3: I(idata) >> SB() I(idata1) EB() I(idata2) :
{
 idata.count = idata1.count + idata2.count;
 produce I(idata);
}

p4: N(k) << I(idata) :
{
 idata.flux = BaseFlux(k);
 produce I(idata);
}

p5: I(idataL) << I(idata) :
{
 idata.flux = idataL.flux*Flux(idata.count, idataL.count, idata.st);
 produce I(idata);
}

The amount of flux produced at the base of the tree depends linearly on the parameter σ0

(sigma0). If this value is higher there is more flux available for the lateral branches and the

tree tends to grow wider. The simulation has been performed for two values of sigma0. The

results are presented in Figure 45.

101

σ0 = 17

σ0 = 7

Figure 45 Two images generated by the L-system from Listing 38 for two values of σ0

102

8. The L-studio modeling environment
During my research I have designed and implemented the modeling environment L-

studio. Originally it was created to address the need for an L-system based plant modeling

environment for MS Windows, as this operating system is more popular among biologists

than Unix. Later the development of L-studio was used as an opportunity to test some new

interactive and visual modeling techniques. L-studio together with a set of additional

programs constitutes a plant modeling software system. The whole system consists of the

following elements:

• L-system based simulation program cpfg (plant and fractal generator with

continuous parameters),

• L-system based simulation program lpfg (plant and fractal generator implementing

the L+C language),

• L-studio modeling environment that provides visual tools and serves as a control

component in the process of modeling and performing simulations

• A set of programs for simulating environmental processes that affect plant

development

• A set of sample models

L-studio is specifically designed for the MS Windows operating system. It has a

counterpart in the Unix system, Virtual Laboratory (vlab) [Mer1990, Mer1991, Fed1999].

All other components of the system (cpfg, lpfg and environmental programs) are designed

to be platform-independent and they can be used under Windows as well as Unix operating

systems. The portability has been achieved by the use of the C and C++ programming

languages and the dependencies on any external libraries have been reduced to a minimum:

graphic output is implemented using OpenGL library and user interface has mostly been

entrusted to the command line options. At the same time the system provides a user-

friendly way of invoking the simulation programs without the need of manually typing

commands.

103

The L-studio modeling environment is object (or model) oriented. An object is a set of

files that are used in a simulation. An object-oriented environment means that its

components are designed to cooperate and help the user in the process of developing and

experimenting with the object.

The description of L-studio contained in this chapter is not intended to be a user�s

manual. Instead it presents selected elements of the system. The selection is intended to

give a general overview of L-studio and to present concepts incorporated in the system that

I have introduced or extended. An overview of the L-studio/cpfg modeling system from the

user�s perspective can be found in [Pru1999]. A user�s manual is available at

http://www.cpsc.ucalgary.ca/Research/bmv/lstudio/index.html.

8.1. Object organization

Every object consists of a set of files. All files constituting an object are stored in a

separate directory. The files that constitute a model are typically: L-system file, view

parameters file and colours definition file etc. This design has been borrowed from an

implementation of a prototype-extension paradigm [Lie1986] as it is found in vlab,

although the functionality in this domain available in L-studio is limited compared to vlab.

When working with an object, L-studio offers the user specialized editors to manipulate

different types of files. Different editors are accessible under different tabs:

Figure 46 L-studio project tabs

Almost all files controlled by L-studio are text files. Some of them are directly edited as

text files by the user. These are: L-system, view parameters, description. Other text files are

edited using specialized visual editors.

8.1.1. Animation parameters editor

The animation parameters editor is a form-based editor. All parameters controlling

animation are specified using simple GUI controls: edit lines, check boxes, radio buttons,

etc.

104

Figure 47 Animate parameters editor

Every check box and every edit line corresponds to an entry in the animate file. But the

use of this form-based dialog relieves the user from the necessity of memorizing the syntax

of all the options as they appear in the file.

8.1.2. Colormap editor

Images generated using cpfg and lpfg modeling programs can be rendered in one of two

colour modes: colormap mode and material mode. In the L-system the current drawing

colour or material is specified using an index.

In the colormap mode the drawing colour is specified as a triplet of the RGB

components. All colours available for the model are stored in a palette � a set of 256

colours. These colours are manipulated using the colormap editor. To modify a colour in

the palette, the user selects the colour and uses three sliders to modify the colour�s

components. The effect of the change is visible immediately in the palette as the selected

entry is updated.

105

Figure 48 Screenshot of the colormap editor

8.1.3. Material editor, gallery of objects

Material rendering mode is used to create images that look more realistic than in

colormap mode. In material mode, scenes are drawn using the Phong shading model as

implemented by OpenGL [Woo1999]. In this model materials are specified by a set of

material parameters, including four colour parameters (ambient, diffuse, specular,

emission) and two numerical parameters (shininess and transparency). Each of these

parameters can be modified independently.

The material editor in L-studio uses a view/edit/gallery scheme (see Figure 49). I

designed this scheme to simplify editing and managing entities of the same type in a unified

manner.

The gallery is an abstraction that represents a set of elements. The elements stored in a

gallery are accessible through the gallery window where they are displayed. The way that

elements are rendered in a gallery is sometimes simplified and does not contain all pertinent

information (for example the gallery of panels displays only the names of the elements, see

section 8.3). However elements in the gallery window must be distinguishable and

recognizable. Basic operations that can be performed in a gallery are:

106

• Adding new elements;

• Deleting existing ones;

• Rearranging (changing the order) within the gallery;

• Copying and pasting of elements between galleries � thus moving components of L-

studio objects without the necessity of manually transferring and/or editing the files

where they are stored;

• Performing special operations on subsets of elements. For example, the material

gallery makes it possible to interpolate colour components within a range of

selected materials (see Figure 49).

Every gallery cooperates with a corresponding viewer/editor, so that the element

selected in the gallery is the one being edited in the editor. When the user selects another

element from the gallery, changes made to the element previously selected are first

propagated to the gallery and then the newly selected element is ready for editing.

Gallery

Previewer Controls

Figure 49 Screenshot of the material editor

In the material editor, the viewer/editor part consists of the material previewer window

and six controls � colour sliders. All parameters defining a material can be manipulated

using the colour sliders and a colour-chooser window (not shown).

107

8.1.4. Surface editor

Cpfg and lpfg make it possible to draw bicubic (Bézier) surfaces [Han1992, Fol1990].

The surface editor provides an interactive, graphical way to define and edit these surfaces.

Preview

Gallery

Control point
manipulators

Controls

Figure 50 Screenshot of the surface editor

In the surface editor the responsibilities of the editor components (previewer and

controls) are different compared to the material editor. In the material editor, the previewer

is passive � it displays the current state of the element being edited. In the surface editor,

elements of the gallery (surfaces), can be edited both in the preview window and using

controls. To modify the surface directly in the preview window the user can click and drag

control points with the mouse. To modify a surface using the controls, the user selects a

control point by pressing a button (labelled 1 to 16) and changes the point�s coordinates

using control point manipulators located above the gallery. Control points in the preview

window can be moved only in the XY plane, consequently the z coordinate can be modified

only using the control point manipulator.

The surface gallery is an example of the gallery that displays only a subset of

information related to the elements because the names of surfaces are not visible in the

gallery.

108

8.1.5. Contour editor

The contour editor makes it possible to define two-dimensional B-spline curves

[Fol1990]. The curves can be used later as cross-sections of generalized cylinders

[Blo1985, Mec1997a]. The contours are modified by directly moving control points in the

previewer. Controls make it possible to toggle between closed and open contours and to

specify its name. The contour editor does not contain control point manipulators because

the control points can be controlled fully in the previewer (they do not have a z coordinate).

Gallery

Previewer Controls

Figure 51 Screenshot of the contour editor

The functionality and responsibility of the components in an editor following the view

/edit/gallery scheme can vary, depending on the type of elements being edited. In the

material editor, elements of the gallery can be manipulated only using controls. In the case

of the surface editor, some functionality available with controls is duplicated in the

previewer. In the contour editor some functionality (manipulating control points) is

available only via the previewer.

8.2. Continuous modeling mode

Recent improvements in the computational power of computers and the speed of

graphics cards allowed revision of the process of working with models. The process

introduced originally by Mercer in [Mer1991] that has been pursued so far involves the

following cycle of actions:

109

 Editor (L-system,
colours, surface, etc.)

Data file

Modeling program

Modifications
saved Data re-read

Image generated on
the screen

Model
regenerated/redrawn

Figure 52 Edit-reread-regenerate scheme used when modeling

In this scheme the user first modifies a component of the model (L-system, colour

specifications etc.), then saves it to a data file and makes the modeling program reread the

modified information. The process is repeated until desired effect is achieved.

Continuous modeling mode frees the user from performing repetitive tasks of issuing

saving and rereading commands, so that he/she can concentrate on the task at hand: editing

of the data. After every change, the modifications are saved automatically and a request is

sent to the modeling program to reread the modified data and redraw and/or regenerate the

model. In this way, updated information transfers continuously from the editor to the

modeling program. Continuous modeling mode has been added to the functionality of L-

studio modeling environment.

110

8.3. Visually controlled parameters

The ability to manipulate parameters controlling the model is almost as important as the

ability to express the model itself. Modification of the model code (L-system) qualitatively

changes the model. On the other hand parameter modification changes quantitative features

of the model. Modification of parameters is a way of performing experiments on the model

by asking �what if?� questions. �What if the branching angle was different (see Figure

53)?� �What if asymmetry was different?� Etc.

Figure 53 Model of Lychnis coronaria (from [Pru1990]) generated for three different branching angles:

10°, 30° and 50°.

In the scope of my research I have improved the methods of controlling parameters by

adding visual programming elements to the design of control panels. These improvements

are discussed in more detail below.

Methods of controlling numerical parameters have been studied in the past [Mer1990,

Mer1991]. Control panels cooperating with parameter editors introduced by Mercer

[Mer1991] made it possible to control numerical and logical parameters visually. Panels

contain controls such as sliders and buttons. Using these controls it is possible to

manipulate parameters contained in text files without actually opening these files in a text

editor.

111

The control panels are designed on a per object basis. In this way, the panels can always

reflect the specific needs of every model or even different aspects of the same model,

depending on the type of experiment or demonstration.

cpfg window

Panels gallery

Panel
previewer

Execute/design
switch

Figure 54 Model controlled by numerical parameters. The parameters are controlled by a panel.

In the original design [Mer1991] control panels had to be created by manually creating

and editing text files (scripts) that describe the layout and functionality of the controls. The

scripts are interpreted by panel manager. The panel manager is a program that reads the

panel definition and then builds and visualizes the panel. The panel manager is also

responsible for accepting the user input and translating it into the parameter editor�s

actions. The parameter editor is an external program that actually modifies the data file. In

the original implementation, parameter editors were custom-written programs that

internally callsed the ed and awk programs. Finally, the modified parameters are read by

the application program (for example cpfg).

112

Panel
definition

file

Panel
manager

Parameter
editor

Data file

Application

Figure 55 Communication flow involving the panel manager (after [Mer1991])

To simplify the building of control panels, I have researched the possibilities of applying

interactive methods to this process. There are programs and utilities that allow interactive

and visual design of elements of a GUI. Commonly known examples include resource

editors in MS Visual Studio and Qt Designer. These tools make it possible to visually

design elements of a GUI, such as menus or dialog boxes. Control panels are a special type

of dialog box, which contain controls typical to dialog boxes: buttons, sliders, labels, group

frames.

Controls

Layout and
alignment

Figure 56 Visual design commands in the panel editor

This kind of tool has been implemented and incorporated into L-studio in a panel editor,

which serves two functions. When in the design mode the panel editor allows the user to

modify a panel:

• Add a control (slider, button, group box, label)

• Delete a control

• Move a control

113

• Arrange a group of controls (modify alignment, distribution)

• Specify and modify the actions associated with a control

In the panel editor the user also specifies the data file, which is controlled by the panel. In

execute mode, the panel editor becomes the panel manager, building and displaying the

controls. It also accepts and handles user input. Because the panel editor follows the

view/edit/gallery design scheme, it is possible to handle more than one panel and perform

the same operations on the set of panels that are performed in other galleries:

• Add new panels,

• Delete existing ones,

• Move panels between objects.

8.4. Visually defined functions

Productions in L+C can contain numerical expressions. The expressions may include

arithmetic operators and function calls. In addition to the standard C++ mathematical

functions and user-defined functions, they may also include graphically defined functions.

Graphically defined functions are used in the following situations:

1) when it is difficult or impractical to find a formula that expresses the desired

function, or

2) when it is necessary to be able to manipulate the values of the function locally.

In the process of modeling, some quantities defining the model cannot be described just

by numbers. For example leaf length is not the same for all leaves even within the same

plant or branch. Instead, it depends on the position of the leaf e.g. its placement on the

stem. This parameter can be thought of as a function: it assigns exactly one value (leaf

length) for every argument from the domain (position on the stem). Similarly, branching

angle is also different for virtually every lateral branch. It can also be described as a

function of position along the stem.

114

It is desirable to have access to this kind of parameters in the form of function calls from

the L-system program, so that they can be used like any other function (trigonometric and

other mathematical functions).

Listing 39 Model of a simple branching structure with lateral branches length and branching angle

controlled by functions. Image generated by the L-system is on the right.

module A(int);
module L(float);

axiom: SetWidth(0.2) SetColor(2) A(1);

derivation length: 22;

A(n) :
{
 if (n<=20)
 {
 float arg = n/20.0;
 float brang = 90-90*Fangle(arg);
 produce F(1)
 SB Left(brang) F(Flength(arg)) EB
 SB Right(brang) F(Flength(arg)) EB
 A(n+1);
 }
 else
 produce F(1) SetColor(3) Circle(0.4);
}

The model in Listing 39 refers to two functions Fangle and Flength.

The information that defines these functions can come from different sources.

Sometimes an algebraic formula is available. In that case, functions such as Fangle or

Flength implement the formula and return the result. Sometimes the function can be

defined by experimental data. In that case, the Fangle or Flength functions could calculate

the results by reading the data from an array, an external file etc. However in some cases,

only limited information is available about a function � e.g. the approximate shape of its

plot. This idea can be found for example in [Lin1998, Lin1999]. Both functions (Fangle

and Flength) used in the Listing 39 were defined by drawing the shape of the plot:

115

Flength Fangle

Figure 57 Functions used in the model in Listing 39

Rather than being specified by algebraic formulas, these functions are drawn using the

function editor. The function editor is a b-spline curve editor with additional constrains,

that make sure that the edited curve can be interpreted as a function f(x) = y for any

]1,0[∈x . These constrains are:

• p1.x = 0,

• plast.x = 1,

• pn.x ≤ pn+1.x.

Graphically defined functions can be easily modified by moving control points. For this

reason, graphically defined functions represent extensions of visually controlled

parameters.

Graphically defined functions do not replace functions specified by formulas or other

algorithms that can be easily expressed in a general-purpose programming language such as

C++. Doubtless it is much easier to type a formula such as y = x*x or y = sin(x), rather

than to draw the plot of these functions. Graphically defined functions create a new

category of functional parameters that can be manipulated interactively by the user. The

principal difference between analytic and graphically defined functions is that modifying a

parameter in a formula (a coefficient in a polynomial or exponent in an exponential

116

function) usually changes the shape of the whole function. Graphically defined functions on

the other hand make it possible to modify local properties of the plot, which are not easily

obtainable when using algebraic formulas. Some results obtained by using visually defined

functions have been described in [Pru2001].

Figure 58 shows the function editor and model of a fern controlled by graphically

defined functions. Figure 59 shows examples of models generated using the graphically

defined functions.

Figure 58 Model controlled by function parameters. The functions are controlled by the function editor

117

Figure 59 Models of Pellaea falcata and Indian paintbrush created using graphically defined functions

(from [Pru2001])

8.5. Visual interaction with the model

The need for direct interaction with the model was recognized some time ago. Power et

al. presented some research on visual manipulation of models generated using L-systems in

[Pow1999]. In this paper the authors give an overview of their application ilsa (interactive

L-string arranger) that allows a user to interactively manipulate the geometry of a plant

model. The design of the ilsa is based on the flow of control presented in Figure 60.

String saved String read

axiom

L-string File L-string

L-string File
String saved String read

derivation User�s
manipulation

ilsa cpfg

Figure 60 Information flow between cpfg and ilsa

118

To manipulate a plant model using cpfg/ilsa, the user first needs to create a model in

cpfg. Once the model is generated the L-string is saved to a disk file. The file is then read

by ilsa. Ilsa provides a display window where the user can interactively manipulate organs:

turn, rotate and bend. Ilsa inserts corresponding turtle commands in the L-string to reflect

the modifications. Then the string can be saved in a disk file and read back into cpfg. Work

by Power provides a method for interactive manipulation of the geometry of generated

structures.

I propose another method of interaction with models. My more general method is based

on the ability to modify the string interactively by inserting a predefined module. The user

can point to an element of the model on the screen and request to insert a predefined

module (X) in the string. The module X is inserted in the string right before the module

pointed to by the user. Figure 61 shows a visualization of the following L-system:

Listing 40 L-system implementing simple interactive pruning

Axiom: F1[+F2][-F3]
X ! ;F4(0.2)%

Click here

F2 F3

F1

F4
F2

F1

Figure 61 Module X inserted interactively

Initially the structure consists of three segments F1, F2 and F3. When the user selects the

branch corresponding to the module F3 the string is modified:

F1[+F2][-XF3]

During the next derivation step, the production p1 is applied and the module X is replaced

with the segment F4, which is shorter and drawn using a different colour. The remainder of

119

the branch (module F3) is removed by the module % (cut). In this way the user interactively

modified the development of the model. This method can also be used to induce more

complex actions than cutting a branch. For example, module X can be a signal that induces

flowering in a selected branch. A short discussion on further applications is presented in

9.1.2.

120

9. Conclusions

9.1. Summary of contributions

The research described in this dissertation contributes to three areas in the domain of

plant modeling:

a) L-systems as a mathematical formalism,

b) L-systems as a programming language,

c) Visual and interactive modeling.

The contributions belonging to the first two categories have been summarized and

implemented in a new L-systems based modeling language L+C, which I have defined and

implemented. Evaluation of the language from the conceptual and practical points of view

is presented in section 9.1.1. Summary of my contributions in the domain of visual and

interactive modeling are presented in section 9.1.2.

I have also created a plant modeling environment, L-studio. The environment is

comprised of three principal elements: L-system based modeling programs (cpfg and lpfg)

and a set of tools integrated into the program called L-studio. Cpfg is an L-system based

plant modeling program. It was originally created by Prusinkiewicz. Further extensions

were added by James, Hammel, Hanan, Měch and myself [Han1992, Mec1997a,

Mec1998]. I have designed and implemented lpfg. Lpfg is an L-system based modeling

program which implements and uses the L+C modeling language. The language is

described in chapter 3.4. The user�s manual for lpfg is presented in appendix A.

9.1.1. Evaluation of L+C

Users of L-systems have identified shortcomings of L-systems as a formalism and a

modeling language. These shortcomings are described in chapter 3 together with proposed

solutions. The number and significance of required modifications and extensions justified

creation of a new language instead of extending the existing syntax. As a result I designed a

new L-system-based modeling language L+C. It has been designed from scratch with a

121

well-defined set of requirements. This approach made it possible to include new elements

in a cleanly and consistently.

The main conceptual contributions to the formalism of L-systems are fast information

transfer and the new-context construct. Fast information transfer is an alternative method of

propagating information and signals in models of both linear and branching structures. It

has tow advantages over the traditional method of information transfer using context-

sensitive productions:

a) It allows a clearer structure for models than in traditional L-systems, which need

many derivation steps to propagate a signal.

b) The signal can be propagated throughout the entire structure in one derivation step.

The time required is proportional to the number of modules in the string so the

method is O(N) as opposed to O(N2) when using context-sensitive methods.

New context facilitates implementation of fast information transfer in models without

the use of a global variable (in the case of linear structures) or a stack (in the case of

branching structures). Expressing fast information transfer using only local data (a

modules� parameters and variables local to the productions) is consistent with the spirit of

L-systems � expressing models in the local terms.

The introduction of user-defined types increased the expressive power of L-systems as a

modeling language and allowed creation of models in which the modules are associated

with many parameters. A large number of parameters associated with modules are required

in (among others) genetic and biomechanical models.

An important decision in the design of L+C was to base its syntax on an existing

general-purpose language, C++. L+C adds L-system-specific constructs to C++ while

preserving all the expressive power of C++. The flow of control is governed by the

declarative nature of L-systems rather than by the imperative paradigm as in C++.

This decision had two further effects:

a) The syntax of elements typical to C++ (e.g. declarations of structures, functions

etc.) are the same as in C++. This diminishes the learning for new users of the

language, if they are already familiar with C++.

122

b) The work required to implement the interpreter (or compiler) of the language has

been reduced to a translator from L+C to C++.

Designing the translator was a valuable experience that showed what elements of the L+C

constitute the essence of L-systems. In the process of designing it was necessary to identify

elements of a program in L+C that must be translated and what additional information must

be generated to link the L-system to the generator component of lpfg.

The improvements introduced by L+C come for a price. The simplest L-systems, which

are very intuitive to grasp in the traditional notation, now look more complex. For example

the L-system that generates the Koch curve (Listing 3 on page 8) when expressed in cpfg

language reads:
Lsystem: 1
derivation length: 4
Axiom: F
F --> F+F--F+F
endlsystem

In L+C it becomes:
#include <lpfgall.h>
derivation length: 4;
axiom: F(1);
F(v) :
{
 produce
 F(1) Left(60) F(1) Right(120)
 F(1) Left(60) F(1);
}

The arrow notation of productions is replaced with a more complex one. The cpfg syntax

was derived directly from the formal notation, which was intended to express simple

concepts (for example F becomes F+F--F+F) in a simple way. It has been successfully

extended to include parametric L-systems, L-systems with programming statements,

environmentally sensitive L-systems and open L-systems.

In my opinion, the cpfg notation has reached the state when adding new elements to the

syntax leads to obfuscated code, which is difficult to debug and maintain. Some examples

have been presented already (see for example Listing 14 on page 36 and Listing 15 on page

37).

123

Also the decision to use single ASCII symbols or pair of symbols as identifiers of turtle

commands in cpfg leads to expressions such as this one11:

Listing 41 Example of a complex successor written in cpfg

@OF(l)[,@v&(90)f(ran(0.01))^(90)@c(0.5*2)]

Because cpfg is not a free-form language, the possibilities of formatting productions are

limited. I claim that the equivalent of code rewritten in L+C (see Listing 42), although

longer, is more legible:

Listing 42 Equivalent of code from Listing 41 rewritten in L+C

Sphere0 F(1)
 SB
 DecColor RotToVert Down(90) f(ran(0.01)) Up(90) Circle(0.5*2)
 EB;

Better legibility is particularly evident in more complex models. Because L+C was

designed to make it possible to write more complex models, it can be assumed that this goal

has been achieved.

9.1.2. Visual and interactive aspects of modeling

I have also researched improvements in the domain of visual modeling. The concept of

visually controlled parameters has been extended to include graphically defined functions.

Corresponding visual tools to manipulate these functions have also been constructed and

implemented. Graphically defined functions are one of the fundamental elements of inverse

modeling [Pru2001]. The ability to manipulate the shape of the function�s plot makes it is

easy to experiment with models, for example by locally modifying the controlling

functions.

The concept of continuous modeling leads to results that proved to be useful both in the

course of modeling work and in the case of presentations and live demonstrations.

I have also implemented a new method of direct interaction with models. The result is

the concept of modules that are interactively inserted into the model. Modules inserted

11 An actual successor from a model of Terminalia catappa [Mec1996].

124

interactively do not break the link between the algorithm that generated the model, internal

representation of the model and its graphical representation. The model can handle the

modules inserted by the user and react on them.

Possible applications of interactively inserted modules include modeling of:

a) pruning,

b) grafting,

c) local mutations,

d) presence of pests,

e) application of pesticides.

9.2. Future work

In this section I briefly describe problems and questions that have been identified during

my research but have not been addressed. These problems may constitute the foundation for

future work on the modeling using L-systems and further development of L+C.

9.2.1. Missing elements

L+C does not include sub-L-systems. Sub-L-systems introduced by Hanan [Han1992]

make it possible to create hierarchical models. Adding this concept to L+C is still an open

problem because of differences of how local variables are handled in sub-L-systems and in

C++.

Developmental surfaces [Mec1997a] are also not available in L+C. The problem of how

to model growing surfaces such as leaves and petals is a very general and interesting

challenge that definitely deserves work.

9.2.2. Problems worth revisiting

Object-oriented elements in L+C

One of the most interesting concepts that warrants further research of the L+C modeling

language is the incorporation of concepts from object-oriented programming. In particular

these concepts include:

a) inheritance.

b) Polymorphism.

125

c) Data hiding,

Inheritance

The concept of inheritance makes it possible to conceptually organize the elements of a

model into a hierarchical structure. Elements that are lower in the structure inherit (share)

features of the elements higher up. For example age can be considered a characteristic

shared by all organs in a plant. It is therefore appropriate to define it at the top level of the

hierarchy as a characteristic for all modules to share. Other examples that may characterize

entire classes of modules, and therefore could be inherited (shared) include: amount of

photosynthates produced by leaves, length and diameter of internodes, diameter of fruits.

In each case inheritance could be used to define modules that represent specific organs

by adding new properties to the base modules.12

Polymorphism

In object-oriented languages polymorphism makes it possible to state that some

calculations are to be performed, without giving details that may depend on the object type.

Polymorphism is achieved using virtual methods (or functions), which have the same name

but different meaning depending on the object type. For example, in the context of plant

modeling, an important quantity is the amount of resources, such as carbon, allocated to

specific modules. All organs use carbon for growth and maintenance, but functions that

describe the amounts are different for different organs (for example, leaf vs. fruit). Thus the

allocation of carbon may be defined using a virtual method at the level of organs and then

specialized for individual organ types.

Data hiding

When dealing with data structures, manipulation can be performed using one of two

approaches. The first approach is to access all members of the data structure directly. The

values can be read and modified at will. The second approach is to encapsulate all

operations that can be performed on the data structure into a set of functions. In the

programming practice it has been found that this second approach works better. This is

especially true when the members of a data structure are interdependent. The specialized

functions guarantee that these interdependencies are always satisfied and the information

12 A different concept of inheritance in L-systems has been proposed by Borovikov in [Bor1995]

126

represented by the structure is internally consistent. At present, the L+C language makes it

possible to associate methods with data structures, but does not make it possible to

associate methods with module types. Consequently, the concept of data hiding is not fully

supported at the level of modules.

What are further consequences of deriving the string forward and backward?

More consideration can be given to the problems related to sequential derivation of the

string and explicit control over the direction of the process. Fast information transfer relies

on the ability to control the derivation direction. Also the % (cut) module introduced by

Hanan [Han1992] requires the derivation to be performed from left to right. When the

derivation is performed in the opposite direction branch cutting cannot be performed by

skipping to the end of the current branch. What are other effects of sequential derivation

forward or backward, and how the sequential execution of derivation steps alters the

properties of L-systems? What is the relationship between fast information transfer and

attribute grammars? More theoretical research would help answer these questions.

Dynamic data structures as modules� parameters

Currently it is clear how to use simple (C++ built-in) or compound types (structures) as

modules� parameters. What is not clear is how to use non-trivial dynamic data structures

(linked-lists, stacks etc.) as a modules� parameters. The main problem arises because the

elements of these structures are allocated dynamically and require special handling when

being deleted, copied etc. Various methods of resource transfer and resource management

should be tested. In particular some consideration should be given to the use of STL-

defined containers as a modules� parameters.

It is worth noting that the problems described above are a direct consequence of using

C++ as the foundation of L+C. For example, these problems are not present in L-Lisp

created by Erstad [Ers2002]. L-Lisp is an L-systems framework written in Common Lisp, a

language with garbage collection mechanism.

127

Query modules vs. new context

Query modules contain meaningful information after the �interpretation step for the

environment� has been performed. This step is performed after string rewriting is

completed. In particular, query modules do not contain any meaningful information

immediately after they are created (e.g. when they are in the new context). It would be

interesting to consider the changes in the L+C language semantics to disallow query

modules in the new context, or alternatively perform the interpretation while deriving. This

could be applied only when deriving forward.

Module names

The L+C specifies that a module name must be a valid C++ identifier. This restriction

disallows module names such as [and]. These identifiers have a well established position

in L-systems notation and it is tempting to consider the possibility of allowing them as

module identifiers.

However lifting the restriction on module names would imply a major redesign of the

way the L+C to C++ translator works. Currently L2C works under the assumption that a

single token is enough to recognize L+C constructs. But [and] symbols can appear in C++

code when they have different meaning (array element operator). Consequently allowing [

and] as valid module identifiers would probably require full syntax analysis of the L+C

source code.

9.3. Closing remarks

The main goal of my research was to improve the process of plant modeling. The L+C

modeling language, implemented in lpfg, and the modeling environment L-studio are a

practical realisation of the concepts I have introduced or extended in the scope of my

research. The modeling system is distributed by the University of Calgary and is currently

used in approximately 100 locations worldwide. L+C�s applications are not limited to the

plant modeling but also include applications in the domain of subdivision curves [Pru2002].

128

Appendices

A. LPFG user’s guide
lpfg is a plant modeling program. The models are expressed using a formalism based on

L-systems. The formalism, called the L+C modeling language adds L-systems specific

constructs to the C++ programming language.

A.1. Hardware requirements

lpfg does not have any specific hardware requirements. It uses OpenGL to generate

images it is therefore strongly recommended to use graphics cards capable of displaying

graphics with resolution at least 1024x768 pixels at 24 or 32 bit depth. A mouse or an

equivalent pointing device is also required.

A.2. Software requirements

lpfg runs under MS Windows operating systems (9x/Me/NT v. 4.0/2000). It requires a

C++ compiler capable of generating Windows DLL�s (Dynamic Link Libraries). lpfg was

originally developed and tested using MS Visual C++ compiler v. 6.0.

A.3. Installation

lpfg is distributed together with L-studio. Refer to the L-studio installation guide on how

to install it.

A.4. Command line options

lpfg is designed as an element of a modeling environment, such as L-studio or Vlab.

Usually it will be invoked by the environment rather than directly by the user. This sections

presents the command line switches supported by lpfg.
lpfg [-a] [-d] [-b] [-wnb] [-wnm] [-wr w h] [-wpr x y] [-wp x y] [-w w

h] [–out filename] [colormap_file.map] [material_file.mat]

[animation_file.a] [functionset_file.fset] [drawparameters_file.dr]

[viewparameters_file.v] [contourset_file.cset] [environmentfile.e]

Lsystemfile.l

129

-a � starts lpfg in the animate mode.

-d � starts lpfg in the debug mode.

-b � starts lpfg in the batch mode.

-wnb � no borders. The lpfg window is created without borders or title bar. Also the

output console window is not shown. Used for demonstration purposes.

-wnm � no message window. The output console window is not shown.

-wr � specify relative window size. w and h parameters are numbers between 0 and 1

and specify the relative size of the lpfg window with respect to the screen.

-wpr � specify relative window position. x and y parameters specify the position of the

top left corner relative to the top left corner of the screen.

-wp � x and y specify window�s top left corner position in pixels relative to the top-left

corner of the screen

-w � w and h specify window�s size in pixels.

• Animate mode: first frame (as specified in the animation file) steps are performed,

as opposed to derivation length.

• Debug mode: some information about the execution of the program is sent to the

standard output. This mode is intended to be used by the developers of lpfg.

• Batch mode: no window is created. The simulation is performed and the final

contents of the string is stored in the file specified. Only module names are stored in

the file. This mode cannot be combined with the –a switch.

The only mandatory item is the L-system file. Command line parameters can appear in

any order.

All the input file types are recognized based on their extension.

If no colormap file or material file is specified then default colormap is used.

130

A.5. User interface

A.5.1. View manipulation

• Rotation � lpfg uses XY rotation interface based on the continuous XY rotation as

described by Chen et al. in [ref]. The model is rotated around the Y axis when the

mouse is moved horizontally and around X axis when the mouse is moved

vertically. To start rotating press left mouse button.

• Roll � to roll the model around the Z axis press Shift + middle mouse button.

Moving the mouse to the right rotates the model clockwise, moving the mouse to

the left rotates the model counter-clockwise.

• Zoom � to start press Ctrl + left mouse button or the middle mouse button. Moving

mouse up zooms in, moving down zooms out.

• Pan � to start press Shift + left mouse button.

• Change frustum angle � to start press Ctrl + middle mouse button. Moving mouse

up increases the angle, moving down decreases the angle. This operation has effect

only in the perspective projection mode.

A.5.2. Menu commands

To display menu click the right mouse button inside the lpfg window.

Figure 62 Lpfg menu

131

Step Advances simulation to the next step. This may correspond to

more than one derivation step if parameter step in the animate

file is present and specifies a value greater than 1.

Run Starts or resumes the animation.

Forever Starts or resumes the animation. After the last frame is reached

the animation returns to the first frame and continues.

Stop Stops the animation.

Rewind Resets the animation to the first frame.

Don�t animate Stops the animation and generates the image in the still mode

(performs the number of derivation steps as specified in the

derivation length statement).

Restore view Resets rotation, zoom, pan, frustum and roll to the default

values.

Reset !!!! Rotation Resets rotation.

Reset !!!! Zoom Resets zoom.

Reset !!!! Pan Resets pan.

Reset !!!! Roll Resets roll.

Reset !!!! Frustum Resets frustum (not implemented yet).

Show axis Turns on or off display of coordinate system axis in the left

lower corner.

Output !!!! BMP Creates image file filename.bmp containing the current state

of the window. Filename is the name of the L-system file.

Output !!!! Rayshade Creates a rayshade file (not implemented yet).

Output !!!! POV-Ray Creates a POV-ray file (not implemented yet).

Output !!!! Postscript Creates a postscript file filename.ps. Filename is the name of

the L-system file. All modules F are drawn as lines, even if

line style is set to cylinder. If line style is polygon

then modules F are drawn as lines of properly scaled width. The

only other module supported is Circle and Circle0. No other

modules are visualized.

132

A.6. L-system file

A typical L-system program file has the following format:

Listing 43 A typical L-system in L+C

#include <lpfgall.h>

derivation length: d;

// declarations of data structures

// declarations of functions

// module declarations

ignore: module list;

axiom: parametric word;

lcontext < predecessor > rcontext :
{
 …
 produce parametric word;
}

All elements of a program can appear in any order except for the following restrictions:

1) all elements referred to in a statement must be declared beforehand. For example: types

used as parameters of a module must be declared before the module can be declared.

Also modules that appear in the ignore or consider statement must be declared before.

2) Productions are matched in the order in which they are declared.

A.6.1. Mandatory elements

The mandatory elements in every L-system are the statements: derivation length and

axiom.

A.6.2. Include files

The first line in the L-system is the include statement. The lpfgall.h include file

includes the following standard header files:

133

• memory.h and stdlib.h � standard C header files. Required by the code generated

by the L2C translator

• lparams.h � this file contains the declarations and definitions that are used by lpfg,

L2C translator and the C++ code generated by the L2C translator. For example:

maximum number of parameters per module, maximum number of modules in a

production predecessor etc.

• lintrfc.h � this file contains declarations and definitions that are used by lpfg and

the C++ code generated by the L2C translator. For example: types used for

communication between the L-system and lpfg, predefined vector types (see section

Predefined functions and structures)

• lsys.h � this file contains declarations and definitions required by the C++ code

generated by the L2C translator. These include definitions of some predefined

functions: Forward(), Backward(), etc.

• stdmods.h � this file contains declarations of predefined modules.

lpfg standard header files should be treated the same way as the standard C header files:

they should never be changed or edited in any way. If they are models might not compile,

stop working or lpfg may hang or crash.

In addition to the required include files any other include files can be also specified.

A.6.3. derivation length:

The derivation length statement has the following form:
derivation length: integer expression ;

The integer expression is any arithmetic expression that has value of type integer or a

value that can be converted into an integer. The expression can be a function call (or it can

contain a function call). The value of this expression is evaluated once when the model is

generated in the still mode, but may be evaluated more than once in the animate mode. It is

the user�s responsibility to make sure that the expression has always the same value. For

example, in the statement

derivation length: ++i;

134

the expression ++i will return different value every time it is evaluated. In the animate

mode this may result in an infinite number of steps.

A.6.4. Declarations of data structures and functions

Syntax of declarations of data structures and functions are the same as in C++.

A.6.5. Module declaration

Every module must be declared before it can be used in the axiom or in a production.

The module declaration has the following form:

module Identifier(parameters listopt); or

module Identifier;

The parameters list is a comma separated list of types. These are sample module

declarations:

module A(int, float);
module B();
module C(data, float);
module D;

Module A is declared to have two parameters: one of type int and another one of type

float. Module B is declared to have no parameters. Module C is declared to have two

parameters of type data and float where data is a previously defined type (for example a

structure). Module D is declared to have no parameters and uses the shortcut notation

(without empty parentheses).

Note: All types must be declared before they can be used as parameters in module�s

declaration. In particular this applies to all user-defined types (structures).

Note: Parameters of modules (unlike parameters of functions) don�t have names.

Consequently it is illegal two give them names. For example:
module A(int id, float length);

135

will cause the L2C translator to signal an error. But it is legal and often useful to

comment on module parameters:
module A(int /* id */, float /*length*/);

Note: Parameter type must be a single identifier. For example the following are valid

C++ type specifiers but cannot be used as parameter types of modules:
unsigned int

char*

If a type of this kind is needed it is necessary to use typedef to create an identifier for

that type. For example:
typedef unsigned int uint;

typedef char* text;

It is possible to declare a module and specify the module�s numerical identifier in its

declaration. The syntax for this declaration is:

module Identifier(parameters listopt) = constant expression; or
module Identifier = constant expression;

This syntax should not be used in the user�s L-systems and is reserved for the include

file that declares standard modules (stdmods.h).

A.6.6. Axiom

The axiom statement has the following form:
axiom: parametric word ;

The parametric word is a sequence of modules. Initial value for every modules�

parameters must be specified. Initial value of a parameter must be an expression of the

same type as the type of the parameter. All conversion rules from C++ apply. In the

following code:

module A(int, float);

136

axiom: A(5, 2.7-sin(M_PI/3)) A(1-abs(v), 5);

the axiom contains two modules of type A. Modules A have two parameters: an int and a

float. The first module A will have its first parameter initialized with number 5. The

second parameter will be initialized with the value of expression 2.7-sin(M_PI/3) where

sin is a previously declared function (in math.h in standard C++)

The second module A will have its first parameter initialized with value 1-abs(v) where

abs is a previously defined function (in stdlib.h in standard C++) and v is a variable

previously defined. The second parameter will be initialized with a value of 5 (an integer)

implicitly converted into a float 5.0f.

If a module has no parameters its name can be followed by empty parentheses or the

parentheses can be omitted altogether:

module B();
axiom: B() B;

In this example axiom contains two modules B. B has no parameters.

A.6.7. ignore, consider statements

ignore statement has the following form:
ignore: list of modules ;

The list of modules contains modules identifiers separated by blank characters (spaces,

tabs or new lines). The list is terminated with a semicolon. For example:
ignore: A F P;

Syntax for the consider statement is analogous:
consider: list of modules ;

ignore and consider statements are mutually exclusive. By default all modules are

considered when matching contexts. The ignore statement specifies the modules that

should be ignored when matching contexts. The consider statement specifies the list of

modules that should be considered when matching contexts. If consider statement is used

then only the modules listed in the consider statement are considered. For detailed

information on matching productions see section How the productions are matched.

137

Note: SB and EB modules are always considered. Listing them in the consider

statement is unnecessary. Listing them in the ignore statement is allowed but has no

effect.

A.6.8. Start, End, StartEach and EndEach control statements

The syntax for these statements is:
Start | End | StartEach | EndEach :

{

…

}

These statements should be treated as procedures. Any legal C++ statements are allowed

inside their body. User can also specify here the direction of the derivation process (see

predefined functions).

Start is always executed before axiom.

StartEach is executed before every derivation step. EndEach is executed after every

derivation step.

End is executed after the last derivation step only when the program is not in the

animate mode. This means:

• after the program has been started without the –a switch

• when the user selects Don�t animate from the menu

A.6.9. Productions

There are three main types of productions:

a) context-free productions

b) context-sensitive productions

c) new-context-sensitive productions

Context-free productions have the following form:
strict predecessor :

{

…

138

}

Context-sensitive productions have the form
lcontextopt < strict predecessor > rcontextopt:

{

…

}

At least one of contexts must be specified.

New-context sensitive productions have one of the following forms:
flcontext << strict predecessor > rcontextopt :

{

…

}

lcontextopt < strict predecessor >> frcontextopt :

{

…

}

Every component of the predecessor (contexts and the strict predecessor) consists of one

or more modules. Modules in the predecessor must include names of their formal

parameters. Formal modules are separated by commas. If a module has no parameters its

name must be followed by a pair of parentheses ().

For example:

A(nl, fl) < B() > A(nr, fr) C(d, v) :
{ … }

specifies a production that has one module B as its strict predecessor. Module A is the left

context and modules A and C are the right context. Names of the formal parameters must be

unique within a predecessor. This is why parameters in the left context have postfix l.

Production can contain any valid C++ code. Productions also usually contain one or more

produce statements.

139

A.6.10. produce statement

Produce statement specifies production�s successor. It is allowed only inside

productions. It has the following form:
produce parametric-wordopt;

Parametric-word has the same syntax as in axiom. If it is omitted then the successor of

the production is empty. Effectively it removes the modules present in the strict predecessor

from the derived string.

Examples:
produce A(4, 5.2) B A(1, 0.5);
produce ;

If a production does not execute a produce statement then lpfg will continue searching

for other productions matching the current position in the string. If no production is found

then default (identity) production is applied.

A.6.11. Decomposition rules

Decomposition rules make it possible to decompose a module in the string into several

components. After axiom and every derivation step a decomposition step is performed.

Decomposition is performed as long as the string does not contain any modules that can be

further decomposed or the maximum decomposition depth is reached. Syntactically

decomposition rules are very similar to regular productions except for the following

differences:

• only one module in the strict predecessor is allowed,

• decomposition rules are always context-free.

When the statement decomposition: is present in the L-system it specifies that all the

following rules are decomposition rules until the end of the source file or until

production: or interpretation: statement is encountered. To specify maximum

decomposition depth the maximum depth: statement is used. It must be placed in the global

scope after the decomposition:. The syntax of the maximum depth statement is as

follows:
maximum depth: integer-expression ;

140

The default maximum decomposition depth is 1.

Note: L-system can contain many decomposition sections but only one maximum

depth: statement is allowed for decomposition. The same applies to the interpretation

rules.

Decomposition rules can be recursive, e.g. the module in the strict predecessor can

appear in the successor. For example:

#include <lpfgall.h>
module A(int);
axiom: A(5);
derivation length: 0;
decomposition:
maximum depth: 6;
A(n) :
{
 if (n>0)
 produce F(1) A(n-1);
}

The L-system above will generate five modules F(1).

Note: decomposition is internally implemented by a recursive call to a function. If the

maximum depth is a very large number the thread stack might overflow causing lpfg to

crash.

A.6.12. Interpretation rules

Interpretation rules are syntactically very similar to the decomposition rules. To specify

interpretation rules the interpretation: statement must be specified. Like the

decomposition rules interpretation rules must have exactly one module in the strict

predecessor and must be context-free. At most one maximum depth: statement is allowed

per L-system.

141

Interpretation rules are executed only during the interpretation of the string. Modules

produced by interpretation rules are not inserted into the string but are just used as

commands for the turtle during the interpretation steps.

The interpretation step is performed in the following cases:

1. When redrawing the model in the window

2. When generating output file (rayshade, POVray, postscript)

3. When calculating the view volume.

4. After axiom and each derivation step if any of the productions contains query or

communication modules

Note: interpretation and decomposition rules can be very helpful in properly

expressing models. They can be used to separate the functional aspect of the model from

its visual aspect. But these rules can be also misused. In particular interpretation rules

might add time overhead. It is a matter of experience and good design intuition to use

them wisely and effectively.

Note: in lpfg it is possible to specify regular productions after decomposition and

interpretation rules. To specify regular productions use the production: statement. This

possibility leads to another methodology of writing models. Instead of dividing the model

into production, decomposition and interpretation sections all rules that apply to one type

of module can be grouped together. For example:

production:
A() : { … }
decomposition:
A() : { … }
interpretation:
A() : { … }

production:
B() > A() : { … }
decomposition:
B() : { … }

Etc.

142

A.6.13. Predefined functions and structures

Here is the summary of the predefined functions and structures provided by lpfg:

void Forward()

This function specifies that the derivation of the string should be performed forward �

from left to right. This is default.
void Backward()

This function specified that the derivation of the string should be performed backward �

from right to left.

Forward and Backward can be used anywhere in the code where it is legal to call a

function. They take effect the next time derivation is performed. In particular if called in

the StartEach statement they affect the current derivation step.

void Printf(const char*, …).

This function is similar to the standard C function printf. Its use is recommended over

the printf for the following reasons:

• Output generated by printf is not stored in the lpfg.log file.

• In the future releases lpfg might be not connected to any console but instead provide

its own output window (like cpfg�s message log). In that case output of printf

would not be visible anywhere.

float ran(float range)

Generates a pseudorandom number uniformly distributed in the range [0, range).

float func(int id, float x)

This function returns the value of the function specified in the function-set file (if one is

present in the command line). First parameter specifies the ordinal number of the function

as in the .fset file. It must be in the range [1, num of functions]. The second is the x value

for which the y value is requested. Parameter x must be in the range [0, 1].

143

If the parameter id is incorrect (outside the range) value 0 is returned and warning

message is printed. If the parameter x has invalid value then:

• if x<0 then func(id, 0) is returned

• if x>1 then func(id, 1) is returned

In addition lpfg provides four structures that represent vectors. The structures are:

struct V2f
{ float x, y; };
struct V3f
{ float x, y, z; };
struct V2d
{ double x, y; };
struct V3d
{ double x, y, z; };

These structures are used as parameters for some predefined modules. They can also be

used in the user�s code in the L-system. Additionally if the preprocessor�s symbol

NOAUTOOVERLOAD is not defined before #include <lpfgall.h> these structures receive

additional functionality: operators for addition of two structures of the same type and

multiplying a vector by a number. For example:
V2f a(1.5, 2.0), b(0, 0.5);
V2f c = a + 2.5*b;

Refer to the file lintrfc.h in the lpfg/include directory to see full definition of these

structures.

A.6.14. Predefined modules

The following table lists all the predefined modules.

144

Module Description Equivalent

in cpfg

Modeling branching structures
SB() Starts a new branch by pushing the current state of the turtle

on the turtle stack.

[

EB() Ends a branch by popping the state of the turtle from the

turtle stack.

]

Cut() Cuts the remainder of the current branch. When detected in

the string during the generation process, the module and all

following modules up to the closest unmatched EB module

are ignored for derivation purposes. If no unmatched EB

module can be found, symbols are ignored until the end of the

string.

%

Changing position and drawing
Turtle commands

F(float /*d*/) Moves forward a step of length d and draws a line segment

from the original position to the new position of the turtle.

F(d)

f(float /*d*/) Moves forward a step of length d. No line is drawn. f(d)

MoveTo
(float /*x*/,
float /*y*/,
float /*z*)

Sets the turtle position to x, y, z. @M(x,y,z)

MoveTo2f
(V2f /*p*/)

Moves the turtle to point p. z coordinate is assumed to be 0. @M

MoveTo2d
(V2d /*p*/)

Same as MoveTo2f @M

MoveTo3f
(V3f /*p*/)

Same as MoveTo2f except that the z coordinate is specified

by the parameter p.

@M

MoveTo3d
(V3d /*p*/)

Same as MoveTo3f @M

Affine geometry support

Line2f
(V2f /*p1*/,
V2f /*p2*/)

Draws a line from the point specified by p1 to the point p2. z

coordinates are assumed to be 0. After the interpretation of

the module the turtle position is equal to p2. Heading, left

145

and up vectors are not changed. If the distance between p1

and p2 is less than ε13 the module is ignored.

Line2d
(V2d /*p1*/,
V2d /*p2*/)

Same as Line2f

Line3f
(V3f /*p1*/,
V3f /*p2*/)

Same as Line2f, except that z coordinates are specified in

the p1 and p2 parameters

Line3d
(V3d /*p1*/,
V3d /*p2*/)

Same as Line3f

LineTo2f
(V2f /*p*/)

Draws a line from the current turtle position to the point p. z

coordinate is assumed to be 0. After the interpretation of the

module the turtle position is equal to p. Heading, left and up

vectors are not changed. If the distance from the current

position to p is less than ε the module is ignored.

LineTo2d
(V2d /*p*/)

Same as LineTo2f

LineTo3f
(V3f /*p*/)

Same as LineTo2f, except that z coordinate is specified by

the parameter p.

LineTo3d
(V3d /*p*/)

Same as LineTo3f

LineRel2f
(V2f /*p*/)

Draws a line from the current turtle position to the point

p2 = (turtle position) + p. z coordinate is assumed to be 0.

After the interpretation of the module the turtle position is

equal to p2. Heading, left and up vectors are not changed. If

the length of vector p is less than ε the module is ignored.

LineRel2d
(V2d /*p*/)

Same as LineRel2f

LineRel3f
(V3f /*p*/)

Same as LineRel2f, except that z coordinate is specified

by the parameter p.

LineRel3d
(V3d /*p*/)

Same as LineRel3f

Turtle rotations
Left
(float /*a*/)

Turns left by angle a around the U axis +(a)

Right
(float /*a*/)

Turns right by angle a around the U axis -(a)

Up(float /*a*/) Pitches up by angle a around the L axis ^(a)

13 ε is defined as 0.00001

146

Down
(float /*a*/)

Pitches down by angle a around the L axis &(a)

RollL
(float /*a*/)

Rolls left by angle a around the H axis \(a)

RollR
(float /*a*/)

Rolls right by angle a around the H axis /(a)

TurnAround() Turns around 180 degrees around the U axis. This is

equivalent to Left(180) or Right(180). It does not roll

or pitch the turtle

|

SetHead
(float /*hx*/,
float /*hy*/,
float /*xz*,
float /*ux*/,
float /*uy*/,
float /*uz*)

Sets the heading vector of the turtle to hx, hy, hz and the up

vector to ux, uy, uz. The values do not need to specify

normalized vectors. The module is ignored if any of the

following is true:

a) hx,hy,hz specify a vector of length less than ε

b) ux,uy,uz specify a vector of length less than ε

c) Length of the cross product of new H and U is less than ε

@R

(hx,hy,hz,

ux,uy,uz)

RollToVert() Rolls the turtle around the H axis so that H and U line in a

common vertical plane with U closest to up.

@v

Changing turtle parameters
IncColor() Increases the value of the current colour index or material

index by one

;

DecColor() Decreases the value of the current colour index or material

index by one

,

SetColor
(int /*n*/)

Sets the value of the current colour index or material index to

n. If n is less than 1 or greater than 255 the module is

ignored.

;(n)

,(n)

SetWidth
(float /*v*/)

Sets the value of the current line width to v. If v≤0 the

module is ignored.

#(n)

!(n)

Drawing circles and spheres
Circle
(float /*r*/)

Draws a circle of radius r at the current turtle position in the

XY plane.

@o(d)

@c(d)

Sphere
(float /*r*/)

Draws a sphere of radius r at the current turtle position. @O(d)

Sphere0() Draws a sphere of diameter equal to the current line width @O

Circle0() Draws a circle of diameter equal to the current line width @o

147

@c

Drawing bicubic parametric surfaces
Surface
(int /*id*/,
float /*scale*/)

Draws the predefined surface identified by the identifier id

at the current location and orientation. The surface is scaled

by the factor scale. Surfaces are specified in the view file.

The first surface specified in the view file has id=0.

~

Drawing generalized cylinders
CurrentContour
(int /*id*/)

Sets the contour specified by id as the current contour for

generalized cylinders. If id equal to 0 is specified then the

default contour (circle) is used.

@#(id)

StartGC() Starts a generalized cylinder in the current turtle position.

(Functionality not fully implemented yet)

@Gs

PointGC
(int /*n*/)

Specifies a control point on the central line of the generalized

cylinder. The value n specifies how many mesh strips are

drawn between the control point and the previous one.

(Functionality not fully implemented yet)

@Gc(n)

EndGC
(int /*n*/)

Ends a generalized cylinder. The parameter n specifies the

number of strips as for the module PointGC. (Functionality

not fully implemented yet)

@Ge

Drawing mesh
MeshPoint() Specifies a mesh point.

Tropism
SetElasticity
(int /*id*/,
float /*v*/)

Sets the elasticity parameter of tropism id to value v. @Ts

IncElasticity
(int /*id*/)

Increments the elasticity parameter of tropism id by the

elasticity step parameter of the tropism.

@Ti

DecElasticity
(int /*id*/)

Decrements the elasticity parameter of tropism id by the

elasticity step parameter of the tropism

@Td

148

Query and communication modules
GetPos
(float /*x*/,
float /*y*/,
float /*z*/)

Queries the current turtle position. If any query module is

present in the predecessor of any production in the L-system

a special interpretation step is performed after each generate

step, when productions are applied. The string is interpreted

even if no drawing occurs. During the interpretation the three

parameters of the module are set to the x, y and z

coordinates of the current turtle position.

?P(x,y,z)

GetHead
(float /*x*/,
float /*y*/,
float /*z*)

Queries the current turtle heading vector. ?H(x,y,z)

GetLeft
(float /*x*/,
float /*y*/,
float /*z*)

Queries the current turtle left vector. ?L(x,y,z)

GetUp
(float /*x*/,
float /*y*/,
float /*z*)

Queries the current turtle up vector. ?U(x,y,z)

En(float …) Communication modules used to send and receive

environmental information.

?E(v)

Miscellaneous
Label(Text14 str) Prints the string str in the drawing window at the current

turtle location.

@L(str)

A.7. Other input files

A.7.1. Animation parameters file

Command Comments
first frame: n Derivation step to be interpreted as the first frame. Default is 0.

Note: in cpfg default first frame is 1. This is why Rewind in cpfg

rewinds to the first derivation step, while in lpfg Rewind rewinds to

axiom.

14 Text is typedef�ed as const char* in lintrfc.h

149

last frame: n Derivation step to be interpreted as the last frame. Default is the

number of derivation steps.

swap interval: t Time interval between frames. (Currently not implemented)

step: n Number of derivation steps between drawing of frames. Default is 1

Double buffer: on|off Specifies if the double buffer mode should be used. Default is on.

clear between frames:
on|off

Specifies whether to clear the screen between frames. Default is on.

A.7.2. Draw/view parameters file

Drawing and viewing parameters are stored in the view file. This file can have extension

.v or .dr. View file is preprocessed by standard C++ preprocessor therefore use of

comments (both C style /* … */ and C++ style //) as well as #define�s #if�s and all

other standard preprocessor directives are allowed. The commands are interpreted in the

order in which they appear in the file. If there two or more commands that specify the same

parameter the last one takes precedence. This does not apply to commands that specify new

set of parameters every time they appear (e.g. lights, tropisms). Every command must be

contained in a single line.

Command Comments

Setting the view
projection:
parallel|perspective

Default is parallel.

scale: s s specifies the size of the final image on the screen. 1.0 corresponds

to full size. Default is 1.1.

min zoom: v v specifies the minimum value of zooming factor (see Interactive

view manipulation). Default is 0.05.

max zoom: v v specifies the maximum value of zooming factor (see Interactive

view manipulation). Default is 50.

line style: style Style must be one of the following: pixel, polygon or

cylinder. Default is pixel.

front distance: x x specifies the front clipping plane

back distance: x x specifies the back clipping plane

Rendering parameters

150

z buffer: on|off Default is off.

render mode: Mode must be one of the following: filled, wireframe or

shaded. Default is filled.

light: command1 command2
…

Command must be one of the following:

O: x y z origin of point light source

V: x y z vector of directional source

A: r g b ambient

D: r g b ambient

S: r g b specular

P: x y z e c spotlight with the direction (x,y,z), exponent e,

cutoff angle c

T: c l q attenuation factors.

Up to 8 lights can be specified. 8 is the minimum number of lights

that must be supported according to the OpenGL specifications

Other commands
surface: filename txidopt Filename is the filename of a surface (.s) file. txid if present

specifies identifier of the texture associated with the surface. See

description of the module Surface in Predefined modules.

Note: this command can be dropped in a future version when the

gallery of surfaces is introduced.

texture: filename Filename specifies the image file that contains the texture. Both

width and height of the image must be powers of 2. Textures are

indexed starting at 0. Currently only RGB files are supported.

tropism: command1 … Command must be one of the following:

T: x y z tropism vector (required)

A: a angle. Default is 0.

I: x intensity. Default is 1

E: e elasticity. Default is 0

S: de elasticity step. Default is 0.

Any number of tropisms can be specified in the view file.

torque: command1 … Command must be one of the commands valid for tropism except for

A.

151

A.7.3. Environment parameters file

Environment parameters file has extension .e.

Command Remarks
executable: command Specifies the executable of the environmental process together

with its optional command line parameters

communication type:
pipes|sockets|memory|files

Ignored. The only communication supported in the current

version is files.

following modules: on|off Ignored. No following modules are sent to the environment.

turtle position: format
turtle heading: format
turtle left: format
turtle up: format
turtle line width: format
turtle scale factor: format

C-like format string used when sending turtle parameters. All are

optional but most environmental programs will require at least

turtle position.

For example:

turtle position: P: %f %f %f

verbose: on|off Verbose mode generates additional information about the details

of the communication

A.7.4. Miscellaneous input files

A.7.4.1. Colourmap file

Specifies 256 colours. Colourmap mode is used to create schematic images. See material

file.

For the description of the file format see the document L-studio, Cpfg, Lpfg � format

description.

A.7.4.2. Material file

Specifies 256 materials. Materials are specified by the following components: ambient,

diffuse, specular, emission and transparency. See OpenGL documentation for further

explanation. Material mode is used to create realistic images.

For the description of the file format see the document L-studio, Cpfg, Lpfg � format

description.

152

A.7.4.3. Surface file

Specifies surfaces composed of one or more Bézier patches.

For the description of the file format see the document L-studio, Cpfg, Lpfg � format

description.

A.7.4.4. Function-set file

Specifies functions of one variable. The functions are defined as B-spline curves

constrained in such a way that they assign exactly one y to every x in the normalized

function domain [0, 1].

For the description of the file format see the document L-studio, Cpfg, Lpfg � format

description.

A.7.4.5. Contour-set file

Specifies contours defined as planar B-spline curves. The curves are considered as cross-

sections of generalized cylinders.

For the description of the file format see the document L-studio, Cpfg, Lpfg � format

description.

A.7.4.6. Textures

Currently the only supported format of textures is RGB. Textures in the RGB format

may contain Alpha (transparency) channel.

153

B. Listings

B.1. Iterating L-system string in the traditional

representation

Listing 44 Function FindNextModule � traditional string representation

// the function returns the pointer to the next module
// or NULL if end of string is found
const char* FindNextModule(const char* pCP)
{
 // Input: pCP – current position in the string
 pCP++;
 if (0 == *pCP) // end of string found
 return NULL;
 else if (‘(‘ != pCP) // current module has no parameters
 return pCP;
 else // current module has parameters
 {
 do
 {
 pCP += sizeof(float); // skip the parameter
 pCP++; // skip to the coma or right parenthesis
 }
 while (‘,’ == *pCP);
 assert(‘)’ == *pCP); // otherwise the string is corrupted
 pCP++;
 if (0 == *pCP)
 return NULL; // end of string found
 else
 return pCP;
 }
}

Listing 45 Function FindPreviousModule � traditional string representation

// the function returns the pointer to the previous module
// it assumes that the current module is not the first module
const char* FindPreviousModule(const char* pCP)
{
 // Input: pCP – current position in the string
 // pBOS is the pointer to the beginning of the string
 assert(pCP>pBOS); // don’t call me if this is the first module
 pCP--;
 if (pCP != ‘)’)
 return pCP;
 else
 {
 do
 {

154

 pCP -= sizeof(float); // skip the parameter
 pCP--; // skip to the coma or left parenthesis
 }
 while (‘,’ == *pCP);
 assert(‘(‘ == *pCP); // otherwise the string is corrupted
 pCP--;
 return pCP;
 }
}

B.2. Iterating L-system string in the new representation

Listing 46 Function FindNextModule � new string representation

const char* FindNextModule(const char* pCP)
{
 // Input: pCP – current position in the string
 short int ModuleId;
 // retrieve the current module id
 memcpy(&ModuleId, pCP, sizeof(short int));
 // get the size of its parameters
 int SizeOfParameters = GetParametersSize(ModuleId);
 if (SizeOfParameters==0) // no parameters
 {
 pCP += sizeof(short int); // just skip the module id
 return pCP;
 }
 else
 {
 pCP += sizeof(short int); // skip the module id
 pCP += SizeOfParameters; // skip the parameters
 pCP += sizeof(short int); // skip the trailing id
 return pCP;
 }
}

Listing 47 Function FindPreviousModule � new string representation

const char* FindPreviousModule(const char* pCP)
{
 assert(pCP>pBOS); // don’t call me if this is the first module
 // skip to the previous module id
 pCP -= sizeof(short int);
 short int ModuleId;
 // retrieve the previous module id
 memcpy(&ModuleId, pCP, sizeof(short int));
 // get the size of its parameters
 int SizeOfParameters = GetParametersSize(ModuleId);
 if (SizeOfParameters==0)
 return pCP; // no parameters – we’re done
 else
 {
 pCP -= SizeOfParameters; // skip the parameters
 pCP -= sizeof(short int); // skip the module id

155

 return pCP;
 }
}

B.3. Predefined types provided by lpfg in the file lintrfc.h
template <typename f>
struct V2
{
 V2() : x(0.0f), y(0.0f) {}
 V2(f nx, f ny) : x(nx), y(ny) {}
 V2<f> operator+(V2<f> l, V2<f> r)
 { return V2<f>(l.x+r.x, l.y+r.y); }

 // Multiplication of vector by a scalar
 V2<f> operator*(f r, V2<f> l)
 { return V2<f>(l.x*r, l.y*r); }

 // Scalar product
 f operator*(V2<f> l)
 { return x*l.x + y*l.y; }

 f x, y;
};
typedef V2<float> V2f;
typedef V2<double> V2d;

template <typename f>
struct V3
{
 V3() : x(0.0f), y(0.0f), z(0.0f) {}
 V3(f nx, f ny, f nz) : x(nx), y(ny), z(nz) {}
 V3<f> operator+(V3<f> l, V3<f> r)
 { return V3<f>(l.x+r.x, l.y+r.y, l.z+r.z); }
 V3<f> operator-(V3<f> l, V3<f> r)
 { return V3<f>(l.x-r.x, l.y-r.y, l.z-r.z); }

 // Multiplication of vector by a scalar
 V3<f> operator*(f r, V3<f> l)
 { return V3<f>(l.x*r, l.y*r, l.z*r); }

 // Scalar product
 f operator*(V3<f> r, V3<f> l)
 { return r.x*l.x + r.y*l.y + r.z*l.z; }

 // Vector product
 V3<f> operator%(V3<f> r, V3<f> l)
 { return V3<f>(
 r.y*l.z-r.z*l.y,
 r.z*l.x-r.x*l.z,
 r.x*l.y-r.y*l.x);
 }
 V3<f> operator+=(V3<f> l)
 {

156

 x += l.x; y += l.y; z += l.z;
 return *this;
 }
 f x, y, z;
};

typedef V3<float> V3f;
typedef V3<double> V3d;

157

References
[Abe1982] Abelson H., diSessa A. A. Turtle geometry. M.I.T. Press, Cambridge, 1982.

[Bat1995] Battjes J., Prusinkiewicz P. Modeling meristic characters of Asteracean

flower head. In: Symmetry in Plants (World Scientific Series in

Mathematical Biology and Medicine, Vol. 4). Jean R.V., Barabe D. (editors).

1998

[Ber1997] Berntson G. M. Topological scaling and plant root system architecture:

developmental and functional hierarchies. New Phytologist 135 (1997), pp.

621-634

[Blo1985] Bloomenthal J. Modeling the mighty maple. Proceedings of SIGGRAPH �94,

pp. 305-311, New York 1984

[Bor1984] Borchert R., Honda H. Control of development in the bifurcation branch

system of Rabebuia rosea: A computer simulation. Botanical gazette 145

(1984) 2, pp. 184-195.

[Bor1995] Borovikov I.A., L-systems with Inheritance: An Object-Oriented Extension

of L-systems. SIGPLAN Notices 30 (5), pp. 43-60, 1995

[DeK1987] De Koster C.G., Lindenmayer A. Discrete and continuous models for

heterocyst difference in growing filaments of blue-green bacteria. Acta

Biotheorica 36 (1987), pp. 247-273

[Ers2002] Erstad K. A. L-systems, Twining Plants, Lisp, Candidate Scientist thesis,

University of Bergen, Norway, 2002.

[Fed1999] Federl P., Prusinkiewicz P. Virtual Laboratory: An interactive software

environment for computer graphics. Proceedings of Computer Graphics

International 1999, pp. 93-100, 242

[Fol1990] Foley J.D., van Dam A., Feiner S., Hughes J. Computer graphics: Principles

and practice. Addison-Wesley, 1990

[Gia1997] Giavitto J.-L., DeVito D., Micehl O. Semantics and compilation of Recursive

and Sequential Streams in 8 ½. 9th International Symposium on

158

Programming Languages, Implementations, Logics and Programs

(PLILP�97), Southampton, Springer-Verlag, 1997

[Han1992] Hanan J. S. Parametric L-systems and their application to the modeling and

visualization of plants. PhD thesis, University of Regina, Canada, 1992.

[Hog1974] Hogeweg P., Herper B. A model study on biomorphological description.

Pattern Recognition 6 (1974), pp. 165-179.

[Jir2000] Jirasek C. A biomechanical model of branch shape in plants expressed using

L-systems. M. Sc. Thesis, University of Calgary, 2000

[Jir2000a] Jirasek C., Prusinkiewicz P., Moulia B. Integrating biomechanics into

developmental plant models expressed using L-systems. H.-Ch. Spatz and T.

Speck, Plant Biomechanics, Georg Thieme Verlag 2000

[Lie1986] Lieberman H. Using prototypical objects to implement shared behavior in

object-oriented systems. Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages and Applications, pp. 214-223.

ACM, New York 1986

[Lin1968] Lindenmayer A. Mathematical models for cellular interaction in

development, Parts I and II. Journal of Theoretical Biology. 18 (1968), pp.

280-315

[Lin1971] Lindenmayer A. Developmental systems without cellular interaction, their

languages and grammars. Journal of Theoretical Biology 30 (1971), pp. 455-

484

[Lin1998] Lintermann B. Deussen O. xfrog 2.0, www.greenworks.de. December 1998.

[Lin1999] Lintermann B. Deussen O. Interactive Modeling of Plants, IEEE Computer

Graphics and Applications 19 (1), pp. 56-65, 1999.

[Mec1996] Mĕch R. Prusinkiewicz P. Visual models of plants interacting with their

environment. Proceedings of SIGGRAPH �96. ACM SIGGRAPH, New York

1996, pp. 397-410

[Mec1997] Mĕch R. Modeling and simulation of the interactions of plants with the

environment using L-systems and their extensions. PhD thesis, University of

Calgary, 1997

159

[Mec1997a] Mĕch R., Prusinkiewicz P., Hanan J. Extensions to the graphical

interpretation of L-systems based on turtle geometry. Unpublished

manuscript.

[Mec1998] Mĕch R. Cpfg version 3.4. User�s Manual.

http://www.cpsc.ucalgary.ca/Research/bmv/lstudio/manual.pdf.

[Mer1990] Mercer L., Prusinkiewicz P., Hanan J. The concept and design of a virtual

laboratory. Proceedings of Graphics Interface �90, pp. 149-155. CIPS 1990

[Mer1991] Mercer L. The virtual laboratory. Master�s thesis, University of Regina,

1991

[Pow1999] Power J. L., Bernheim Brush A. J., Salesin D., Prusinkiewicz P. Interactive

arrangement of Botanical L-system Models, 1999 ACM Symposium on

Interactive 3D Graphics

[Pru1986] Prusinkiewicz P. Graphical applications of L-systems. Proceedings Graphics

Interface 1986.

[Pru1987] Prusinkiewicz P. Applications of L-systems to computer imagery. Graph

grammars and their application to computer science; Third International

Workshop, editors: H. Ehrig, M. Nagl, A. Rosenfeld, G Rozenberg.

Springer-Verlag, Berlin, 1987. Lecture Notes in Computer Science 291, pp.

534-548.

[Pru1988] Prusinkewicz P., Lindenmayer A., Hanan J. Developmental models of

herbaceous plants for computer imagery purposes. Proceedings of

SIGGRAPH �88. ACM SIGGRAPH, New York, 1988

[Pru1990] Prusikniewicz P,. Lindenmayer A. The algoritrhmic beauty of plants.

Springer-Verlag, New York, 1990

[Pru1992] Prusinkiewicz P., Hanan J. L-systems: From formalism to programming

languages. Lindenmayer systems: Impact on theoretical computer science,

computer graphics, and developmental biology, G. Rozenberg and A.

Saloma, Springer-Verlag, Berlin 1992, pp. 193-211

[Pru1994] Prusinkiewicz P., James M., Mĕch R. Synthetic topiary. Proceedings of

AIGGRAPH �94. ACM SIGGRAPH, New York 1994, pp. 351-358

160

[Pru1996] Prusinkiewicz P., Hammel M., Hanan J., Mĕch R. L-systems: from the theory

to visual models of plants. Machine Graphic and Vision 5 (1996), pp. 365-

392

[Pru1997] Prusinkiewicz P., Mĕch R. Application of L-systems with homomorphism to

graphical modeling. University of Calgary, Calgary, Canada 1997.

Manuscript.

[Pru1997a] Prusinkiewicz P., Hammel M., Hanan J., Mĕch R. Visual Models of Plant

Development. In G. Rozenberg and A. Salomaa (Eds.): Handbook of Formal

Languages Vol III, Springer, Berlin 1997, pp. 535-597.

[Pru1999] Prusinkiewicz P., Karwowski R., Mĕch R., Hanan J. L-studio/cpfg: a

software system for modeling plants. Lecture Notes in Computer Science

1779: Applications of graph transformation with industrial relevance, pp.

457-464.

[Pru2001] Prusinkiewicz P., Mündermann L., Karwowski R., Lane B. The Use of

Positional Information in the Modeling of Plants. Proceedings of

SIGGRAPH 2001, pp. 289-300.

[Pru2002] Prusinkiewicz P., Samavati F., Smith C., Karwowski R. L-system description

of subdivision curves. University of Calgary, June 2002. Submitted for

publication.

[Roo1996] Room P., Hanan J., Prusinkiewicz P. Virtual plants: New perspectives for

ecologists, pathologists and agricultural scientists. Trends in Plant Science.

1, pp. 33-38

[Roz1980] Rozenberg G., Saloma A. The mathematical theory of L-systems. Academic

Press, New York, 1980

[Shi1964] Shinozaki K., Yoda K., Hozumi K., Kira T. A quantitative analysis of plant

form � the pipe model theory. Japanese Journal of Ecology, 14 (3), 1964, pp.

97-104.

[Smi1984] Smith A. R. Plants, fractals and formal languages. Proceedings of

SIGGRAPH �84. ACM SIGGRAPH New York, 1984.

[Str1991] Stroustroup B. The C++ Programming Language, Addison-Wesley, 1991

161

[Vog1979] Vogel H. A better way to construct the sunflower head. Mathematical

Biosciences, 44 (1979), pp. 179-189.

[Wad1942] Waddington C. H. Canalization of development and the inheritance of

acquired characteristics. Nature, 150, pp. 563-565, 1942.

[Woo1999] Woo M., et al. OpenGL Programming Guide: The Official Guide to

Learning OpenGL (3rd Edition). Addison-Wesley, 1999

