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Abstract 
In this thesis I present the modeling language L+C. L+C is a language based on the 

formalism of L-systems. It has been created to address the need for a formalism that would 

allow the expression of complex plant models. Current plant models require the 

components of the model (organs or cells) to include many parameters to describe the state 

of the model. Also the need to express complex calculations has been addressed.  

Signal propagation has been traditionally expressed using context-sensitive L-systems. 

L+C extends the formalism of L-systems by introducing new concepts: derivation direction 

and new context. These two concepts are the foundation of a new method of propagating 

signals in plant models: fast information transfer. Fast information transfer is an alternative, 

faster method of propagating signals in linear and branching structures represented by L-

system strings.  

The L+C modeling language is implemented in a plant modeling program lpfg, which 

together with cpfg (another L-system-based modeling program developed at the University 

of Calgary) are the core part of the modeling environment L-studio.  
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1. Introduction 

1.1. Motivation and scope of work 

Since their introduction in 1968 by Aristid Lindenmayer [Lin1968], L-systems have 

evolved from a mathematical formalism into a modeling language. Initially L-systems were 

designed to express development of multi-cellular organisms at the level of individual cells. 

One of the early applications was a simple model of a bacteria filament [Lin1968]. In 

addition to linear structures, branching structures could be modeled using bracketed string 

notation [Lin1968].  

As L-systems became more expressive the models became more complex. The growing 

complexity of the models put new demands on the expressive power of the L-systems. This 

reciprocal interaction has been developing and L-systems have become rich in elements 

that make it possible to develop models controlled by lineage [Lin1968, Lin1971], signals 

[Lin1968], allocation of resources [Pru1997a] and interaction with the environment 

[Mec1996]. The ability to integrate both plant growth and physiological processes allows 

simulation of plant development with accuracy and fidelity to mechanisms that can be 

observed in nature [Pru1990, Mec1996] and has led to scientifically valuable models which 

Room et al. have called virtual plants [Roo1996]. 

The main motivation for my research is a need for a formalism that will enable 

expression of more complex models, which can capture more phenomena, include 

additional elements and consider new factors to produce scientifically valid and interesting 

results. The experience gathered by scientists who model of plants shows that there is a 

need to define a common modeling platform. This platform will serve as a basis for further 

development of the modeling methodology. The research presented in my thesis is designed 

to address the L-systems part of this modeling platform.  

L-systems as a modeling formalism can capture a class of dynamic systems with 

dynamic structures [Gia1997]. A dynamic system means that the quantitative information 

associated with the model, or elements of the model can change over time. For example in a 

plant structure leaves change in size and area, branches grow longer etc. In addition, the 
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structure itself can change: apices produce new branches; some branches may die and fall 

off.  

The focus of my research was to extend the framework of L-systems to address the 

growing needs of the ever more complex functional-structural models. To address these 

needs I have extended some concepts present in L-systems as a formalism, added concepts 

known from other programming languages, and introduced new ones, not found in other 

formalisms. 

Specifically the notion of parametric L-systems has been extended. Originally 

parametric L-systems allowed any number of numerical parameters to be associated with 

modules. This has been extended to allow parameters of any type. In particular, a parameter 

can be a user-defined structure. To address the need to express complex algorithms and 

calculations I have added user-defined functions, a concept common in other programming-

languages.  

An extension that is not found in other formalisms is the concept of fast information 

transfer. L-systems have supported information transfer using context-sensitive 

productions. This is a universal method for transferring any type of information: the 

propagation of hormones, nutrients and other signals through the plant. An inherent feature 

of this method is that the number of simulation steps required to transfer information from 

point A to point B is proportional to the distance between these points measured as the 

number of modules between them. This feature becomes a limitation when the speed of 

signal propagation is high compared to the growth rate of the structure (for example 

propagation of forces and torques in biomechanical models). Fast information transfer 

removes this limitation making it possible to transfer signals throughout the whole structure 

represented by the L-system string in one simulation step. 

The number and weight of extensions postulated in my research made it justified to 

design a completely new modeling language. The new language would combine elements 

from L-systems and an imperative programming language. For the elements known from 

general-purpose programming, such as functions and user-defined data types (structures), 

the syntax from C++ was chosen. Rather than extending a modeling language with more 

programming elements, my approach is to add L-system elements to C++. Prusinkiewicz 
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and Hanan [Pru1992] presented a similar idea for adding L-systems to C. Their work was 

limited to context-free L-systems, without parameters. 

By adding elements of L-systems to C++ the whole power of C++ can be used to 

describe algorithms and data structures required for a model. Yet the introduction of L-

system constructs changes the structure of the language: the models are declarative in 

nature and consist of productions. Therefore the language has been renamed L+C.  

In addition to the language, I have designed and implemented the modeling program 

lpfg. It executes models specified in the L+C modeling language. The results can be 

rendered as a three-dimensional visualization of the model or stored in an external file for 

further analysis. I have also created a comprehensive modeling system, L-studio. L-studio 

was inspired by the vlab modeling environment originally created by Mercer [Mer1990, 

Mer1991] and then extended by Federl [Fed1999]. L-studio combines the functionality of 

several programs to create and render complex models, and is compatible with vlab. The 

system has proved to be useful for biologists (it is currently being used in approximately 

100 locations worldwide). 

1.2. Organization of the dissertation 

This section outlines the organization of the thesis.  

Chapter 2 presents the history of L-systems, including the main concepts, definitions and 

applications that are essential to understanding my research. In chapter 3 the new concepts 

that I have added to L-systems are presented. The new modeling language created to 

include these concepts is presented in chapter 4. Chapter 5 is devoted to some 

considerations on how to implement the language and internal representation of the L-

system string. Chapter 6 discusses the interface which is used to communicate between the 

modeling program (lpfg) and the translated L+C model. Chapter 7 contains examples that 

demonstrate the benefits of using L+C over traditional L-system language.  

Chapter 8 describes the L-studio plant modeling environment which I have created in the 

scope of my research. There were two principal reasons for creating this environment. First, 

there were several ideas related to interactive and visual modeling techniques that could be 

tested. In addition there was considerable interest in a system that would work in the MS 

Windows environment coming from biologists who use L-system-based simulations as one 
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of their research tools. The description of L-studio emphasizes the interactive and visual 

modeling concepts I have introduced or extended. 

The conclusions, including a summary of contributions and issues for further research 

are presented in chapter 9. Appendix A contains the user�s manual of lpfg modeling 

program, based on L+C modeling language. 

1.3. Document conventions 

Source code listings are printed using fixed-width font. 



 

 

5

 

2. Lindenmayer systems 
Lindenmayer systems (or L-systems) are a mathematical formalism introduced by 

Aristid Lindenmayer in 1968 [Lin1968] to model multi-cellular organisms. Ability to 

express branching structures (with bracketed strings) made L-systems particularly useful in 

modeling plants. The following sections describe the main concepts of L-systems.  

2.1. D0L-systems 

The simplest type of L-systems are D0L-systems: Deterministic, context-free (0), L-

systems. The formal definition of D0L-systems is given below (based on the definition 

given in [Roz1980]): 

•  An alphabet is a finite set of letters denoted as V. The letters are also called 

modules. 

•  A word is a sequence of letters over an alphabet. The set of all words over alphabet 

V is denoted as *V . 

•  A production is a pair (a, u) denoted as ua → , where a is a letter and u is a word. a 

is called predecessor and u is called successor. 

•  A D0L-system is a triplet PVG ,,ω= , where V is an alphabet, *V∈ω  is a word 

called the axiom, and P is a set of productions such that PpVa a ∈∃∈∀
1

: , where pa 

denotes a production that has module a as its predecessor. 

Production ua →  is said to match module a. By convention it is assumed that if no 

production is specified for a module a explicitly then the identity production )( aa →  is 

added implicitly. A production can also specify that the current module should be removed 

from the string. This is expressed by specifying an asterisk (*) or ε (in formal notation) as 

the successor. 

The process of applying productions and creating a new string is called string rewriting. 

Execution of an L-system consists of a series of string rewritings, which are then called 

derivation steps. In L-system rewriting the productions are applied in parallel to all 
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modules in the string. The productions in L-systems are sometimes labelled (pn:) for 

presentation or discussion purposes, but the labels do not appear in the actual code. 

A classical example of a D0L-system describes the growth of the vegetative segment of 

Anabaena catenula [DeK1987, Lin1971]. A vegetative segment consists of cells that can be 

in one of two states � young (shorter) or ready to divide (longer). The cells also have two 

possible polarities. The polarity specifies which of the daughter cells will be shorter. In the 

following L-system (reproduced after [Pru1990]) the letters a and b specify the two states 

and the subscripts l and r specify cell polarities.  

Listing 1 Development of Anabaena catenula filament. 

axiom: ar 

p1: ar ! albr 

p2: al ! blar 

p3: br ! ar 

p4: bl ! al 

 

The developmental sequence determined by the L-system in Listing 1 begins with the 

axiom ar, and produces a new word with each derivation step: 

ar 

albr 

blarar 

alalbralbr 

blarblararblarar 

2.2. Bracketed L-systems 

To represent a branching structure using a string of letters (which by definition is a 

linear structure), two reserved modules were introduced as a part of the original definition 

of L-systems [Lin1968]. These modules are the left bracket ([) and the right bracket (]) and 

they specify the beginning and the end of a branch, respectively.  

The following L-system generates a simple branching structure (after [Pru1990], p. 25) 

consisting of two types of modules: apices (A) and internodes (I): 
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Listing 2 L-system generating simple branching structure 

axiom: A 
 
A ! I[A][A]IA 
I ! II 

 

Figure 1 visualizes the structures generated by the L-system in Listing 2 with both 

modules visualized as straight lines of unit length. Modules A (apex) are drawn in green, I 

(internode) modules are drawn in black. Lateral branches are rotated relative to the parent 

branch. The images are scaled to the same size to better visualize the growing complexity 

of the structure. 

 

Figure 1 Branching structure generated by L-system in Listing 2 

2.3. Graphical representation of L-systems 

The desire to represent plant structures graphically led to new interpretations of L-

systems. For example, the L-system in Listing 2 does not specify the directions or angles 

between the parent branch and lateral branches. Yet branch orientation is a fundamental 

feature of plants. In Lindenmayer�s early work [Lin1971], lateral branches were drawn as 

alternately left and right. Hogeweg and Hesper [Hog1974] represented geometric aspects 

(branching angles, length of branches) according to externally defined rules. This concept 

was later extended to include 3D structures [Smi1984]. 

The most common interpretation used today is based on the LOGO-style turtle 

[Abe1982], as introduced by Prusinkiewicz [Pru1986]. The main concept is that some 

modules in the L-system string are interpreted as commands executed by a turtle. In 2D the 

state of the turtle is characterized by its position and orientation. A vector called the 

heading vector specifies the orientation. Basic commands executed by the turtle are:  
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•  F � move forward one unit in the direction specified by the heading vector and draw 

a line 

•  f � move forward one unit in the direction specified by the heading vector without 

drawing a line 

•  + (plus), � (minus) rotate left, right around the position by a predefined angle. 

To represent three-dimensional structures the state of the LOGO-style turtle has been 

extended. In the 3D systems the orientation of the turtle is defined by three mutually 

perpendicular vectors called heading, left and up.  

 

L � left 

H � heading 

U � up 
 

Figure 2 Turtle orientation defined by vectors H L and U (pointing to the viewer) 

The L-system presented below (after [Pru1990]) generates the Koch snowflake using 

basic turtle commands. The rotation angle associated with the rotate commands + and � is 

specified externally to be 60 degrees. 

Listing 3 L-system generating Koch snowflake 

Axiom: F--F--F 
F ! F+F--F+F 

 

Figure 3 Koch snowflake generated by the L-system in Listing 3 

Additional commands were also introduced [Pru1986] to make it possible to generate 

three-dimensional structures. These commands are 

•  rotation around the left vector (^ � pitch up, & � pitch down)  

•  rotation around the heading vector (\ � roll left, / � roll right).  
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When drawing branching structures specified by bracketed L-systems, the modules [ and 

] are interpreted as follows: 

•  ] � the turtle state is pushed on a stack 

•  [ � the turtle state is popped from the stack. 

In addition to the position and orientation the turtle state can also include drawing 

parameters, such as drawing colour, line width etc. 

2.4. Parametric L-systems 

D0L-systems, as presented in the previous sections, can represent qualitative 

information in which each type of module represents a different type of components in the 

model, such as a cells or organ. Some quantitative information (such as the length of 

internodes or the magnitude of angles of rotation) can also be specified by the D0L 

formalism using multiple modules to express different lengths of lines or rotation angles. 

For example in Listing 3 the two modules + or � are used to represent a rotation of 120 

degrees left and right respectively. 

However it is impossible to express such a simple figure as an isosceles right triangle 

where the line lengths do not have a common denominator. This limitation has been 

addressed by parametric L-systems [Pru1990, Han1992].  

 

1 

1 2

 

Figure 4 Isosceles right triangle 

The essence of parametric L-systems is that each module consists of a symbol together 

with associated numerical parameters. In the productions parameter values are referred to 

using formal parameters. Additionally, formal parameters can be used in arithmetic 

expressions. The expressions can be used to calculate new values of parameters in the 

production�s successors. 

The formal definition of parametric D0L-systems is as follows (after [Pru1990]): 
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•  V is the alphabet. 

•  ∑ is the set of formal parameters. 

•  ( )∑C  is the set of all logical expressions with parameters from ∑. 

•  ( )∑E  is the set of all arithmetic expressions with parameters from ∑. 

•  ( )+ℜ×∈ *Vω  is a nonempty parametric word called the axiom. 

•  P is a finite set of ordered productions of the form pred: condopt ! succ such that 

*∑×∈ Vpred , )(∑∈ Ccond  and ( )( )**∑×∈ EVsucc . The components of 

productions are called predecessor, condition and successor respectively. If the 

condition cond is omitted in a production it is assumed to evaluate to true. 

In the case of parametric L-systems, the process of matching productions during string 

rewriting is more complex than for D0L-systems. For a production to match a module in 

the string, the following conditions must be met: 

1) The module�s letter must match the letter in the predecessor, 

2) The number of actual parameters associated with the module and the number of 

formal parameters in the predecessor must be the same, 

3) The condition cond must evaluate to true. 

 

For example, production 

 
 A(t) : t>5 ! B(t+1)A(t/2) 

 

can be applied to module A(6) and will produce parametric word consisting of two 

modules: B(7) A(3).  

2.5. Context-sensitive L-systems 

In context-free L-systems productions are applied regardless of the context in which the 

predecessor module appears. Context-sensitive L-systems make it possible to specify what 

modules must be in the neighbourhood of the modules being replaced for the production to 

be applied. Context-sensitive L-systems are necessary to express information flow in the 

modelled structure. For example the transfer of nutrients or hormones throughout a plant 



 

 

11

structure can be modelled using context-sensitive L-systems [Lin1968]. Context-sensitive 

productions have the form: 

 

lc < pred > rc : cond ! successor 

 

The symbols < and > separate the three components of the predecessor: the left context 

(lc), the strict predecessor (pred), and the right context (rc).  

 

The process of matching productions in context-sensitive L-systems is governed by a set 

of rules that are discussed in the following section. 

2.5.1. How the productions are matched 

When rewriting the string it is necessary to determine which production must be applied 

to each module in the string. The process of determining the applicable production is called 

production matching. For every module in the string, productions are checked for 

matching. The productions are checked in the order in which they are specified in the L-

system. 

For a production to match, all three components of the predecessor (left context, strict 

predecessor and right context) must match. The rules for matching each of these 

components are different. This is because the L-system string is a means of representing 

branching structures and symmetric operations on the string do not (in general) correspond 

to symmetric operations on the branching structure. No good definition of context in 

branching structure can be found in the L-systems literature. One of partial definition is the 

work by Prusinkiewicz et al. [Pru1988]. 

This section contains a detailed explanation of rules that control the process of 

production matching. Good understanding of these rules is necessary for proper 

understanding of the concept of fast information transfer in branching structures (described 

in 3.3.2).  

When the strict predecessor is compared with the contents of the string in the current 

position in order for it to match the modules in the strict predecessor have to match exactly 

the modules in the string.  
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When matching the right context and a module in the context is not the same as module 

in the string the following rules apply: 

•  If a module in the string is [ and the module expected is not [ then the branch is 

skipped. This rule reflects the fact that modules may be topologically adjacent, even 

though in the string representation of the structure the two modules may be 

separated by modules representing the lateral branch B (see Figure 5).  

•  When a branch in the right context ends (with a right bracket) then the rest of the 

branch in the string is ignored by skipping to the first unmatched ]. This rule also 

reflects the topology of the branching structure, not its string representation. For 

example in Figure 6, module C is closer to A than D. 

•  If multiple lateral branches start at a given branching point, then the predecessor in 

Figure 6 would check the first branch (see Figure 7). To skip a branch it is 

necessary to specify explicitly which branch at the branching point should be tested 

(see Figure 8). This notation is a simple consequence of the rule presented in Figure 

6. In the current L-system notation there is no shortcut to specify the second, third 

etc. lateral branch in a branching point without explicitly including pairs [ ] in the 

production predecessor. There is also no way to specify �any of the lateral 

branches�. 
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 Skipped 
branch 

Right 
context 

B 
C 

A 
Current position 

String: A [ B ] C

A > C 

Skipped branch 
Strict 
predecessor

Strict 
predecessor 

Right 
context 

 

Figure 5 Matching right context, lateral branches are implicitly ignored 

 Ignored part 
of the branch

Right 
context 

D

Rest of the branch 
ignored 

B
C 

A 
Current position 

String: A [ B D ] C

A > [ B ] C 

 

Figure 6 Matching right context, remainder of lateral branch is implicitly ignored 

 

No match 

C D 

A 
Current position 

String: A [ C ] [ B ] D

A > [ B ] D 

B

 

Figure 7 Problem with multiple lateral branches when matching the right context 
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Branch explicitly ignored 

C D 

A 
Current position 

String: A [ C ] [ B ] D

A > [ ] [ B ] D

B

 

Figure 8 Explicit enumeration of lateral branches in the right context 

 

When matching the left context the following rules apply: 

•  Module [ is always skipped, since the preceding module will be topologically 

adjacent (see Figure 9). 

•  If the module indicates the end of a branch then the entire branch is skipped (Figure 

10). 
 

C 

B 
AC < A 

Ignored module 

String: C [ A ] B

Current position 

Left context

 

Figure 9 Matching left context, beginning of the branch implicitly ignored 

 

C

B
A

C < B 

Ignored branch 

String: C [ A ] B

Current position 

Left context

Ignored branch 

 

Figure 10 Matching left context, lateral branches implicitly ignored 
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The rule illustrated in Figure 9 is a pronounced manifestation of asymmetry in the left 

context � right context relationship: module C is left context of both A and B. But C�s right 

context is B (unless [ ] delimiters are used explicitly). The relation of the left context can be 

thought of as the parent module: the module before (below) the branching point. It is then 

natural to say that C is parent module for both A and B. The distinction between main 

branches and lateral branches can appear to be an implementation dependent artefact, but it 

actually can be biologically justified (see for example [Bor1984]). 

2.5.2. Ignored and considered modules 

The L-system presented below (Listing 4) describes the propagation of an acropetal 

signal using a context-sensitive production. This signal can be, for example, a hormone. J 

represents an internode where the hormone is present (red line), and I represents an 

internode where it is not present (black line).  

Listing 4 Acropetal signal propagation implemented using context-sensitive L-system 

Axiom: I[+J][-J]J[+J][-J]J[+J][-J]J 
p1: I < J ! I 
p2: I+ < J ! I 
p3: I- < J ! I 

         

Figure 11 Propagation of acropetal signal � output from L-system in Listing 4 

The L-system consists of three productions: p1 is responsible for transferring the signal 

to the main branches; p2 and p3 are responsible for transferring the signal to the lateral 

branches. They are necessary because every J is preceded by a + or a � (the modules that 

specify rotation, see section 2.3) and the left context in p1 doesn�t match the sequence of 

modules I[+J] or I[-J].  
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Productions p2 and p3 do not add any new information to the model. They have to be 

present because of the geometric properties of the model. To be able to abstract from such 

details, the notion of ignored modules was introduced. It makes it possible to specify a list 

of modules that are ignored when checking for matching context so that Listing 4 can be 

rewritten as follows: 

Listing 5 Acropetal signal propagation implemented using the ignore statement. 

ignore: +- 
Axiom: I[+J][-J]J[+J][-J]J[+J][-J]J 
I < J ! I 

 

If the list of ignored modules is long it may be more practical to list only the relevant 

modules that appear in the left or right context. This is done using the consider statement. 

Consequently Listing 4 can be then rewritten as follows: 

Listing 6 Acropetal signal propagation implemented using the consider statement 

consider: I 
Axiom: I[+J][-J]J[+J][-J]J[+J][-J]J 
I < J ! I 

 

In summary: the presence of ignored and considered modules adds two rules to the test 

for matching context.  

•  When the right context is checked, modules that are not to be considered (those 

listed after the ignore keyword or those not listed after the consider keyword) are 

skipped (Figure 12).  

•  Similarly, when checking the left context, ignored modules are skipped (Figure 13). 

ignore: X 
 
 A > C 

Ignored module 

String: A X C

Current position 
 

Figure 12 Matching right context with ignored modules 
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 ignore: X 
 
C < A 

Ignored module 

String: C X A

Current position 
 

Figure 13 Matching left context with ignored modules 

2.6. L-systems with programming statements 

As the models created using parametric L-systems became more complex, Hanan 

[Han1992] extended L-systems to include some programming language constructs (see also 

[Pru1992, Pru1996]). 

Programming constructs include: 

•  Assignment of variables (local and global), 

•  Calls to predefined functions, 

•  Conditional statements (if � else), 

•  Loops. 

Global variables can be used to store global information about the model e.g. the number 

of leaves, flowers. Expressions used in parametric L-systems productions can be 

complicated and they are often used in more than one module within one production. 

Therefore, local temporary variables were introduced that could store a calculated value 

that could be used throughout a production.  

 

A(n) ! F[+A(n+1)][-A(n+1)]      (1) 
 

Hanan extended the cpfg language [Han1992] to include the following syntax for 

productions: 

 

lc < pred > rc : { α }opt cond { β }opt ! succ 
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where α and β are optional C-like compound statements, and cond is a logical expression. 

During the string rewriting if the production predecessor (strict predecessor, left context 

and right context) matches the current string position (see section 2.5.1) the statement α (if 

present) is executed and cond evaluated. Thus, the production (1) can be rewritten as: 

  

A(n) : { new_n = n+1; } 1 ! F[+A(new_n)][-A(new_n)]  (2) 
 

If cond evaluates to true (non-zero) value then β (if present) is executed and the 

production applied (the successor added to the new string). But if cond evaluates to zero 

then the production is not applied. In this case the next production declared is tested for 

matching. This makes it possible to specify more than one production that has the same 

predecessor but produces different modules depending on the value of cond. The condition 

can depend on the global state of the model (global variables), local conditions (actual 

parameters of modules in the predecessor) or both.  

Other elements added to the cpfg language by Hanan [Han1992] are predefined 

functions that include mathematical functions, pseudo-random number generators etc. They 

are used in computations or in file and console I/O operations (results of simulations can be 

stored in external files for further analysis using other programs or simply displayed in a 

console).  

In addition to productions, programming statements can be used in control statements. 

Control statements are procedures, which are called during the execution of L-system 

program. There are four control statements.  

 

Start: {  code } Executed at the beginning of the simulation 

StartEach: { code } Executed before each derivation step 

EndEach: { code } Executed after each derivation step 

End: { code } Executed at the end of the simulation 

 

All control statements are optional.  

Listing 7 presents an L-system program that creates a simple branching structure (with 

some randomness). The control statements are used to gather statistical data about the 
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model. The data are stored in an external file. Because the L-system source file is 

preprocessed using a standard C preprocessor, #define is used to define constants. 

Listing 7 L-system with control statements and predefined functions 

#define STEPS 50  
#define MATURE 1 
#define dt 0.2 
 
derivation length: STEPS 
 
Start: {  
fp = fopen("output.dat", "w"); 
db = 0; 
step = 0; 
} 
 
StartEach: { 
ap = 0; 
step = step+1; 
} 
 
EndEach: { 
if (ap>0) 
  { fprintf(fp, "%.0f apices created in step %.0f\n", ap, step); } 
} 
 
End: { 
fprintf(fp, "Total: %.0f dead buds\n", db); 
fclose(fp); 
} 
 
Axiom: A(0) 
 
p1: A(t) : t<MATURE ! A(t+dt) 
p2: A(t) : ran(1)<0.8 { ap = ap+2; } ! F(0.2)[+A(0)][-A(0)] 
p3: A(t) : 1 { db = db+1; } ! ,G(0.2); 
 
p4: F(t) ! F(1.08*t) 
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Figure 14 Sample image generated by the L-system from Listing 7 

There are three global variables declared in the Start statement: fp (file pointer), db 

(dead buds counter) and step (step number). Before every derivation step global variable 

ap (apex counter) is set to 0 and step is incremented. 

Initially the model consists of a young apex A(0). Production p1 increases the age of the 

apex until it reaches the mature state (condition t<MATURE). When the apex is mature 

production p2 is applied with a 0.8 probability (condition ran(1)<0.8, where ran is a 

pseudo-random number generator with uniform distribution). If applied, p2 produces an 

internode (module F) and two lateral branches with young apices. It also increments the 

global variable ap by two. This variable stores the number of apices produced in every 

derivation step. If p2 is not executed then production p3 is applied. In that case the apex is 

replaced with a dead bud drawn in an alternate colour1 and the global variable db is 

incremented. Production p4 increases the internode length by a constant factor of 1.08. Thus 

internodes created earlier will be longer than those created later. 

A sample output generated by the L-system from Listing 7 is given below. 
2 apices in step 6 
4 apices in step 12 
6 apices in step 18 
8 apices in step 24 
12 apices in step 30 

                                                 
1 In cpfg language modules , and ; change the current drawing colour. 



 

 

21

22 apices in step 36 
32 apices in step 42 
46 apices in step 48 
Total dead buds 21 

2.7. Interpretation rules 

When creating a plant model it is important to distinguish two elements in the process: 

the structure of the plant model and its visualization. For example, during the development 

and testing of a model, organs can be visualized simply: stems as straight lines, leaves as 

polygons, etc. Once the model generates the correct structure and topology, the visual 

aspect can be extended: lines can be replaced with cylinders, and polygons replaced with 

3D surfaces (such as Beziér parametric surfaces). If these two aspects can be separated the 

model is clearer and easier to maintain. This goal was achieved by introducing 

homomorphisms for interpreting the string. 

In formal language theory, a homomorphism defines a mapping from an alphabet V to 

words in another alphabet Vh [Roz1980]. Formal definition of non-parametric L-systems 

with homomorphisms is as follows (after [Pru1997]): 

•  V and Vh are two alphabets 

•  PVG ,,ω=  is an L-system over alphabet V 

•  **: hVVh →  is a homomorphism 

•  The ordered quintuplet hPVVH h ,,,, ω=  is an L-system with a homomorphism 

with the support G and homomorphism h. 

Elements of h are called interpretation rules. Interpretation rules are applied only during 

the interpretation of the string (for example when visualizing the model2). These rules are 

not applied when deriving the string.  

The syntax for interpretation rules is the same as productions, except that interpretation 

rules are always context-free. During interpretation, modules in the string are replaced with 

their image specified by the interpretation rules. By convention, if no interpretation rule is 

specified for a module then its image is the module itself. Interpretation rules are applied 

                                                 
2 The string is also interpreted in other cases, for example see 2.9 
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recursively on the resulting words until the word contains only modules that are mapped 

into themselves (terminal symbols) or until a predefined recursion depth is reached.  

The interpretation rules are more closely related to Chomsky grammars than L-systems. 

In Chomsky grammars the productions do not define development but the structure. Also, 

productions in L-systems are applied in parallel, whereas productions in Chomsky 

grammars are applied sequentially.  

The following L-system is an extension of the program presented in Listing 2. It 

includes interpretation rules that specify how to draw the organs. An apex is visualized as a 

line and a circle3, both drawn using an alternative colour (orange). Internodes are visualized 

as straight lines drawn using the default colour (green). In the cpfg language interpretation 

rules are preceded by the keyword homomorphism. 

                                                 
3 In cpfg language @o draws a circle 
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Listing 8 L-system from Listing 2 with interpretation rules 

#define STEPS 4 
derivation length: STEPS 
axiom: A 
A ! I[+A][-A]IA 
I ! II 
homomorphism 
A !!!! ;F@o 
I !!!! F 

 

Figure 15 Image generated by the L-system presented in Listing 8 

Figure 16 shows the developmental sequence of a model with interpretation rules. When 

the initial string µ0 is visualized, the interpretation rules (h) map this string into the string 

v0, which contains the graphical information. After the visualization a derivation step is 

performed (P) that applies the productions to the original string µ0 and produce string µ1. 

This string is again mapped using the interpretation rules into the string v1 and so on. 
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  µ0 
P 
⇒ µ1 

P 
⇒ µ2 

P 
⇒ µ3 

P 
⇒ � 

  ⇓h  ⇓h  ⇓h  ⇓h   
  v0  v1  v2  v3  ... 

Figure 16 Developmental sequence of a model with interpretation rules. 

Interpretation rules do not always have to be applied after every derivation step. In some 

cases for example the simulation is performed but only the final string is visualized.  

2.8. Decomposition rules 

Decomposition rules are formally and syntactically related to interpretation rules. 

Decomposition rules are context-free. They are also applied recursively. The two 

fundamental differences between decomposition and interpretation rules are that the 

successor of a decomposition rule is inserted into the string, and decomposition rules are 

always applied after each derivation step. Whereas the interpretation rules express the idea 

�module looks like this�, decomposition rules express the idea �module consists of the 

following�.  

  µ0 
P 
⇒ µ0� 

D 
⇒ µ1 

P 
⇒ µ 1� 

D 
⇒ µ2 � 

   Derivation step  Derivation step   
Figure 17 Developmental sequence of a model with decomposition rules. 

Figure 17 shows the developmental sequence of a model with decomposition rules. First 

productions (P) are applied and the initial string µ0 is replaced with string µ0�. Then the 

decomposition rules (D) are applied and produce string µ1. The string µ0� can be considered 

an intermediate state and the application of the decomposition rules can be thought of as a 

post-processing phase of the derivation step.  

The L-system presented below implements a developmental model of a simple 

branching structure.  
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Listing 9 L-system with decomposition and interpretation rules 

#define max_t 2 
#define dt 0.4 
 
derivation length: 30 
 
Axiom: A(0) 
 
p1: A(t) --> A(t+dt) 
p2: I(t) --> I(t+dt) 
 
decomposition 
 
d1: A(t) : t>max_t --> I(max_t)[+A(t-max_t)][-A(t-max_t)] 
 
homomorphism 
 
i1: A(t) --> ;(1)F(t)@o(0.8) 
i2: I(t) --> ;(2)F(t) 
 

 

Figure 18 Structure generated by L-system in Listing 9 

The model consists of two types of modules: A (apex) and I (internode). Both module 

types have one parameter, that represents the age. Initially the model consists of a young 
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apex A(0). The productions p1 and p2 advance time. The actual development is 

implemented in the decomposition rule d1. This rule specifies that a mature apex produces 

an internode and two lateral apices. This decomposition rule is very similar to the 

production p1 from the model presented in Listing 7. The main difference is that the age of 

the new apices (as well as the age of the iternode) is calculated as the difference between 

the current age of the apex and maximum age. This expresses the idea: if there is an apex of 

age t and t>max_t then this apex must have produced an internode and two apices t-

max_t time ago. So the internode and the apices are already that old. This idea can be also 

expressed using a production. A production however will not produce correct results if t-

max_t>max_t. For example if max_t=1 then using a production string A(3) would be 

replaced with I(2)[+A(2)][-A(2)]. This is wrong because an apex cannot be older than 1, 

but because decomposition rules are applied recursively the string A(3) will be properly 

decomposed into: 

A(3)

I(2)[+A(2)][-A(2)]

I(1)[+A(1)][-A(1)] I(1)[+A(1)][-A(1)] 

 
effectively producing: 

 
I(2)[+I(1)[+A(1)][-A(1)]][-I(1)[+A(1)][-A(1)]] 

 

The fact that decomposition rules are applied recursively makes it possible to create for 

example a model of a tree, where every derivation step corresponds to a time step equal to 

several years, while branches are produced every year.  

Another application of decomposition rules is to generate a sequence of the same (or 

similar) modules or groups of modules. For example the decomposition rule in Listing 10 

generates n repetitions of the sequence F @o(0.1). 
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Listing 10 Decomposition rule used to generate a sequence of modules 

axiom: A(4) 
decomposition 
A(n) : n>0 ! F @o(0.1) A(n-1) 

 

After the string is initialized the module A is decomposed into pairs of modules F and @o 

followed by an A. The number of repetitions is specified by the value of the actual 

parameter of A in the axiom (see Figure 19). 

 

 A(4) 

F @o(0.1) A(3)

F @o(0.1) A(2)

F @o(0.1) A(1)

F @o(0.1) A(0)  

Figure 19 Decomposition rule applied recursively 

Effectively the module A(4) is replaced by 

 
F @o(0.1) F @o(0.1) F @o(0.1) F @o(0.1) A(0) 

 

Another decomposition rule can be added to remove the trailing module A(0): 
A(n) : n==0 ! * 

2.9. Environmentally sensitive L-systems and Open L-
systems 

To model the impact of the environment on plants, and the mutual interaction between 

plants and their environment, two extensions to L-systems were made: environmentally 

sensitive L-systems and Open L-systems.  
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Environmentally sensitive L-systems [Pru1994] make it possible to pass information 

from the environment to the model. Query modules make it possible to access geometric 

information about the location and orientation of organs in the model. Query modules are 

produced in the axiom or in the production successors. After each derivation step the actual 

parameters of all query modules are set and then are used in the next derivation steps. 

There are four main query modules: ?P(x, y, z), ?H(x, y, z), ?L(x, y, z) and 

?U(x, y, z). They correspond to geometric properties of the LOGO-style turtle: position, 

heading vector, left vector and up vector. When a query module is produced its parameters 

are set to arbitrary values. After each derivation step the string is interpreted (without 

drawing) and if a query module is found its actual parameters are set to the values 

corresponding to the current properties of the turtle. This phase is called interpretation for 

the environment.  

Let us consider the following L-system: 
Axiom: A 
p1: A ! F ?P(0, 0, 0) F ?P(0, 0, 0) 
p2: F > ?P(x,y,z) : 1  

{ printf(“Line ends at (%f,%f,%f)\n”, x, y, z); } ! F 

 

Initially the string contains a single module A. During the first derivation step the 

contents of the string is replaced with the sequence of four modules:  

F ?P(0, 0, 0) F ?P(0, 0, 0).  

The query modules ?P have parameters set to 0 as specified in p1. Then the interpretation 

for the environment follows. Let�s assume that the turtle�s initial position is (0,0,0) and the 

heading vector is (0,1,0). The first module found in the string during the interpretation is F. 

This module causes the turtle to move forward in the direction specified by its heading 

vector (see 2.3), so its position becomes (0,1,0). The next module found in the string is ?P. 

Its three parameters will now be set to the values that represent the turtle�s current position. 

So the contents of the string is modified and contains: 

 

F ?P(0, 1, 0) F ?P(0, 0, 0).  
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Then the third module in the string is interpreted (F). It causes the turtle to move forward 

again. Now the turtle�s position is (0,2,0). So when the next module is found (?P) its 

parameters are changed to contain (0,2,0). After the interpretation for the environment the 

string contains: 

 

F ?P(0, 1, 0) F ?P(0, 2, 0).  

 

This ends the first derivation step. During the interpretation for the environment the 

contents of the string was changed and the information from the environment acquired. In 

the second derivation step the production p2 is applied twice. It doesn�t change the string, 

but it prints two messages: 

 
Line ends at (0,1,0) 

Line ends at (0,2,0) 

 

To illustrate the use of an environmentally-sensitive L-system a model4 of an extinct 

plant Horneophyton ligneri is presented in Listing 11. The main feature captured in the 

model is the visible preference of the plant�s branches to grow upwards rather than 

horizontally, which results in the characteristic shape of the plant�s crown.  

Listing 11 L-system generating a model of Horneopython ligneri 

#define SENS 1.0 /* sensitivity to orientation */ 
 
derivation length: 7 
Axiom: A(10)?H(0,0,0) 
 
A(l)> ?H(x,y,z) ! F(l)T 

[-(20)/(90)A(l*0.95*y^SENS)?H(0,0,0)] 
[+(20)/(90)A(l*0.95*y^SENS)?H(0,0,0)] 

 
T ! * 
 
homomorphism 
 
T ! [-(20)/(90)F(3)][+(20)/(90)F(3)] 

 

                                                 
4 Unpublished model by P. Prusinkiewicz 
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SENS=0 

 

SENS=1 

 

Figure 20 Image generated by the L-system from Listing 11 for two values of SENS 

The presented model proposes a simple mechanism to capture this preference. It 

assumes that the length of branches produced by an apex depend on the vertical component 

of the apex�s heading vector. It is possible to test the sensitivity of apices to the heading 

vector by manipulating parameter SENS that can accept any real-number values. The 

length of new branches is multiplied by the expression ySENS, where y is the vertical 

component of the apex orientation vector. If, for example, SENS is equal to 0 (no 

sensitivity to the orientation), the generated structure presents no directional preference (see 

Figure 20 left). When SENS is set to 1 (Figure 20 right) the branches that grow more 

horizontally are visibly shorter than the ones growing more vertically. 

To obtain the orientation vector of the apex, the query module ?H is used. This module 

provides the model with the three components of the heading vector. 

Where environmentally sensitive L-systems provide one-way communication from the 

environment to the plant model, Open L-systems [Mec1996] make it possible to model bi-

directional interaction between plant and its environment. In this case, the task of modeling 

the environment is entrusted to an external program (usually written in a general purpose 

programming language such as C). The conceptual model behind open L-systems is 

presented in Figure 21. 
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Figure 21 Conceptual model of interaction between plant and environment (after [Mec1997]) 

The internal processing phase in the plant model corresponds to a derivation step (cf. 

Figure 21). After each derivation step the string is scanned and communication modules 

together with optional additional information (e.g. position and orientation of the module in 

3D) are sent to environment. The environment receives this information (reception), 

processes the data, and sends its response to the plant model. The plant model receives the 

response and is ready for the next derivation step. This feedback loop is continued 

throughout the simulation. 

The exchange of information between the plant and its environment is done using 

communication modules ?E. These modules are similar to the query symbols introduced in 

environmentally sensitive L-systems. The main difference is that when communication 

modules are generated their actual parameters are the input for the environment. This 

information is passed to the environment, which determines its response and sends back 

new values of parameters of the communication modules. These new values are then used 

in the productions. 

To demonstrate how Open L-systems work, I am presenting a real-life example that 

demonstrates a phenomenon of canalization [Wad1942]: some organs (petals, primordia) in 

capitula are more likely to occur in certain quantities than in others. The model5 presented 

in Listing 12 generates a planar, spiral phyllotactic pattern using the algorithm proposed by 

                                                 
5 Unpublished model by P. Prusinkiewicz 
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Vogel in [Vog1979]. The algorithm places consecutive elements of the pattern (the 

primordia) using the following formulas: 

αϕ ∗= n   ncr =  

These formulas give the coordinates of pattern elements in the polar coordinates (r,φ). n 

is the ordering number and c is a scaling factor. Numbering starts at the centre and proceeds 

outward. Battjes and Prusinkiewicz [Bat1995] noticed that when generating phyllotactic 

pattern that contains N primordia using the Vogel formula the number of outermost 

primordia is usually a number from the Fibonacci series6. 

The L-system in Listing 12 generates phyllotactic patterns and demonstrates the effect of 

canalization of the number of organs. 

Listing 12 Phyllotactic pattern and canalization of number of ray florets 

Axiom: A(0) 
 
C?E(x): x==0 --> @c 
C?E(x): x==1 --> ;@c 
 
decomposition 
 
A(n) : n < NUMBER -->  
 [+(n*137.5)f(0.5*n^0.5)C?E(n)]A(n+1) 
 

                                                 
6 Fibonacci series is defined as follows: a1=1, a2 =1, an=an-1+an-2 for n>2. The beginning of the series is: 1, 

1, 2, 3, 5, 8, 13, 21, 34, 55� 
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Figure 22 Phyllotactic pattern as generated by the L-system from Listing 12 

The whole pattern is generated at once in the decomposition rule. Primordia are 

represented by modules C followed by a communication module ?E. Each consecutive 

primordium has a parameter defining its vigour (n). The vigour is increasing as we move 

outward. 

To determine which primordia are outermost, an environmental program is used. There 

are two pieces of information sent with every communication module ?E: the position of 

the primordium (sent implicitly) and its vigour (n). The environment collects this 

information and determines which organs are dominant. A dominant organ is one that 

collides (occupies the same location in space as another organ) and has vigour that is 

greater than the organ with which it collides. The environment sends this information back 

by setting the value of the communication module ?E parameter to 0 if the organ is 

dominated or to 1 if it is dominant. The dominating primordia are rendered using a different 

colour (red). 

The simulation presented in Listing 12 was executed for the value of NUMBER in the 

range from 2 to 500. The results are shown on the chart on Figure 23. It can be seen that 
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most of the time the number of dominating primordia is a number from the Fibonacci 

series. These values are marked on the chart with the thick horizontal lines. 
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Figure 23 Results of the simulation from Listing 12 

2.10. Summary 

This chapter presented an overview of L-systems. It presents the main concepts that 

were incorporated into L-systems and turned a mathematical formalism into a powerful 

plant modeling language. All the concepts and the features presented in this chapter have 

been implemented in a plant modeling program cpfg [Mec1998, Pru1999]. This overview is 

intended to prepare the reader for the next chapter, where I present new concepts and 

features I have added to L-systems.  
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3. New Concepts and Features in L-systems 
This chapter presents new concepts and features I have added to L-systems. Sections 3.1 

and 3.2 describe why it is useful to extend parametric L-systems with user-defined data 

types, and user-definable functions, and how these extensions can be incorporated into the 

L-system formalism. In section 3.3 I present further extensions: control of derivation 

direction, fast information transfer and a modification of the notion of context: the new 

context. 

3.1. User-defined data types 

The introduction of parametric L-systems [Pru1990, Han1992] made it possible to 

include into the models quantitative information that can be expressed by real numbers. 

Examples of such information are: 

•  Geometric properties (length of an internode, diameter of a branch), 

•  Biologically relevant information (concentration of hormones, amount of nutrients 

produced/consumed),  

•  Biomechanical information (forces, torques, deformations), 

For example, let us consider the production: 

Listing 13 A sample parametric production 

A(x,y) ! B(x+y) C(x-y)  

 

In this production a module of type A with two numerical parameters (x and y) is 

replaced by two modules, B and C, which have one parameter each. The values of the 

parameters associated with the newly created modules B and C are expressed using standard 

arithmetic notation. Specifically, the value of the parameter of module B equals the sum of 

parameters x and y of module A, and the parameter of C equals the difference, x-y.  

Parametric L-systems made it possible to implement new classes of models. A module 

can have any number of parameters. However, n practice, if the number of parameters 
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associated with a module becomes too large it is very difficult to develop and maintain the 

model. For example: 

Listing 14 A sample production with many parameters 

A(xl1, xl2, xl3, xl4, xl5)  
< B(x1, x2, x3, x4, x5) >  
C(xr1, xr2, xr3, xr4, xr5) 
! D(x1, x2, x3, x4, x5+1) 

 

Such a complex production is difficult to read and comprehend, although the concept is 

fairly straightforward: if a module B with five parameters has module A with five 

parameters as its left context and module C with five parameters as its right context, it is to 

be replaced with module D with five parameters. The values of the D�s parameters should 

be the same as those of B�s except that the last one that should be increased by 1.  

According to the definition of parametric L-systems it is necessary to list all the formal 

parameters of each module involved in a production: both in the successor and in the 

predecessor. There are two main reasons for this: 

•  parameter passing is based on the position of the parameter, not its name, 

•  the modules are distinguished by the number of parameters, e.g. two modules 

labelled with the same letter but with a different number of parameters are 

considered to be two different modules. This is similar to the concept of overloaded 

functions [Str1991].  

Although sometimes convenient, this formulation may also lead to bugs that are very 

difficult to find and fix. For example, it would be very easy to miss one of the parameters in 

a complex production such as Listing 15:  
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Listing 15 Production from Listing 14 with only four parameters in module D 

A(xl1, xl2, xl3, xl4, xl5)  
< B(x1, x2, x3, x4, x5) >  
C(xr1, xr2, xr3, xr4, xr5) 
! D(x1, x2, x3, x5+1) 

 

From the syntactical point of view the production would still be correct, therefore the 

parser would have no reason to indicate an error. But as a result every time the production 

in Listing 15 is applied, for example, it will produce a module D with four instead of five 

parameters. Consequently all the productions that have a module D with five parameters in 

their predecessors (whether in the strict predecessor or in the context) will never apply.  

The solution proposed in this research is to allow the user to define compound data 

types, in particular structures. Using the syntax known from the C++ programming 

language the data type associated with modules in Listing 14 can be written as: 
struct Data 
{ float x1, x2, x3, x4, x5 }; 

 

The Listing 14 can then be expressed as follows: 

Listing 16 Production from Listing 14 with parameters packed into structures 

A(dl) < B(d) > C(dr) : { d.x5 += 1; } ! D(d) 

 

This production specification is significantly clearer than the previous one. It is 

important to notice that the type of parameters is not specified in productions. Looking at 

Listing 16 there is no way to say that dl, d and dr are of type Data. To avoid this kind of 

ambiguity the modules have to be declared before they can be used in productions (see 4.2). 

3.2. Functions 

As models developed using L-systems require more and more complex calculations the 

need for user-defined functions becomes apparent. In general the same reasons apply as in 

any other programming language.  
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•  Functions encapsulate calculations. When a function is defined the calculations are 

separated from the rest of the program. At the same time the complexity of the 

calculations does not obstruct the main code. 

•  Functions are reusable: some formulas (or algorithms) are used in more than one 

place in a model. A simple call to the function can be used rather than repeating the 

details of the algorithm each time. 

  Well-designed functions have meaningful names and good parameters that can give 

information about what the function actually does and what is the meaning of the 

parameters. When an algorithm is included in the main code it is necessary to look 

at the implementation to find out what it does. By using a function, a person reading 

the model can understand what the algorithm does, without having to know how it 

does it. 

•  Functions can be much more expressive than arithmetic formulas. Some languages 

that do not support functions include simple macros (in the C preprocessor sense) 

for representing calculations7. For example: 

  #define VectorLength(x, y, z) sqrt(x*x+y*y+z*z) 

  However no loops or conditional statements can be used in macros.  

•  Functions can be combined into libraries: Some functions are used in different 

models. For example functions that calculate the dot product of vectors and the 

length of vectors are general in nature and are used in different models. Instead of 

rewriting them one can group such functions into a library that can be linked to 

different models. 

The calculations of L-systems do not require any special syntax. It is therefore 

reasonable to assume that the syntax from any general-purpose language is acceptable.  

3.3. Fast information transfer 

The importance of information transfer in biological models cannot be overstated. For 

example, information transfer (or signal propagation) in L-system models is used to model 
                                                 

7 C preprocessor is used for example by rayshade. A mechanism similar to C preprocessor is also used in 

POV-ray. 
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the transport of substances in the plant, such as hormones, nutrients. It is also used for 

collecting information about the structure, such as number of apices supported by a given 

branch, and biomechanical information such as the: sum of forces, momentums, and 

torques acting on a branch. Information can be transferred using context-sensitive 

productions but this mechanism may not be fast enough in some applications. In the 

following sections I present the traditional approach to the problem and then introduce a 

new method, which I call fast information transfer.  

3.3.1. Information transfer in linear structures 

This section discusses the problem of information transfer in linear structures. First the 

traditional approach using context-sensitive productions is presented in 3.3.1.1. Then the 

new method using fast information transfer is shown in 3.3.1.2.  

3.3.1.1. Traditional approach 

Context-sensitive L-systems as introduced by Lindenmayer [Lin1968] have been a 

natural choice for expressing information transfer. For example the L-system in Listing 17 

moves a signal from left to right through the series of A modules, counting the number of 

A�s. 

Listing 17 Information transfer in linear structure using context-sensitive productions 

axiom: S(0) AAAAAAAA 
S(n) < A ! A S(n+1) 
S(n) > A ! ε 
S(n) ! R(n) 

 

S has one parameter, which represents the number of A�s counted so far. In the axiom 

this value is set to 0. After the first derivation step module S will move past the leftmost A 

and the value of its parameter will be 1: 

 
AS(1) AAAAAAA 

 

After the next derivation step S will move past the second A and the value of its 

parameter will increment: 
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AAS(2) AAAAAA 

 

Eventually after eight steps module S will reach the end and will be replaced with 

module R representing the final result. 

 
AAAAAAAA R(8) 

 

It takes N derivation steps to transfer the signal (the counter module S) from one end of 

the string to the other, where N is the number of A�s. Because the time required to perform a 

single derivation step is also proportional to N, this method of transferring information is 

O(N2).  

3.3.1.2. Fast information transfer  

According to the original formulation of L-systems the modules in the string are 

replaced with their successors simultaneously. Nevertheless, in practice the process of 

derivation is usually performed sequentially. The original string is scanned, module by 

module, and as the productions are applied the new string is built. If the user knows that the 

process of derivation is performed in a given direction (for example from left to right) it is 

possible to rewrite Listing 17 as follows: 

Listing 18 Fast information transfer in a linear structure, using a global variable 

n = 0; 
axiom: AAAAAAAA 
p1: A > A : { n++; } ! A 
p2: A : { n++; } ! A R(n) 

 

In a single derivation step, the first production replaces each module A that has another 

module A to the right with itself, while the second production handles the end case. Both 

productions increment n as each A is replaced. The table below shows the execution of a 

single derivation step. The first column shows the contents of the original string and the 

current module is shown in boldface. 
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Original string Production applied n Resulting string 

AAAAAAAA p1 1 A 

AAAAAAAA p1 2 AA 

AAAAAAAA p1 3 AAA 

AAAAAAAA p1 4 AAAA 

AAAAAAAA p1 5 AAAAA 

AAAAAAAA p1 6 AAAAAA 

AAAAAAAA p1 7 AAAAAAA 

AAAAAAAA p2 8 AAAAAAAA R(8) 

 

In this way the signal propagates through the string in a single derivation step and the 

string is only scanned once. Since the time required to perform a derivation step is 

proportional to the number of modules in the string, this method is O(N).  

If a signal needs to be propagated from right to left, the analogous method can be 

applied as long as the derivation can be performed from right to left. So here I am 

introducing the term derivation direction. I assume that the process of string rewriting is 

done sequentially. The derivation direction specifies whether during rewriting the string is 

scanned from left to right (forward) or from right to left (backward).  

The information propagation presented in this section is an example of using the fast 

information transfer in a linear structure. The only overhead in this method compared to the 

traditional method is the need for a global variable (n). To use the fast information transfer 

method, the derivation direction must be controlled by the user. 

3.3.2. Information transfer in branching structures 

Examples from the previous sections can be extended to branching structures where it is 

often necessary to count the branching order to determine features such as the age of a 

branch or its distance from the base. Berntson [Ber1997] presented a number of topological 

ordering schemes, which can be divided into two broad categories: (developmental) 

centrifugal and (functional) centripetal.  

When labelling segments according to a developmental scheme, the process starts at the 

base of the system and orders are assigned in increasing magnitude away from the base. 

The name developmental reflects the direction of growth of the branching (or root) system. 
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When a functional scheme is used, the process starts at the tips of the branches (or root 

tips) and orders of increasing magnitude are assigned toward the base. This scheme reflects 

the distance (especially topological distance) to the base and is usually correlated with age 

of the organ.  

Two different labelling schemes will be applied on simple branching structures. One of 

the schemes requires a signal to be propagated from tips of branches to the root and the 

other requires the signal to go from the base of the structure to the tips. Both labeling 

schemes will be first implemented using context-sensitive L-systems and then using fast 

information transfer. 

Here is a sample branching structure: 

a
b

A

B

C

D

E

c
e

d

 

Figure 24 A sample branching structure 

The structure in the Figure 24 corresponds to the following string: 
I[I[IAe]IAd]I[IAc]I[IAb]IAa 

Modules I represent internodes (lines). Modules A represent apices (circles). The indices 

associated with modules of type A have been added only to help identify the modules on the 

diagram and those in the string. Branching points are visualized as diamonds and are 

labelled with capital letters. Internodes that are lateral to their parent branch are thinner 

than main branches. For example the internode between the branching points D and B is a 

main branch, whereas the internode from B to the apex c is lateral. On the other hand 

internode D C is lateral to its parent (E D), but the internode from C to apex d is the main 
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branch for D C. The distinction between the main and lateral branches will become relevant 

when implementing developmental labelling scheme in the section 3.3.2.2. 

3.3.2.1. Traditional approach 

Developmental labelling scheme 

In the case of developmental labelling schemes the signal needs to be propagated from 

the root to the tips. The root as the oldest part of the plant has number 1. All child branches 

(main or lateral) have numbers based on the label of their parent incremented by one. 

The L-system that performs the labelling contains two productions: 

 
 Axiom: I[I[IAe]IAd]I[IAc]I[IAb]IAa 

p1: I(parent)< I(n) ! I(parent+1) 

p2:  I(n) ! I(1) 

 

And this is how it proceeds: 
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Figure 25 Information transfer in a branching structure from the root to the tips 

Red lines represent the internodes, which contain updated information. The number of 

steps required to propagate the information is equal to the length of the longest branch. 

 

Functional labelling scheme 

This labelling scheme can be used to calculate the number of apices supported directly 

or indirectly by every internode. Every module representing an internode I will have a 
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parameter for storing this information. Using context sensitive L-systems the solution can 

be described as follows: 

1) The initial value of the internode�s parameter is equal to 0 for all modules I.  

2) Where internodes directly support an apex the value of the parameter is set to 1. 

3) For all other internodes the parameter is calculated by adding the parameters from 

the internodes to their right 

 
p1: I(n) > A ! I(1) 
p2: I(n) > [I(n1)] I(n2) ! I(n1+n2) 

 

If the structure contains any sequences of two consecutive internodes without a 

branching point an additional production is required: 

 
p3: I(n) > I(n1) ! I(n1) 

 

As the productions are applied in each derivation step the information about the number 

of apices supported propagates downwards until it reaches the base: 
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Figure 26 Information transfer in a branching structure from the tips to the root 

Figure 26 shows how the information propagates. The red lines indicate internodes to 

which the information has been propagated. The numbers indicate the actual values of 

parameters of I.  

In the case of asymmetric branching structures (as the one presented in this example) the 

information may not come simultaneously to branching points. For example in Figure 26 
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(a) the information has reached point B only from c but not from A. In (b) the information 

has reached the point B but D is still waiting, etc.  

It is imperative to be able to determine whether information has reached a certain point 

and yet this is a non-trivial task. For example, checking if the value is non-zero can be 

misleading (e.g. the parameter of internode DB in figure (b) or the parameter of internode ED 

in figure (c) are non-zero but do not contain the correct values). In practice it is necessary to 

use an additional parameter (flag) to indicate if the information has reached the given point.  

The number of steps required to propagate a signal in a branching structure is equal to 

the length of the longest branch (main or lateral). 

3.3.2.2. Fast information transfer with a stack 

In the case of a branching structure, a single variable is usually not enough to apply fast 

information transfer. Instead a stack is required. It is assumed that there is a data structure 

theStack, which implements a stack of integers. theStack implements three methods: 

void Push(int) and int Pop() (removes the top element from the stack) and int Top() 

(returns the value of the top element without removing it). 

 

Developmental labelling scheme 

To propagate a developmental signal in a branching structure it is necessary to be able to 

distinguish between main and lateral branches. The derivation must be performed forward. 

In the following L-system the second parameter of I indicates main and lateral internodes. 

It is true (1) for the main internodes and false (0) for the lateral ones: 

Listing 19 Fast information transfer applied to a developmental signal in a branching structure 

p1: I(nl, sl) < I(n,s) : 
{ 
  if (s==true) 
    newn = theStack.Pop()+1; 
  else 
    newn = theStack.Top()+1; 
  theStack.Push(newn); 
} ! I(newn, s) 
 
p2: I(n,s) < A() : 
{ theStack.Pop(); } ! A 
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p3: I(n,s) : 
{ theStack.Push(1); } ! I(1,s) 

 

When a new value of I�s first parameter is set (p1 and p3) this value is pushed on the 

stack. When the value of the previous label is needed (p1) it is accessible as the top element 

on the stack.  

This value is only read when the current internode is a lateral branch and is read and 

removed from the stack when the current internode is a main branch. This is because every 

lateral branch precedes a main branch in the string. To analyze how this L-system works a 

simpler branching structure was chosen (see Figure 27).  

 
I3 

I2

I1
 

I1[I2A]I3A 

Figure 27 Sample branching structure 

The table below shows the progress of a single derivation step performed on the string 

representing the branching structure (Figure 27). In the first column the current module is 

indicated in boldface. The third column shows the contents of the stack after the production 

specified in the second column has been applied. 
Original string Production 

applied 
Stack Resulting string 

I1(0,1)[I2(0,0)A]I3(0,1)A p3 1 I1(1,1) 

I1(0,1)[I2(0,0)A]I3(0,1)A p1 
2 
1 

I1(1,1)[I2(2,0) 

I1(0,1)[I2(0,0)A]I3(0,1)A p2 1 I1(1,1)[I2(2,0)A 
I1(0,1)[I2(0,0)A]I3(0,1)A p1 2 I1(1,1)[I2(2,0)A]I3(2,1) 
I1(0,1)[I2(0,0)A]I3(0,1)A p2 Empty I1(1,1)[I2(2,0)A]I3(2,1)A 

 

Every internode (except the first one) uses the information from the stack to calculate its 

own order. Also productions push the order value on the stack to be used by the next 

internode. Terminal internode values are not used; therefore they must be removed from the 

stack (p2). Also every production for a main internode removes the top element from the 

stack, as it is no longer used. 
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Functional labelling scheme 

This L-system implements the functional scheme presented in 3.3.1.2 using fast 

information transfer. 

Listing 20 Fast information transfer in a branching structure using a global stack 

p1: I(n) > A : { theStack.Push(1); } ! I(1) 
 
p2: I(n) > [I(nl)] I(ns) : 
{ 
  n = theStack.Pop() + theStack.Pop(); 
  theStack.Push(n); 
} ! I(n) 

 

This L-system assumes that the derivation is performed backwards � from right to left. 

This is how the process proceeds on the branching structure presented in Figure 27.  
Original string Production 

applied 
Stack Resulting string 

I1(0)[I2(0)A]I3(0)A p1 1 I3(1)A

I1(0)[I2(0)A]I3(0)A p1 
1 
1 

I2(1)A]I3(1)A

I1(0)[I2(0)A]I3(0)A p2 2 I1(2)[I2(1)A]I3(1)A 

 

The algorithm is based on the fact that the branch tips are visited before the branching 

points. When a branching point is visited, the stack contains the values pushed by the 

productions applied for the internodes at the tips. Every internode pushes the value of its 

parameter on the stack. Internodes at the tips (those that have an apex in the right context) 

set the value of the parameter to 1. Internodes at the branching points calculate the value of 

the parameter based on two topmost values on the stack. This method resembles the way 

arithmetic expressions are calculated using the reverse Polish notation.  

 

3.3.2.3. Fast information transfer using the new context 

The method presented in the previous sections requires a global data structure � the 

stack. The stack contains data that are a subset of the information that is generated in 

successors. But in fact these data are redundant as they are already present in the new string 

being created.  
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Figure 28 Left context, right context and new left context 

In Figure 28 the current module is A. Modules in the immediate neighbourhood to the 

left of module A are its left context. Modules in the immediate neighbourhood to the right 

of module A are its right context.  

Here I introduce a new concept: new context. 

To determine if a module or modules are in left new context of module A the same rules 

for matching apply as described in 2.5.1. The only difference is that matching is performed 

in the new string (the one being currently created) starting at the last module added to the 

new string so far. Left new context is defined only when the derivation is being performed 

forward (from left to right).  

Similarly right new context is defined only when deriving from right to left. Also the 

rules described in 2.5.1 apply. In Figure 29 the string is being derived backwards (from 

right to left). Modules FG etc. are the right new context of the current module A. 
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Figure 29 Left context, right context and new right context 

The stack as it is used in the fast information transfer can be thought of as a method of 

indirectly reading the contents of the string being generated. But once the formalism makes 

it possible to explicitly refer to the newly created modules, L-systems that implement fast 

information transfer are simpler and there is no need for the global stack. I am introducing 

new meta-symbols: << and >>. These symbols specify the new left and new right context, 

respectively. The introduction of these meta-symbols adds four new types of production 

predecessors:  

 

left new context << strict predecessor  

left new context << strict predecessor > right context 

strict predecessor >> new right context 

left context < strict predecessor >> new right context 

 

It makes sense to match productions with left new context only when the string is being 

derived forward (from left to right). Similarly, productions that have new right context can 

be matched only when deriving the string backwards (from right to left). Obviously it 

makes no sense to have a production that would have both left and right new contexts as the 

string cannot be derived in both directions at the same time. We are now ready to re-

implement the two labelling schemes (Listing 19 and Listing 20) without using the global 

stack. 
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Developmental labelling scheme 

An L-system using the fast information transfer with new context that implements the 

developmental labelling scheme contains two productions is presented below: 

Listing 21 Developmental labelling scheme implemented using fast information transfer with new 

context 

p1: I(nl) << I(n) ! I(nl+1) 
p2: I(n) ! I(n+1) 

 

The process of rewriting is shown in the table below: 
Original string Production applied Resulting string 

I(0)[I(0)A]I(0)A p2 I(1) 

I(0)[I(0)A]I(0)A p1 I(1)[I(2) 

I(0)[I(0)A]I(0)A identity I(1)[I(2)A 

I(0)[I(0)A]I(0)A p1 I(1)[I(2)A]I(2) 

I(0)[I(0)A]I(0)A identity I(1)[I(2)A]I(2)A 

 

The L-system using the new context has the following advantages: 

•  There is no need for the stack  

•  It needs just one production (production p2 merely initializes the first internode�s 

parameter to 1) 

•  There is no need for an extra parameter to distinguish between main and lateral 

branches 

 

Functional labelling scheme 

The L-system in Listing 22 implements the functional labelling scheme using the new 

context. The derivation is performed backwards. 

Listing 22 Functional labelling scheme implemented using the new context 

p1: I(n) > A ! I(1) 
p2: I(n) >> [ I(nl) ] I(ns) ! I(nl+ns) 

 

The table below shows the process of rewriting 
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Original string Production applied Resulting string 
I(0)[I(0)A]I(0)A identity A

I(0)[I(0)A]I(0)A p1 I(1)A

I(0)[I(0)A]I(0)A identity A]I(1)A

I(0)[I(0)A]I(0)A p1 I(1)A]I(1)A

I(0)[I(0)A]I(0)A p2 I(2)[I(1)A]I(1)A

 

3.4. Summary 

This chapter presents the extensions I have added to the formalism of L-systems. The 

extensions include two features known from general purpose languages: user-defined data 

types and functions. These features extend the capabilities of L-systems in expressing 

models that require many parameters and complex calculations. 

A new concept, not found in other formalisms is the concept of fast information transfer. 

Fast information transfer together derivation direction and new context make it possible to 

transfer signals through the structure represented by the L-system string in a single 

derivation step.  

All these extensions and concepts have been incorporated in the modeling language 

L+C, which is described in the following chapter. 
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4. The Modeling language L+C 
The number and significance of the new features and concepts that I have added to the 

formalism of L-systems made it desirable to design a new language instead of extending the 

existing implementation of the plant modeling language cpfg. This is why I have designed 

modeling language L+C8. This language is a declarative language based on the formalism 

of L-systems.  

L+C combines constructs, which can be divided into two categories:  

a) constructs specific to L+C 

b) constructs known from other programming languages, in particular the C++ general 

purpose programming language. 

The syntax of the constructs that are not characteristic to L-systems has been borrowed 

from C++. This includes rules for scoping. Contents specific to L-systems have syntax, 

which is partially inherited from the traditional notation of L-systems, but also some effort 

has been made to use syntax that would not look too alien to C++. The decision of 

designing L+C based on the syntax of C++ gives the following benefits: 

•  the learning curve is gentle for people who already know C++, 

•  the expressive power of C++ together with existing methodologies and libraries can 

be used directly in an L+C program, 

•  no documentation is needed for the C++ part of the language. 

A program in L+C consists of a series of declarations: 

•  Structures, classes 

•  Global variables 

•  Functions 

•  Derivation length 

•  Modules 

                                                 
8 First draft of the language specifications, has been prepared together with P. Prusinkiewicz, R. Sievänen 

and J. Perttunen and described in an unpublished manuscript. 
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•  Axiom 

•  Productions 

•  Decomposition rules 

•  Interpretation rules 

•  Control statements 

 

This chapter discusses the syntax of L+C. As the syntax of C++ constructs is the same as 

in C++, only the syntax of constructs specific to L+C will be presented. Listings in this 

chapter show sample uses of the constructs being presented. 

4.1. Derivation length 

Derivation length specifies the number of derivation steps.  

derivation length: expression; 

4.2. Module declarations 

L+C requires that all modules used in a model must be declared. Modules are identified 

by their names (identifiers). Two modules are predefined in L+C: SB and EB. SB is the start 

of a branch and EB is the end of a branch. These modules correspond to the modules [ and ] 

in the traditional notation. 

 

Module declaration has the following syntax: 

module identifier(parameter-listopt); 

 

The identifier must be a valid C++ identifier. The parameter list is an optional list of 

type identifiers separated by commas. The following listing presents some sample module 

declarations: 

 

Listing 23 Examples of module declarations 

struct data 
{ 
  int n; 
  float arr[3]; 
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}; 
 
// module without parameters  
module A();  
// module with two parameters  
module C(int, float);  
// module with a parameter of user-defined structure type data  
module Internode(data);  

 

Types that are used as module parameter types must be defined beforehand.  

4.3. Axiom 

Axiom defines the initial contents of the L-system string. There must be exactly one 

axiom declared in every L-system. The syntax of the axiom is as follows: 

 

axiom: parametric-wordopt; 

 

A parametric word is a sequence of one or more parametric modules: 

 

identifier(expression1, expression2, ...) 

 

Where identifier must be name of a previously declared module. The number of 

expressions in the parenthesis must be the same as the number of parameters in the 

module�s declarations. Also, the types of expressions must correspond to the types of 

parameters in the module�s declaration. If the parameter is declared to have no parameters 

(as module A in Listing 23), then the module�s identifier is followed by (). Optionally the 

parentheses might be skipped altogether. 

If modules A, C and Internode are declared as in Listing 23 a sample axiom may look 

like this: 

 
axiom: A C(i, 2.3) Internode(d); 

 

Here, i must be an integer and d must be a variable of type data. The same syntax of 

parametric word is also used in the produce statement. 
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4.4. Productions 

Productions define the way the structure represented by the L-system string develops 

over time by specifying the fate of every module. Declaration of a production starts with 

the predecessor. The predecessor consists of three components: the strict predecessor, the 

left context and the right context (see 2.5). The left context and the right context are 

optional. Also, one of the new contexts (left or right) can be specified in a production 

predecessor (see section 3.3.2.3). The strict predecessor specifies which module(s) in the 

string will be replaced.  

Left and right context specify which modules must be present in the neighbourhood of 

the strict predecessor. The general syntax for productions is: 

 

leftcontextopt < newleftcontextopt << strictpred >> newrightcontextopt > rightcontextopt: 

{ 

production body 
} 

 

All components of a production predecessor are sequences of one or more modules with 

formal parameters, such as those shown in the following example: 

Listing 24 Example of production predecessor in L+C 

A() < C(i, r) > Internode(d)  

 

This predecessor specifies that the production should be applied to module C if there is a 

module A to the left of C and a module Internode to the right. The types of parameters are 

determined by the declarations of modules, which have to appear before the modules are 

used in a production. If the modules A, C and Internode are declared as in Listing 23 then 

i will be an integer, r will be a float and d will be a structure of type data. All formal 

parameters of every module must be listed, even if they are not used in the production 

body. The identifiers of formal parameters must be unique within a production. Their scope 

is the same as the scope of formal parameters in C++ functions. 
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Formal parameters are similar to formal parameters of functions. When a production is 

applied they are given values. These values can be used inside the production body.  

In the case of a production, the formal parameters get the values from the actual 

parameters of modules in the string. For example, if the string contains the following 

sequence: 

 
A C(5, 2.5) I({ 2, { 0, 0.4, 0.6 }}) 

 

the production from Listing 24 can be applied. The production formal parameters will be 

assigned the following values: 

 
i = 5, r = 2.5, d = { 2, { 0, 0.4, 0.6 }} 

 

A program in L+C can define more than one production for the same module. In other 

words more than one production can refer to the same module in the strict predecessor. 

 

Listing 25 Sample production predecessors in L+C 

A() < C(i, r) > Internode(d) : 
{ … } 
 
C(i, r) > Internode(d) :  
{ … } 
 
C(i, r) : 
{ ... } 

 

When more than one production is declared for a given module, the order in which these 

productions are specified is important. When the string is being rewritten, then for every 

module in the string a production must be applied. If there is more than one production for 

a given module then the productions will be tested for matching in the order in which they 

are declared. In Listing 25 there are three productions for module C. The first one specifies 

both the left and right context, the second specifies only the right context and the third one 

is context-free.  
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According to the original definition [Lin1968] productions are applied in parallel. In 

L+C the derivation is performed sequentially9. It can be performed in one of two directions: 

forward (from left to right) or backward (from right to left) (see 3.3). 

Because the derivation is performed in a specified direction and this direction can be 

controlled, L+C allows the use of the new context (see 3.3.2.3). The syntax used for 

specifying the new context is the same as that used with ordinary context. Checking for 

new and ordinary context can be mixed in one production, as in the following examples: 

 
A() < C(i, r) >> Internode(d) : … 
A() < A() << C(i, r) > Internode(d) : … 
A() << C(i, r) : ... 
A() < C(i, r) >> Internode(fd) > Internode(d) : ... 

 

etc. 

 

As explained in section 3.3.2.3 checking for right new context makes sense and is 

possible only when the string is being derived from right to left. If the derivation is being 

performed in the opposite direction, these productions are ignored. Similarly, checking for 

the left new context is possible only when the string is being derived from left to right and 

this is the only time when these productions are tested for matching. The derivation 

direction is controlled by the user form within L-system (see A.6.13). Discussion of the use 

of new context is presented in section 3.3.2.3. 

A production successor is specified using the produce statement. The syntax of the 

produce statement is presented in the following section. 

 

4.5. The produce statement 

A production consists of the predecessor and the body. The production body is a 

compound statement that can contain any code allowed inside a C++ function. In addition, 

                                                 
9 As a matter of fact, the introduction of the cut module [Han1992] silently implies that the process of 

derivation is performed sequentially from left to right. 
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productions specify successors. In L+C the successor of a production is specified in the 

produce statement. 

The produce statement has the following syntax: 

 

produce parametric-wordopt; 

 

The parametric word has the same syntax as in the axiom (see 4.3). In addition to 

specifying the successor the produce statement also terminates the production.  

In general production execution can be terminated in one of two ways: 

1) by a produce statement,  

2) by control flow leaving the scope of the production in any other way (such as end of 

code, return statement) 

If a production is not terminated by the execution of a produce statement, the production 

is considered as not applied and another production will be searched for matching.  

The syntax of L+C constructs presented so far allows one to write a simple model. The 

following program specifies the development of a branching structure: 

Listing 26 L-system generating simple branching structure  

#define dt 0.03 
#define t_max 1.0 
 
module A(float);  
module I(float); 
 
axiom: A(0); 
 
derivation length: 100; 
 
p1: A(t) :  
{  
  float new_t = t+dt; 
  if (new_t<=t_max) 
    produce A(new_t); 
} 
 
p2: A(t) : 
{ 
  float new_t = t+dt; 
  if (new_t>t_max) 
  { 
    float t_init = new_t - t_max; 
    produce  
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      I(t_init) SB A(t_init) EB 
      SB A(t_init) EB 
      I(t_init) A(t_init); 
  } 
} 
 
p3: I(t) : { produce I(t+dt); } 

 

The model implemented by this program is expressed using two types of modules: 

apices (module A) and internodes (module I). Each of these modules has one numerical 

parameter, which corresponds to the age of the organ. Initially the structure consists of a 

single apex of age 0. At every derivation step the age of apex is increased by dt (p1). When 

an apex reaches mature age (p2) it produces an internode, two lateral apices and another 

internode followed by an apex (see Figure 30). The last production specifies that internodes 

grow older at every time step by dt. 

 

 

Figure 30 Apex producing internodes and new apices 

4.5.1. Multiple successors 

The code in Listing 26 includes a feature that deserves more attention. Two productions 

are defined for module A (p1 and p2). In (p1) a local variable new_t is declared and its value 

calculated based on the value of A�s parameter t. If condition (new_t<=_max) evaluates to 

true then a produce statement is executed. Otherwise the control flow leaves the scope of 

the production. In this case the production is considered not applied which means that the 

next production (p2) will be tested for matching. p2 defines and initializes new_t as in the 

previous production and if condition (new_t>t_max) is met then the produce statement is 

executed.  

In L+C it is possible to combine these two productions into one production: 

Listing 27 Production with multiple successors 
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A(t) :  
{  
  float new_t = t+dt; 
  if (new_t<=t_max) 
    produce A(new_t); 
  else // (new_t>t_max) 
  { 
    float t_init = new_t - t_max; 
    produce  
      I(t_init) SB A(t_init) EB 
      SB A(t_init) EB 
      I(t_init) A(t_init); 
  } 
} 

 

Because every produce statement defines the successor this production has two 

successors. In general the ability to define multiple successors in a single production is a 

significant improvement in the expressiveness of L-systems.  

4.5.2. Empty successor 

To remove a module from the string the production must specify an empty successor. In 

L+C the keyword produce followed by a semicolon specifies empty successor.  

4.6. Decomposition rules 

Decomposition rules express the concept of compound modules (see 2.8). 

Decomposition rule 

 
A() : { produce B C; } 

 

states that module A consists of modules B and C. Decomposition rules can also be defined 

for modules B and C, and they will be applied recursively as long as there are modules that 

can be further decomposed.  

In L+C decomposition rules are always context-free. Decomposition rules are preceded 

by the decomposition: keyword. The result of decomposition is stored in the L-system 

string permanently. The model below is the same as the one presented in Listing 26 but it 

uses a decomposition rule to divide an apex into internodes and new apices.  

Listing 28 L-system based on Listing 26 using decomposition rules 



 

 

61

#define dt 0.03 
#define t_max 1.0 
 
module A(float);  
module I(float); 
 
axiom: A(0); 
 
derivation length: 100; 
 
p1: A(t) : { produce A(t+dt); } 
 
p2: I(t) : { produce I(t+dt); } 
 
decomposition: 
 
d1: A(t) : 
{ 
  if (t>t_max) 
  { 
    float t_init = t - t_max; 
    produce  
      I(t_init) SB A(t_init) EB 
      SB A(t_init) EB 
      I(t_init) A(t_init); 
  } 
} 

 

The decomposition rule (d1) in Listing 28 contains a condition (t>t_max), which makes 

sure that apices are not decomposed infinitely by imposing a terminating condition. If a 

decomposition rule does not contain a terminating condition (or if there is a bug and the 

condition is never satisfied), an infinite recursion could result. To avoid infinite recursion a 

safeguard parameter called maximum decomposition depth can be specified using the 

following syntax: 

 

maximum depth: expression; 

 

If no maximum depth is specified then a default value is used. If the maximum depth is 

reached during the execution of a program then a run-time warning message will be 

printed. 
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4.7. Interpretation rules 

Interpretation rules are used to separate the visual aspect of models from the 

developmental aspect (see 2.7). Modules generated by interpretation rules are interpreted 

directly by the graphics engine.  

Below is the third version of the model presented in Listing 26, which includes 

geometrical information about the organs (apex and internode) as well as their graphical 

representation. 

Listing 29 L-system based on Listing 26 with interpretation rules 

#define dt 0.03 
#define t_max 1.0 
#define angle 35 
 
module A(float);  
module I(float); 
 
axiom: A(0); 
 
derivation length: 100; 
 
A(t) : { produce A(t+dt); } 
 
I(t) : { produce I(t+dt); } 
 
decomposition: 
 
A(t) : 
{ 
  if (t>t_max) 
  { 
    float t_init = t - t_max; 
    produce  
      I(t_init) SB Left(angle) A(t_init) EB 
      SB Right(angle) A(t_init) EB 
      I(t_init) A(t_init); 
  } 
} 
 
interpretation: 
 
A(t) : { produce SetColor(1) Circle(0.2*t); } 
 
I(t) : { produce SetColor(2) F(t); } 

 

The graphical aspects of the model�s representation include: 
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1) Lateral apices are orientated relative to the main branch (modules Left and Right 

in the decomposition rule) 

2) Interpretation rules specify that apices should be visualized as circles and internodes 

as lines (module F). Apices and internodes are rendered using two different colours 

(modules SetColor in the interpretation rules). 

4.8. Control statements 

There are four control statements in L+C: Start, StartEach, EndEach and End. Control 

statements are procedures that are called at specific points of the execution of an L+C 

program: at the beginning, before every derivation step, after every derivation step and after 

the last step, respectively. The following sample program demonstrates how to use control 

statements to output results of a simulation to an external file. This program is another 

modification of the model presented in Listing 26: 

Listing 30 L-system based on Listing 26 using control statements and file I/O  

#define dt 0.03 
#define t_max 1.0 
 
module A(float);  
module I(float); 
 
axiom: A(0); 
 
derivation length: 100; 
 
int stepno, apexcount; 
FILE* fpOutput; 
 
Start:  
{  
  fpOutput = fopen(“output.dat”, “w”);  
  stepno = 0; 
} 
 
StartEach: 
{ 
  apexcount = 0; 
  stepno++; 
} 
 
EndEach: 
{ 
  fprintf(fpOutput,  
    “Step: %d\t, Number of apices: %d\n”,  
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    stepno, apexcont);  
} 
 
End: 
{ 
  fclose(fpOutput); 
} 
 
A(t) :  
{  
  float new_t = t+dt; 
  if (t<=t_max) 
  { 
    apexcount++; 
    produce A(new_t); 
  } 
  else // (t>t_max) 
  { 
    float t_init = t - t_max; 
    apexcount += 3; 
    produce  
      I(t_init) SB A(t_init) EB 
      SB A(t_init) EB 
      I(t_init) A(t_init); 
  } 
 
} 
 
I(t) : { produce I(t+dt); } 

 

In addition to generating the branching structure this program also stores some statistical 

information in an external file (output.dat). In the Start statement it opens the external 

file output.dat and sets the stepno (step number) variable to 0. Before every derivation 

step StartEach is executed where apexcount (apex counter) is set to 0 and stepno is 

incremented. After every derivation step EndEach is executed which writes to the output 

file current step number and the number of apices in the model. At the end of the simulation 

the End statement is executed, which closes the output file.  
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5. Implementation considerations and strategies 
The task of implementing L+C posed some design problems. This chapter discusses two 

problems:  

a) what kind of tool should be created to compile the source code in L+C, 

b) what data structure should be used internally to represent the L-system string? 

5.1. Interpreter vs. translator 

A strategic decision that must be made is what kind of approach should be taken when 

implementing the new modeling language. One possible approach is to write a parser for 

the new language. If an existing L-system-based modeling program is available (as was the 

case during my research), the task of adding the new features would require extending the 

existing parser. Another possible approach is to extend an existing C++ parser to 

accommodate L-system-specific constructs.  

The central part of an L-system-based modeling program is the generator, which derives 

the L-system string based on the current string and the set of productions.  

 

Generator 

Internal representation 
of the L-system 

L-system file 

Parser 

L-system string 

 

Figure 31 Parser as a module of cpfg 

In cpfg modeling software, the parser is a component of the program. The parser takes 

the L-system file as its input and produces some internal representation of the L-system. In 

this representation data structures represent all the productions: their predecessors as well 
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as their code. The code (sequence of statements to be performed) is stored as a list of 

structures that represent individual statements; expressions are stored as arithmetic trees 

etc. In this approach the developer has the full control over the parser. But at the same time 

this approach requires the developer to write parser for elements that are not typical to L-

systems but common to other programming languages: arithmetic expressions, 

programming statements such as assignments, loops, conditional statements, etc. Also the 

execution of interpreted code is known to be usually slow compared to compiled code. 

A translator incorporates the following design: 

 

Translation phase

Generator 
L-system file 

Compiled executable

L-system string 

 

Figure 32 Schematics of the new design 

For practical purposes the L-system file is not compiled into a standalone program, but 

into a DLL (dynamic-link library), to which a modeling program can connect at run-time. 

The translation phase can be designed to consist of the following steps: 

 

 

C++ compiler and linker 

L+C to C++ translator (L2C) 

C++ preprocessor 

Preprocessed code 

L+C code 

Translated C++ code 

Compiled executable file (DLL)  
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Figure 33 From L+C to compiled executable file, phases of translation 

The second step � translating from the pre-processed L+C code to valid C++ code �is of 

main interest here, because all the other steps can be accomplished using existing tools 

(C++ preprocessor and compiler). The L+C to C++ translator will be also called L2C.  

The main advantages of the translator approach is: 

•  only L+C specific elements must be identified and replaced with equivalent code in 

C++, 

•  the translator can pass verbatim all other elements of the program to the C++ 

compiler, 

•  the compiled code can be expected to execute faster than interpreted code, 

especially in domains in which the interpreted code is particularly slow (for 

example, numerical calculations). 

Before the specifications of the translator can be defined fully it is necessary to discuss 

the problem of representing an L-system string internally. 
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5.2. L-system string representation 

5.2.1. Traditional approach 

Hanan [Han1992] proposed that the parametric L-system string be represented verbatim. 

In general a module with numerical parameters is stored internally in the form presented in 

Figure 34. 

 

 

 

One module with parameters 

More float 
parameters 

A (     , ) B

sizeof(float)

 

Figure 34 Traditional memory representation of L-system string 

In Figure 34, every frame represents one byte. To represent a module A with some 

numerical parameters the first byte will be letter A (or actually the number that corresponds 

to the letter A in ASCII code). The next byte contains the left (opening) parenthesis. The 

actual parameters are stored as their binary representation in the following bytes. If the 

numerical parameters are of type float stored in the IEEE format they occupy four bytes (or 

in general sizeof(float) bytes). Consecutive parameters are separated with bytes 

containing comma �,�. The last parameter is followed by the right (closing) parenthesis. If 

a module doesn�t have any parameters then its symbol is immediately followed by the next 

module. In addition it is assumed that the last module is followed by the null character and 

that the pointer to the beginning of the string is known.  

To perform string derivation it is necessary to iterate forward and backward through the 

string � find the next and the previous module (if there is one). 

The internal representation described above allows such iterations (for the actual listings 

see B.1). Figure 35 presents the corresponding algorithms: 
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no 

no 

yes 

yes 

Start 

�(� found?

Skip sizeof(float)+1 forward

�,� found?

Skip one byte forward

Skip one byte forward

Next module 
found  

no 

no 

yes 

yes 

Start 

�)� found? 

Skip sizeof(float)+1 back 

�,� found? 

Skip one byte back 

Skip one byte back 

Previous module 
found  

Figure 35 Algorithms to find the next and previous module for the traditional string representation 

An important question is whether this representation can be extended to support modules 

that have parameters of user-defined types. A naïve approach could be to store user-defined 

type parameters in the same way as implemented previously: 

 

 

Any number of bytes 

A ( , ) B

Any number of bytes 

One module with parameters

,

 

Figure 36 New L-system string memory representation, attempt one 

When trying to formulate algorithms for iterating the string the following problems 

arise: 

1. The size of parameters is not fixed. Parameters can be of arbitrary type, so they can 

also be of arbitrary size. Therefore it is impossible to skip a parameter forward to 

check whether it is followed by a comma (indicating presence of another parameter 
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following the comma) or the closing parenthesis. This problem might be addressed 

if the sizes of parameters for a given module are known. 

2. When iterating backwards (searching for the beginning of the previous module) 

information about the sizes of parameters is not enough for two reasons. First, the 

size information is not available until the module has been identified. Second, a 

module cannot be identified until the parameters have been skipped to read its 

name. 

5.2.2. Proposed solution 

 

Module id as 
short int 

Module id as 
short int 

0x12 0xAB 

One module with parameters

Binary representation of the module�s 
parameters 

0x12 0xAB 0xE1 0x2B

 

Figure 37 New L-system string memory representation 

The proposed solution is presented in Figure 37. The main differences between the 

previous and new representation are: 

1. the module�s name is encoded as a fixed size identifier. Here it is assumed to be a C 

short int � an integral type stored in two bytes,  

2. the identifier is present at both the beginning and end of the module, 

3. parameters are not comma separated. They occupy a continuous region of memory,  

4. if a module does not have any parameters it is represented as its identifier of type 

short int, 

5. the format does not provide an end-of-string character. Information about the total 

length is stored separately.  

With this representation the string can be iterated both forward and backward if access 

to the total size of parameters for every module type is provided.  

Listing 46 and Listing 47 in appendix B contain the code that moves the current pointer 

in the L-system string to the next and previous module. The code in Listing 46 and Listing 

47 refers to function GetParametersSize. This function is part of the interface that 
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communicates between the dynamic part of the program (L-system) and fixed generator. 

This interface defines how the generator manipulates the string, what code should be 

generated by the L+C to C++ translator and how this code should cooperate with the 

generator. The interface is presented in the next chapter. 
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6. The L+C to C++ translator 
When designing the translator it is crucial to identify its top-level requirements: 

1. the translator must generate valid C++ code 

2. the code generated by the translator must conform to guidelines that allow for the 

generator to access the information required to perform production matching as well 

as other information specific to L-systems (derivation length, axiom, etc.) 

The first requirement is obvious and requires no further explanation. The second 

requirement demands that some sort of interface be defined to link the translated (and 

compiled) L+C program with the generator. 

The L+C translator divides its input (code in L+C) into three categories (see Figure 38): 

1. Code that needs to be translated, 

2. Code that requires additional code to be generated (bridge code), 

3. C++ code that is not modified and passed verbatim to the C++ compiler. 
 L+C 

Translated 
code 

Bridge data 
and code 

 
 

L-system engine 
(generator) 

Unmodified 
C++ code 

L+C to C++ 
translator 

 
Compiled DLL C++ 

compiler
 

Figure 38 Relation between the components: code in L+C, L-system generator and compiled DLL. 

The elements of an L+C program that are specific to L-systems and need to be translated 

are: 

1. Global L-system parameters (derivation length, maximum decomposition depth, 

maximum interpretation depth), 

2. Axiom, 

3. Control statements, 

4. Definitions of modules, 
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5. Productions, 

6. Consider/ignore statements. 

Figure 39 presents a sample code in L+C. Translation units belonging to different 

categories are highlighted. The following sections discuss in more detail how different 

statements are translated into C++ code. 

 

L+C code 

Intact code 

module A(int, float); 
module B(float, ModuleData);

axiom: A(1, 0.5); 

derivation length: 5; 

void Func(float, int* ) 
{ 
  … 
} 

A(n, f) < B(f, d) : 
{ 
  if (n>0) 
    produce B(f/2, d); 
  else 
    produce A(n, f*1.5); 
} 

class ModuleData 
{ 
public: 
  ModuleData(); 
  … 
private: 
  int n; 
  float x; 
  … 
}; 

C++ data declarations 

C++ functions 

Intact code 

C++ function prototypes.  

Bridge code (production callers) 

Bridge data (callers table) 

C++ function calls 

Products of 
translation 

 

Figure 39 Sample source code in L+C, L+C to C++ translation units 

The following sections identify different elements of programs written in L+C and 

explain how they are translated by the L2C translator and then used by lpfg. 
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6.1. Top level parameters and statements 

This Execute function is the core of the generator component of lpfg.  

Listing 31 Function executing L+C program 

void Execute() 
{ 
  Start();  
  Axiom();  
  DecomposeString(MaximumDecompositionDepth()); 
  for (int i=0; i<DerivationLength(); ++i) 
  { 
    StartEach(); 
    Derive(); 
    DecomposeString(MaximumDecompositionDepth()); 
    EndEach(); 
  } 
  End(); 
} 

 

This simplified code refers to functions, highlighted in bold, that are not part of the 

generator. These functions are created by the L2C translator and provide information from 

the L-system or perform actions specified in the L-system.  

•  Start() executes the Start control statement, 

•  Axiom() initializes the L-system string , 

•  MaximumDecompositionDepth() returns the value of an expression that specifies 

maximum decomposition depth in the L-system, 

•  DerivationLength() returns the value of an expression that specifies the number 

of derivation steps to be performed as specified in the L-system, 

•  StartEach() executes the StartEach control statement, 

•  EndEach() executes the EndEach control statement, 

•  End() executes the End control statement. 

 

The following sections discuss how these functions are created during translation from 

L+C to C++. 

6.2. L-system global parameters 

Every program in L+C defines the following numeric parameters: 
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•  Derivation length 

•  Maximum decomposition depth 

•  Maximum interpretation depth 

 

These parameters are always defined. If they are not specified explicitly (maximum 

decomposition and interpretation depth are optional), then the translator provides default 

values. These global parameters are integers. They are accessible to the generator through 

functions. The prototypes of the functions are: 
 

int DerivationLength(); 

int MaximumDecompositionDepth(); 

int MaximumInterpretationDepth(); 

 

Each of the three global parameters (derivation length, maximum decomposition and 

interpretation depth) is specified in the L+C file by a keyword (derivation length, 

maximum depth) followed by an arithmetic expression and terminated with a semicolon. 

The translator replaces the keyword with a C++ function prototype. The expression is 

copied verbatim and the closing (right) curly brace is appended. Here the replaced elements 

are printed in boldface while the elements copied verbatim are in italic. 

 

Original code: Translated code: 
derivation length: i+3; int DerivationLength() { return i+3; } 

 

Analogous substitutions are done in case of maximum decomposition and interpretation 

depth.  

6.3. L-system control statements 

L-system control statements are statements that are executed at specific points of the 

simulation, and they are: Start, End, StartEach, EndEach. These statements are actually 

procedures without parameters. In C++ such procedures are functions that take no 
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parameters and return void. Because the body of the control statements can contain any 

valid C++ code, the L2C translator must only replace control statement keywords with C++ 

function prototypes to create a valid C++ function definition: 

 

Original code: Translated code: 
Start: 
{ 
… 
} 

void Start() 
{ 
… 
} 

 

Analogous substitutions are made for the other control statements. 

6.4. Module declaration 

A module declaration contains two pieces of information: the name of the module and 

the parameters� types. The code in Listing 31 does not use any of this information 

explicitly. From the discussion on the internal representation of the L-system string (see 

section 5.2) it is known that information about the total size of the parameters is required to 

iterate over the string and carry out the derivation. From the same discussion it is also 

known that the modules in the string are not identified by their names, but by numerical 

identifiers. The L2C translator replaces module declarations with the declarations of 

module identifiers: 

 

Original code: Translated code: 
module A(int, float); short int A_id = 101; 

 

The identifier name is created by appending _id to the module�s name. The identifiers� 

values are consecutive integers. 

 

This substitution does not contain information about the size of parameters of the 

module. Instead, size information is stored in an array, which is generated after the L+C 

source file has been parsed: 
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Listing 32 Array moduleData is generated based on the module declarations 

struct ModuleData 
{ 
  char* name; 
  int size; 
}; 
 
ModuleData moduleData[] = 
{ 
… 
  { “A”, sizeof(int)+sizeof(float) }, 
… 
}; 

 

The index of every element in the moduleData array is equal to the module�s identifier 

value. In the above example the entry for module A has index 101, which is the value of 

A_id. The module�s name included in the array moduleData is not used during the 

execution of the L-system program. It is included for debugging purposes only. 

6.5. Productions 

Analysis of the process of string rewriting best illustrates how productions are translated, 

what kind of information is generated by the translator and how this information is used by 

the generator.  

The Execute function in Listing 31 calls the Derive function. Derive performs the 

actual derivation based on the set of productions specified in the L-system. In the L+C 

programming language, each step of string rewriting can be performed: forward (from left 

to right) or backward (from right to left), which requires two versions of the function 

Derive. But these functions use the same interface to communicate with the code generated 

from the L+C source, so it is enough to analyze only one case. Function Derive presented 

in Listing 33 performs the derivation forward. 

 

Listing 33 Function Derive 

void Derive() 
{ 
  targetstring.Clear(); 
  for (LstringIterator iterator(lsystemstring);  
       !iterator.AtEnd(); ++iterator) 
  { 



 

 

78

    bool applied = false; 
    for (int i=0; i<NumOfProductions(); ++i) 
    { 
      const ProductionPredecessor& predecessor =  
        GetPredecessor(i); 
      CallerData cd; 
      if (TestMatch(iterator, predecessor, cd)) 
      { 
        Production p = GetProduction(i); 
        if (p(cd)) 
        { 
          applied = true; 
          break; 
        } 
      } 
    } 
    if (applied) 
      targetstring.Append(successorStorage); 
    else 
      targetstring.Append(iterator.CurrentModule()); 
  } 
} 

 

The elements of the L-system � generator interface present in function Derive are: 

 

•  NumOfProductions() returns the number of productions specified in the L-system. 

•  GetPredecessor(int) returns data structure of type ProductionPredecessor that 

represents the predecessor of a production. 

•  CallerData is a data structure. It provides productions with the values of their 

formal parameters. It is initialized by function TestMatch, which determines 

whether the production described by predecessor matches the current position in 

the string pointed to by the iterator. 

•  Production is a pointer-to-function type. Functions pointed to by variables of type 

Production represent actual productions. 

•  GetProduction(int) returns a pointer to a function of type Production that is 

called to execute a production.  

•  successorStorage is a data structure that stores the modules produced by 

productions. If a production is applied the contents of successorStorage are added 

at the end or at the beginning of the new string, depending on the direction of 

derivation (see Figure 42).  
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Below is a detailed description of the interface elements present in Listing 33. 

 

NumOfProductions 

Function int NumOfProductions() is generated by L2C after the source file has been 

parsed. As the translator parses the L+C program it counts the number of productions and 

can generate the function: 

 
int NumOfProductions() 
{ return 7; } 

 

ProductionPredecessor, GetPredecessor 

Before the structure ProductionPredecessor can be defined it is necessary to identify 

what information is necessary to determine if a given production matches the current 

module. Matching a production requires a comparison of modules in the string and modules 

in the production�s predecessor. The modules in the string are identified by numbers (see 

section 5.2). This means that a production�s predecessor is fully defined by three sets of 

module identifiers: one set each for left context, the strict predecessor and the right context. 

 
struct ProductionModules 
{ 
  short int module_ids[maxModules]; 
  int count; 
}; 
 
struct ProductionPredecessor 
{ 
  ProductionModules lcntxt; 
  ProductionModules strict; 
  ProductionModules rcntxt; 
}; 

 

L2C translator generates an array of structures of type ProductionPredecessor. 

Elements of this array are returned by the function GetPredecessor(int). 

 

For example, if a program contains a production with the following predecessor: 
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A() B() < B() > D() : … 

 

the translator will generate the following entry in the production predecessors array: 

 
ProductionPredecessor predecessors[] = 
{ 
… 
  { 
    { { A_id, B_id }, 2 }, 
    { { B_id }, 1 }, 
    { { D_id }, 1 } 
  }, 
… 
}; 

 

Productions as procedures, CallerData, production callers 

Two problems must be addressed to execute a production: 

•  there must be a function that represents the production, and 

•  there must be a way of passing actual parameters to this function. 

 

Prusinkiewicz and Hanan [Pru1992] noted that productions are somewhat similar to 

functions (or actually procedures), as they are known from imperative programming 

languages. The similarities are: 

•  A production is a piece of code, 

•  It takes an input: its predecessor and (optionally) parameters of the predecessor�s 

modules, 

•  It has output: the successor. 

 

The main differences are: 

•  Productions are not called from anywhere explicitly. The general mechanism of 

matching productions determines which production should be applied and when. 

This is a general feature of declarative programming-languages. 

•  Productions don�t return the value in the traditional sense. Instead their output 

modifies the contents of the L-system string. 
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Consider the following example (elements specific to L+C have been highlighted with 

boldface):  

Listing 34 Sample production with multiple successors 

struct data 
{  
  float l;  
  int n; 
}; 
 
module A(data, float); 
module B(int, float); 
 
A(dl, xl) < B(n, a) : 
{ 
  float x = f(n, dl.l); 
  if (a>xl) 
    produce B(n+1, x); 
  else 
    produce B(n-1, xl); 
} 

 

The production in Listing 34 has two modules in its predecessor. The first line of this 

production will be regarded as corresponding to the C++ function prototype. A function 

prototype contains the following elements:  

 

•  name, 

•  parameters,  

•  return type. 

 

In L-systems there is no return type of productions, because they don�t return values. In 

C++ the function name and parameters identify the function. In L-systems, on the other 

hand, the names of the modules in the predecessor (and the order of their appearance in all 

the three parts of the predecessor: left context, strict predecessor and right context) identify 

a production. The parameters are implicit, the modules have to be declared beforehand.  

A production predecessor is a distinctive element of L+C. On one hand, it identifies the 

part of the string that is to be replaced (the strict predecessor) and optionally the context � 

the neighbour modules of the strict predecessor. On the other hand, the production 

predecessor corresponds to a procedure (or function) prototype: it specifies the input 
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parameters of the production. The translator�s task is to replace the production predecessor 

with a syntactically valid prototype of a function: 

Listing 35 translation of a production predecessor into a function prototype 

Original code: Translated code: 
A(dl, xl) < B(n, a) void P1(bool& res, data dl, float xl, 

int n, float a) 

 

This substitution creates a valid C++ function prototype. The function name is of the 

form Pnn, where nn is the ordinal number of the production being translated. All the 

parameters have the same names as in the production predecessor (the meaning of the first 

parameter res will be explained soon). It is important to notice, that information 

concerning which parameters belong to which modules is lost. Are dl, xl, n and a all 

parameters of a single module in the strict predecessor? Maybe dl is a parameter of a 

module in left context, xl and n are parameters of a module in the strict predecessor and a 

is a parameter of a module in the right context? This information cannot be deduced from 

the function prototype. But the modules in every component of the predecessor are known 

because they are present in the predecessors array. Therefore it is possible to reconstruct 

which parameters of function P1 correspond to which module.  

The remaining problem that needs to be solved is a way of passing actual parameters 

from the generator to the production. Obviously the generator cannot call a production 

directly because it doesn�t know its prototype. So there must be a unified way of passing 

parameters to productions regardless of their prototypes.  

To address this problem production callers are introduced. Production callers are a 

bridge between the generator and productions. Production callers have fixed prototype: 

 
bool (*Production)(CallerData*); 

 

The production callers that are actually returned by GetProduction(int). The return 

value of a production caller indicates whether the production was applied (if the produce 

statement was executed). CallerData is a structure, which contains pointers to the modules 
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in the string being rewritten (see Figure 40). TestMatch initializes CallerData while 

determining whether a given production matches the current position in the string. 

Production callers are functions generated by the translator and their responsibility is to 

extract the parameters from the string and pass them to the actual production. Production 

callers also inform the generator whether the production was applied. A sample production 

caller corresponding to the production from Listing 35 looks as follows: 

Listing 36 Sample production caller 

bool PC1(CallerData* pCD) 
{ 
  // extract parameters for the left context 
  data dl; 
  const char* pX = pCD->lcntxt.Addr[0]; 
  // first data 
  memcpy(&dl, pX, sizeof(data)); 
  // skip sizeof(data) bytes 
  pX += sizeof(data); 
  float xl; 
  // and extract a float 
  memcpy(&xl, pX, sizeof(float); 
  // now extract parameters for the strict predecessor 
  int n; 
  pX = pCD->strict.Addr[0]; 
  memcpy(&n, pX, sizeof(int)); 
  pX += sizeof(int); 
  float a; 
  memcpy(&a, pX, sizeof(float)); 
  // if there were any modules in the right predecessor  
  // the parameters would be extracted here 
  bool res = false; // assume that the production did not apply 
  // call the production-function 
  P1(res, dl, xl, n, a); 
  return res; 
} 
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Current module 

CallerData

Strict predecessor Left context Right context 

String 

Pointers to 
modules in left 

context 

Pointers to 
modules in strict 

predecessor 

Pointers to 
modules in right 

context 

� � � 

 

Figure 40 CallerData makes it possible to access a production�s actual parameters 

 

 A_id A_id Y_id Y_id I_id Z_id Z_id 1 2 0.5

CallerData 
{ 
… 
 strict      {    … }, count = 1; 

 rcntxt      {     …}, count = 2; 

} 

String

 

Figure 41 Mapping parameters locations into a CallerData structure 

 

The actual definition of CallerData is as follows: 

 
struct ActualParameters 
{ 
  char* Addr[MaxParameters]; 
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  int count; 
}; 
 
struct CallerData 
{ 
  ActualParameters lcntxt; 
  ActualParameters strict; 
  ActualParameters rcntxt; 
}; 

 

Successor storage 

Modules generated by the produce statement are not added to the string immediately but 

are first stored in a data structure called successor storage. The reason for this is that the 

modules in the successor are always generated in order from left to right. When the string is 

being derived from right to left, the modules should be added in the reverse order to that in 

which they were created. There are two possible approaches: one is to change the order in 

which the elements of the successor are generated, depending on the direction of derivation. 

The other is to use an intermediate buffer � once the successor is created it is added to the 

string (in front or at the end depending on the derivation direction).  

 Generator 

add 

L-system 

Production 
 
produce statement 

Successor storage 

Successor 
created 

New string 

 

Figure 42 Modules generated by productions are first stored in the Successor storage, then transferred 

to the new string. 

The first solution complicates the code generating the successor. The second involves 

some time overhead � an additional copy operation. In the current implementation the 

second solution was chosen. Profiling indicates that the use of the successor storage 

accounts for about 0.5% to 2% of the program�s run-time, which judged to be acceptable. 
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6.6. The produce statement 

The produce statement plays two roles, specifying the successor of the production, and 

implying that the execution of the production should terminate (return statement)10. While 

building a successor, the DLL generated from the L+C source file needs to modify data that 

belongs to the main program.  

SuccessorStorage is the data structure where the successor is created by a production. 

After the production is applied, the complete successor is added to the string. The generator 

has to provide a function that will let the DLL (or the productions to be exact) add data to 

the SuccessorStorage. This function is called Add: 

 
void Add(const void*, int); 

 

The first parameter is a pointer to the data to be added and the second parameter is the 

number of bytes to be added. The code calling Add takes full responsibility that the data 

stored in the SuccessorStorage are correct, e.g. it follows the specifications of the L-

system string. If the data to be added are contained in variables, the Add function could be 

used directly: 

 
Add(&B_id, sizeof(short int)); 
Add(&n, sizeof(int)); 
Add(&x, sizeof(float)); 
Add(&B_id, sizeof(short int)); 

 

But in general this is not the case. Both produce statements in Listing 34 generate 

modules with their parameters specified using expressions. C++ does not allow one to 

obtain the address of an expression. Consequently the following construct is not valid in 

C++: 

 
                                                 

10 The two functions could be split, so that the keyword produce just produced the successor, but did not 

terminate the production. Alternatively another keyword (for example insert) could be introduced to 

generate the successor, but not terminating the production, making it possible to build the successor in a series 

of insert statements. This idea seems worth considering in the future research. 
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Add(&(n+1), sizeof(int)); 

 

One possible solution is to declare local variables that store the values of parameters and 

use them in the call to Add: 

 
Add(&B_id, sizeof(short int)); 
int n1 = n+1; 
Add(&n1, sizeof(int)); 
Add(&x, sizeof(float)); 
Add(&B_id, sizeof(short int)); 

 

This approach is acceptable but would complicate the implementation of the L+C parser.  

A more effective and general solution has been chosen. A template function 

Produce is defined as follows: 
template<class T> 
void Produce(T t) 
{ Add(&t, sizeof(T)); } 

 

Now the translation of the produce statement is straightforward: 
Produce<short int>(B_id);  
Produce<int>(n+1); 
Produce<float>(x); 
Produce<short int>(B_id); 

 

This solution takes advantage of the C++ compiler�s optimizing capabilities and greatly 

simplifies both the L+C parser and the generated code. Note the explicit types in the 

instantiation of Produce, so that the type used is the same as the type of the parameter 

being produced. Otherwise the C++ compiler could perform an implicit type conversion 

and generate Add for a wrong type. For example, it is common to use a literal like 1 where a 

float is expected instead of 1.0f. But in this case the compiler would assume that <int> 

instance is required. This kind of mistake could result in a corrupted string.  

Finally, the production caller must be informed if the production was actually applied. 

This is done by assigning true to the parameter res (see Listing 35 and Listing 36). Finally 

all the code generated in place of the produce statement is enclosed in curly braces, so that 

it actually forms a single (compound) statement: 
{ 
  Produce<short int>(B_id);  
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  Produce<int>(n+1); 
  Produce<float>( x); 
  Produce<short int>(B_id); 
  res = true; 
  return; 
} 

6.7. Other elements 

6.7.1. Ignore, consider 

The ignore and consider statements are mutually exclusive. Each of these statements 

is replaced by a declaration of an array of module identifiers and a function that returns the 

number of elements in the array. For example: 

Original code: Translated code: 
ignore: A B Left Right; short int ignored[] = 

{ A_id, B_id, Left_id, Right_id }; 
int NumOfIgnored() { return 4; } 

6.7.2. Axiom 

Axiom is a special type of production that does not have a predecessor. It is replaced by 

a function named Axiom. Contents of the axiom are expanded as if it were a produce 

statement. This function can be called directly by the generator. 

Original code: Translated code: 
Axiom: F(1) Left(90) F(1); void Axiom() 

{ 
  Produce<short int>(F_id);  
  Produce<float>(1);  
  Produce<short int>(F_id); 
  … 
} 

6.7.3. Production, decomposition, interpretation 

These keywords are not actually translated. Instead, they change the internal state of the 

translator that determines the allowed types of the productions (if context-sensitive 

productions are allowed). Also, in the case of decomposition and interpretation rules there 

is no array of ProductionPredecessor. Instead there are two arrays of ProdCallers: one 

for interpretation and one for decomposition rules.  
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The specifications of the translator presented in this chapter can be summarized in a 

form of a diagram. Figure 43 shows how L+C input is divided into standard C++ code and 

L+C specific code. The L+C constructs are translated into C++ declarations and definitions 

depending on their type. 

Bridge data 
(callers table)

Bridge code 
(production 

callers) 

C++ function 
declarations 

C++ data 
declarations 

C++ function 
definitions 

C++ function 
calls 

C++ function 
prototype 

C++ function 
definitions 

C++ data 
declarations 

Production 
predecessor 

produce 
statement 

Axiom, 
derivation 
length, etc. 

Module 
declarations 

Start, 
StartEach, 
End, etc. 

L+C specific 
code 

Standard C++ 
code 

L+C code 

 

Figure 43 L+C to C++ translator, translation units 
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7. Application examples 
This section presents examples that demonstrate the use of the L+C modeling language. 

They have been selected to demonstrate the use of concepts and features introduced in 

L+C.  

7.1. Model of Anabaena 

This example implements a developmental model of a filamentous cyanobacterium 

Anabaena catenula. The distribution of heterocysts (term described below) in the filament 

tends to form a pattern. The model captures this tendency by operating on genes� 

expression: production of two proteins. This model extends the model presented in Listing 

1 in section 2.1 and was written by P. Prusinkiewicz (unpublished). It employs user-defined 

structures to store the parameters that describe cells and user-defined functions to perform 

calculations.  

In the model presented in Listing 37, the cells are characterized by the following 

parameters: 

•  Concentration of protein hetR,  

•  Concentration of protein patS,  

•  Length,  

•  Polarity, 

•  Differentiation degree. 

 

Initially the model consists of two cells. During the simulation the concentration of the 

activator hetR and inhibitor patS controls cell development. The concentration changes as 

the result of the following processes:  

1. diffusion of patS (transfer of the substance from a cell of high concentration to cells 

of lower concentration), 

2. production, 

3. decay. 
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Diffusion 

The change of concentration caused by diffusion of patS from a cell of size x over the 

time increment ∆t is expressed by formula: 

t
xw

patSpatSDpatSdiff ∆





 −=∆ 2 , 

where D is diffusion constant, w is the width of the cell, and patS2 is the concentration in 

the neighbouring cell. If the concentration in the current cell is greater than that in the other 

cell, then the substance will diffuse to the other cell and the concentration will decrease (the 

numerator patS2-patS is negative). If the concentration in the current cell is lower it will 

increase. 

If the current cell has two adjacent neighbours (labelled l and r), diffusion equals the 

sum of the diffusions between the cell and both of its neighbours. Diffusion is then 

expressed by formula: 

t
xw

patSpatSpatSDpatS rl
diff ∆
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Production 

The amount of patS produced in the time interval ∆t depends on the concentration of 

hetR in the cell. It is expressed by the formula  

 

x
th

hetR
hetRpatS prod

∆








+

⋅+
=∆ 02

2

1 κ
ρ , 

 

where ρ, κ and h0 are parameters, x is the size of the cell. HetR acts as the activator. 

The amount of hetR during the time interval ∆t depends on the concentration of both 

hetR and patS. HetR is an activator and patS is an inhibitor as expressed by the formula 

below: 
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If the concentration of hetR exceeds a threshold, the cell becomes a heterocyst. 

Heterocysts do not divide. 

 

Decay 

The decay of proteins during ∆t is expressed by the following formulas: 

thetRhetR ∆−=∆ µ       tpatSpatS ∆−=∆ ν , 

where µ and ν are decay parameters. Decay is implemented in the decomposition rule d1. 

 

Growth and division 

During every time step cells grow in length (decomposition rule d1), resulting in 

decreased concentration of hetR and patS. Cells grow during the simulation and divide 

(except for heterocysts) if their size exceeds a threshold. Polarity of the cells determines 

which of the daughter cells is longer. 

 

Implementation of the model 

 

Modules of type Cell represent cells. The information associated with every cell is 

stored in the Cell parameter of type CellData. 

Diffusion is controlled by productions p1, p2 and p3. p2 and p3 apply when a cell has only 

one neighbour. During the derivation, diffusion of patS is calculated. The successors of the 

productions are modules of type TempCell, to distinguish between the cells before and after 

the growth phase handled by decomposition. This distinction avoids infinite recursion in 

the decomposition rules. 

The growth phase of the simulation (decomposition d1) involves three stages. First, the 

new concentrations of both patS and hetR are determined as a result of their production by 

the cell using the HetR and PatS functions. Then the decay of the substances is calculated. 
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Finally, the cells grow and those that reach the maximum size and are not heterocysts 

divide.  

Listing 37 Model of Anabaena in L+C 

enum Polarity 
{ plRight, plLeft }; 
 
// daughter cell length coefficients 
const float longer = 0.55f;  
const float shorter = 1.0f - longer; 
 
const float rho = 3;         // protein production parameter 
 
const float a0 = 0.01;       // base activator production 
const float h0 = 1;          // base inhibitor production 
 
const float mu = 0.1;        // hetR decay rate 
const float nu = 0.45;       // patS decay rate 
const float D_patS = 0.0045; // diffusion coefficient 
const float kappa = 0.001;   // protein production coefficient 
const float dt = 0.5;        // time step 
const float w = 0.01;        // diffusion w parameter 
const float lm = 1.0;        // cell maximum size 
const float gr = 1.002;      // growth rate of cells 
const float thr = 0.5;       // treshold hetR value for heterocysts 
 
struct CellData 
{ 
  float hetR, patS; // protein concentrations  
  float x;          // cell size (length)  
  Polarity  p;      // plLeft or plRight  
  float vph;        // differentiation degree  
                    // vegetative-pro-hetero  
}; 
 
// Definition of modules used in the model  
module Cell(CellData); 
module TempCell(CellData); 
 
// Production of proteins 
float HetR(float hetR, float patS) 
{ 
  return rho/patS*(hetR*hetR/(1+kappa*hetR*hetR) + a0); 
} 
 
float PatS(float hetR) 
{ 
  return rho*(hetR*hetR/(1+kappa*hetR*hetR) + h0); 
} 
 
// Parameters of the initial two cells 
CellData icd1, icd2; 
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Start: 
{ 
  icd1.hetR = 0.1; 
  icd1.patS = 100.0; 
  icd1.x = longer; 
  icd1.p = plRight; 
  icd1.vph = 0; 
 
  icd2 = icd1; 
  icd2.x = shorter; 
 
} 
 
Axiom: Right(90) Cell(icd1)Cell(icd2); 
 
// Interaction between cells (diffusion of patS)  
p1: Cell(cdl) < Cell(cd) > Cell(cdr) : 
{ 
  cd.patS += (D_patS*(cdl.patS+cdr.patS-2*cd.patS)/(cd.x*w))*dt; 
  produce TempCell(cd); 
} 
 
p2: Cell(cd) > Cell(cdr) : 
{ 
  cd.patS += (D_patS*(cdr.patS-cd.patS)/(cd.x*w))*dt; 
  produce TempCell(cd); 
} 
 
p3: Cell(cdl) < Cell(cd) : 
{ 
  cd.patS += (D_patS*(cdl.patS-cd.patS)/(cd.x*w))*dt; 
  produce TempCell(cd); 
} 
 
decomposition: 
 
d1: TempCell(tcd) : 
{ 
  CellData cd = tcd; 
   
  // Proteins production 
  cd.hetR += HetR(tcd.hetR,tcd.patS)*dt/cd.x; 
  cd.patS += PatS(tcd.hetR)*dt/cd.x; 
 
  // Decay of proteins  
  cd.hetR -= mu*tcd.hetR*dt; 
  cd.patS -= nu*tcd.patS*dt; 
 
  // If did not reach max size, grow  
  if(cd.x < lm) 
  { 
    cd.hetR /= gr; 
    cd.patS /= gr; 
    cd.x *= gr; 
    // differentiation degree of heterocyst  



 

 

95

    // is identified with its size  
    if(cd.hetR>thr)  
      cd.vph=cd.x; 
  } 
   
   
  // If maximum size not reached, or heterocyst, that's it  
  if (cd.x<lm || cd.hetR>thr) 
    produce Cell(cd); 
   
  // otherwise, divide  
  else 
  { 
    CellData cd1 = cd; 
    CellData cd2 = cd; 
    cd1.p = plLeft; 
    cd2.p = plRight; 
    // take polarity into account 
    if (cd.p==plRight) 
    { 
      cd1.x *= longer; 
      cd2.x *= shorter; 
    } 
    else 
    { 
      cd1.x *= shorter; 
      cd2.x *= longer; 
    } 
    produce Cell(cd1) Cell(cd2); 
  } 
} 
 
interpretation: 
 
// Display the cell  
i1: Cell(cd) : 
{ 
  float width; 
  width = max(shorter, cd.vph); 
  produce SetWidth(width) f(width/2) 
      Circle(width/2)F((cd.x-width)/2) 
      SB()  
        Right(90) SetColor(2)  
        SetWidth(shorter/4)F(log(cd.patS))  
      EB() 
      SB()  
        Left(90) SetColor(3)  
        SetWidth(shorter/4)F(log(1000*cd.hetR))  
      EB() 
      F((cd.x-width)/2)Circle(width/2)f(width/2); 
} 
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Figure 44 Image generated by the model in Listing 37 

Figure 44 presents the visualization of the model. Rounded lines, with the length 

proportional to the size of the cell, represent the cells (interpretation i1). Large, round cells 

are heterocysts. In addition the vertical lines represent the concentrations of both patS and 

hetR in the cells. The length of the dark lines is proportional to the concentration of hetR, 

while the length of lighter lines is proportional to the concentration of patS. 

The ability to store parameters in a user-defined structure allows one to easily extend the 

model by adding new members to the structure. In parametric L-systems it would have 

been necessary to rewrite all the productions that involve the module Cell (that represents 

individual cells) to include additional parameters.  

7.2. Borchert-Honda model 

This example implements a developmental model of a branching structure presented by 

Borchert and Honda in [Bor1984]. It uses a user-defined type as a module�s parameter; 

user-defined functions and fast information transfer to propagate acropetal and basipetal 

signals throughout the plant structure. The L+C implementation in Listing 38 is based on an 

L-system implementation presented in [Pru1997a]. 

The objective of the original model was to propose a mechanism that controls the 

number of branches created by a tree and prevents the exponential grow of the number of 

the branches. 
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The program operates on three types of modules: apices A, internodes I and an auxiliary 

module N. Each internode has a parameter of type InternodeData. InternodeData is a 

structure type that contains the following fields: segment type (st), flux value (flux) and 

apex count (count). 

In this model, plant development is controlled by the amount of substances that 

propagate acropetally (from the base of the structure towards the apices). The process of 

development is modeled in discrete time steps. The development starts with a single 

internode and an apex. This internode is called the base of the tree. Development of the 

plant depends on the flux (flow of substances) available for every apex in the plant. At the 

beginning of the simulation the base of the tree contains the initial concentration of growth 

substances.  

Each time step is divided into three phases. Each phase corresponds to a derivation step. 

Variable stepType of type PhaseType controls the current phase. Its value is changed at 

the beginning of every derivation step (StartEach statement) and cyclically assumes 

values BSP (basipetal signal phase � counting apices), ASP (acropetal signal phase � 

distributing flux) and GP (growth phase). 

 

Growth phase 

The age of the base is incremented (production p1). The amount of growth substances 

available for every apex is checked. If this amount exceeds a threshold, the apex produces 

two new branches: main and lateral (production p2). 

 

Basipetal signal phase 

During this phase the derivation is performed backward (see StartEach statement). The 

number of apices supported by each internode is calculated (production p3). This includes 

the apex following the internode in question or apices supported indirectly by the daughter 

branches of the internode. The number of apices supported by internodes is considered an 

acropetal signal and is transferred using fast information transfer. 
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Acropetal signal phase 

In this phase the derivation is performed forward (see StartEach statement). The 

amount of flux available for all internodes is determined. At the base the flux is calculated 

(production p4) using the formula proposed by Borchert and Honda: ( ) kkv ησ 1
0 2 −=  (see 

function BaseFlux). This formula simulates a sigmoidal increase of flux over time. Starting 

from the base internode, the flux is divided between the daughter branches (production p5). 

The amount of flux available for a daughter internode depends on the number of apices 

supported by the branch. Main branches are preferred over lateral branches in the sense that 

they are assigned more flux. If two branches support the same number of apices then the 

main branch is assigned λ (constant lambda) of the flux reaching the branching point and 

the lateral branch obtains the remainder (1- λ) of flux. If the number of apices supported by 

the main and lateral branch is different, then the flux reaching the lateral branch is 

multiplied by the ratio c/cs, where c is the number of apices supported by the lateral branch 

and cs is the number of apices supported by the main branch. The fraction of flux available 

for a branch is calculated in the function Flux.  

Listing 38 Borchert-Honda model implemented in L+C using fast information transfer 

#include <math.h>    // required for pow 
#include <lpfgall.h> // predefined modules and data structures 
 
const float Alpha1 = 10.0f; // branching angle - main segments 
const float Alpha2 = 32.0f; // branching angle - lateral segments 
const float sigma0 = 17.0f; // initial flux 
const float eta    = 0.89f; // input flux change parameter 
const float vth    = 5.0f;  // threshold flux for branching 
const float lambda = 0.7f;  // flux distribution factor 
 
derivation length: 36; 
 
int StepNo;                 // Step number counter 
 
enum PhaseType 
{ BSP = 0, ASP, GP }; 
 
PhaseType steptype; 
 
enum SegType 
{ stBase, stStr, stLat }; 
 
struct InternodeData 
{ 
  SegType st; 
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  float flux; 
  int count; 
}; 
 
InternodeData iBase = { stBase, 0.0, 1 }; 
 
Start: { StepNo = 0; } 
 
StartEach: 
{ 
  steptype = (PhaseType) (StepNo % 3); 
  switch (steptype) 
  { 
  case BSP : 
    Backward(); // Derive backward 
    break; 
  case ASP : 
    Forward();  // Derive forward 
    break; 
  } 
} 
 
EndEach: 
{ StepNo++; } 
 
module A(); 
module I(InternodeData); 
module N(int); 
 
ignore: Left Right RollR; 
 
// flux at the base  
float BaseFlux(int age)  
{ return sigma0*pow(2.0, (age-1)*pow(eta,age)); } 
 
// flux distribution  
// count – number of apices supported by the internode 
// pcount – number of apices supported by the parent internode 
// internode type (lateral or main) 
float Flux(int count, int pcount, SegType st) 
{ 
  if (stLat == st) 
    return (1-lambda)*(1.0*count/(pcount-count)); 
  else // stStr == st 
    return 1-(1-lambda)*(1.0*(pcount-count)/count); 
} 
 
Axiom: SetWidth(0.1) N(1) I(iBase) A; 
 
p1: N(k) : 
{ 
  if (steptype == GP) 
    produce N(k+1); 
} 
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p2: I(idata) < A() : 
{ 
  if ((steptype == GP) && (idata.flux>vth)) 
  { 
    InternodeData iLat = { stLat, idata.flux*(1-lambda), 1 }; 
    InternodeData iStr = { stStr, idata.flux*lambda, 1 }; 
    produce  
    RollR(180)  
    SB Right(Alpha2) I(iLat) A EB 
    Left(Alpha1) I(iStr) A; 
  } 
} 
 
p3: I(idata) >> SB() I(idata1) EB() I(idata2) : 
{ 
  idata.count = idata1.count + idata2.count; 
  produce I(idata); 
} 
 
p4: N(k) << I(idata) : 
{ 
  idata.flux = BaseFlux(k); 
  produce I(idata); 
} 
 
p5: I(idataL) << I(idata) : 
{ 
  idata.flux = idataL.flux*Flux(idata.count, idataL.count, idata.st); 
  produce I(idata); 
} 
 

 

The amount of flux produced at the base of the tree depends linearly on the parameter σ0 

(sigma0). If this value is higher there is more flux available for the lateral branches and the 

tree tends to grow wider. The simulation has been performed for two values of sigma0. The 

results are presented in Figure 45. 
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σ0 = 17 

 

σ0 = 7 

 

Figure 45 Two images generated by the L-system from Listing 38 for two values of σ0 
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8. The L-studio modeling environment 
During my research I have designed and implemented the modeling environment L-

studio. Originally it was created to address the need for an L-system based plant modeling 

environment for MS Windows, as this operating system is more popular among biologists 

than Unix. Later the development of L-studio was used as an opportunity to test some new 

interactive and visual modeling techniques. L-studio together with a set of additional 

programs constitutes a plant modeling software system. The whole system consists of the 

following elements: 

•  L-system based simulation program cpfg (plant and fractal generator with 

continuous parameters), 

•  L-system based simulation program lpfg (plant and fractal generator implementing 

the L+C language), 

•  L-studio modeling environment that provides visual tools and serves as a control 

component in the process of modeling and performing simulations 

•  A set of programs for simulating environmental processes that affect plant 

development 

•  A set of sample models 

L-studio is specifically designed for the MS Windows operating system. It has a 

counterpart in the Unix system, Virtual Laboratory (vlab) [Mer1990, Mer1991, Fed1999]. 

All other components of the system (cpfg, lpfg and environmental programs) are designed 

to be platform-independent and they can be used under Windows as well as Unix operating 

systems. The portability has been achieved by the use of the C and C++ programming 

languages and the dependencies on any external libraries have been reduced to a minimum: 

graphic output is implemented using OpenGL library and user interface has mostly been 

entrusted to the command line options. At the same time the system provides a user-

friendly way of invoking the simulation programs without the need of manually typing 

commands.  
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The L-studio modeling environment is object (or model) oriented. An object is a set of 

files that are used in a simulation. An object-oriented environment means that its 

components are designed to cooperate and help the user in the process of developing and 

experimenting with the object.  

The description of L-studio contained in this chapter is not intended to be a user�s 

manual. Instead it presents selected elements of the system. The selection is intended to 

give a general overview of L-studio and to present concepts incorporated in the system that 

I have introduced or extended. An overview of the L-studio/cpfg modeling system from the 

user�s perspective can be found in [Pru1999]. A user�s manual is available at 

http://www.cpsc.ucalgary.ca/Research/bmv/lstudio/index.html.  

8.1. Object organization 

Every object consists of a set of files. All files constituting an object are stored in a 

separate directory. The files that constitute a model are typically: L-system file, view 

parameters file and colours definition file etc. This design has been borrowed from an 

implementation of a prototype-extension paradigm [Lie1986] as it is found in vlab, 

although the functionality in this domain available in L-studio is limited compared to vlab.  

When working with an object, L-studio offers the user specialized editors to manipulate 

different types of files. Different editors are accessible under different tabs: 

 

 

Figure 46 L-studio project tabs 

Almost all files controlled by L-studio are text files. Some of them are directly edited as 

text files by the user. These are: L-system, view parameters, description. Other text files are 

edited using specialized visual editors. 

8.1.1. Animation parameters editor 

The animation parameters editor is a form-based editor. All parameters controlling 

animation are specified using simple GUI controls: edit lines, check boxes, radio buttons, 

etc. 
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Figure 47 Animate parameters editor 

Every check box and every edit line corresponds to an entry in the animate file. But the 

use of this form-based dialog relieves the user from the necessity of memorizing the syntax 

of all the options as they appear in the file. 

8.1.2. Colormap editor 

Images generated using cpfg and lpfg modeling programs can be rendered in one of two 

colour modes: colormap mode and material mode. In the L-system the current drawing 

colour or material is specified using an index.  

In the colormap mode the drawing colour is specified as a triplet of the RGB 

components. All colours available for the model are stored in a palette � a set of 256 

colours. These colours are manipulated using the colormap editor. To modify a colour in 

the palette, the user selects the colour and uses three sliders to modify the colour�s 

components. The effect of the change is visible immediately in the palette as the selected 

entry is updated. 
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Figure 48 Screenshot of the colormap editor 

8.1.3. Material editor, gallery of objects 

Material rendering mode is used to create images that look more realistic than in 

colormap mode. In material mode, scenes are drawn using the Phong shading model as 

implemented by OpenGL [Woo1999]. In this model materials are specified by a set of 

material parameters, including four colour parameters (ambient, diffuse, specular, 

emission) and two numerical parameters (shininess and transparency). Each of these 

parameters can be modified independently.  

The material editor in L-studio uses a view/edit/gallery scheme (see Figure 49). I 

designed this scheme to simplify editing and managing entities of the same type in a unified 

manner.  

The gallery is an abstraction that represents a set of elements. The elements stored in a 

gallery are accessible through the gallery window where they are displayed. The way that 

elements are rendered in a gallery is sometimes simplified and does not contain all pertinent 

information (for example the gallery of panels displays only the names of the elements, see 

section 8.3). However elements in the gallery window must be distinguishable and 

recognizable. Basic operations that can be performed in a gallery are:  
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•  Adding new elements; 

•  Deleting existing ones; 

•  Rearranging (changing the order) within the gallery; 

•  Copying and pasting of elements between galleries � thus moving components of L-

studio objects without the necessity of manually transferring and/or editing the files 

where they are stored; 

•  Performing special operations on subsets of elements. For example, the material 

gallery makes it possible to interpolate colour components within a range of 

selected materials (see Figure 49). 

Every gallery cooperates with a corresponding viewer/editor, so that the element 

selected in the gallery is the one being edited in the editor. When the user selects another 

element from the gallery, changes made to the element previously selected are first 

propagated to the gallery and then the newly selected element is ready for editing.  

 

Gallery 

Previewer Controls 

 

Figure 49 Screenshot of the material editor 

In the material editor, the viewer/editor part consists of the material previewer window 

and six controls � colour sliders. All parameters defining a material can be manipulated 

using the colour sliders and a colour-chooser window (not shown).  
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8.1.4. Surface editor 

Cpfg and lpfg make it possible to draw bicubic (Bézier) surfaces [Han1992, Fol1990]. 

The surface editor provides an interactive, graphical way to define and edit these surfaces.  

 

Preview 

Gallery 

Control point 
manipulators 

Controls

 

 

Figure 50 Screenshot of the surface editor 

In the surface editor the responsibilities of the editor components (previewer and 

controls) are different compared to the material editor. In the material editor, the previewer 

is passive � it displays the current state of the element being edited. In the surface editor, 

elements of the gallery (surfaces), can be edited both in the preview window and using 

controls. To modify the surface directly in the preview window the user can click and drag 

control points with the mouse. To modify a surface using the controls, the user selects a 

control point by pressing a button (labelled 1 to 16) and changes the point�s coordinates 

using control point manipulators located above the gallery. Control points in the preview 

window can be moved only in the XY plane, consequently the z coordinate can be modified 

only using the control point manipulator. 

The surface gallery is an example of the gallery that displays only a subset of 

information related to the elements because the names of surfaces are not visible in the 

gallery. 
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8.1.5. Contour editor 

The contour editor makes it possible to define two-dimensional B-spline curves 

[Fol1990]. The curves can be used later as cross-sections of generalized cylinders 

[Blo1985, Mec1997a]. The contours are modified by directly moving control points in the 

previewer. Controls make it possible to toggle between closed and open contours and to 

specify its name. The contour editor does not contain control point manipulators because 

the control points can be controlled fully in the previewer (they do not have a z coordinate). 

Gallery 

Previewer Controls 

 

Figure 51 Screenshot of the contour editor 

The functionality and responsibility of the components in an editor following the view 

/edit/gallery scheme can vary, depending on the type of elements being edited. In the 

material editor, elements of the gallery can be manipulated only using controls. In the case 

of the surface editor, some functionality available with controls is duplicated in the 

previewer. In the contour editor some functionality (manipulating control points) is 

available only via the previewer.  

8.2. Continuous modeling mode 

Recent improvements in the computational power of computers and the speed of 

graphics cards allowed revision of the process of working with models. The process 

introduced originally by Mercer in [Mer1991] that has been pursued so far involves the 

following cycle of actions: 
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 Editor (L-system, 
colours, surface, etc.)

Data file 

Modeling program 

Modifications 
saved Data re-read 

Image generated on 
the screen 

Model 
regenerated/redrawn 

 

Figure 52 Edit-reread-regenerate scheme used when modeling 

In this scheme the user first modifies a component of the model (L-system, colour 

specifications etc.), then saves it to a data file and makes the modeling program reread the 

modified information. The process is repeated until desired effect is achieved.  

Continuous modeling mode frees the user from performing repetitive tasks of issuing 

saving and rereading commands, so that he/she can concentrate on the task at hand: editing 

of the data. After every change, the modifications are saved automatically and a request is 

sent to the modeling program to reread the modified data and redraw and/or regenerate the 

model. In this way, updated information transfers continuously from the editor to the 

modeling program. Continuous modeling mode has been added to the functionality of L-

studio modeling environment.  
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8.3. Visually controlled parameters 

The ability to manipulate parameters controlling the model is almost as important as the 

ability to express the model itself. Modification of the model code (L-system) qualitatively 

changes the model. On the other hand parameter modification changes quantitative features 

of the model. Modification of parameters is a way of performing experiments on the model 

by asking �what if?� questions. �What if the branching angle was different (see Figure 

53)?� �What if asymmetry was different?� Etc. 

 

Figure 53 Model of Lychnis coronaria (from [Pru1990]) generated for three different branching angles: 

10°, 30° and 50°. 

In the scope of my research I have improved the methods of controlling parameters by 

adding visual programming elements to the design of control panels. These improvements 

are discussed in more detail below. 

Methods of controlling numerical parameters have been studied in the past [Mer1990, 

Mer1991]. Control panels cooperating with parameter editors introduced by Mercer 

[Mer1991] made it possible to control numerical and logical parameters visually. Panels 

contain controls such as sliders and buttons. Using these controls it is possible to 

manipulate parameters contained in text files without actually opening these files in a text 

editor. 
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The control panels are designed on a per object basis. In this way, the panels can always 

reflect the specific needs of every model or even different aspects of the same model, 

depending on the type of experiment or demonstration. 

 

cpfg window 

Panels gallery

Panel 
previewer 

Execute/design 
switch 

 

Figure 54 Model controlled by numerical parameters. The parameters are controlled by a panel. 

In the original design [Mer1991] control panels had to be created by manually creating 

and editing text files (scripts) that describe the layout and functionality of the controls. The 

scripts are interpreted by panel manager. The panel manager is a program that reads the 

panel definition and then builds and visualizes the panel. The panel manager is also 

responsible for accepting the user input and translating it into the parameter editor�s 

actions. The parameter editor is an external program that actually modifies the data file. In 

the original implementation, parameter editors were custom-written programs that 

internally callsed the ed and awk programs. Finally, the modified parameters are read by 

the application program (for example cpfg).  
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Figure 55 Communication flow involving the panel manager (after [Mer1991]) 

To simplify the building of control panels, I have researched the possibilities of applying 

interactive methods to this process. There are programs and utilities that allow interactive 

and visual design of elements of a GUI. Commonly known examples include resource 

editors in MS Visual Studio and Qt Designer. These tools make it possible to visually 

design elements of a GUI, such as menus or dialog boxes. Control panels are a special type 

of dialog box, which contain controls typical to dialog boxes: buttons, sliders, labels, group 

frames.  

 
Controls 

Layout and 
alignment

 

Figure 56 Visual design commands in the panel editor 

This kind of tool has been implemented and incorporated into L-studio in a panel editor, 

which serves two functions. When in the design mode the panel editor allows the user to 

modify a panel: 

•  Add a control (slider, button, group box, label) 

•  Delete a control 

•  Move a control 
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•  Arrange a group of controls (modify alignment, distribution) 

•  Specify and modify the actions associated with a control 

In the panel editor the user also specifies the data file, which is controlled by the panel. In 

execute mode, the panel editor becomes the panel manager, building and displaying the 

controls. It also accepts and handles user input. Because the panel editor follows the 

view/edit/gallery design scheme, it is possible to handle more than one panel and perform 

the same operations on the set of panels that are performed in other galleries: 

•  Add new panels, 

•  Delete existing ones, 

•  Move panels between objects. 

8.4. Visually defined functions 

Productions in L+C can contain numerical expressions. The expressions may include 

arithmetic operators and function calls. In addition to the standard C++ mathematical 

functions and user-defined functions, they may also include graphically defined functions. 

Graphically defined functions are used in the following situations: 

 

1) when it is difficult or impractical to find a formula that expresses the desired 

function, or  

2) when it is necessary to be able to manipulate the values of the function locally. 

 

In the process of modeling, some quantities defining the model cannot be described just 

by numbers. For example leaf length is not the same for all leaves even within the same 

plant or branch. Instead, it depends on the position of the leaf e.g. its placement on the 

stem. This parameter can be thought of as a function: it assigns exactly one value (leaf 

length) for every argument from the domain (position on the stem). Similarly, branching 

angle is also different for virtually every lateral branch. It can also be described as a 

function of position along the stem. 
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It is desirable to have access to this kind of parameters in the form of function calls from 

the L-system program, so that they can be used like any other function (trigonometric and 

other mathematical functions).  

Listing 39 Model of a simple branching structure with lateral branches length and branching angle 

controlled by functions. Image generated by the L-system is on the right. 

module A(int); 
module L(float); 
 
axiom: SetWidth(0.2) SetColor(2) A(1); 
 
derivation length: 22; 
 
A(n) : 
{ 
  if (n<=20) 
  { 
    float arg = n/20.0; 
    float brang = 90-90*Fangle(arg); 
    produce F(1)  
      SB Left(brang) F(Flength(arg)) EB 
      SB Right(brang) F(Flength(arg)) EB  
      A(n+1); 
  } 
  else 
    produce F(1) SetColor(3) Circle(0.4); 
} 

 
 

The model in Listing 39 refers to two functions Fangle and Flength.  

The information that defines these functions can come from different sources. 

Sometimes an algebraic formula is available. In that case, functions such as Fangle or 

Flength implement the formula and return the result. Sometimes the function can be 

defined by experimental data. In that case, the Fangle or Flength functions could calculate 

the results by reading the data from an array, an external file etc. However in some cases, 

only limited information is available about a function � e.g. the approximate shape of its 

plot. This idea can be found for example in [Lin1998, Lin1999]. Both functions (Fangle 

and Flength) used in the Listing 39 were defined by drawing the shape of the plot: 
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Flength Fangle 

Figure 57 Functions used in the model in Listing 39 

Rather than being specified by algebraic formulas, these functions are drawn using the 

function editor. The function editor is a b-spline curve editor with additional constrains, 

that make sure that the edited curve can be interpreted as a function f(x) = y for any 

]1,0[∈x . These constrains are: 

•  p1.x = 0, 

•  plast.x = 1, 

•  pn.x ≤ pn+1.x. 

Graphically defined functions can be easily modified by moving control points. For this 

reason, graphically defined functions represent extensions of visually controlled 

parameters.  

Graphically defined functions do not replace functions specified by formulas or other 

algorithms that can be easily expressed in a general-purpose programming language such as 

C++. Doubtless it is much easier to type a formula such as y = x*x or y = sin(x), rather 

than to draw the plot of these functions. Graphically defined functions create a new 

category of functional parameters that can be manipulated interactively by the user. The 

principal difference between analytic and graphically defined functions is that modifying a 

parameter in a formula (a coefficient in a polynomial or exponent in an exponential 
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function) usually changes the shape of the whole function. Graphically defined functions on 

the other hand make it possible to modify local properties of the plot, which are not easily 

obtainable when using algebraic formulas. Some results obtained by using visually defined 

functions have been described in [Pru2001]. 

Figure 58 shows the function editor and model of a fern controlled by graphically 

defined functions. Figure 59 shows examples of models generated using the graphically 

defined functions. 

 

Figure 58 Model controlled by function parameters. The functions are controlled by the function editor 



 

 

117

 

Figure 59 Models of Pellaea falcata and Indian paintbrush created using graphically defined functions 

(from [Pru2001]) 

8.5. Visual interaction with the model 

The need for direct interaction with the model was recognized some time ago. Power et 

al. presented some research on visual manipulation of models generated using L-systems in 

[Pow1999]. In this paper the authors give an overview of their application ilsa (interactive 

L-string arranger) that allows a user to interactively manipulate the geometry of a plant 

model. The design of the ilsa is based on the flow of control presented in Figure 60. 

 

 

String saved String read 

axiom 

L-string File L-string 

L-string File 
String saved String read 

derivation User�s 
manipulation

ilsa cpfg 
 

Figure 60 Information flow between cpfg and ilsa 
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To manipulate a plant model using cpfg/ilsa, the user first needs to create a model in 

cpfg. Once the model is generated the L-string is saved to a disk file. The file is then read 

by ilsa. Ilsa provides a display window where the user can interactively manipulate organs: 

turn, rotate and bend. Ilsa inserts corresponding turtle commands in the L-string to reflect 

the modifications. Then the string can be saved in a disk file and read back into cpfg. Work 

by Power provides a method for interactive manipulation of the geometry of generated 

structures.  

I propose another method of interaction with models. My more general method is based 

on the ability to modify the string interactively by inserting a predefined module. The user 

can point to an element of the model on the screen and request to insert a predefined 

module (X) in the string. The module X is inserted in the string right before the module 

pointed to by the user. Figure 61 shows a visualization of the following L-system: 

 

Listing 40 L-system implementing simple interactive pruning 

Axiom: F1[+F2][-F3] 
X ! ;F4(0.2)% 

 

 

Click here 

F2 F3

F1

  

F4 
F2

F1

 

Figure 61 Module X inserted interactively 

Initially the structure consists of three segments F1, F2 and F3. When the user selects the 

branch corresponding to the module F3 the string is modified: 

 
F1[+F2][-XF3] 

 

During the next derivation step, the production p1 is applied and the module X is replaced 

with the segment F4, which is shorter and drawn using a different colour. The remainder of 
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the branch (module F3) is removed by the module % (cut). In this way the user interactively 

modified the development of the model. This method can also be used to induce more 

complex actions than cutting a branch. For example, module X can be a signal that induces 

flowering in a selected branch. A short discussion on further applications is presented in 

9.1.2. 
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9. Conclusions 

9.1. Summary of contributions 

The research described in this dissertation contributes to three areas in the domain of 

plant modeling: 

a) L-systems as a mathematical formalism, 

b) L-systems as a programming language, 

c) Visual and interactive modeling. 

The contributions belonging to the first two categories have been summarized and 

implemented in a new L-systems based modeling language L+C, which I have defined and 

implemented. Evaluation of the language from the conceptual and practical points of view 

is presented in section 9.1.1. Summary of my contributions in the domain of visual and 

interactive modeling are presented in section 9.1.2.  

I have also created a plant modeling environment, L-studio. The environment is 

comprised of three principal elements: L-system based modeling programs (cpfg and lpfg) 

and a set of tools integrated into the program called L-studio. Cpfg is an L-system based 

plant modeling program. It was originally created by Prusinkiewicz. Further extensions 

were added by James, Hammel, Hanan, Měch and myself [Han1992, Mec1997a, 

Mec1998]. I have designed and implemented lpfg. Lpfg is an L-system based modeling 

program which implements and uses the L+C modeling language. The language is 

described in chapter 3.4. The user�s manual for lpfg is presented in appendix A.  

9.1.1. Evaluation of L+C 

Users of L-systems have identified shortcomings of L-systems as a formalism and a 

modeling language. These shortcomings are described in chapter 3 together with proposed 

solutions. The number and significance of required modifications and extensions justified 

creation of a new language instead of extending the existing syntax. As a result I designed a 

new L-system-based modeling language L+C. It has been designed from scratch with a 
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well-defined set of requirements. This approach made it possible to include new elements 

in a cleanly and consistently.  

The main conceptual contributions to the formalism of L-systems are fast information 

transfer and the new-context construct. Fast information transfer is an alternative method of 

propagating information and signals in models of both linear and branching structures. It 

has tow advantages over the traditional method of information transfer using context-

sensitive productions: 

 

a) It allows a clearer structure for models than in traditional L-systems, which need 

many derivation steps to propagate a signal.  

b) The signal can be propagated throughout the entire structure in one derivation step. 

The time required is proportional to the number of modules in the string so the 

method is O(N) as opposed to O(N2) when using context-sensitive methods.  

 

New context facilitates implementation of fast information transfer in models without 

the use of a global variable (in the case of linear structures) or a stack (in the case of 

branching structures). Expressing fast information transfer using only local data (a 

modules� parameters and variables local to the productions) is consistent with the spirit of 

L-systems � expressing models in the local terms.  

The introduction of user-defined types increased the expressive power of L-systems as a 

modeling language and allowed creation of models in which the modules are associated 

with many parameters. A large number of parameters associated with modules are required 

in (among others) genetic and biomechanical models.  

An important decision in the design of L+C was to base its syntax on an existing 

general-purpose language, C++. L+C adds L-system-specific constructs to C++ while 

preserving all the expressive power of C++. The flow of control is governed by the 

declarative nature of L-systems rather than by the imperative paradigm as in C++.  

This decision had two further effects: 

a) The syntax of elements typical to C++ (e.g. declarations of structures, functions 

etc.) are the same as in C++. This diminishes the learning for new users of the 

language, if they are already familiar with C++. 
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b) The work required to implement the interpreter (or compiler) of the language has 

been reduced to a translator from L+C to C++. 

Designing the translator was a valuable experience that showed what elements of the L+C 

constitute the essence of L-systems. In the process of designing it was necessary to identify 

elements of a program in L+C that must be translated and what additional information must 

be generated to link the L-system to the generator component of lpfg.  

The improvements introduced by L+C come for a price. The simplest L-systems, which 

are very intuitive to grasp in the traditional notation, now look more complex. For example 

the L-system that generates the Koch curve (Listing 3 on page 8) when expressed in cpfg 

language reads: 
Lsystem: 1 
derivation length: 4 
Axiom: F 
F --> F+F--F+F 
endlsystem 

 

In L+C it becomes: 
#include <lpfgall.h> 
derivation length: 4; 
axiom: F(1); 
F(v) : 
{ 
  produce  
    F(1) Left(60) F(1) Right(120) 
    F(1) Left(60) F(1); 
} 

 

The arrow notation of productions is replaced with a more complex one. The cpfg syntax 

was derived directly from the formal notation, which was intended to express simple 

concepts (for example F becomes F+F--F+F) in a simple way. It has been successfully 

extended to include parametric L-systems, L-systems with programming statements, 

environmentally sensitive L-systems and open L-systems.  

In my opinion, the cpfg notation has reached the state when adding new elements to the 

syntax leads to obfuscated code, which is difficult to debug and maintain. Some examples 

have been presented already (see for example Listing 14 on page 36 and Listing 15 on page 

37).  
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Also the decision to use single ASCII symbols or pair of symbols as identifiers of turtle 

commands in cpfg leads to expressions such as this one11: 

Listing 41 Example of a complex successor written in cpfg 

@OF(l)[,@v&(90)f(ran(0.01))^(90)@c(0.5*2)] 

 

Because cpfg is not a free-form language, the possibilities of formatting productions are 

limited. I claim that the equivalent of code rewritten in L+C (see Listing 42), although 

longer, is more legible: 

Listing 42 Equivalent of code from Listing 41 rewritten in L+C 

Sphere0 F(1)  
  SB  
    DecColor RotToVert Down(90) f(ran(0.01)) Up(90) Circle(0.5*2)  
  EB; 

 

Better legibility is particularly evident in more complex models. Because L+C was 

designed to make it possible to write more complex models, it can be assumed that this goal 

has been achieved. 

9.1.2. Visual and interactive aspects of modeling 

I have also researched improvements in the domain of visual modeling. The concept of 

visually controlled parameters has been extended to include graphically defined functions. 

Corresponding visual tools to manipulate these functions have also been constructed and 

implemented. Graphically defined functions are one of the fundamental elements of inverse 

modeling [Pru2001]. The ability to manipulate the shape of the function�s plot makes it is 

easy to experiment with models, for example by locally modifying the controlling 

functions.  

The concept of continuous modeling leads to results that proved to be useful both in the 

course of modeling work and in the case of presentations and live demonstrations. 

I have also implemented a new method of direct interaction with models. The result is 

the concept of modules that are interactively inserted into the model. Modules inserted 

                                                 
11 An actual successor from a model of Terminalia catappa [Mec1996]. 
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interactively do not break the link between the algorithm that generated the model, internal 

representation of the model and its graphical representation. The model can handle the 

modules inserted by the user and react on them.  

Possible applications of interactively inserted modules include modeling of: 

a) pruning, 

b) grafting, 

c) local mutations, 

d) presence of pests, 

e) application of pesticides. 

9.2. Future work 

In this section I briefly describe problems and questions that have been identified during 

my research but have not been addressed. These problems may constitute the foundation for 

future work on the modeling using L-systems and further development of L+C. 

9.2.1. Missing elements 

L+C does not include sub-L-systems. Sub-L-systems introduced by Hanan [Han1992] 

make it possible to create hierarchical models. Adding this concept to L+C is still an open 

problem because of differences of how local variables are handled in sub-L-systems and in 

C++.  

Developmental surfaces [Mec1997a] are also not available in L+C. The problem of how 

to model growing surfaces such as leaves and petals is a very general and interesting 

challenge that definitely deserves work. 

9.2.2. Problems worth revisiting 

Object-oriented elements in L+C 

One of the most interesting concepts that warrants further research of the L+C modeling 

language is the incorporation of concepts from object-oriented programming. In particular 

these concepts include: 

a) inheritance. 

b) Polymorphism. 
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c) Data hiding, 

Inheritance 

The concept of inheritance makes it possible to conceptually organize the elements of a 

model into a hierarchical structure. Elements that are lower in the structure inherit (share) 

features of the elements higher up. For example age can be considered a characteristic 

shared by all organs in a plant. It is therefore appropriate to define it at the top level of the 

hierarchy as a characteristic for all modules to share. Other examples that may characterize 

entire classes of modules, and therefore could be inherited (shared) include: amount of 

photosynthates produced by leaves, length and diameter of internodes, diameter of fruits. 

In each case inheritance could be used to define modules that represent specific organs 

by adding new properties to the base modules.12  

Polymorphism 

In object-oriented languages polymorphism makes it possible to state that some 

calculations are to be performed, without giving details that may depend on the object type. 

Polymorphism is achieved using virtual methods (or functions), which have the same name 

but different meaning depending on the object type. For example, in the context of plant 

modeling, an important quantity is the amount of resources, such as carbon, allocated to 

specific modules. All organs use carbon for growth and maintenance, but functions that 

describe the amounts are different for different organs (for example, leaf vs. fruit). Thus the 

allocation of carbon may be defined using a virtual method at the level of organs and then 

specialized for individual organ types. 

Data hiding 

When dealing with data structures, manipulation can be performed using one of two 

approaches. The first approach is to access all members of the data structure directly. The 

values can be read and modified at will. The second approach is to encapsulate all 

operations that can be performed on the data structure into a set of functions. In the 

programming practice it has been found that this second approach works better. This is 

especially true when the members of a data structure are interdependent. The specialized 

functions guarantee that these interdependencies are always satisfied and the information 
                                                 

12 A different concept of inheritance in L-systems has been proposed by Borovikov in [Bor1995] 
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represented by the structure is internally consistent. At present, the L+C language makes it 

possible to associate methods with data structures, but does not make it possible to 

associate methods with module types. Consequently, the concept of data hiding is not fully 

supported at the level of modules. 

 

What are further consequences of deriving the string forward and backward? 

More consideration can be given to the problems related to sequential derivation of the 

string and explicit control over the direction of the process. Fast information transfer relies 

on the ability to control the derivation direction. Also the % (cut) module introduced by 

Hanan [Han1992] requires the derivation to be performed from left to right. When the 

derivation is performed in the opposite direction branch cutting cannot be performed by 

skipping to the end of the current branch. What are other effects of sequential derivation 

forward or backward, and how the sequential execution of derivation steps alters the 

properties of L-systems? What is the relationship between fast information transfer and 

attribute grammars? More theoretical research would help answer these questions. 

 

Dynamic data structures as modules� parameters 

Currently it is clear how to use simple (C++ built-in) or compound types (structures) as 

modules� parameters. What is not clear is how to use non-trivial dynamic data structures 

(linked-lists, stacks etc.) as a modules� parameters. The main problem arises because the 

elements of these structures are allocated dynamically and require special handling when 

being deleted, copied etc. Various methods of resource transfer and resource management 

should be tested. In particular some consideration should be given to the use of STL-

defined containers as a modules� parameters. 

It is worth noting that the problems described above are a direct consequence of using 

C++ as the foundation of L+C. For example, these problems are not present in L-Lisp 

created by Erstad [Ers2002]. L-Lisp is an L-systems framework written in Common Lisp, a 

language with garbage collection mechanism.  
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Query modules vs. new context 

Query modules contain meaningful information after the �interpretation step for the 

environment� has been performed. This step is performed after string rewriting is 

completed. In particular, query modules do not contain any meaningful information 

immediately after they are created (e.g. when they are in the new context). It would be 

interesting to consider the changes in the L+C language semantics to disallow query 

modules in the new context, or alternatively perform the interpretation while deriving. This 

could be applied only when deriving forward. 

 

Module names  

The L+C specifies that a module name must be a valid C++ identifier. This restriction 

disallows module names such as [ and ]. These identifiers have a well established position 

in L-systems notation and it is tempting to consider the possibility of allowing them as 

module identifiers.  

However lifting the restriction on module names would imply a major redesign of the 

way the L+C to C++ translator works. Currently L2C works under the assumption that a 

single token is enough to recognize L+C constructs. But [ and ] symbols can appear in C++ 

code when they have different meaning (array element operator). Consequently allowing [ 

and ] as valid module identifiers would probably require full syntax analysis of the L+C 

source code. 

 

9.3. Closing remarks 

The main goal of my research was to improve the process of plant modeling. The L+C 

modeling language, implemented in lpfg, and the modeling environment L-studio are a 

practical realisation of the concepts I have introduced or extended in the scope of my 

research. The modeling system is distributed by the University of Calgary and is currently 

used in approximately 100 locations worldwide. L+C�s applications are not limited to the 

plant modeling but also include applications in the domain of subdivision curves [Pru2002].  
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Appendices 

A. LPFG user’s guide 
lpfg is a plant modeling program. The models are expressed using a formalism based on 

L-systems. The formalism, called the L+C modeling language adds L-systems specific 

constructs to the C++ programming language.  

A.1. Hardware requirements 

lpfg does not have any specific hardware requirements. It uses OpenGL to generate 

images it is therefore strongly recommended to use graphics cards capable of displaying 

graphics with resolution at least 1024x768 pixels at 24 or 32 bit depth. A mouse or an 

equivalent pointing device is also required. 

A.2. Software requirements 

lpfg runs under MS Windows operating systems (9x/Me/NT v. 4.0/2000). It requires a 

C++ compiler capable of generating Windows DLL�s (Dynamic Link Libraries). lpfg was 

originally developed and tested using MS Visual C++ compiler v. 6.0.  

A.3. Installation 

lpfg is distributed together with L-studio. Refer to the L-studio installation guide on how 

to install it. 

A.4. Command line options 

lpfg is designed as an element of a modeling environment, such as L-studio or Vlab. 

Usually it will be invoked by the environment rather than directly by the user. This sections 

presents the command line switches supported by lpfg. 
lpfg [-a] [-d] [-b] [-wnb] [-wnm] [-wr w h] [-wpr x y] [-wp x y] [-w w 

h] [–out filename] [colormap_file.map] [material_file.mat] 

[animation_file.a] [functionset_file.fset] [drawparameters_file.dr] 

[viewparameters_file.v] [contourset_file.cset] [environmentfile.e] 

Lsystemfile.l 
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-a � starts lpfg in the animate mode. 

-d � starts lpfg in the debug mode.  

-b � starts lpfg in the batch mode. 

-wnb � no borders. The lpfg window is created without borders or title bar. Also the 

output console window is not shown. Used for demonstration purposes. 

-wnm � no message window. The output console window is not shown. 

-wr � specify relative window size. w and h parameters are numbers between 0 and 1 

and specify the relative size of the lpfg window with respect to the screen.  

-wpr � specify relative window position. x and y parameters specify the position of the 

top left corner relative to the top left corner of the screen. 

-wp � x and y specify window�s top left corner position in pixels relative to the top-left 

corner of the screen 

-w � w and h specify window�s size in pixels. 

 

•  Animate mode: first frame (as specified in the animation file) steps are performed, 

as opposed to derivation length. 

•  Debug mode: some information about the execution of the program is sent to the 

standard output. This mode is intended to be used by the developers of lpfg. 

•  Batch mode: no window is created. The simulation is performed and the final 

contents of the string is stored in the file specified. Only module names are stored in 

the file. This mode cannot be combined with the –a switch.  

The only mandatory item is the L-system file. Command line parameters can appear in 

any order. 

All the input file types are recognized based on their extension. 

If no colormap file or material file is specified then default colormap is used. 
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A.5. User interface 

A.5.1. View manipulation 

•  Rotation � lpfg uses XY rotation interface based on the continuous XY rotation as 

described by Chen et al. in [ref]. The model is rotated around the Y axis when the 

mouse is moved horizontally and around X axis when the mouse is moved 

vertically. To start rotating press left mouse button. 

•  Roll � to roll the model around the Z axis press Shift + middle mouse button. 

Moving the mouse to the right rotates the model clockwise, moving the mouse to 

the left rotates the model counter-clockwise. 

•  Zoom � to start press Ctrl + left mouse button or the middle mouse button. Moving 

mouse up zooms in, moving down zooms out.  

•  Pan � to start press Shift + left mouse button.  

•  Change frustum angle � to start press Ctrl + middle mouse button. Moving mouse 

up increases the angle, moving down decreases the angle. This operation has effect 

only in the perspective projection mode. 

A.5.2. Menu commands 

To display menu click the right mouse button inside the lpfg window. 

 

 

Figure 62 Lpfg menu 
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Step Advances simulation to the next step. This may correspond to 

more than one derivation step if parameter step in the animate 

file is present and specifies a value greater than 1. 

Run Starts or resumes the animation. 

Forever Starts or resumes the animation. After the last frame is reached 

the animation returns to the first frame and continues. 

Stop Stops the animation. 

Rewind Resets the animation to the first frame. 

Don�t animate Stops the animation and generates the image in the still mode 

(performs the number of derivation steps as specified in the 

derivation length statement). 

Restore view Resets rotation, zoom, pan, frustum and roll to the default 

values. 

Reset !!!! Rotation Resets rotation. 

Reset !!!! Zoom Resets zoom. 

Reset !!!! Pan Resets pan. 

Reset !!!! Roll Resets roll. 

Reset !!!! Frustum Resets frustum (not implemented yet). 

Show axis Turns on or off display of coordinate system axis in the left 

lower corner. 

Output !!!! BMP Creates image file filename.bmp containing the current state 

of the window. Filename is the name of the L-system file. 

Output !!!! Rayshade Creates a rayshade file (not implemented yet). 

Output !!!! POV-Ray Creates a POV-ray file (not implemented yet). 

Output !!!! Postscript Creates a postscript file filename.ps. Filename is the name of 

the L-system file. All modules F are drawn as lines, even if 

line style is set to cylinder. If line style is polygon 

then modules F are drawn as lines of properly scaled width. The 

only other module supported is Circle and Circle0. No other 

modules are visualized. 
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A.6. L-system file 

A typical L-system program file has the following format: 

Listing 43 A typical L-system in L+C 

#include <lpfgall.h> 
 
derivation length: d; 
 
// declarations of data structures 
 
// declarations of functions 
 
// module declarations 
 
ignore: module list; 
 
axiom: parametric word; 
 
lcontext < predecessor > rcontext : 
{ 
  … 
  produce parametric word; 
} 

 

All elements of a program can appear in any order except for the following restrictions: 

1) all elements referred to in a statement must be declared beforehand. For example: types 

used as parameters of a module must be declared before the module can be declared. 

Also modules that appear in the ignore or consider statement must be declared before. 

2) Productions are matched in the order in which they are declared.  

A.6.1. Mandatory elements 

The mandatory elements in every L-system are the statements: derivation length and 

axiom. 

A.6.2. Include files 

The first line in the L-system is the include statement. The lpfgall.h include file 

includes the following standard header files: 
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•  memory.h and stdlib.h � standard C header files. Required by the code generated 

by the L2C translator 

•  lparams.h � this file contains the declarations and definitions that are used by lpfg, 

L2C translator and the C++ code generated by the L2C translator. For example: 

maximum number of parameters per module, maximum number of modules in a 

production predecessor etc. 

•  lintrfc.h � this file contains declarations and definitions that are used by lpfg and 

the C++ code generated by the L2C translator. For example: types used for 

communication between the L-system and lpfg, predefined vector types (see section 

Predefined functions and structures) 

•  lsys.h � this file contains declarations and definitions required by the C++ code 

generated by the L2C translator. These include definitions of some predefined 

functions: Forward(), Backward(), etc. 

•  stdmods.h � this file contains declarations of predefined modules. 

lpfg standard header files should be treated the same way as the standard C header files: 

they should never be changed or edited in any way. If they are models might not compile, 

stop working or lpfg may hang or crash.  

In addition to the required include files any other include files can be also specified. 

A.6.3. derivation length: 

The derivation length statement has the following form: 
derivation length: integer expression ; 

The integer expression is any arithmetic expression that has value of type integer or a 

value that can be converted into an integer. The expression can be a function call (or it can 

contain a function call). The value of this expression is evaluated once when the model is 

generated in the still mode, but may be evaluated more than once in the animate mode. It is 

the user�s responsibility to make sure that the expression has always the same value. For 

example, in the statement 
 

derivation length: ++i; 
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the expression ++i will return different value every time it is evaluated. In the animate 

mode this may result in an infinite number of steps. 

A.6.4. Declarations of data structures and functions 

Syntax of declarations of data structures and functions are the same as in C++. 

A.6.5. Module declaration 

Every module must be declared before it can be used in the axiom or in a production. 

The module declaration has the following form: 

 
module Identifier(parameters listopt); or 

module Identifier; 

 

The parameters list is a comma separated list of types. These are sample module 

declarations: 

 
module A(int, float); 
module B(); 
module C(data, float); 
module D; 

 

Module A is declared to have two parameters: one of type int and another one of type 

float. Module B is declared to have no parameters. Module C is declared to have two 

parameters of type data and float where data is a previously defined type (for example a 

structure). Module D is declared to have no parameters and uses the shortcut notation 

(without empty parentheses).  

 

Note: All types must be declared before they can be used as parameters in module�s 

declaration. In particular this applies to all user-defined types (structures). 

 

Note: Parameters of modules (unlike parameters of functions) don�t have names. 

Consequently it is illegal two give them names. For example: 
module A(int id, float length);  
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will cause the L2C translator to signal an error. But it is legal and often useful to 

comment on module parameters: 
module A(int /* id */, float /*length*/); 

 

 

Note: Parameter type must be a single identifier. For example the following are valid 

C++ type specifiers but cannot be used as parameter types of modules: 
unsigned int 

char* 

If a type of this kind is needed it is necessary to use typedef to create an identifier for 

that type. For example: 
typedef unsigned int uint; 

typedef char* text; 

 

It is possible to declare a module and specify the module�s numerical identifier in its 

declaration. The syntax for this declaration is: 

 

module Identifier(parameters listopt) = constant expression; or 
module Identifier = constant expression; 
 

This syntax should not be used in the user�s L-systems and is reserved for the include 

file that declares standard modules (stdmods.h). 

A.6.6. Axiom 

The axiom statement has the following form: 
axiom: parametric word ; 

The parametric word is a sequence of modules. Initial value for every modules� 

parameters must be specified. Initial value of a parameter must be an expression of the 

same type as the type of the parameter. All conversion rules from C++ apply. In the 

following code: 

 
module A(int, float); 



 

 

136

axiom: A(5, 2.7-sin(M_PI/3)) A(1-abs(v), 5); 

 

the axiom contains two modules of type A. Modules A have two parameters: an int and a 

float. The first module A will have its first parameter initialized with number 5. The 

second parameter will be initialized with the value of expression 2.7-sin(M_PI/3) where 

sin is a previously declared function (in math.h in standard C++) 

The second module A will have its first parameter initialized with value 1-abs(v) where 

abs is a previously defined function (in stdlib.h in standard C++) and v is a variable 

previously defined. The second parameter will be initialized with a value of 5 (an integer) 

implicitly converted into a float 5.0f. 

If a module has no parameters its name can be followed by empty parentheses or the 

parentheses can be omitted altogether: 
 

module B(); 
axiom: B() B; 

 

In this example axiom contains two modules B. B has no parameters. 

A.6.7. ignore, consider statements 

ignore statement has the following form: 
ignore: list of modules ; 

The list of modules contains modules identifiers separated by blank characters (spaces, 

tabs or new lines). The list is terminated with a semicolon. For example: 
ignore: A F P; 

Syntax for the consider statement is analogous: 
consider: list of modules ; 

ignore and consider statements are mutually exclusive. By default all modules are 

considered when matching contexts. The ignore statement specifies the modules that 

should be ignored when matching contexts. The consider statement specifies the list of 

modules that should be considered when matching contexts. If consider statement is used 

then only the modules listed in the consider statement are considered. For detailed 

information on matching productions see section How the productions are matched. 
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Note: SB and EB modules are always considered. Listing them in the consider 

statement is unnecessary. Listing them in the ignore statement is allowed but has no 

effect. 

A.6.8. Start, End, StartEach and EndEach control statements 

The syntax for these statements is: 
Start | End | StartEach | EndEach :  

{ 

…  

} 

 

These statements should be treated as procedures. Any legal C++ statements are allowed 

inside their body. User can also specify here the direction of the derivation process (see 

predefined functions).  

Start is always executed before axiom. 

StartEach is executed before every derivation step. EndEach is executed after every 

derivation step.  

End is executed after the last derivation step only when the program is not in the 

animate mode. This means:  

•  after the program has been started without the –a switch 

•  when the user selects Don�t animate from the menu 

A.6.9. Productions 

There are three main types of productions: 

a) context-free productions 

b) context-sensitive productions 

c) new-context-sensitive productions 

Context-free productions have the following form: 
strict predecessor : 

{ 

… 
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} 

 

Context-sensitive productions have the form 
lcontextopt < strict predecessor > rcontextopt: 

{ 

… 

} 

At least one of contexts must be specified. 

 

New-context sensitive productions have one of the following forms: 
flcontext << strict predecessor > rcontextopt : 

{ 

… 

} 

 

lcontextopt < strict predecessor >> frcontextopt : 

{ 

… 

} 

 

Every component of the predecessor (contexts and the strict predecessor) consists of one 

or more modules. Modules in the predecessor must include names of their formal 

parameters. Formal modules are separated by commas. If a module has no parameters its 

name must be followed by a pair of parentheses ().  

For example: 

 
A(nl, fl) < B() > A(nr, fr) C(d, v) : 
{ … } 

 

specifies a production that has one module B as its strict predecessor. Module A is the left 

context and modules A and C are the right context. Names of the formal parameters must be 

unique within a predecessor. This is why parameters in the left context have postfix l. 

Production can contain any valid C++ code. Productions also usually contain one or more 

produce statements. 
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A.6.10. produce statement 

Produce statement specifies production�s successor. It is allowed only inside 

productions. It has the following form: 
produce parametric-wordopt;  

Parametric-word has the same syntax as in axiom. If it is omitted then the successor of 

the production is empty. Effectively it removes the modules present in the strict predecessor 

from the derived string.  

Examples: 
produce A(4, 5.2) B A(1, 0.5); 
produce ; 

 

If a production does not execute a produce statement then lpfg will continue searching 

for other productions matching the current position in the string. If no production is found 

then default (identity) production is applied. 

A.6.11. Decomposition rules 

Decomposition rules make it possible to decompose a module in the string into several 

components. After axiom and every derivation step a decomposition step is performed. 

Decomposition is performed as long as the string does not contain any modules that can be 

further decomposed or the maximum decomposition depth is reached. Syntactically 

decomposition rules are very similar to regular productions except for the following 

differences: 

•  only one module in the strict predecessor is allowed, 

•  decomposition rules are always context-free. 

When the statement decomposition: is present in the L-system it specifies that all the 

following rules are decomposition rules until the end of the source file or until 

production: or interpretation: statement is encountered. To specify maximum 

decomposition depth the maximum depth: statement is used. It must be placed in the global 

scope after the decomposition:. The syntax of the maximum depth statement is as 

follows: 
maximum depth: integer-expression ; 
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The default maximum decomposition depth is 1.  

 

Note: L-system can contain many decomposition sections but only one maximum 

depth: statement is allowed for decomposition. The same applies to the interpretation 

rules. 
 

Decomposition rules can be recursive, e.g. the module in the strict predecessor can 

appear in the successor. For example: 

 
#include <lpfgall.h> 
module A(int); 
axiom: A(5); 
derivation length: 0; 
decomposition: 
maximum depth: 6; 
A(n) :  
{  
  if (n>0) 
    produce F(1) A(n-1);  
} 

 

The L-system above will generate five modules F(1).  

 

Note: decomposition is internally implemented by a recursive call to a function. If the 

maximum depth is a very large number the thread stack might overflow causing lpfg to 

crash.  

 

A.6.12. Interpretation rules 

Interpretation rules are syntactically very similar to the decomposition rules. To specify 

interpretation rules the interpretation: statement must be specified. Like the 

decomposition rules interpretation rules must have exactly one module in the strict 

predecessor and must be context-free. At most one maximum depth: statement is allowed 

per L-system. 
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Interpretation rules are executed only during the interpretation of the string. Modules 

produced by interpretation rules are not inserted into the string but are just used as 

commands for the turtle during the interpretation steps. 

The interpretation step is performed in the following cases: 

1. When redrawing the model in the window 

2. When generating output file (rayshade, POVray, postscript) 

3. When calculating the view volume. 

4. After axiom and each derivation step if any of the productions contains query or 

communication modules 

 

Note: interpretation and decomposition rules can be very helpful in properly 

expressing models. They can be used to separate the functional aspect of the model from 

its visual aspect. But these rules can be also misused. In particular interpretation rules 

might add time overhead. It is a matter of experience and good design intuition to use 

them wisely and effectively. 

 

Note: in lpfg it is possible to specify regular productions after decomposition and 

interpretation rules. To specify regular productions use the production: statement. This 

possibility leads to another methodology of writing models. Instead of dividing the model 

into production, decomposition and interpretation sections all rules that apply to one type 

of module can be grouped together. For example: 

 
production: 
A() : { … } 
decomposition: 
A() : { … } 
interpretation: 
A() : { … } 
 
production: 
B() > A() : { … } 
decomposition: 
B() : { … } 
 

Etc. 



 

 

142

 

A.6.13. Predefined functions and structures 

Here is the summary of the predefined functions and structures provided by lpfg: 

 
void Forward() 

This function specifies that the derivation of the string should be performed forward � 

from left to right. This is default. 
void Backward() 

This function specified that the derivation of the string should be performed backward � 

from right to left.  

Forward and Backward can be used anywhere in the code where it is legal to call a 

function. They take effect the next time derivation is performed. In particular if called in 

the StartEach statement they affect the current derivation step.  

 

void Printf(const char*, …). 

This function is similar to the standard C function printf. Its use is recommended over 

the printf for the following reasons: 

•  Output generated by printf is not stored in the lpfg.log file. 

•  In the future releases lpfg might be not connected to any console but instead provide 

its own output window (like cpfg�s message log). In that case output of printf 

would not be visible anywhere.  

 
float ran(float range) 

Generates a pseudorandom number uniformly distributed in the range [0, range).  

 
float func(int id, float x) 

This function returns the value of the function specified in the function-set file (if one is 

present in the command line). First parameter specifies the ordinal number of the function 

as in the .fset file. It must be in the range [1, num of functions]. The second is the x value 

for which the y value is requested. Parameter x must be in the range [0, 1].  
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If the parameter id is incorrect (outside the range) value 0 is returned and warning 

message is printed. If the parameter x has invalid value then: 

•  if x<0 then func(id, 0) is returned 

•  if x>1 then func(id, 1) is returned 

 

In addition lpfg provides four structures that represent vectors. The structures are: 

 
struct V2f  
{ float x, y; }; 
struct V3f  
{ float x, y, z; }; 
struct V2d  
{ double x, y; }; 
struct V3d  
{ double x, y, z; }; 

 

These structures are used as parameters for some predefined modules. They can also be 

used in the user�s code in the L-system. Additionally if the preprocessor�s symbol 

NOAUTOOVERLOAD is not defined before #include <lpfgall.h> these structures receive 

additional functionality: operators for addition of two structures of the same type and 

multiplying a vector by a number. For example: 
V2f a(1.5, 2.0), b(0, 0.5); 
V2f c = a + 2.5*b; 

 

Refer to the file lintrfc.h in the lpfg/include directory to see full definition of these 

structures. 

A.6.14. Predefined modules 

The following table lists all the predefined modules. 



 

 

144

 

Module Description Equivalent 

in cpfg 

Modeling branching structures 
SB() Starts a new branch by pushing the current state of the turtle 

on the turtle stack. 

[ 

EB() Ends a branch by popping the state of the turtle from the 

turtle stack. 

] 

Cut() Cuts the remainder of the current branch. When detected in 

the string during the generation process, the module and all 

following modules up to the closest unmatched EB module 

are ignored for derivation purposes. If no unmatched EB 

module can be found, symbols are ignored until the end of the 

string.  

% 

 

Changing position and drawing 
Turtle commands 

F(float /*d*/) Moves forward a step of length d and draws a line segment 

from the original position to the new position of the turtle.  

F(d) 

f(float /*d*/) Moves forward a step of length d. No line is drawn.  f(d) 

MoveTo 
(float /*x*/, 
float /*y*/, 
float /*z*) 

Sets the turtle position to x, y, z.  @M(x,y,z) 

MoveTo2f 
(V2f /*p*/) 

Moves the turtle to point p. z coordinate is assumed to be 0. @M 

MoveTo2d 
(V2d /*p*/) 

Same as MoveTo2f @M 

MoveTo3f 
(V3f /*p*/) 

Same as MoveTo2f except that the z coordinate is specified 

by the parameter p. 

@M 

MoveTo3d 
(V3d /*p*/) 

Same as MoveTo3f @M 

Affine geometry support 

Line2f 
(V2f /*p1*/, 
V2f /*p2*/) 

Draws a line from the point specified by p1 to the point p2. z 

coordinates are assumed to be 0. After the interpretation of 

the module the turtle position is equal to p2. Heading, left 
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and up vectors are not changed. If the distance between p1 

and p2 is less than ε13 the module is ignored. 

Line2d 
(V2d /*p1*/, 
V2d /*p2*/) 

Same as Line2f  

Line3f 
(V3f /*p1*/, 
V3f /*p2*/) 

Same as Line2f, except that z coordinates are specified in 

the p1 and p2 parameters 

 

Line3d 
(V3d /*p1*/, 
V3d /*p2*/) 

Same as Line3f  

LineTo2f 
(V2f /*p*/) 

Draws a line from the current turtle position to the point p. z 

coordinate is assumed to be 0. After the interpretation of the 

module the turtle position is equal to p. Heading, left and up 

vectors are not changed. If the distance from the current 

position to p is less than ε the module is ignored. 

 

LineTo2d 
(V2d /*p*/) 

Same as LineTo2f  

LineTo3f 
(V3f /*p*/) 

Same as LineTo2f, except that z coordinate is specified by 

the parameter p.  

 

LineTo3d 
(V3d /*p*/) 

Same as LineTo3f  

LineRel2f 
(V2f /*p*/) 

Draws a line from the current turtle position to the point  

p2 = (turtle position) + p. z coordinate is assumed to be 0. 

After the interpretation of the module the turtle position is 

equal to p2. Heading, left and up vectors are not changed. If 

the length of vector p is less than ε the module is ignored. 

 

LineRel2d 
(V2d /*p*/) 

Same as LineRel2f  

LineRel3f 
(V3f /*p*/) 

Same as LineRel2f, except that z coordinate is specified 

by the parameter p. 

 

LineRel3d 
(V3d /*p*/) 

Same as LineRel3f  

 

Turtle rotations 
Left 
(float /*a*/) 

Turns left by angle a around the U axis +(a) 

Right 
(float /*a*/) 

Turns right by angle a around the U axis -(a) 

Up(float /*a*/) Pitches up by angle a around the L axis ^(a) 

                                                 
13 ε is defined as 0.00001 
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Down 
(float /*a*/) 

Pitches down by angle a around the L axis &(a) 

RollL 
(float /*a*/) 

Rolls left by angle a around the H axis \(a) 

RollR 
(float /*a*/) 

Rolls right by angle a around the H axis /(a) 

TurnAround() Turns around 180 degrees around the U axis. This is 

equivalent to Left(180) or Right(180). It does not roll 

or pitch the turtle 

| 

SetHead 
(float /*hx*/, 
float /*hy*/, 
float /*xz*, 
float /*ux*/, 
float /*uy*/, 
float /*uz*) 

Sets the heading vector of the turtle to hx, hy, hz and the up 

vector to ux, uy, uz. The values do not need to specify 

normalized vectors. The module is ignored if any of the 

following is true: 

a) hx,hy,hz specify a vector of length less than ε 

b) ux,uy,uz specify a vector of length less than ε 

c) Length of the cross product of new H and U is less than ε 

@R 

(hx,hy,hz,

ux,uy,uz) 

RollToVert() Rolls the turtle around the H axis so that H and U line in a 

common vertical plane with U closest to up. 

@v 

 

Changing turtle parameters 
IncColor() Increases the value of the current colour index or material 

index by one 

; 

DecColor() Decreases the value of the current colour index or material 

index by one 

, 

SetColor 
(int /*n*/) 

Sets the value of the current colour index or material index to 

n. If n is less than 1 or greater than 255 the module is 

ignored. 

;(n) 

,(n) 

SetWidth 
(float /*v*/) 

Sets the value of the current line width to v. If v≤0 the 

module is ignored. 

#(n) 

!(n) 

 

Drawing circles and spheres 
Circle 
(float /*r*/) 

Draws a circle of radius r at the current turtle position in the 

XY plane.  

@o(d) 

@c(d) 

Sphere 
(float /*r*/) 

Draws a sphere of radius r at the current turtle position. @O(d) 

Sphere0() Draws a sphere of diameter equal to the current line width @O 

Circle0() Draws a circle of diameter equal to the current line width @o 
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@c 

 

Drawing bicubic parametric surfaces 
Surface 
(int /*id*/, 
float /*scale*/) 

Draws the predefined surface identified by the identifier id 

at the current location and orientation. The surface is scaled 

by the factor scale. Surfaces are specified in the view file. 

The first surface specified in the view file has id=0.  

~ 

 

Drawing generalized cylinders 
CurrentContour 
(int /*id*/) 

Sets the contour specified by id as the current contour for 

generalized cylinders. If id equal to 0 is specified then the 

default contour (circle) is used. 

@#(id) 

StartGC() Starts a generalized cylinder in the current turtle position. 

(Functionality not fully implemented yet) 

@Gs 

PointGC 
(int /*n*/) 

Specifies a control point on the central line of the generalized 

cylinder. The value n specifies how many mesh strips are 

drawn between the control point and the previous one. 

(Functionality not fully implemented yet) 

@Gc(n) 

EndGC 
(int /*n*/) 

Ends a generalized cylinder. The parameter n specifies the 

number of strips as for the module PointGC. (Functionality 

not fully implemented yet) 

@Ge 

 

Drawing mesh 
MeshPoint() Specifies a mesh point.  

 

Tropism 
SetElasticity 
(int /*id*/,  
float /*v*/) 

Sets the elasticity parameter of tropism id to value v. @Ts 

IncElasticity 
(int /*id*/) 

Increments the elasticity parameter of tropism id by the 

elasticity step parameter of the tropism. 

@Ti 

DecElasticity 
(int /*id*/) 

Decrements the elasticity parameter of tropism id by the 

elasticity step parameter of the tropism 

@Td 
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Query and communication modules 
GetPos 
(float /*x*/,  
float /*y*/,  
float /*z*/) 

Queries the current turtle position. If any query module is 

present in the predecessor of any production in the L-system 

a special interpretation step is performed after each generate 

step, when productions are applied. The string is interpreted 

even if no drawing occurs. During the interpretation the three 

parameters of the module are set to the x, y and z 

coordinates of the current turtle position.  

?P(x,y,z) 

GetHead 
(float /*x*/, 
float /*y*/, 
float /*z*) 

Queries the current turtle heading vector. ?H(x,y,z) 

GetLeft 
(float /*x*/, 
float /*y*/, 
float /*z*) 

Queries the current turtle left vector. ?L(x,y,z) 

GetUp 
(float /*x*/, 
float /*y*/, 
float /*z*) 

Queries the current turtle up vector. ?U(x,y,z) 

En(float …) Communication modules used to send and receive 

environmental information.  

?E(v) 

 

Miscellaneous 
Label(Text14 str) Prints the string str in the drawing window at the current 

turtle location.  

@L(str) 

 

A.7. Other input files 

A.7.1. Animation parameters file 

Command Comments 
first frame: n Derivation step to be interpreted as the first frame. Default is 0. 

Note: in cpfg default first frame is 1. This is why Rewind in cpfg 

rewinds to the first derivation step, while in lpfg Rewind rewinds to 

axiom. 

                                                 
14 Text is typedef�ed as const char* in lintrfc.h 
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last frame: n Derivation step to be interpreted as the last frame. Default is the 

number of derivation steps. 

swap interval: t Time interval between frames. (Currently not implemented) 

step: n Number of derivation steps between drawing of frames. Default is 1 

Double buffer: on|off Specifies if the double buffer mode should be used. Default is on. 

clear between frames: 
on|off 

Specifies whether to clear the screen between frames. Default is on. 

 

A.7.2. Draw/view parameters file 

Drawing and viewing parameters are stored in the view file. This file can have extension 

.v or .dr. View file is preprocessed by standard C++ preprocessor therefore use of 

comments (both C style /* … */ and C++ style //) as well as #define�s #if�s and all 

other standard preprocessor directives are allowed. The commands are interpreted in the 

order in which they appear in the file. If there two or more commands that specify the same 

parameter the last one takes precedence. This does not apply to commands that specify new 

set of parameters every time they appear (e.g. lights, tropisms). Every command must be 

contained in a single line.  

Command Comments 

Setting the view 
projection: 
parallel|perspective 

Default is parallel. 

scale: s s specifies the size of the final image on the screen. 1.0 corresponds 

to full size. Default is 1.1.  

min zoom: v v specifies the minimum value of zooming factor (see Interactive 

view manipulation). Default is 0.05. 

max zoom: v v specifies the maximum value of zooming factor (see Interactive 

view manipulation). Default is 50. 

line style: style Style must be one of the following: pixel, polygon or 

cylinder. Default is pixel. 

front distance: x x specifies the front clipping plane 

back distance: x x specifies the back clipping plane 

 

Rendering parameters 
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z buffer: on|off Default is off.  

render mode: Mode must be one of the following: filled, wireframe or 

shaded. Default is filled.  

light: command1 command2
… 

Command must be one of the following: 

O: x y z origin of point light source 

V: x y z vector of directional source 

A: r g b ambient  

D: r g b ambient 

S: r g b specular 

P: x y z e c spotlight with the direction (x,y,z), exponent e, 

cutoff angle c 

T: c l q attenuation factors. 

Up to 8 lights can be specified. 8 is the minimum number of lights 

that must be supported according to the OpenGL specifications 

 

Other commands 
surface: filename txidopt Filename is the filename of a surface (.s) file. txid if present 

specifies identifier of the texture associated with the surface. See 

description of the module Surface in Predefined modules. 

Note: this command can be dropped in a future version when the 

gallery of surfaces is introduced.  

texture: filename Filename specifies the image file that contains the texture. Both 

width and height of the image must be powers of 2. Textures are 

indexed starting at 0. Currently only RGB files are supported.  

tropism: command1 … Command must be one of the following: 

T: x y z tropism vector (required) 

A: a angle. Default is 0. 

I: x intensity. Default is 1 

E: e elasticity. Default is 0 

S: de elasticity step. Default is 0. 

Any number of tropisms can be specified in the view file. 

torque: command1 … Command must be one of the commands valid for tropism except for 

A.  
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A.7.3. Environment parameters file 

Environment parameters file has extension .e.  

Command Remarks 
executable: command Specifies the executable of the environmental process together 

with its optional command line parameters 

communication type: 
pipes|sockets|memory|files 

Ignored. The only communication supported in the current 

version is files.  

following modules: on|off Ignored. No following modules are sent to the environment. 

turtle position: format 
turtle heading: format 
turtle left: format 
turtle up: format 
turtle line width: format 
turtle scale factor: format 

C-like format string used when sending turtle parameters. All are 

optional but most environmental programs will require at least 

turtle position. 

For example: 

turtle position: P: %f %f %f 

verbose: on|off Verbose mode generates additional information about the details 

of the communication 

 

A.7.4. Miscellaneous input files 

A.7.4.1. Colourmap file 

Specifies 256 colours. Colourmap mode is used to create schematic images. See material 

file.  

For the description of the file format see the document L-studio, Cpfg, Lpfg � format 

description. 

A.7.4.2. Material file 

Specifies 256 materials. Materials are specified by the following components: ambient, 

diffuse, specular, emission and transparency. See OpenGL documentation for further 

explanation. Material mode is used to create realistic images.  

For the description of the file format see the document L-studio, Cpfg, Lpfg � format 

description. 
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A.7.4.3. Surface file 

Specifies surfaces composed of one or more Bézier patches.  

For the description of the file format see the document L-studio, Cpfg, Lpfg � format 

description. 

A.7.4.4. Function-set file 

Specifies functions of one variable. The functions are defined as B-spline curves 

constrained in such a way that they assign exactly one y to every x in the normalized 

function domain [0, 1]. 

For the description of the file format see the document L-studio, Cpfg, Lpfg � format 

description. 

A.7.4.5. Contour-set file 

Specifies contours defined as planar B-spline curves. The curves are considered as cross-

sections of generalized cylinders.  

For the description of the file format see the document L-studio, Cpfg, Lpfg � format 

description. 

A.7.4.6. Textures 

Currently the only supported format of textures is RGB. Textures in the RGB format 

may contain Alpha (transparency) channel. 
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B. Listings 

B.1. Iterating L-system string in the traditional 

representation 

Listing 44 Function FindNextModule � traditional string representation 

// the function returns the pointer to the next module 
// or NULL if end of string is found 
const char* FindNextModule(const char* pCP) 
{ 
  // Input: pCP – current position in the string 
  pCP++; 
  if (0 == *pCP) // end of string found 
    return NULL; 
  else if (‘(‘ != pCP) // current module has no parameters 
    return pCP; 
  else // current module has parameters 
  { 
    do 
    { 
      pCP += sizeof(float); // skip the parameter 
      pCP++; // skip to the coma or right parenthesis 
    } 
    while (‘,’ == *pCP); 
    assert(‘)’ == *pCP); // otherwise the string is corrupted 
    pCP++; 
    if (0 == *pCP) 
      return NULL; // end of string found 
    else 
      return pCP; 
  } 
} 

Listing 45 Function FindPreviousModule � traditional string representation 

// the function returns the pointer to the previous module 
// it assumes that the current module is not the first module 
const char* FindPreviousModule(const char* pCP) 
{ 
  // Input: pCP – current position in the string 
  // pBOS is the pointer to the beginning of the string 
  assert(pCP>pBOS); // don’t call me if this is the first module 
  pCP--; 
  if (pCP != ‘)’) 
    return pCP; 
  else 
  { 
    do 
    { 
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      pCP -= sizeof(float); // skip the parameter 
      pCP--; // skip to the coma or left parenthesis 
    } 
    while (‘,’ == *pCP); 
    assert(‘(‘ == *pCP); // otherwise the string is corrupted 
    pCP--; 
    return pCP; 
  } 
} 

B.2. Iterating L-system string in the new representation 

Listing 46 Function FindNextModule � new string representation 

const char* FindNextModule(const char* pCP) 
{ 
  // Input: pCP – current position in the string 
  short int ModuleId; 
  // retrieve the current module id 
  memcpy(&ModuleId, pCP, sizeof(short int)); 
  // get the size of its parameters 
  int SizeOfParameters = GetParametersSize(ModuleId); 
  if (SizeOfParameters==0) // no parameters 
  { 
    pCP += sizeof(short int); // just skip the module id 
    return pCP; 
  } 
  else 
  { 
    pCP += sizeof(short int); // skip the module id 
    pCP += SizeOfParameters;  // skip the parameters 
    pCP += sizeof(short int); // skip the trailing id 
    return pCP; 
  } 
} 

 

Listing 47 Function FindPreviousModule � new string representation 

const char* FindPreviousModule(const char* pCP) 
{ 
  assert(pCP>pBOS); // don’t call me if this is the first module 
  // skip to the previous module id 
  pCP -= sizeof(short int); 
  short int ModuleId; 
  // retrieve the previous module id 
  memcpy(&ModuleId, pCP, sizeof(short int)); 
  // get the size of its parameters 
  int SizeOfParameters = GetParametersSize(ModuleId); 
  if (SizeOfParameters==0) 
   return pCP; // no parameters – we’re done 
  else 
  { 
    pCP -= SizeOfParameters;  // skip the parameters 
    pCP -= sizeof(short int); // skip the module id 
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    return pCP; 
  } 
} 

B.3. Predefined types provided by lpfg in the file lintrfc.h 
template <typename f> 
struct V2 
{ 
  V2() : x(0.0f), y(0.0f) {} 
  V2(f nx, f ny) : x(nx), y(ny) {} 
  V2<f> operator+(V2<f> l, V2<f> r) 
  { return V2<f>(l.x+r.x, l.y+r.y); } 
 
  // Multiplication of vector by a scalar 
  V2<f> operator*(f r, V2<f> l) 
  { return V2<f>(l.x*r, l.y*r); } 
 
  // Scalar product 
  f operator*(V2<f> l) 
  { return x*l.x + y*l.y; } 
 
  f x, y; 
}; 
typedef V2<float> V2f; 
typedef V2<double> V2d; 
 
 
template <typename f> 
struct V3 
{  
  V3() : x(0.0f), y(0.0f), z(0.0f) {} 
  V3(f nx, f ny, f nz) : x(nx), y(ny), z(nz) {} 
  V3<f> operator+(V3<f> l, V3<f> r) 
  { return V3<f>(l.x+r.x, l.y+r.y, l.z+r.z); } 
  V3<f> operator-(V3<f> l, V3<f> r) 
  { return V3<f>(l.x-r.x, l.y-r.y, l.z-r.z); } 
 
  // Multiplication of vector by a scalar 
  V3<f> operator*(f r, V3<f> l) 
  { return V3<f>(l.x*r, l.y*r, l.z*r); } 
 
  // Scalar product 
  f operator*(V3<f> r, V3<f> l) 
  { return r.x*l.x + r.y*l.y + r.z*l.z; } 
 
  // Vector product 
  V3<f> operator%(V3<f> r, V3<f> l) 
  { return V3<f>( 
      r.y*l.z-r.z*l.y,  
      r.z*l.x-r.x*l.z,  
      r.x*l.y-r.y*l.x);  
  } 
  V3<f> operator+=(V3<f> l) 
  { 
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    x += l.x; y += l.y; z += l.z; 
    return *this; 
  } 
  f x, y, z;  
}; 
 
typedef V3<float> V3f; 
typedef V3<double> V3d; 
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