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Abstract. The distribution of light in the canopy is a major factor regulating the growth and development of a plant. The
main variables of interest are the amount of photosynthetically active radiation (PAR) reachingdifferent elements of the plant
canopy, and the quality (spectral composition) of light reaching these elements. A light environment model based onMonte
Carlo (MC) path tracing of photons, capable of computing both PARand the spectral composition of light, was developed by
M�ech (1997), and can be conveniently interfaced with virtual plants expressed using the open L-system formalism. To
improve the efficiency of the light distribution calculations provided byM�ech’sMonteCarlo program,we have implemented
a similar programQuasiMC, which supports amore efficient randomised quasi-MonteCarlo samplingmethod (RQMC).We
have validated QuasiMC by comparing it with MonteCarlo and with the radiosity-based CARIBU software (Chelle et al.
2004), andwe show that these two programs produce consistent results.We also assessed the performance of theRQMCpath
tracing algorithm by comparing it with Monte Carlo path tracing and confirmed that RQMC offers a speed and/or accuracy
improvement over MC.

Additional keywords: light simulation, open L-system, PAR, path tracing, red/far red ratio, (randomised) quasi-Monte
Carlo sampling, variance reduction, virtual plant modelling.

Introduction

The distribution of light in the canopy is a major factor regulating
the growth and development of plants. Consequently, simulation
of light environment is an important component of functional-
structural plant modelling. The main variables of interest are the
amount of photosynthetically active radiation (PAR) reaching
different elements of the plant canopy, and the quality (spectral
composition) of light reaching those elements, which may be a
signal for photomorphogenesis.

Light environment models estimate the radiant energy
reaching a plant from direct light sources (e.g. sun and sky),
and may include indirect sources (e.g. light reflected from or
transmitted through plant organs) for increased accuracy. The
estimation techniques are related to the description of the plant
canopy, which may be approximated as a turbid medium or
specified explicitly as a 3-D geometric structure (virtual plant)
(Room et al. 1996). Models of light environment operating at the
plant structure level are usually based either on the Monte Carlo
path tracing method or the radiosity method (Chelle and Andrieu
2007). In the past, attention was given to improvements of the
efficiency of the radiosity method (Chelle and Andrieu 1998;
Soler et al. 2003), with the Monte Carlo path tracing used as a

benchmark for comparisons. Soler et al. (2003) mentioned two
drawbacks of the Monte Carlo approach: slow convergence and
poor control over the accuracy of the result. Here, we address
these drawbacks by improving the accuracy andefficiencyof path
tracing in the context of biological applications.

Monte Carlo path tracing is derived from standard ray tracing.
Bothmethods approximate the solution to the rendering equation,
which describes the transfer of light energy between a point on a
surface and a point on another surface (Kajiya 1986). Path tracing
differs from ray tracing by sampling many possible light paths
from a surface point, instead of recursively following a single
reflected and a single refracted ray. Consequently, path tracing
captures some optical phenomena, such as diffuse light reflection
and transmission, that ray tracing does not (Watt 2000).

Ross and Marshak (1988) developed a radiative transfer
Monte Carlo model to simulate canopy bidirectional
reflectance. Their model, however, relies on estimating
parameters of plant canopy architecture that allow for the
simulation of only one canopy type. The Monte Carlo model
byGovaerts (1996) overcomes this limitation by using an explicit
3-D description of canopy architecture [see the review by Disney
et al. (2000)]. M�ech (1997) developed a similar model based on
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Monte Carlo path tracing, which can be interfaced conveniently
with virtual plants expressed using the open L-system formalism
(M�ech and Prusinkiewicz 1996). He applied two variance-
reduction techniques to calculate light distribution efficiently.
First, importance sampling (Rubinstein 1981) is used to generate
rays preferentially in the direction fromwhich (or towardswhich)
most energy propagates, as opposed to generating them with a
uniform distribution. Second, individual rays may carry
information regarding several wavelengths simultaneously.
This technique reduces the variance of the ratios of energy
associated with different light wavelengths, which is important
in estimating the spectrum of light reaching plant organs.

To further improve the efficiency of light distribution
calculations provided by M�ech’s model (M�ech 1997), we have
implemented an alternative method for generating reflected or
transmitted rays, called the quasi-Monte Carlo method. In the
context of computer graphics, quasi-Monte Carlo sampling was
surveyed by Owen (2003). Although Monte Carlo (MC) path
tracing relies on random sampling of the space of reflected or
transmitted rays, and results in a set of independent paths, quasi-
Monte Carlo (QMC) is based on a highly regular sampling that
produces a set of correlated paths. As shown byKeller (1996) and
Veach (1997), this reduces the number of rays required for path-
tracing virtual 3-D scenes within given error bounds. To estimate
the variance of our samples and provide some measure of the
accuracy of the results, we implemented an extension to QMC
sampling called randomised quasi-Monte Carlo (RQMC)
sampling (L’Ecuyer and Lemieux 2002). QMC methods are
deterministic, but in RQMC the sampling points are
randomised in a way that preserves their highly regular
distribution. This makes it possible to estimate the error of the
computation.

In this paper,wepresent our implementation of theRQMCpath
tracing algorithm in the context of calculating light distribution
within a virtual plant canopy. In particular, we discuss how we
coupled path tracing with RQMC sampling. The resulting light
simulation program, QuasiMC, is intended to operate in concert
with a simulator of plant development. Specifically, we interfaced
QuasiMC with two L-system-based plant simulators, cpfg
(Prusinkiewicz et al. 1997) and lpfg (Karwowski and
Prusinkiewicz 2004), which are parts of the L-studio/VLAB
modelling software (Prusinkiewicz et al. 2000). To assess the
RQMC path tracing algorithm, we applied QuasiMC to compute
light distribution in a mix of triangles within a cube, and we
compared the results with those obtained using MC path tracing
as well as using radiosity-based CARIBU software (Chelle et al.
2004). Finally, we evaluated our program in the context of a more
realistic application: computation of light distribution in a kiwifruit
vine (a broadleaf liana ~2m tall in cultivation) under various light
conditions.

The RQMC path tracing algorithm

To compute light distribution within a scene, the QuasiMC
program uses the path tracing algorithm. This algorithm was
introduced by Kajiya (1986) as a Monte Carlo solution to an
integral equation that describes radiance at any point on a surface
as a function of direct and indirect light from all other points of all
surfaces.We present an overview of this algorithm as it applies to
our program.

The path tracing algorithm

The computation proceeds by generating a user-specified number
of rays, where each ray is traced through the plant canopy until its
radiant energy is absorbed by the plant’s organs. A light ray may
originate from a light source and be traced towards the plant
canopy, or fromaplant organ andbe traced towards a light source.
In computer graphics terminology, both methods are called
particle tracing and are classified as view-independent forms
of path tracing (Shirley et al. 2005). When the canopy is
dense, the former method is advantageous, because rays
originating at plant organs would rarely reach a light source.
In contrast, when organs are small relative to the whole plant, and
are highly dispersed, the latter method is advantageous, because
rays traced from a light source would often miss organs. In the
QuasiMC program, the user can choose either of these methods,
but bidirectional path tracing (combined tracing of rays towards
the plant canopy and towards the light sources) is not available.

The starting point and direction of a ray depend on the type of
light source and the type of path tracing (from the light source to
the canopy or from the canopy to the light source), as specified by
the user. Two models of light sources are available in the
QuasiMC program: multiple directional light sources and an
approximation of the sky. The latter is calibrated by
latitude, day of year, time of day, and clear or overcast sky
conditions. Each directional light source is sampled according
to its intensity and direction for outgoing light. In the case of
sampling from the light source to the canopy, all rays originate on
the surface of the bounding sphere encompassing the scene
(Jensen 2001). In the case of sampling from the canopy to the
light source, the ray’s starting point is randomly chosen on some
surface, and the initial ray direction is stochastically generated on
the basis of the user-supplied source light directions and the local
light model of the surface. For the sky model, the hemisphere
encompassing the plant canopy is sampled using the probability
density given by theCIE standard clear skymodel or overcast sky
model (CIE-110 1994). This ensures more rays are sampled from
parts of the sky where the radiant energy is greatest.

Given the starting point and direction of a ray, the next step of
the algorithm is to follow the ray through the plant canopy and to
find the plant organ surface that the ray intersects at the smallest
distance from the starting point. Once such a surface is found, a
local light model is applied to calculate how much light is
reflected, transmitted and absorbed at the intersection point.
The fraction r of the radiant energy reflected from the surface
and the fraction t of the energy transmitted through the surface
satisfy the inequality 0� r + t� 1, and are specified by the user.
The absorbed fraction is equal to 1 – (r+ t). A reflected or
transmitted ray is then generated stochastically with the
probabilities r/(r + t) and t/(r+ t), respectively. The direction
and energy of this ray are determined by the bidirectional
reflectance distribution function (BRDF) or bidirectional
transmittance distribution function (BTDF) of the organ’s
surface, as described below. There are many reported forms of
these distribution functions, which depend mainly on the
surface’s material type (Shirley et al. 2005). QuasiMC
supports two distribution functions: the Lambertian function
(Shirley et al. 2005) or the modified Phong function (Shirley
and Wang 1992), which are used to characterise both the BRDF
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and the BTDF of the plant organs. The Lambertian BRDF and
BTDF are expressed as the probability density function

pLðq; fÞ ¼ 1
p
cos q; ð1Þ

where q2 [0, p/2) is the angle between the surface normal and the
ray direction, and f2 [0, 2p) is the rotation around the normal
(which does not effect the value of pL (q, f)). The modified Phong
BRDF and BTDF are expressed as the probability density function

pPhða; bÞ ¼
nþ 2
8p

cosn
a
2
; ð2Þ

where a is the angle relative to the ideally reflected/transmitted
direction, b is the rotation around this direction, and n� 0 is a
parameter characterising the surface smoothness. The angle a is
constrained to values for which the reflected/transmitted ray is on
the correct side of the surface. As n becomes large, the surface
approaches a mirror (for BRDF) or allows the ray to pass through
the surface without scattering (for BTDF).

Although it is possible to sample thedirectionof rays reflected/
transmitted using Eqn (1) or (2) uniformly, it is more efficient to
use importance sampling. The ray’s energy is then assumed to be
constant (equal to the energy that is not absorbed by the surface),
while the ray’s direction is generated using the inverse of the
cumulative distribution function of pL(q, f) or pPh (a, b) (Shirley
et al. 2005). Specifically, the ray’s direction is determined by the
formula,

ðq; fÞ ¼ ðarccos
ffiffiffiffiffi
x1

q
; 2px2Þ; ð3Þ

for the Lambertian BRDF/BTDF, where x1 and x2 are uniformly
distributed random numbers in the interval (0,1], or

ða; bÞ ¼ ð2 arccos½ð1� x1Þ
1

nþ 2�; 2px2Þ; ð4Þ
for the modified Phong BRDF/BTDF, where x2 is a uniformly
distributed random number in the interval (0,1], and x1 is
constrained to guarantee that the ray will appear on the correct
side of the surface. Different values of the scattering exponent n
can be used to generate reflected and transmitted rays.

A ray is terminated when its radiant energy is close to zero or
when it does not intersect any of the plant’s organs. To ensure that
the tracing of a path will stop at some point, the user may specify
the maximum number of reflections and transmissions.
Unfortunately, this method may introduce a statistical bias,
because it disregards the ray’s radiant energy upon
termination. A solution to this problem is offered by the
‘Russian roulette’ method (Arvo and Kirk 1990). In that case,
if the radiant energy of a ray falls below a user-defined threshold,
the ray is terminatedwith someprobabilityp, otherwise its radiant
energy is increased by 1/(1 – p). This increase in a non-terminated
ray’s energy ensures that the solution converges to the correct
result in the limit (Arvo and Kirk 1990).

Thus far, we have ignored the dependence of a ray’s radiant
energy and a surface’s BRDF and BTDF on the spectrum of light
being considered. In reality, the BRDF and BTDF parameters for
light of twodifferentwavelengthsmaybedifferent (see theBRDF
measurements by Bousquet et al. (2005) and the BRDF/BTDF
measurements by Breece and Holmes (1971), or the review by

Jacquemoud andUstin (2001) on the optical properties of leaves).
One strategy to incorporate spectral effects is to apply path tracing
to each wavelength independently. Amore efficient strategy is to
use a single ray that carries the radiant energy for several
wavelengths (M�ech 1997; Evans and McCool 1999). The
improvement in efficiency comes from the reduction in
the number of rays and the strong positive correlation of the
radiant energy associated with each wavelength, if the angular
distribution [e.g. the scattering exponent n in Eqn (2)] at these
wavelengths is similar.We assume that the scattering exponent is
the same for all wavelengths in our implementation; however, an
extension to the general case is possible (Jensen 2001). This type
of Monte Carlo calculation falls into the general category of
‘correlated sampling’ (Spanier and Gelbard 1969; Rubinstein
1981), and is based on using the same random numbers in two
similar processes to reduce the difference in variance between
them, with respect to two independent simulations.

The principal change to the path tracing algorithm, needed to
capture spectral effects with correlated sampling, affects the
component responsible for stochastic generation of reflected or
transmitted rays. The direction of a newly reflected/transmitted ray
must now take into account the radiant energy associatedwith each
wavelength; furthermore, it is necessary to keep track of the radiant
energy of thosewavelengths in one ray. InQuasiMC, the reflected/
transmitted ray is chosen based on a weighted probability over all
wavelengths. The Russian roulette method is extended to decide if
the ray shouldbe reflected, transmitted,or absorbed,and the radiant
energy of all wavelengths is scaled accordingly (Jensen 2001).
Assuming a spectrum with M wavelengths, for each spectral
component l=1, . . . , M we consider products rlKi,l and tlKi,l
of the fraction of radiant energy reflected (rl) or transmitted (tl) by
the surface, and the radiant energy reaching the surface (incident
energy), Ki,l. We then define

pr ¼
XM
l¼ 1

rlFi;l and pt ¼
XM
l¼ 1

tlFi;l; ð5Þ

as the sums of these products over all wavelengths, and calculate
the probabilities of generating a reflected or transmitted ray as
pr/(pr+ pt) and pt/(pr+ pt), respectively. The direction of the
reflected/transmitted ray is calculated according to either the
Lambertian or modified Phong model (Eqn 3 or 4), where we
assume the scattering exponent n is the same for all wavelengths.
At each intersection of a ray with a surface, the reflected or
refracted ray is generated in a manner fully consistent with one
particular wavelength. Following the Russian roulette technique,
the radiant energy associatedwith allwavelengths is thenadjusted
to conserve energy (M�ech 1997; Jensen 2001). We scale the
reflected (Kr,l) or transmitted (Kt,l) energy of the ray using the
following scheme:

Fr;l ¼ rlFi;l

pr=ðpr þ ptÞ

Ft;l ¼ tlFi;l

pt=ðpr þ ptÞ
;

ð6Þ

where l= 1, . . . ,M. For example, if 1000 rays are traced towards

a surface that reflects 50% of the incoming light, the Russian
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roulette technique allows us to reflect 500 rays with full power
instead of 1000 rays with half power (Jensen 2001).

Stochastic sampling methods

The QuasiMC program implements two stochastic methods for
generating sampling rays in path tracing. The first one is the
Monte Carlo method, in which s uniformly distributed random
numbers are used for generating random variates from different
distributions to trace one ray through the plant canopy. Samples
from these distributions are generated by an inverse transform
method or acceptance-rejection method (Rubinstein 1981;
Chapter 3) using pseudo-random numbers generated with a
combined multiple recursive generator by L’Ecuyer (1999).
For convenience, we represent these random numbers by a
vector u= (u1, . . . ,us) uniformly distributed over [0,1)s. An
approximation of radiant energy absorbed by each leaf within
the plant canopy is made by generating N such vectors (i.e. by
constructing a point set PN= {u1, . . . ,uN}� [0, 1)s) and tracing
N rays according to this point set. The second method is the
quasi-Monte Carlo method, which may be considered as a
deterministic counterpart of the Monte Carlo method. In this
case, the point set PN is constructed with a more regular
distribution than the random point set used in Monte Carlo.
Both methods were reviewed in the context of light transport
simulation by Veach (1997).

Several algorithms for generating sets or sequences of
regularly spaced sampling points have been proposed for use
inQMCcomputations; themost commonlyused inpractice areby
Korobov (1959), Sobol’ (1967), Halton (1960) and Faure (1982).
We chose Korobov’s algorithm, because it can generate
sampling points dynamically, as the tracing proceeds, without
knowing in advance how many ray-surface intersections will
occur in each path, and thus, howmanynumbers u1, . . . ,uswill be
needed to trace it. In other words, this method can be used
when the dimension s of the vector u1, . . . ,us of uniformly
distributed numbers is not known a priori. Korobov’s

algorithm requires choosing an integer a2 {1, . . . ,N�1}
relatively prime to the assumed sample size N. The point set is
then calculated as

PN ¼
�
ui ¼ i�1

N
� ð1;a;a2modN ; . . .;as�1modNÞ

� �
mod 1;

i¼ 1; . . .;N

�
; ð7Þ

where the modulo 1 operation is applied component-wise after
multiplication of the sequence by (i – 1)/N (Korobov 1959).

To estimate variance/error of the computation performed by
QuasiMC, the QMC point set is randomised in a way that
preserves the highly regular distribution of the sampling
points. As the light paths generated from the QMC point set
are not independent, simple error estimation as inMC isotherwise
not possible. For the Korobov method, a very simple way to
randomise the underlying (deterministic) point set PN is to
generate a random vector v with a uniform distribution in
[0,1)s, and then add that same vector – modulo 1 component-
wise – to each point inPN (Cranley and Patterson 1976). The rays
in that case are traced using the randomised points.

~ui ¼ ðui þ vÞmod 1; ð8Þ
where i= 1, . . . ,N. Figure 1 shows a QMC point set in two
dimensions, which has been randomised using this approach.
Note that each vector ~ui is uniformly distributed over [0,1)s, since
v is.A ray tracedwith ~ui, thus, has the same statistical properties as
one traced using Monte Carlo sampling. The difference is
that with RQMC sampling, the N rays traced using vectors
~u1, . . . ,~uN are dependent, and designed to provide a more
representative sample of light than N independent random
rays. Note that, when using RQMC sampling, we have to
decide in advance how to assign coordinates in an RQMC
vector to random variables in the algorithm. This is because
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Fig. 1. Randomisation of a QMCpoint set. (a) The QMC set PN of pairs of numbers (s = 2), generated using the Korobovmethod. Each pair is represented as a
point in the square [0,1)� [0,1). (b) A sample random vector v. (c) The RQMCpoint set obtained by translating setPN by vector v.Black dots indicate one of the
points before and after translation.
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the full benefit of using RQMC sampling can only be obtained if
the numbers ~ui,1, . . . , ~ui,s are used for the same purpose across all
i= 1, . . . ,N.

By repeating the process of ray-tracing the canopyM times –
usingM independent random vectors v1, . . . ,vM, we can estimate
statistical properties of the quantities of interest, such as their
variance or standard error (the variance is simply estimated over
M samples) (L’Ecuyer and Lemieux 2002). In conclusion,
randomised quasi-Monte Carlo sampling is a general variance-
reduction technique, which we couple with a more problem-
specific method, namely importance sampling, to improve upon
Monte Carlo ray-tracing.

The QuasiMC program for simulating light distribution
in a canopy

TheL-system-basedplantmodel and the light environmentmodel
are executed as two separate processes that communicate using
the open L-system formalism (M�ech and Prusinkiewicz 1996).
The plant simulator, in our experiments the L-studio/VLAB
program cpfg or lpfg (Prusinkiewicz 2004), sends information
about the location, size and orientation of the virtual plant’s
organs to the light environment. Each plant organ can be
represented as a triangle, a parallelogram, a user-defined
polygon, or a Bezier surface. The light environment simulator,
QuasiMC, returns light distribution among those organs on
request from the plant simulator. Thus, QuasiMC can
dynamically estimate light distribution in a canopy during the
simulated development of a plant.

The interplay between lpfg and QuasiMC is illustrated in
Fig. 2. Both simulators can visualise the current state of the
model in separate windows on the screen. QuasiMC shows the
virtual plant’s organs that are sent from the plant simulator, and
shades each one according to the amount of radiant energy
absorbed by it. The user can independently manipulate the
view of the model in both simulators, with the same type of
interface. The parameters relevant to the light distribution
simulation are specified in a separate file that is read by
QuasiMC at the beginning of the simulation. These parameters
aredescribed indetail in theQuasiMCusermanual (Cieslak2004)
and are summarised below.

Configurable parameters of the QuasiMC program

Operation of the QuasiMC program is controlled by a set of
parameters read from a file. One class of parameters characterises
physical attributes of the simulation, in particular the lighting
conditions and the optical properties of plant organs. Another
class controls computational aspects of the light simulation. If
QuasiMC is used in the context of a simulation of development,
the values of all parameters are fixed over the entire simulation.

As mentioned before, QuasiMC supports two types of light
sources: directional sources, with all rays from the same source
having the same initial direction, and a hemispherical
approximation of the sky based on the CIE standard clear sky
model and overcast sky model (CIE-110 1994). The user can
specify parameters of each light source, for example the radiant
power of each directional light source, and the time of day,
location, and weather (clear or overcast) for the sky model.
The CIE models are based on a comparison with measured sky
conditions, and do not explicitly model clouds. The overcast sky
model accounts for brightening of the sky from the horizon
towards the zenith (so that horizon luminance is ~1/3 of that at
the zenith). The clear sky model accounts for a bright region
around the sun, and a slight brightening around the horizon.

QuasiMC supports user-specified materials, which
characterise the amount of radiant energy reflected and
transmitted from a surface and the scattering direction of a
reflected/transmitted ray according to the Lambertian model or
modified Phong model (see the previous section on the path
tracing algorithm). The user specifies the fraction of reflected and
transmitted light for eachwavelength, and the scattering exponent
for the Phong model. However, if one ray is used to carry
information about several wavelengths, the program assumes
that this exponent is the same for all wavelengths. The L-system
model can then associate the adaxial and abaxial sides of each
plant organ with the specific materials.

Parameters controlling the light distribution computation in
QuasiMC are as follows:

(1) sampling type: Monte Carlo or randomised quasi-Monte
Carlo,

(2) number of rays (must be a power of 2 when using QMCwith
the Korobov generator),

leaf

geometry

light

distribution

Fig. 2. The interplay between the plant simulator (lpfg, left) and the light environment simulator (QuasiMC, right).
The plant simulator sends information about the size, position and orientation of each leaf, and the light environment
simulator returns the absorbed radiant energy available to each leaf.
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(3) tracing method (from light sources to the canopy or from the
canopy to the sources),

(4) number of runs (with different randomisations of the QMC
set, as needed to estimate standard error/variance of results),
and

(5) granularity of uniformspatial subdivisionof the scene (which
is used to speed up computation).

The benefit of using a spatial subdivision comes from the
reduced time needed to find intersections between a ray and a
plant organ: where a basic method would test each organ for a
possible intersection with a ray, spatial subdivisionmethods only
test those organs that are close to the ray (Shirley et al. 2005).

Results

The purpose of this section is to illustrate the operation of
QuasiMC in the context of plant simulations realised using
cpfg and lpfg. We compare the effectiveness of the RQMC
sampling v. MC sampling, and we test QuasiMC by comparing
it with CARIBU software, which computes light environment
usingtheradiositymethod(Chelleetal.2004).Wefirstconsidered
a simplified plant canopy that is modelled as a mix of triangles
within a cube, and then moved on to a more complex model of a
kiwifruit vine. In all the following computations, we used the
method of tracing rays from the light source towards the plant
canopy. The alternativemethod of tracing rays from the canopy to
the light sources was used by Cici et al. (2008) in a virtual plant
model of crop–weed interaction.

Comparison of light evaluations using RQMC
and MC sampling

To compare the RQMC andMC samplingmethods in the context
of light simulation, we applied both methods to compute the
absorbed radiant energy and sample variance for a set of triangles,
randomly distributed within a cube. This test set is similar to the
virtual canopy proposed by Chelle et al. (1998). Our model is
expressed by the following open L-system in the cpfg language
(M�ech et al. 2005):

#define N 5000 /* number of triangles */
#define x ran (1) * 100�50 /* random position along x-axis */
#define y ran (1) * 100�50 /* random position along y-axis */
#define z ran (1) * 100�50 /* random position along z-axis */
#define a ran (360) /*random orientation around

turtle’s H-axis */
#define b ran (360) /* random orientation around

turtle’s L-axis */
#define g ran (360) /* random orientation around

turtle’s U-axis */
#define l 5 /* length of a triangle’s edge */
#define h sqrt (3)/2 * 5 /* height of a triangle */

w : L(N)
p1 : L(n) > 0!@M(x, y, z)/(a) ^(b) + (g) ?E(0) T(l, h) L(n�1)
p2 : ?E(light) <T(L, H) : * {printf(“light: %g\n”, light);}!T(l, h)

For a comparison, the specification of the same L-system in
the L + C language supported by the lpfg plant simulator
(Karwowski and Lane 2007) has the form:

/* #define section as above */
module L(int);
module E1(float);
module T(float, float);
w : L(N)
p1 : L(n):{
if (n> 0)
produce MoveTo(x, y, z) RollR(a) Up(b)Left(g)

E1(0) T(l, h) L(n�1);}
p2 : E1(light) <T(L, H) : {Printf(“light: %g\n”, light); produce

T(l, h);}

We omitted here the #define statements, which are the same as
in cpfg. In either case, the axiomw consists of amoduleL thatwill
serve as the generator ofN triangles in the virtual canopy. In each
application of production p1, the module L gives rise to an
equilateral triangle T with a 5 cm edge length, positioned and
oriented at random within a 100� 100� 100 cm cube. The
triangle module is preceded by a communication module, ?E
or E1, forming a pair of modules that is sent to the QuasiMC
program. Once all the N triangles have been created, QuasiMC
calculates light distribution and returns the absorbed energy value
for each triangle through the light variable of the corresponding
module ?E or E1. These values are output by production p2 and
provide the basis for a further analysis.

We compared the RQMC method from our program with the
MC method from M�ech’s MonteCarlo program by performing
numerical experiments on the virtual canopy model with 5000
triangles (Fig. 3). Each trianglewas set to reflect 10%and transmit
10% of the incident radiation, and the Lambertian local light

Fig. 3. 3-D canopy mock-up (triangle mix), used to test QuasiMC. The
canopy consists of 5000 triangles uniformly distributed within a cube. In the
example shown, the scene was illuminated by directional light from above.
Each triangle is shaded according to the amount of absorbed energy, with
lighter shades representinghigh radiant energyanddarker shades representing
low radiant energy.
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model was applied. The scene was illuminated from above, using
a directional light source. All experiments involved the same
number of light paths, 262 144.To estimate the error in the results,
the experiments were repeated 10 times for both the MC and
RQMC methods. In either case, the computation time was ~30 s
per experiment on a 3.0GHz computer.

The results are shown inFig. 4.Wefitted exponential curves to
the experimental data, because the attenuation of light in a turbid
medium,which can be considered as a continuous approximation
of our triangle mix, is described by an exponential equation: the
Beer-Lambert law (Thornley and Johnson 1990). Both methods
yield closely matching mean values (compare Fig. 4a with
Fig. 4b), but the RQMC method produced significantly smaller
variance (compare Fig. 4cwith Fig. 4d). The mean variance over
all 5000 triangles in the MC case was 8.06� 10�2 with standard
deviation 15.29� 10�2, and in the RQMC case it was
0.75� 10�2 with standard deviation 1.14� 10�2. Thus,
RQMC makes it possible to achieve a better accuracy than
MC using the same number of ray paths. Alternatively RQMC
can be used to achieve the same accuracy as MC with a smaller
number of light paths. For our mix of 5000 triangles, the RQMC
method required approximately one-quarter of the number of

MC rays to achieve approximately the same accuracy (for the
RQMC method with 65 536 rays, the mean variance was
5.4� 10�2 with standard deviation 8.86� 10�2).

To evaluate theMC andRQMCmethodswhen computing the
distribution of light with multiple wavelengths, we calculated the
red/far red ratio (R/FR) using four scenarios: treating each
wavelength separately using MC or RQMC, and representing
both wavelengths in a single ray (correlated sampling) usingMC
or RQMC. In this case, the comparison is made within our
QuasiMC program because MonteCarlo does not fully support
correlated sampling. Following Gautier et al. (2000) we assumed
reflectance of 5.3% for red light and 42.6% for far red light, and
transmittance of 2% and 40.5%, correspondingly. As in the
previous test, we assumed that rays could be scattered with
equal probability in any direction. The initial value of the
R/FR ratio for the incoming light (directional light source
illuminating the scene from above) was set to 1.2 (Chelle et al.
2007).Thenumberof rayswas2 097 152 for the experimentswith
one wavelength per ray and 1 048 576 for the experiments with
correlated sampling.

Figure 5 shows the results for the case where separate rays
were used. Each graph compares the results obtainedwith theMC

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10
(a) estimated absorbed energy – MonteCarlo

Leaf number in canopy (from top to bottom)

A
bs

or
be

d 
flu

x 
pe

r 
le

af

y = 5.83 e–0.00072 x

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10
(b) estimated absorbed energy – QuasiMC

Leaf number in canopy (from top to bottom)

A
bs

or
be

d 
flu

x 
pe

r 
le

af

y = 5.82 e–0.00072 x

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c) estimated variance – MonteCarlo

E
st

im
at

ed
 v

ar
ia

nc
e

y = 0.314 e–0.00077 x

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(d ) estimated variance – QuasiMC

E
st

im
at

ed
 v

ar
ia

nc
e

y = 0.0244 e–0.00058 x

Leaf number in canopy (from top to bottom) Leaf number in canopy (from top to bottom)

Fig. 4. Comparisonof the absorbedenergyper leaf in theplant canopymodel fromFig.3.Theabsorbedenergyper leaf is ameanestimatedover10 simulations.
The curves described by equations of the form y=Ae�lxwerefitted to thesemean values. ParametersA and lwere estimated byminimising the sum-of-squares
error for

P
i Ae

�lxi�yi, where i is the leaf number. (a)MonteCarlo estimate, (b) Randomised quasi-MonteCarlo estimate, (c) estimated variance inMonteCarlo
calculation, and (d) estimated variance in randomised quasi-Monte Carlo calculation.

QMC simulation of the light environment of plants Functional Plant Biology 843



and RQMC methods for individual triangles (thus, if the results
for some triangle are identical, the corresponding point will lie on
the diagonal line). Table 1 summarises our statistical analysis of
these results. The mean values of the incident irradiance for red
and far red light, and the R/FR ratio, obtained using bothmethods
are similar, but the variances of the values returned by the RQMC
method are smaller than for the MC method. There is a strong
positive linear correlation between values obtained usingMCand
RQMC for all three variables under consideration (red, far red,
and R/FR ratio).

Figure 6 shows the corresponding results for correlated
sampling. The mean incident irradiance for red and far red
light, and the sample variance of these values match closely
those for separate rays. Themean values of theR/FR ratio are also
similar (Table 1), which implies that the correlated sampling
method did not introduce any error into the computation.
In contrast, the variance in the values of the R/FR ratio is
reduced, compared with uncorrelated sampling. Thus we
conclude that correlated sampling does indeed reduce the
variance in calculating ratios in the radiative energy associated
with different wavelengths, and, in particular, in calculating the
R/FR ratio. At the same time, it halves the number of rays needed
when using uncorrelated sampling.

Comparison of QuasiMC and CARIBU

To further test QuasiMC, we compared it with CARIBU (Chelle
et al. 2004), an independently developed program that calculates
the distribution of light energy using the radiosity method (Goral
et al. 1984).We used the virtual canopymodel from our previous
comparison (with identical leaf R/FR optical properties) and used
the Lambertian model in QuasiMC to match the one used in
CARIBU. The results for absorbed energy per leaf of red and far
red light are shown in Fig. 7 (including the energy contribution
from indirect light only).

Table 2 presents the statistics we collected from our
comparison of QuasiMC and CARIBU. Generally, the values
of the absorbed radiant energyper leaf returnedusingRQMCpath
tracing agree with those obtained using radiosity. QuasiMC
computed the light distribution in ~3.5min for 1 048 576 rays
with 10 randomisations, and CARIBU took ~10min on the same
computer. The mean variance over all triangles (reported in
Table 2) indicates that a sufficient number of rays was traced
for this comparison to be valid. However, the interpretation of
these results is complicated by different assumptions underlying
each program. CARIBU was designed for computing light
distribution in infinite canopies using the nested radiosity
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method, and is less efficient when computing light in finite
canopies with the classic radiosity method. Infinite canopies,
however, are not supported by the current QuasiMC
implementation, which makes it impossible to compare nested-
radiosity with RQMC.

Application example: light distribution in virtual kiwifruit

We applied QuasiMC to calculate the light environment in
a model of the annual growth cycle of a managed
mature kiwifruit vine (Cieslak et al. 2007). Calculations
were conducted for a plant 100 days after budbreak. Each
leaf was represented as a single-patch Bezier surface (Watt

2000), approximated using 72 triangles (as a compromise
between the accuracy and complexity of representation).
There were 1063 leaves on the vine, amounting to the
total of 76 536 triangles, plus one rhombus representing the
ground. Leaves were assumed to have a preference for
approximately horizontal orientations, but no experimental
data were used to quantify these orientations. In each
simulation, 1 048 576 rays were traced using the Korobov
method. The simulations were randomised and repeated
10 times to estimate variance.

Greer and Laing (1992) determined that the absorbance ratio
of kiwifruit leaves is ~78% for the PAR domain. Based on this

Table 1. Statistical analysis of incident irradiance for red and far red light, and R/FR ratio per triangle calculated usingMCpath tracing andRQMC
path tracing

Themeans and sample variances are given, aswell as the coefficient of determination (r2) and the linear regressionwith slope (a) and intercept (b) for separate rays
and one ray carrying information for both wavelengths

Mean irradiance
MC

Mean variance
MC

Mean irradiance
RQMC

Mean variance
RQMC

a b r2

Red light (separate/one ray) 0.0983 1.79e-4 0.0985 7.22e-6 0.9975 6.88e-5 0.9998
0.0983 1.82e-4 0.0984 7.01e-6 0.9977 8.94e-5 0.9998

Far red light (separate/one ray) 0.1572 2.12e-4 0.1574 8.81e-5 0.9978 2.22e-4 0.9996
0.1572 2.13e-4 0.1574 8.86e-5 0.9975 2.31e-4 0.9997

R/FR ratio (separate/one ray) 0.2679 4.53e-3 0.2670 1.23e-3 1.0026 2.39e-4 0.9976
0.2640 1.15e-3 0.2650 5.59e-4 0.9982 –4.87e-4 0.9992
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value, we assumed leaf reflectance of 11% and transmittance of
11%. Furthermore, we set the ground reflectance to 20%. We
considered four light conditions: directional light source placed
above the canopy, clear sky over the entire day, overcast sky, and
midday sun (average between 1100–1300 hours). For the three
sky light conditions, we assumed the latitude of 38�S (Bay of
Plenty, NewZealand). In all cases, onewavelength (450 nm) was
used to represent the PAR domain.

Distribution of the radiant energy absorbed by the leaves for
two of the above conditions is visualised in Fig. 8. Fig. 9 shows
the frequency distributions of the leaves absorbing different
amounts of radiant energy for all four light conditions. The

time needed to estimate the light distribution and sample
variance for each light condition was about 8min on a
3.0GHz computer.

The frequency distribution for absorbed energy per leaf under
direct light and the approximation of the sky at midday are not
similar, because the direction of incoming light is fixed under the
first case but not the second. The mean and standard deviation of
radiant energy absorbed by the leaves are 0.35	 0.24 for direct
light and0.24	 0.1 formidday.Thedifference inmeans is related
to the direction of incoming rays and leaf orientation. In this case,
since the leaves are mostly planar, they absorb more light from a
light source directly above the plant canopy than from a source
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Fig. 7. Comparison of red and far red absorbed radiant energy per leaf computed by the RQMC path tracing algorithm and the classic radiosity algorithm.
The two lower graphs are a comparison of the energy contribution from indirect light only.

Table 2. Statistical analysis of absorbed red and far red energy per triangle, with contribution from indirect light, as computed by the QuasiMC
and CARIBU programs

The variables are mean absorbed energy per triangle, mean variance from the QuasiMC estimate, the slope (a) and intercept (b) of the linear regression,
and the coefficient of determination (r2)

Mean absorbed
energy (QuasiMC)

Mean sample
variance (QuasiMC)

Mean absorbed
energy (CARIBU)

a b r2

Red light 0.1545 9.16e-6 0.1542 0.9987 –1.00e-4 0.9999
Far red light 0.0568 6.02e-6 0.0552 0.9845 –6.60e-4 0.9977
Indirect red light 0.0060 6.86e-7 0.0059 0.9731 4.52e-5 0.9754
Indirect far red light 0.0297 5.72e-6 0.0282 0.9481 3.86e-5 0.9819
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away from zenith. The difference in standard deviations is likely
due to the more uniform distribution of incoming light when the
sky model is used.

The frequency distribution of absorbed energy under the CIE
overcast skymodel resembles the distribution for themidday sky,
because the overcast sky model has the brightest region at zenith.
The mean and standard deviation of the absorbed energy for the

overcast sky is 0.23	 0.08, which is similar to that observed
under themidday sky.Themeansunder these twoconditions have
nearly the samevalue, becauseQuasiMCnormalises the absorbed
energy so that theflux density of aflat surface above the canopy is
1 W.m�2.

Finally, the mean and standard deviation of the absorbed
radiant energy per leaf for the sky on a clear day is 0.29	 0.14.
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(a)                                                      (b)

Fig. 8. Virtual kiwifruit vinewith leaves coloured according to the amount of absorbed radiant
energy for each leaf, normalised to the range [0,1]. (a) The light source is directly above the vine.
(b) The light source is an approximation of the sky on a clear day.
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Fig. 9. The frequency distributions of the absorbed radiant energy per leaf of a virtual kiwifruit vine 100 days after budbreak under four light conditions: a light
source directly above the vine, a midday sun (1100–1300 hours), a day with clear skies and an overcast day.
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There is an increase in the variance when compared withmidday,
because the time over which the direction of incoming rays is
averaged is increased (24 v. 2 h).

Conclusion

We introduced randomised quasi-Monte Carlo path tracing as a
method for computing light distribution in a plant canopy. The
method makes it possible to effectively simulate both the
distribution of monochromatic light and the distribution of
light composed of different wavelengths; the latter is
important, for example, when calculating R/FR ratios. The
randomised quasi-Monte Carlo and the original Monte Carlo
path tracing have been implemented in our light simulation
program QuasiMC. The program makes it possible to simulate
plant–light interaction at the level of individual organs, and can
return the incident irradiance and the amount of radiant energy
absorbed by these organs in the course of a plant’s development.
Both the computation of the distribution of monochromatic light
and of light of different wavelengths are supported. QuasiMC
has been designed to work with the plant simulators cpfg and
lpfg within the L-studio/Virtual Laboratory modelling platforms
(Prusinkiewicz 2004), but can also be used with other plant
simulators, as long as they employ the same protocol for
communicating with the plant environment. The organisation
of communication between QuasiMC and cpfg/lpfg has been
presented using sample L-system code. The operation of
QuasiMC was illustrated and analysed using an abstract
virtual canopy (a triangle mix) and a model of kiwifruit as
examples.

Comparing randomised quasi-Monte Carlo path tracing from
QuasiMC with the Monte Carlo path tracing from MonteCarlo
(M�ech 1997), we found that RQMC makes it possible to reduce
the number of rays, and therefore the computation time, as much
as four times. This reduction applies to both the computation of
the absorbed radiant energy and the incident irradiance of
monochromatic light, and the computation of R/FR ratios. We
also confirmed that correlated sampling is an effective variance
reduction technique for computing the R/FR ratio, regardless of
whether MC or RQMC method is used. To additionally test
QuasiMC, we compared it with CARIBU, an independently
developed program for calculating light distribution using the
radiositymethod (Chelle et al. 2004). The comparison showed an
agreement of the results, with QuasiMC using less computation
time.

To illustrate the operationofQuasiMC in a practicalmodelling
setting, we applied it to compare distributions of absorbed energy
in a virtual kiwifruit canopy under various light conditions. This
comparison captured the effect of weather and time of day on the
incident radiation of leaves.
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