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Abstract We propose Partition of Unity Parametrics
(PUPs), a natural extension of NURBS that main-
tains a�ne invariance. PUPs replace the weighted ba-
sis functions of NURBS with arbitrary weight-functions
(WFs). By choosing appropriate WFs, PUPs yield
a comprehensive geometric modeling framework, ac-
counting for a variety of bene�cial properties, such
as local-support, speci�ed smoothness, arbitrary sharp
features and approximating or interpolating curves. Ad-
ditionally, we consider interactive speci�cation of WFs
to �ne-tune the character of curves and generate non-
trivial e�ects. This serves as a basis for a system where
users model the tools used for modeling, here weight-
functions, in tandem with the model itself, which we
dub a meta-modeling system. PUP curves and surfaces
are considered in detail. Curves illustrate basic concepts
that apply directly to surfaces. For surfaces, the advan-
tages of PUPs are more pronounced; permitting non-
tensor WFs and direct parameter space manipulations.
These features allow us to address two di�cult geomet-
ric modeling problems (sketching features onto surfaces
and converting planar meshes into parametric surfaces)
in a conceptually and computationally simple way.

Keywords Meta-modeling, Parametric curves and
surfaces, Sketch-based modeling, Geometric modeling

1 Introduction

Parametric curves and surfaces are ubiquitous geomet-
ric primitives. These primitives are typically de�ned us-
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Fig. 1 PUPs allow curves with various characteristics to be
generated from simple control polygons.

ing a set of control points. The resulting parametric
then takes the form of weighted sums of the control-
points, with the contribution of each point determined
by an associated weighted basis function. Many proper-
ties follow from the choice of weight functions. NURBS
inherit many nice properties from B-spline basis func-
tions, and extend B-splines by allowing a scalar weight
to be associated with each control point, indicating
its relative importance to the curve. For these reasons
NURBS have emerged as the predominant choice for
geometric modeling.

Despite their widespread use, it is di�cult to modify
the characteristics of NURBS models. In practice, it is
complex to toggle between sharp and smooth features,
and interpolation and approximation of control points.
Likewise, it is di�cult to introduce arbitrarily oriented
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features for surfaces or to control the local character of
curves (to produce the loops and other e�ects depicted
in Fig. 1, for example). In part, this is due to NURBS
rigid control net structure, which necessitates a rectan-
gular control net for surfaces. Consequently, previous
extensions have focused on extending the range of con-
trol net topologies [5,21,20]. However, it is not enough
to only support a wider range of control net topologies.
It is also necessary to control the contribution of control
points to the �nal curve or surface.

Our generalization of NURBS places no topological
restrictions on the control net and permits �ne-grained
control over model characteristics. The key insight un-
derlying Partition of Unity Parametrics (PUPs) is that
we can preserve the a�ne invariance of NURBS while
allowing the relative importance of control points to
be speci�ed at a �ner scale (for each parameter value
as opposed to each basis function). To accommodate
this, we replace the basis functions of NURBS with ar-
bitrary weight functions. By choosing weight-functions
appropriately, it is possible to retain many of the nice
properties of NURBS. For this, we rely primarily on
linear combinations of B-spline basis functions.

PUPs allow common geometric requirements and
operations to be phrased succinctly, including: the ad-
dition of control points, arbitrary sharp features, in-
creasing smoothness without increasing support, ap-
proximation and interpolation. Additionally, it is pos-
sible to �ne-tune the character of the curve by edit-
ing weight-functions directly. This facilitates a meta-
modeling framework where weight functions can be de-
signed once with a particular modeling task in mind and
then used as a template for subsequent applications. For
surfaces, PUPs permit non-tensor weight functions and
allow control points to be added anywhere (without in-
troducing other control points). This facilitates simple
methods for sketching features and converting a planar
mesh into a parametric surface of arbitrary smoothness.

2 Related Work

There have been many works that relax the topolog-
ical restrictions of NURBS. These include T-Splines,
which allow T-junctions in the control mesh [21]; the
many n-sided generalizations of B-spline basis func-
tions, which allow for the inclusion of n-sided patches in
otherwise regular meshes [20]; and the recent work by
Cashman et al. [5], incorporating extraordinary points
into NURBS. These extensions allow a wider range of
control net topologies, but still require a control net
structure. The algebraic-implicit splines, proposed by
Li et al. [13], o�er an alternative solution, by employing
integral convolution to create polyhedral B-spline-like

basis functions. However, they do not consider para-
metric curves and surfaces. Although these works allow
a wider range of control-net topologies to be realized,
they do not consider how �ne-grained control over the
character of models can be achieved.

The association of a weight function with each
point, a key element of our approach, is also central
to interpolation techniques relying on radial basis func-
tions [6,4]. For these interpolation techniques a radial
basis function localizing the contribution of a point to
the surface is associated with each point. Based on the
radial basis functions a system of equations must then
be solved [4,23] to obtain a function [6,4] or implicit
surface [23] that interpolates the sample points.

Our generalization of NURBS exploits the idea that
given a set of control points and associated weight-
functions, we can guarantee a�ne invariance by normal-
izing the weight-functions to provide partition-of-unity .
This insight was previously explored by Shepard [22]
to generate interpolating functions from scattered data
and underlies recent generalizations of barycentric coor-
dinates [9,14]. Similar ideas were proposed for paramet-
ric surfaces by Sederburg [21] in the form of point-based
splines and Wang et al. [24] in the form of G-NURBS.
However, in these works, the variation of weighted ba-
sis functions as a framework for geometric modeling
has not been explored or used for meta-modeling (e.g.
to control the general characteristics of curves and sur-
faces). Additionally, restrictions on the forms of weight-
funtions in these works (e.g. monotonically decreas-
ing, non-negative functions) limits the range of possible
parametrics (precluding, for example, the curves shown
in Fig. 1 and 4).

Franke and Nielson [10] modi�ed Shepard's method
by computing algebraic approximations of the surface
at each point, which were blended using weight func-
tions and normalized to guarantee a�ne invariance.
The basic idea developed by Franke and Nielson has
been used extensively, as a basis for constructing im-
plicit �elds [16], and manifold surfaces [11,25]. In con-
trast, we employ Shepard's basic idea, with appropri-
ately chosen weight-functions, towards modeling with
parametric surfaces. We do not rely on local algebraic
surface approximations, which simpli�es our method
and permits a exible meta-modeling environment.

3 Moving from NURBS to PUP Curves

Before introducing our proposed generalization, let us
�rst consider the standard de�nition of a NURBS
curve. A NURBS curve is de�ned by a set of control-
points P = f P0; P1; � � � ; Pn g, a set of knot values (re-
quired for the B-spline basis functions used below)



Partition of Unity Parametrics: A framework for meta-model ing 3

U = f u0; u1; � � � ; un + k g; and a set of weights indicat-
ing the relative importance of each control point to the
curve W = f w0; w1; � � � ; wn g � R+ . The NURBS curve
of order k, is then de�ned over the interval [uk � 1; un +1 ]
and has the form

Q(u) =
P n

i =0 Ri (u)Pi (1)

where the basis functionsRi (u) are de�ned as

Ri (u) =
wi N k

i (u)
P n

j =0 wj N k
j (u)

; (2)

where N k
i (u) is a B-spline basis function of orderk. It

is important to note the sum in the denominator of Eq.
2, which normalizes the weighted basis function. This
guarantees that the basis functionsRi (u) always sum
to one, which makes the curve a�ne invariant [19].

We generalize NURBS by replacing the weighted
basis-functions in Eq. 2 with arbitrary Weight Func-
tions (WF) and preserve the normalization that pro-
vides a�ne invariance. Consequently, it is possi-
ble to explicitly specify weights for every parame-
ter value. A PUP curve Q(u) is de�ned on the in-
terval [a; b], and speci�ed by a set of control points
P = f P0; P1; � � � ; Pn g, with associated weight-functions
W = f W0(u); W1(u); � � � ; Wn (u)g, where each Wi :
[a; b] ! R, is a scalar function. The general form of Eq.
1 still applies in this setting. However, the de�nition of
Ri (u) (Eq. 2) becomes

Ri (u) =
Wi (u)

P n
j =0 Wj (u)

; (3)

guaranteeing that the Ri (u)s always sum to one. We
refer to the Ri (u)s as normalized weight-functions. Fi-
nally, to avoid indeterminate forms in Eq. 3, we require
P n

i =0 Wi (u) 6= 0 ; u 2 [a; b]: (4)

We note that by setting Wi (u) = wi N k
i (u) (and [a; b]

to [uk � 1; un +1 ]), we obtain the NURBS curve de�ned
by Eq.1-2. Hence, NURBS curves are a special case of
PUP curves.

For curves, we assume that eachWi has local sup-
port on the interval centeredon i with radius ci , making

Wi (u) = 0 ; u 62[i � ci ; i + ci ] (5)

In general, any Wi with local support can be trans-
formed into a function with the properties listed above.
These characteristics permit the curve to be evaluated
e�ciently and facilitate interpolation. Q(u) is then de-
�ned on the interval [0 ; n] for open curves, and [0; n +1]
for closed curves (extending the parameter range to
connect the �rst and last points of the curve).

4 Determining appropriate weight functions

The de�nition of a PUP curve is very general. In fact,
any curve that is representable as an a�ne, weighted-
combination of points can be formulated as a PUP
curve. Consequently, it is important to establish some
additional constraints that can be used in selecting the
WFs when de�ning a curve. PUPs are a�ne-invariant
by construction. However, to o�er a comprehensive ge-
ometric modeling tool, it is necessary to support curves
of arbitrary smoothness (Ck continuity), local-support,
the convex-hull property, the strong convex-hull prop-
erty, approximation, interpolation and sharp features
(although not simultaneously). To this end, we consider
what geometric properties our curves should have and
select our WFs appropriately. For example, when allWi

are Ck the resulting curve is alsoCk , and when theWi

are non-negative the convex hull property is satis�ed.
For weight functions we employ uniform B-spline

basis functions as basic WFs and use one-dimensional
B-spline functions to specify more complex WFs. Thus
eachWi has the form

Wi (u) = si B k
i ((u � i )=ci ); (6)

where B k
i is a kth order B-spline basis function or one-

dimensional B-spline function with support on the in-
terval [� 1; 1], with si ; ci 2 R. Consequently, each WF
has three default parameters: the radius of supportci ,
a uniform scaling factor si , and its order k. To evaluate
PUP curves, we have implemented an interactive ed-
itor. The editor supports typical interactions, such as
the addition and manipulation of control points. More
importantly, it supports operations exceeding what is
currently feasible for NURBS. In particular, WFs can
be speci�ed interactively: either locally (at a single con-
trol point) or globally (for all control points simultane-
ously). This allows users to �ne-tune the character of
the curve and serves as the basis for generating sharp
features (Section 4.1) as well as converting between
approximating and interpolating curves (Section 4.2).

4.1 Examining PUP curves

The PUPs de�nition is very general, which may make
it unclear how this generality can be leveraged in a
practical setting. Here, we illustrate the exibility of
our de�nition by examining the range of curves it can
generate.

To start, consider a PUP curve with uniform B-
spline basis functions for WFs. Super�cially, it may ap-
pear that a B-spline curve is produced. However, PUP
curves permit an additional degree of freedom com-
pared to NURBS curves, as the radius of support (ci )
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 c =1i

 c =3i

 c =9i

Fig. 2 PUP curves created using 4th degree uniform B-
spline basis functions as WFs. The control polygon is �xed
while the support ( ci ) is varied from 1 (which interpolates the
control polygon) to 14. Normalized weight-functions for th ree
curves with di�erent intervals of support are shown (right) .

Fig. 3 The control-polygon from Fig. 2 with asymmetric
WFs (with ci = 3). The black curve has no bias and serves as
a reference. The curves (left) were generated using the WF
(right) of the same color.

can still be varied. Examining the progression in Fig. 2,
we see that decreasing the support of the WF causes
the curve to pull towards the control points. Simulta-
neously, curvature becomes focused in the portions of
the curve closest to the control points.

This behavior corresponds to the shape parame-
ter tension as described by Barsky for Beta-splines [1]
(the smoothing parameter in [13] has a similar e�ect).
Barsky describes a second shape parameter,bias, as an
asymmetry in the pull of the curve towards the control
polygon before and after a control point. For tension, as
the support of the WF decreases, the curvature of the
WF is focused in a decreasing parameter range, caus-
ing the curvature of the curve to change similarly. Bias
can be introduced by creating an asymmetry in the WF
about its centre as illustrated in Fig. 3. Increasing the
asymmetry in the WF likewise increases the bias exhib-
ited by the curve (compare the red and blue curves).

Using arbitrary B-spline functions as WFs allows us
to move beyond the simple shape parameters described
above (Fig. 4). Here, the relation between WFs and the
resulting curve is more complex, but can be character-
ized by the number of times a point's WF causes the
curve to pull towards a control point and conversely the
number of times it is pushedaway . The number of pulls

Fig. 4 Two PUP curves, created using one dimensional B-
spline WFs. The corresponding normalized WFs are shown
below each curve. Pulls and pushes are illustrated by the
colored circles and squares respectively.

(a) (c)(b)

Fig. 5 Examples of local WF speci�cation. The introduc-
tion of a sharp feature into an otherwise smooth curve (a-b).
(a) The curve is created using the smooth WF below. By in-
troducing a sharp feature into the WF of the top-most control
point, a corresponding sharp feature is created in the curve
(b). (c) A PUP curve with di�erent WFs for the control points
on the left and right portions of the curve. The WF used to
generate the left portion of the curve is shown below.

toward the control point Pi is equal to the number of
local maxima in the corresponding normalized WFRi ,
whereas the number of pushes is equal to the number
of local-minima in Ri . This is illustrated in Fig. 4 using
two examples. The WF in the �rst example has two lo-
cal maxima separated by a local minima. This results in
a curve that �rst pulls towards each control point, then
pushes away from the point as it passes, before pulling
back towards the control point a �nal time. In the sec-
ond example, a loop is introduced near each control
point. Each loop results from the interplay of neighbor-
ing normalized weight functions. As the curve passes
the control point it is �rst pulled towards the next con-
trol point, then the preceding control point, and �nally
towards the next control point again. In practice, loops
can be generated by interleaving the pulls of consecu-
tive control points.

All the examples presented so far were obtained by
globally specifying WFs. Locally specifying WFs can be
used to create localized e�ects, such as sharp features
(Fig. 5 (b)). Unlike NURBS, the curve need not pass
through the control point. In Fig. 6(left), di�erent WFs
have been used to give di�erent portions of the curve
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Fig. 6 Several examples of more complex PUP curves. Left:
approximating WFs. Right: interpolating WFs.

di�erent characters. This is used to specify smooth leaf
margins, terminating sharply at the tip and to imbue
the branching points and pot with di�erent characters.
It is also possible to piece together two PUP curves,
while maintaining su�cient smoothness, by connecting
the parameter ranges of two curves and allowing the
WFs of each curve to extend to the neighboring curve
(as illustrated in Fig. 5 (c)).

4.2 Interpolation

As smooth NURBS curves are approximating, inter-
polation is accomplished indirectly, by solving a sys-
tem of equations to determine the control points re-
quired for the curve to pass through a given set of in-
terpolants [19,2]. Using PUPs, however, interpolation
can be addressed directly, by selecting an interpolation
site for each control point and constructing appropriate
WFs. As the WF associated with Pi is centered at i in
the parameter domain, a natural choice isQ(i ) = Pi .
Interpolation of Pi at i is obtained whenonly the WF
associated with Pi is active at i (this does not con-
strain Wi betweeninteger values). This is equivalent to
the following condition

Wi (j ) = bij � ij (7)

where j 2 f 0; 1; � � � ; ng and bij 2 R is an arbitrary non-
zero constant. To satisfy Eq. 7, we use shifted copies of
the normalized sinc function (although other functions,
like cubic splines, can also be used):

gi (u) = sinc(u � i ) =
sin (� (u � i ))

� (u � i )
; (8)

which is C inf with gi (j ) = � ij ; (j 2 N). Using gi , we can
satisfy the condition given in Eq. 7 by replacing Wi

with gi (u)Wi (u), yielding

gi (i )Wi (i ) = � ij Wi (i ) = � ij bij :

Fig. 7 Comparison of sinc interpolation (red) and sinc in-
terpolation regulated by a WF with local support (blue).

This su�ces to convert a given PUP curve into an inter-
polating curve. Of course, settingWi = gi also satis�es
Eq. 7, but the resulting curves su�er from the typical
problems a�icting interpolating curves (i.e. ringing and
over-shooting of control points, see Fig. 7(red curve)).
Multiplying gi by Wi , a WF with local support and
Ck continuity, generates interpolating curves that re-
spond predictably and minimize the problems arising
when gi is used directly (Fig. 7(blue curve)). Two ex-
amples using the method outlined above and B-spline
basis functions of degree 3 with radius of supportci = 3
are provided in Fig. 6.

4.3 E�cient evaluation of PUP curves

Interactive editing of PUP curves necessitates an ef-
�cient evaluation method. Our method (illustrated in
Fig. 8) exploits the local support of WFs and a uniform
spacing of evaluation points. The method proceeds in
two phases, by: �rst calculating the un-normalized con-
tribution of each control point to the curve, then nor-
malizing these values to guarantee a�ne invariance.

To evaluate Q(u) at uniformly spaced parameter
values f u0; u1; � � � ; usg, we �rst allocate an array of
evaluation points Ep : f 0; 1; � � � ; sg ! Rn and an array
to store the sum of weight valuesEw : f 0; 1; � � � ; sg !
R, at each uj (Fig. 8 (a)).

During the �rst phase each control point Pi is con-
sidered, andWi (uj )Pi is added to each sample within
it's interval of support (Fig. 8(b)-(e)). At the same
time, Wi (uj ) is added to Ew (j ). Once every point has
been considered, we obtainEp(j ) =

P n
i =0 Wi (uj )Pj ,

the weighted sum of points at eachuj and Ew (j ) =P n
i =0 Wi (uj ), the sum of all the WFs for eachuj .In the

second phase, the position of each sample point is then
obtained by dividing Ep(j ) by Ew (j ) (Fig. 8(f)).

The method's e�ciency depends on the support of
eachWi and the complexity of evaluating Wi on this in-
terval. Storing the sum of weight-values at each sample
point permits the curve to be updated e�ciently when
local edits are performed (i.e. a control point's position
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(a) (b) (c) (d) (e) (f )

Fig. 8 An example of the evaluation method described in the text. Th e curve consists of four points (colored circles). The
yellow intervals at the bottom of each image denote elements of Ep (Ew is not shown). Ep is �rst initialized to zero (a). The
red-point is considered �rst (b), this point's support is vi sualized as the red-bar under Ep . The contribution of the red point
is added to Ep (c). This process is repeated for the remaining three points of the curve (d-e). Finally, the value of Ep is
normalized by dividing each entry by the corresponding entr y of Ew ((f), black bars).

or WF is modi�ed). For this we use a modi�ed version
of the method proposed by Barsky [1](chapter 8).

5 PUP Surfaces

PUP surfaces have a very similar de�nition to that pro-
vided for curves. The surface is still de�ned byP, a set
of control points, and W , a corresponding set of WFs.
However, Wi now takes the form Wi (u; v) : D ! R
where D � R2. Thus normalized WFs are now

Ri (u; v) =
Wi (u; v)

P n
j =0 Wj (u; v)

; (9)

making the surface

Q(u; v) =
P n

i =0 Ri (u; v)Pi ; (u; v) 2 D: (10)

Additionally, we still require
P n

i =0 Wi (u; v) 6= 0 ; (u; v) 2 D (11)

to avoid indeterminate forms.
Thus, the surface is simply computed as a sum of

weighted points over a given domainD . As no addi-
tional structure is needed, this frees us from the con-
straints of knot-values and the rigid control-net struc-
ture required for NURBS. This permits a wider-range of
WFs and more natural parameter space manipulation.
This exibility is illustrated by addressing the problem
of sketching details onto surfaces and converting planar
meshes into PUP surfaces. Extending PUPs to volumes
and higher dimensions follows similarly.

As for curves, we consider WFs of a speci�c form.
EachWi is centered at (ui ; vi ) in D with radii of support
(cu

i ; cv
i ) in the u and v directions, yielding

Wi (U) = 0 ; U 62[ui � cu
i ; ui + cu

i ] � [vi � cv
i ; vi + cv

i ]: (12)

We also restrict the parameter domain to the rectangle
[a; b]� [c; d]. Using a rectangular parameter domain and
requiring local support allows the surface to be evalu-
ated e�ciently by extending the method in Section 4.3
to 2D domains. When interpolation is required, we ar-
range the WF centers in a uniform grid, permitting the
scheme for curves to be extended to surfaces.

(a) (b) (c)

Fig. 9 An axial WF is constructed using a set of axis (a,
black arrows) and falls-o� from a maximum at ( u i ; vi ) (the
orange circle) to zero at the edges of the polygon. The fallo�
along an axis is determined by a function with the form shown
in (c). The resulting WF for the axes and function shown in
(a) and (c) is depicted in (b).

5.1 Surface Weight Functions

In contrast to NURBS, which use tensor product
WFs exclusively, we consider three additional WFs:
rotated-tensor, radial, and axial; de�ned using the one-
dimensional WFs used for curves. Each has several pa-
rameters, including the radius of support in the u and
v directions (cu

i and cv
i ) and a uniform scaling factor si .

Tensor product WFs have the usual form, resulting
from the multiplication of two one-dimensional weight-
functions. However, the PUP surface de�nition allows
for tensor product WFs that are not aligned with the
u,v directions. We exploit this by using rotated-tensor
WFs, created by rotating tensor WFs by � in the pa-
rameter domain to obtain

Wi (u; v) = W (u� ; v� );

whereW is a tensor WF centered at (ui ; vi ) and (u� ; v� )
is obtained by rotating (u; v) by � about (ui ; vi ) in the
parameter domain. Thus (u� ; v� ) = R� � (u; v) where
R� � is a two-dimensional rotation by � � . It is impor-
tant to note that to rotate the value of W by � in the
parameter domain, we must rotate (u; v) by � � .

It is also possible to consider radial WFs (i.e. radial
basis functions [4]) de�ned as

Wi (u; v) = W (d); (d = k(u; v) � (ui ; vi )k);

where W is a uniform B-spline WF. Given that W de-
creases monotonically asd increases, the radial weight-
functions fall o� continuously as the distance between
(u,v) and (ui ; vi ) increases.
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Axial weight functions are de�ned by a set of axes
A = f � 0; � 1; � � � ; � pg � R2 in the parameter do-
main, which demarcate the boundaries of a polygon
(Fig. 9(a)). We then construct Wi to fall-o� smoothly
along each axis, from a maximum value at (ui ; vi ) to
zero on the polygon's boundary. For this, we use WF
of the form

Wi (u; v) =
Q p

r =0 W� r (proj � r (u; v)) ;

where � r is an axis, proj � r (u; v) is the projection of
(u � ui ; v � vi ) on � r and eachW� r is a B-spline curve
of su�cient smoothness, decreasing from one to zero as
the magnitude of the projection increases (Fig. 9(c)).
This generates WF of the form shown in Fig. 9(b). We
note that the weight-function will have compact sup-
port provided that the axes A delimits a valid polygon.

5.2 Examining PUP Surfaces

Much of the exploration performed for curves in Sec-
tion 4.1 applies in the context of surfaces, including:
the relation between support and tension, and asym-
metries in the WF and bias. However, there are two
avenues of exploration that cannot be inferred directly
from curves.

First, we will illustrate the impact of the WFs out-
lined in Section 5.1 using a simple surface (Fig. 10(a-
e)). From the �gure, we can see that each WF can be
used to de�ne a smooth surface that has a predictable
correspondence to the control points de�ning the sur-
face. The bottom row illustrates the parametric struc-
ture of each example. Starting from a tensor-product
WF (a) (or radial-WF (d)), we can extend the support
in one parametric direction to obtain anisotropic WFs
(b). Rotating the WF (c) causes the features generated
by displaced control points to change orientation simi-
larly. For the axial WF used in (e), the impact of the
WF falls o� as depicted in Fig. 9, evident in the asym-
metry of the features of the surface. As with curves,
we can obtain controllable interpolation for surfaces by
modulating the normalized sinc functions with one of
the preceding weight-functions (f).

Extending PUP to surfaces provides exibility in
the speci�cation of WFs. For example, the rotated ten-
sor WF permits WFs that are not aligned with the u,v
directions of the parameter space. The advantages of
this is especially apparent in the scenario depicted in
Fig. 11, where a user has introduced a feature into the
surface (a diagonal line) that does not follow the con-
trol net. For NURBS, this can create undesirable e�ects
(a) that can only be addressed by modifying the posi-
tion or number of control points. However, by rotating

(b)(a)

Fig. 11 A PUP surface created from the initial control grid
by elevating control points in a diagonal line. When WFs are
aligned with the control net, the feature is not respected by
the surface (a). Using rotated tensor WFs allows the surface
to represent the feature more precisely (b).

our WFs, it is possible to follow the feature without
modifying the position or number of control points (b).

6 Converting planar meshes to PUP surfaces

To convert a given polygon meshM with planar topol-
ogy (i.e. the mesh has a single boundary), into a PUP
surface, we proceed by computing a global parameteri-
zation and then construct a WF for each vertex ofM .
To parameterize the mesh we use the method proposed
by Floater in [8] (although, any method that produces
parameterizations with a locally uniform distribution
of points should work equally well).

Given a mesh with planar topology M , with ver-
tices V = f P0; P1; � � � ; Pn g and corresponding parame-
ter values U = f U0; U1; � � � ; Un g � R2, we construct an
axial-WF for each vertex. Thus, the vertices ofM serve
as the control points of our surface. Accordingly, for
eachPi , to construct Wi , we need to specify the center,
support, and axes de�ning the WF. The center is given
by the corresponding parameter valueUi = ( ui ; vi ). The
set of axesA are then de�ned as

� k = Uk � Ui ; k 2 N (i );

where N (i ) are indices ofPi 's neighbors in M . Finally,
the support for Wi is ci = ( cu dui ; cv dvi ) where cu ; cv �
1 are constants and

dui = max k2 N ( i ) fj uk � ui jg;
dvi = max k2 N ( i ) fj vk � vi jg;

the maximum distance betweenUi and neighboring pa-
rameter values in each parametric direction. Choosing
our support in this way guarantees that Eq. 11 is sat-
is�ed. This su�ces to convert M into a PUP surface.
The method is illustrated in Fig. 12 using a mannequin
head mesh. Once the mesh has been converted into a
PUP surface, it can be edited by moving and adding
control points (c-d). More complex topologies can be
handled by decomposing the mesh into planar patches
(as in [7]), but are not addressed here.



8 Adam Runions, Faramarz F. Samavati

(a) (b) (c) (d) (e)(e) (f )

Fig. 10 PUP surfaces generated using the same control points while t he WF is varied; rendered as a shaded surface (top),
and with isocurves (bottom). The surfaces were generated us ing the following WFs: (a) tensor, (b) elongated tensor, cu

i > c v
i ,

(c) rotated-tensor ( � = 45), (d) radial, (e) axial (the WF from Fig. 9). (f) Interpola tion is demonstrated, for a di�erent set of
control points.

(a) (b) (c) (d)

Fig. 12 A coarse mesh with 636 vertices (a) and corresponding PUP sur face (b). In (c), several edits have been performed
on the mesh. A horn and bumpy ridge along the middle of the head have been introduced by manipulating control points
(silver spheres). Additionally, the heart motif has been in troduced by adding control points and WF to the surface (usin g the
sketching method outlined in Section 7). In (d) the mesh is re ndered without control points.

7 Sketching Details on Surfaces

Sketching details onto a base surface is commonly used
to re�ne a pre-existing model [18]. This problem has
been addressed previously [17,15]. However, modifying
the geometry of the surface based on a user's sketch
usually involves solving a fairly complex optimization
problem [15]. Furthermore, creating visually pleasing
sharp features requires the addition of edges and ver-
tices to the mesh [15,18] (or control-net for NURBS
surfaces) that are aligned with the sharp feature. In
contrast, PUPs permit a particularly simple method
for sketching details onto a base surface.

Starting with a base surface, the user sketches a
curve above the surface (Fig. 13 (a)). The curve is
arc-length parameterized and resampled to provide the
set C = f P0; P1; � � � ; Pr g of control points that will
be added to the surface (Fig. 13 (b)). A WF, oriented
along the curve, is then calculated for each control-point
(Fig. 13 (c)), and added to the surface (Fig. 13(d)).
Constructing WFs to support high quality features and

(a) (b)

(c) (d)

Fig. 13 Overview of the procedure for sketching details onto
a base-surface, insets depict an orthogonal viewpoint. (a)
First, the user sketches the curve (shown in red). (b) The
curve is then resampled. (c) The resulting points are projec ted
onto the surface (inset), and used to calculate correspondi ng
WFs. The points and WFs are then added to the surface. (d)
The resulting surface is shown from another vantage point.
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(a) (b)

Fig. 14 A single stroke is placed on the surface, (a)without
and (b)with compensation for metric distortion.

further editing requires special consideration. Our con-
struction is outlined below.

We create a WF W c
t for each point Pt 2 C accord-

ing to the de�nition given in Section 5.1, by specify-
ing three attributes: the centre and radius of support
(Ut = ( ut ; vt ) and Ct = ( cu

t ; cv
t ) resp.), and the form of

Wt . The centers of support are determined by project-
ing eachPt onto the surface and estimating the corre-
sponding parameter value (Fig. 13 (c)). This produces
a second curveCD , corresponding toC, in the param-
eter domain, with CD = f U0; U1; � � � ; Ur g, where Ut is
associated withPt 2 C.

Next, we determine an appropriateW c
t for eachPt .

Here, we employ rotated-tensors, aligned withCD at Ut

using the tangent of the curveTt . Finally, we must spec-
ify the radius of support Ct = ( cu

t ; cv
t ), measured along

and perpendicular toTt respectively. The mapping from
D to R3 by Q(U) typically distorts the angles, dis-
tances, and areas ofD creating metric distortion [12].
As such, using the same support for allW c

t causes the
stroke width to vary along the surface (Fig. 14(a)). To
compensate, we letT0

t be perpendicular to Tt and use
support of the form

Ct =
�

cu

D t
;

cv

D 0
t

�
;

where cu ; cv 2 R are constants and

D t =
�
�
�
�
�
� �Q (U )

�U � Tt

�
�
�
�
�
� ; D 0

t =
�
�
�
�
�
� �Q (U )

�U � T0
t

�
�
�
�
�
�

are the magnitudes of the directional derivative ofQ(U)
along and perpendicular to Tt respectively. This com-
pensates for metric distortion and can dramatically
change the resulting feature (Fig. 14(b)). Once the WFs
have been constructed, the control pointsC and their
corresponding WFs are added to the surface.

The proposed method permits interactive frame
rates, even when several curves are added to the surface
(Fig. 12c-d and 15). Additionally, details can be accu-
rately represented using only a small number of control
points (even for complex features). The character of the
details introduced can be �ne-tuned by modifying the

Fig. 15 A complex feature, consisting of nine strokes, has
been added to the surface (left). Changing the WFs associ-
ated with the curve changes the character of the feature as
described in the text (right).

WFs associated with the curve. In Fig. 15(right), this
possibility is explored to obtain sharp-extrusions (top),
soft-extrusions (middle-top), a soft-indentation into th e
surface (middle-bottom, by specifying a negative uni-
form scaling for the WFs), and to introduce regularly
spaced features along each curve (bottom).

8 Conclusions

Our proposed generalization, PUPs, is a natural ex-
tension of NURBS, obtained by preserving a�ne in-
variance. PUPs continue the progression of ideas from
Bezier curves to B-splines and NURBS. B-splines allow
the degree and number of control points in a curve to
be speci�ed independently. Whereas, PUPs allows the
degree and support of basis functions to be speci�ed in-
dependently. NURBS allow the relative importance of
each control point to be speci�ed, whereas, PUPs allow
the relative importance of control points to be speci�ed
arbitrarily along the curve.

Our exploration of partition of unity parametrics
illustrates the utility of specifying WFs, either to �ne-
tune the character of a parametric or obtain interesting
e�ects. Once a WF, or class of WFs, has been identi�ed,
the modeler can save them for use in other applications.
This provides the foundations for a meta-modeling en-
vironment, where the modeler can design the tools that
are used as a basis for geometric modeling.
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For curves, we developed alternative de�nitions of
the shape parameters bias and tension. Additionally,
the complementary shape parameters of pushes and
pulls were described and related to the WFs de�ning
the curve. Furthermore, we illustrated that high-quality
interpolants can be produced without solving a least-
squares problem (as is required for NURBS). It is also
possible to specify complicated curves using a coarse
control polygon where the local characteristics, or de-
tails, of the curve are captured by the weight-functions
(Fig. 1). This hints at a more general idea, namely using
weight-functions to encode local details, such as wrin-
kles or artistic styles (c.f. [3]).

Conceptually, the ideas developed for curves extend
directly to surfaces. However, for surfaces, the removal
of NURBS rigid control-net structure provides a greater
degree of freedom in specifying surfaces. This permits
remarkably simple methods for sketching details onto a
base surface (comparable in quality to the current state
of the art [15,17]) and approximating planar meshes us-
ing PUP surfaces. Together, these illustrate the applica-
bility of PUP curves and surfaces to di�cult geometric
modeling problems.

There are many ideas that we feel merit further ex-
ploration. Foremost, facilitating intuitive interaction re-
quires an appropriate means for interactively specifying
weight-functions. In this paper, we only considered in-
teractive speci�cation of the weight-functions directly,
which sometimes only loosely correspond to their nor-
malized form. Additionally, as NURBS have been ap-
plied to many standard problems arising in geometric
modeling we feel it would be elucidating to re-examine
these problems using PUPs. One particularly appealing
problem is using PUPs for curve and surface �tting, by
employing linear least squares or non-linear optimiza-
tion. Conversely, it is important to establish techniques
and conditions to convert or approximate PUP surfaces
using NURBS. This would make PUPs more applicable
to problems arising in CAD/CAM applications where
NURBS are the surface of choice.
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