
The Use of Positional Information in the Modeling
of Plants
Przemyslaw Prusinkiewicz, Lars Muendermann, Radoslaw Karwowski, and Brendan Lane
Department of Computer Science
University of Calgary
Calgary, Alberta, Canada T2N 1N4
e−mail: pwp|lars|radekk|laneb@cpsc.ucalgary.ca

Abstract

We integrate into plant models three elements of plant representation identified as important
by artists: posture (manifested in curved stems and elongated leaves), gradual variation of
features, and the progression of the drawing process from overall silhouette to local details.
The resulting algorithms increase the visual realism of plant models by offering an intuitive
control over plant form and supporting an interactive modeling process. The algorithms are
united by the concept of expressing local attributes of plant architecture as functions of their
location along the stems.

Keywords: realistic image synthesis, interactive procedural modeling, plant, positional
information, phyllotaxis, Chomsky grammar, L−system, differential turtle geometry,
generalized cylinder.

Reference

Przemyslaw Prusinkiewicz, Lars Muendermann, Radoslaw Karwowski, and Brendan Lane. The use of
positional information in the modeling of plants. Proceedings of SIGGRAPH 2001 (Los Angeles, California,
August 12−17, 2001), pp. 289−300.

The use of positional information in the modeling of plants

Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, Brendan Lane

Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
pwpjlarsjradekkjlaneb@cpsc.ucalgary.ca

Abstract

We integrate into plant models three elements of plant representa-
tion identified as important by artists: posture (manifested in curved
stems and elongated leaves), gradual variation of features, and the
progression of the drawing process from overall silhouette to local
details. The resulting algorithms increase the visual realism of plant
models by offering an intuitive control over plant form and support-
ing an interactive modeling process. The algorithms are united by
the concept of expressing local attributes of plant architecture as
functions of their location along the stems.

CR categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems, I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling,
J.3 [Life and Medical Sciences]: Biology.

Keywords: realistic image synthesis, interactive procedural model-
ing, plant, positional information, phyllotaxis, Chomsky grammar,
L-system, differential turtle geometry, generalized cylinder.

1 Introduction

Forward simulation of development is a well established paradigm
for modeling plants. It underlies, for example, the AMAP simula-
tion software [9] and modeling methods based on L-systems [28].
In both cases, a plant is modeled using a set of rules that describe
the emergence and growth of individual plant components. The
simulation program traces their fate over time, and integrates them
into the structure of the whole plant.

Over the years, the simulation paradigm has been extended to in-
clude a wide range of interactions between plants and their envi-
ronments [15, 21]. The resulting models have gained acceptance
as a research tool in biology and have led to increasingly convinc-
ing visualizations. In image synthesis applications, however, the
simulation-based approach has several drawbacks:

� Visual realism of the models is linked to the biological and
physical accuracy of simulations. This requires the modeler
to have a good understanding of the underlying processes,
makes comprehensive models complicated, and results in
long simulation times.

 ACM SIGGRAPH 2001 (Los Angeles, California, August12-17, 2001),
 pp. 289 - 300.

Figure 1: Selected elements of the artistic representation of plants:
(a) posture, (b) regular arrangement and gradual variation of organs
along an axis, and (c) progression from silhouette to detail in the
drawing process. Figure (a) is based on [37, page 41], (b) is redrawn
from [38, page 68], and (c) is redrawn from [24, page 13].

� Global characteristics of plant appearance, such as the curva-
ture of plant axes, the density of organ distribution, and the
overall silhouette of the plant, are emergent properties of the
models and therefore are difficult to control.

Methods for creating visually realistic representations of plants

289

have long been understood by artists (Figure 1). Important ele-
ments include plant posture, defined by the angles of insertion and
curvature of organs, and the arrangement and gradual variation
of organs on their supporting stems. The drawing process pro-
gresses in a global-to-local fashion, from silhouette to detail. In-
spired by the quality of botanical illustrations, we have developed
a plant modeling method that supports similar elements and pro-
cesses. The proposed method inverts the local-to-global operation
of simulation-based models by progressing from global plant char-
acteristics specified by the user to algorithmically generated details.
The algorithms are united by their use of positional information,
which we define as the position of plant components along the axes
of their supporting stems or branches. User-defined functions map
this information to morphogenetic gradients [2], which describe the
distributions of features along the axes.

The notions of positional information and morphogenetic gradients
unify and generalize several plant-modeling concepts that have al-
ready appeared in botanical and computer graphics literature. Fol-
lowing their review (Section 2), we outline our modeling software
environment, focusing on the language that we use to formally de-
scribe the algorithms and models (Section 3). We then develop the
mathematical foundations of plant modeling based on positional in-
formation: the modeling and framing of individual axes (Section 4),
and their partitioning into internodes (Section 5). In Section 6, we
present the resulting modeling method from the modeler’s perspec-
tive, and illustrate its applications using plants and plant structures
organized along a single axis. In Section 7, we address the im-
portant special case of organ arrangement in closely packed spiral
phyllotactic patterns. Finally, in Section 8, we extend the proposed
modeling method to plants with higher-order branches, including
trees. We conclude the paper with a discussion of the results, appli-
cations, and problems open for further research (Section 9). Proofs
of selected mathematical results pertinent to the use of positional
information in the modeling of plants are presented in the Appen-
dices.

2 Previous work

Applications of positional information have their origins in early
descriptive plant models created by biologists: the poplar model by
Burk et al. [7] and the larch sapling model by Remphrey and Pow-
ell [30]. In both cases, the length of lateral branches was expressed
as a function of their position on the main stem. The models were
visualized as two-dimensional line drawings.

In computer graphics, a related concept was first applied to model
trees by Reeves and Blau [29], who expressed the length of first-
order branches as the distance from the branching point to a user-
specified surface defining the silhouette of the tree. Higher-order
branches were generated algorithmically, with “many parameters
inherited from the parent.”

A more elaborated model was introduced by Weber and Penn [36].
They characterized a tree using several positional functions, and
pointed to an advantage of this technique: “Since our parameters
can address the character of an entire stem and not just its segment-
to-segment nature, we allow users to make changes on a level they
can more easily understand and visualize.”

Lintermann and Deussen incorporated positional information into
their interactive plant modeling program xfrog [18, 19]. The po-
sition of a sample point along an axis may affect the length of an in-
ternode, the length of a branch, the magnitude of a branching angle,
and other attributes. Functions that map positions to attribute values

Figure 2: A snapshot of the L-studio/cpfg screen. The model can
be manipulated using textual and graphical editors displayed on the
right side of the screen. In this example, the outline of the fishbone
water fern leaf (Blechnum nudum) is being defined using a graph-
ical function editor. A gallery under the editor’s window provides
access to various functions used in this model. The second row of
tabs near the top of the screen makes it possible to select other ed-
itors, such as the textual editor of the L-system that has been used
to specify the algorithmic structure of this model.

can be specified graphically, by editing function plots, or textually,
by editing algebraic expressions. The authors did not describe in
detail the algorithms underlying their software, but experience with
xfrog was an inspiration for our work. From the user interface
perspective, the editing of function plots is an extension of the in-
teractive manipulation of plant parameters using sliders [23, 28].

3 The modeling environment

We have adapted the L-system-based modeling software L-
studio/cpfg [27] to the needs of modeling using positional in-
formation. A screenshot of the system in operation is shown in
Figure 2.

An L-studio model consists of two basic components: a description
of a generative algorithm in the cpfg modeling language [25], and
a set of graphically defined entities. These entities can be defined
and manipulated using the L-studio function, curve, surface and
material editors [27], or imported from external sources.

The fundamental constructs of the cpfg language are rewriting
rules, or productions. The program supports both parallel applica-
tion of productions, characteristic of L-systems [28], and sequen-
tial application of productions, characteristic of Chomsky gram-
mars [8]. In the context of plant modeling, these formalisms com-
pare as follows.

L-system productions capture the development of plant compo-
nents over time. For example, the division of a mother cell A
into two daughter cells B and C can be described by the produc-
tion A �!BC. In the case of multicellular organisms, L-system
productions are applied in parallel to advance time consistently in
all cells. The simulation is completed when the organism reaches
a predefined terminal age, corresponding to a given number of
derivation steps.

290

Chomsky grammars, in contrast, characterize the structure of
plants, that is, the distribution of their features and components in
space. The fact that organismA consists of partsB and C can again
be expressed by a production, for example A ; BC, but such a
decomposition rule has a different meaning and functions in a dif-
ferent way than its L-system counterpart. Since non-overlapping
substructures can be partitioned independently from each other, the
decomposition rules may be applied sequentially. Furthermore, the
appropriate condition for terminating a decomposition process is
the reaching of terminal symbols, which represent components that
cannot be divided further.

Our intended use of positional information is to capture the distribu-
tion of plant features and components in space. Consequently, the
meaning and formal properties of productions used in this paper
correspond with the definition of Chomsky grammars. In the big
picture of a complete plant modeling software design, the switch
from L-systems to Chomsky grammars amounts to a relatively mi-
nor modification of the code. Consequently, our modeling lan-
guage, outlined below, expands, rather than replaces, features of the
earlier purely L-system-based implementations of the cpfg mod-
eling language [13, 28].

As in the case of L-systems, a branching structure is represented
by a bracketed string of modules (symbols with associated pa-
rameters). Matching pairs of brackets enclose branches. Deriva-
tion begins with an initial string identified by the keyword axiom.
Context-free productions are specified using the syntax

pred : fblock1g cond fblock2g; succ; (1)

where pred is the predecessor (a single module), and succ is the
successor (a bracketed string of modules) [25]. The optional field
cond is the condition (logical expression) that guards production
application. Fields block1 and block2 are sequences of C state-
ments. The first block is executed before the evaluation of the con-
dition. If the condition is true, the second block is also evaluated
and the production is applied. For example, the rule

A(x) : fy = x+2; g y � 5 fz = y=3; g; B(z)C(z+1) (2)

can be applied to module A(4), subdividing it into modules
B(2)C(3) .

The cpfg language also supports context-sensitive productions, in
which the strict predecessor (module being replaced) pred may
be preceded by one or more modules constituting the left context,
and/or followed by modules constituting the right context. These
contexts are separated from the strict predecessor by symbols <
and > respectively. For example, production

A(x) < B(y) > C(z) : x+ z > 0;M(y=2)N(y=2) (3)

decomposes module B into a pair of modules M and N , provided
that module B appears in the context of modules A and C, and the
sum of their parameters is greater then 0. In the scope of this paper,
context is limited to query symbols, discussed later on.

In order to conveniently specify morphogenetic gradients inherent
in the use of positional information, we have extended the cpfg
modeling language with function calls of the form func(id ; x). The
integer number id is the identifier of a planar B-spline curve and the
real number x is the function argument. Function plots are manip-
ulated using the interactive function editor (Figure 2). It constrains
the motion of the control points that define the function plots to
guarantee that they assign a unique value y to each argument x.

The modeling language also supports function calls of the form
curv eX (id ; s), curv eY(id ; s), curveZ(id ; s), and tanX(id ; s),

tanY(id ; s), tanZ(id ; s), where id is the identifier of an arbitrary
B-spline curve. These calls return coordinates of a point on the
curve id and of the tangent vector at this point, given the arc-length
distance s from the curve origin. The call curveLen (id) returns the
total length of the curve.

H\
→

/
L

−+

U
→

→

^

&

Figure 3: Controlling
the turtle in three dimen-
sions.

To create a graphical model, the
derived string is scanned sequen-
tially and reserved modules are
interpreted as commands to a
LOGO-style turtle [28]. At any
point within the string, the turtle
state is characterized by a posi-
tion vector ~P and three mutually
perpendicular orientation vectors
~H, ~L, and ~U that indicate the tur-
tle’s heading, the direction to the

left, and the up direction (Figure 3). The coordinates of these vec-
tors can be accessed using query modules of the form ?X(x; y; z),
where X is the vector to be accessed, one of P , H , L, or U [26].
Module F causes the turtle to draw a line in the current direction,
while modules f causes the turtle to move without drawing a line.
Modules +, �, &, ^, =, and n rotate the turtle around one of the
vectors ~H; ~L, or ~U , as shown in Figure 3. Many symbols are over-
loaded; for example, + and � denote the modules that rotate the
turtle as well as the usual arithmetic operations. The length of the
line and the magnitude of the rotation angle can be given globally
or specified as parameters of individual modules. Branches are cre-
ated using a stack mechanism: the opening square bracket pushes
the current state of the turtle on the stack, and the closing bracket
restores it to the last saved state. Other interpreted symbols will be
introduced with the sample models.

4 Modeling curved limbs

The shape of curved limbs, such as stems and elongated leaves, is
“vital in capturing the character of a species” [37]. In computer
graphics, this was first recognized by Bloomenthal [5], who ap-
plied generalized cylinders to model tree branches. A generalized
cylinder is obtained by sweeping a planar generating curve, which
determines the organ’s cross section, along a carrier curve [16] that
defines the organ’s axis. The generating curve may be closed, as
is typically the case for stems, or open, as for thin leaves, and it
may change size and shape while being swept [33]. It also must
be properly oriented with respect to the carrier curve. The Frenet
frame [34], which is frequently used for this purpose, creates well
known problems along straight sections of the carrier curve and at
inflection points, where it is not defined. It also twists 180Æ in the
proximity of the inflection points [6]. To avoid these problems, we
propose an alternative solution based on the use of turtle geome-
try. This solution subsumes the Frenet frame, as well as the twist-
minimizing parallel transport frame [3, 6, 14], as special cases. The
turtle frame was previously used by Jirasek et al. [15] in the context
of biomechanical modeling of plant branches.

The carrier curve is defined as a sequence of infinitesimal turtle
movements. Let s denote the arc-length distance of the turtle from
the origin of this curve. To define a smooth curve, we specify func-
tions !H(s), !L(s) and !U(s) that characterize the rates of tur-
tle’s rotations around the axes ~H~L~U as the turtle moves (we use
the term “rate of rotation” although s is a spatial coordinate and
not time). The infinitesimal rotations d
H , d
L and d
U between

291

curve points ~P (s) and ~P (s+ ds) are then given by the equations:

d
H = !H(s)ds; d
L = !L(s)ds; d
U = !U(s)ds: (4)

This specification yields a uniquely defined curve and moving refer-
ence frame (Appendix A.1). After replacing the infinitesimal incre-
ments ds by finite increments �s, we obtain the following straight-
forward algorithm for modeling elongated plant organs:

Algorithm 1

1 #define ` 1.0 /* total axis length */
2 #define G 7 /* cross section ID */
3 #define �s 0.02 /* turtle step */
4
5 #define !L(s) func(1,s)
6 #define !U(s) func(2,s)
7 #define !H(s) func(3,s)
8 #define �(s) func(4,s)
9 #define width(s) func(5,s)
10
11 Axiom: @#(G) A(0,0)
12
13 A(s,'): s � `
14 f�
L = !L(s)�s;
15 �
H= !H(s)�s;
16 �
U = !U(s)�s;
17 ' = '+ �(s)�s; g;
18 +(�
L) &(�
U) /(�
H)
19 /(') #(width(s)) F(�s) n(')
20 A(s+�s,')
21
22 A(s,�): s > `; �

Following the implementation of generalized cylinders in the cpfg
program [20], the generating curve is selected by expression @#(G)
in the axiom (line 11). The generalized cylinder is created recur-
sively by the first production (lines 13-20) as a sequence of slices
of length �s. The cross section size is defined by module # with the
parameter width(s) (line 19), and is linearly interpolated between
points s and s + �s. The angles of turtle rotation are calculated
according to Equation 4 in lines 14–16, and applied to the turtle
in line 18. The order of rotations represented by the symbols +,
& and = in line 18 is arbitrary, since infinitesimal rotations com-
mute. Function �(s) (line 17) rotates the generating curve around
the cylinder axis without affecting the shape of the axis. This is
convenient when defining twisted organs. The second production
(line 22) removes the apex A at the end of cylinder generation, by
replacing it with the empty symbol �. Figure 4 shows sample leaves
and stems generated by this Algorithm, with all functions specified
using the interactive function editor (Section 3).

From the user’s perspective, functions !L, !U , !H , � and width,
control bending, twist, and tapering of a generalized cylinder. Our
experience confirms Barr’s observation that such deformations are
intuitive operations for modeling three-dimensional objects [1]. On
the other hand, the user may prefer to specify the shape of an axis
directly, for example as a spline curve. If this is the case, we frame
it (i.e., compute turtle’s rotations d
U , d
L and d
H) as follows.

Let ~P (s); s 2 [0; `], be a given smooth curve. Assume that it has
been framed by a moving turtle; the turtle’s heading vector ~H thus
coincides with the tangent vector ~T to the curve for all s 2 [0; `].
Denote by ~H~L~U the turtle orientation at point ~P (s) of this curve

Figure 4: Leaves and stems of a herb lily (left) and tulip (right),
modeled using Algorithm 1. The models are based on drawings
in [38, pp. 56 and 58].

and by ~H 0 = ~H + d ~H the direction of the heading vector at
point ~P (s+ ds). Following [12], the infinitesimal rotation d~
 that
changes vector ~H to ~H 0 satisfies the equation d ~H = d~
 � ~H,
hence:

d ~H = d~
� ~H = (~Ud
U + ~Ld
L + ~Hd
H)� ~H (5)

= (~U � ~H)d
U + (~L� ~H)d
L + (~H � ~H)d
H (6)

= ~Ld
U � ~Ud
L + 0d
H : (7)

By taking dot products of the first and last expression with vectors
~L and ~U , we obtain:

d ~H � ~L = (~H 0 � ~H) � ~L = ~H 0 � ~L = d
U ; (8)

d ~H � ~U = (~H 0 � ~H) � ~U = ~H 0 � ~U = �d
L: (9)

By substituting ~T 0 for ~H 0 to emphasize that ~T 0 is a given tangent
vector to the curve being framed, we obtain finally:

d
U = ~T 0 � ~L and d
L = �~T 0 � ~U: (10)

Equations 10 constrain two rotational degrees of freedom. The third
angle d
H remains unconstrained, because it is multiplied by 0 in
Equation 7. This implies that a moving turtle frame can be assigned
to a given curve in different ways. In particular, if we set !H(s) in
such a way that vector ~L (or ~U) always lies in the osculating plane,
we obtain the Frenet frame, and if !H(s) � 0, we obtain the par-
allel transport frame. We commonly use the latter, because it min-
imizes rotations of the reference frame around the axis of the gen-
eralized cylinder. The resulting algorithm for approximating and
framing a given curve ~P (s) using a sequence of turtle motions is
given below.

Algorithm 2
1 #define P 1 /* curve ID */
2 #define K 57.29 /* radians to degrees */
3
4 Axiom: A(0) ?U(0,0,0) ?L(0,0,0)
5
6 A(s) > ?U(ux,uy ,uz) ?L(lx,ly,lz) : f s0 = s+�s g s0 � `
7 f t0x = tanX(P ,s0); t0y = tanY(P ,s0); t0z = tanZ(P ,s0);
8 �
L =K � (t0xlx + t0yly + t0zlz);
9 �
U = �K � (t0xux + t0yuy + t0zuz); g;
10 +(�
U) &(�
L) F(�s) A(s0)

The initial structure consists of apex A followed by query modules
?U and ?L (line 4). The parameter of the apex represents the cur-
rent position of the turtle, measured as its arc-length distance from

292

the origin of curve P . The production (lines 6 to 10) creates an or-
gan axis as a sequence of generalized cylinder slices of length �s,
as in Algorithm 1 (functions controlling the orientation and size of
the generating curve have been omitted here for simplicity). Specif-
ically, rotations �
U and �
L are calculated by multiplying (dot
product) the vectors ~U and ~L (lines 8 and 9) returned by the query
modules ?U and ?L (line 6) with the tangent vector to the curve P
returned by the tanX, tanY and tanZ function calls (line 7). The
values �
U and �
L orient the next segment of the curve, rep-
resented by module F(�s) in line 10. House-keeping productions
that erase modules A, ?U and ?L at the end of the derivation have
been omitted from this listing.

Figure 5: Allum vineale
(field garlic), modeled
using Algorithm 2 after
the photograph in [4].

A sample application of Al-
gorithm 2 is shown in Fig-
ure 5. Stems of a dry gar-
lic plant have been modeled
interactively, then framed us-
ing Algorithm 2 to orient the
generating curve. Although
the generating curve is circu-
lar in this case, its orienta-
tion is important for proper
polygonization of the result-
ing generalized cylinders.

The turtle frame also plays an
important role in orienting the
organs and branches that are
attached to an axis. Before
discussing this in detail, we
will consider the spacing of
organs along an axis.

5 Organ spacing

We call points at which organs are attached to an axis the nodes,
and the axis segments delimited by them the internodes. Let
fsig; i = 0; 1; : : : , be a sequence of node positions on an axis, and
fli = si+1 � sig be the associated sequence of internode lengths
(Figure 6a). It is straightforward to define the internode lengths us-
ing a function � of the position of one of its incident nodes, for
instance using the formula li = si+1 � si = �(si). Unfortunately,
with this definition function � does not provide a robust control
over the node distribution, because a small change in the position
of the initial node s0 may result in a totally different sequence of
the nodes that follow. For example, if s0 = 0, the function � shown
in Figure 6b will yield the sequence of node positions fsig =
0; 1; 2; 3; : : : (internode length equal to 1), but if s00 = 0:25, the se-
quence of node positions will be fs0ig = 0:25; 0:75; 1:25; 1:75; : : :
(internode length 0.5).

To achieve a more stable behavior, we observe that 1=�(s) can be
interpreted as the local density of nodes, in the sense that the integer
part of the integral

N(so; s) =

Z s

s0

ds

�(s)
(11)

represents the number of internodes between node s0 and point s on
the axis. Thus, given the initial node s0, positions of the subsequent
nodes correspond to the integer increments of the value of function
N , that is, N(so; si+1) = N(so; si)+1 (Figure 6c). The sequence
of nodes fsig defined this way is no longer critically sensitive to
the initial node position s0. Specifically, in Appendix A.2 we prove

s0
l0

s1

l1

s2
l2

s3
l3

s4
a

0

1

1 2 3 4

λ(s)

s

b

1 2 3 4
0

1

2
1/λ(s)

s

c

Figure 6: Partitioning an axis into segments. (a) The labeling of
nodes and internodes. (b) Positional information represents the in-
ternode length. The same function �(s) generates very different
node sequences (filled and empty circles), depending on the posi-
tion of the initial node. (c) Positional information represents node
density. Nodes are placed at the locations corresponding to the unit
areas under the curve 1=�(s). This definition leads to a more stable
node spacing than (b).

that for any two node sequences fsig, fs0ig such that s0 < s00 < s1,
the elements of both sequences interleave: si < s0i < si+1 for all
i = 0; 1; 2; : : : .

Specification of node spacing based on Equation 11 also has other
useful properties. First, if �(s) has a constant value l between nodes
si and si+1, then l is equal to the internode length:

Z si+1

si

ds

l
= 1 implies si+1 � si = l: (12)

Second, if �(s) is a linear function, �(s) = as + b, the length of
consecutive internodes changes in a geometric sequence, li+1 =
eali (proof in Appendix A.3). The ease of defining geometric se-
quences is important, because their approximations are often ob-
served in nature (according to Niklas, they form the “null hypothe-
sis” [22]).

The algorithm for placing nodes according to a given function �(s)
is presented below.

Algorithm 3

1 Axiom: A(0,0)
2
3 A(s,a) : f s0 = s+�s g s0 � `
4 f a0 = a+�s=�(s) ;
5 if (a0 < 1) f flag = 0; g
6 else f a0 = a0 � 1; flag = 1; g g;
7 F(�s) B(flag) A(s0,a0)
8
9 B(flag) : flag == 0; �
10 B(flag) : flag == 1; @o

The initial structure consists of apex A (line 1). The first parameter
represents the distance of the current point on the axis from the axis
base, as in Algorithms 1 and 2. The second parameter represents
the fractional part of the integral N(0; s) given by Equation 11.
The production in lines 3 to 7 creates the axis as a sequence of
segments F of length �s, separated by markers of potential node
locations B. If the flag is zero, module B is subsequently erased
(line 9). When a exceeds 1, the flag is set (line 6) to produce a
node marked by symbols @o (line 10).

293

0.5

1.0

002

0.5

1.0

0 -20020

0.5

1.0

0012

10

20

 x

y -20 2

Leaflet length [cm] Internode length [cm] Branching angle [deg] Stem shape [cm]

 a b c d e f g

Given image Model

s /l s /l s /l

Figure 7: Using positional information to model a Pellaea falcata (sickle fern) leaf.

6 Modeling single-compound plant struc-
tures

We have combined the methods for framing and partitioning an axis
into the following algorithm, which makes it possible to model a va-
riety of single-compound structures (sequences of organs supported
by a single stem). Definitions of graphical functions and constants
used in previous algorithms have not been included. Secondary
features, such as the randomization of values returned by functions,
have also been omitted.

Algorithm 4

1 #define � 0 /* phyllotactic angle */
2
3 Axiom: A(0,0,0) ?U(0,0,0) ?L(0,0,0)
4
5 A(s,a,') > ?U(ux,uy,uz) ?L(lx,ly,lz) :
6 f s0 = s+�s g s0 � `
7 f t0x = tanX(P ,s0); t0y = tanY(P ,s0); t0z = tanZ(P ,s0);
8 �
L =K � (t0xlx + t0yly + t0zlz);
9 �
U = �K � (t0xux + t0yuy + t0zuz);
10 a = a+�s=�(s)
11 if (a < 1) f flag = 0; g
12 else f a = a� 1; flag = 1; ' = '+�; g g;
13 +(�
U) &(�
L) #(stem width(s))
14 F(�s)B(s,',flag) A(s0,a,')
15
16 B(s,',flag) : flag == 0; �
17 B(s,',flag) : flag == 1
18 f l = length(s); w = width(s); g;
19 [/(') [+(brangle(s)) ˜L(l,w)]
20 [�(brangle(s)) ˜L(l,w)]]

The key new element is the third production (lines 17 to 20), which
inserts a pair of organs at the node. The organs are defined as in-
stances of a predefined surface L, with the length, width and angle
of insertion determined by functions of position s.

In order to present the operation of Algorithm 4 from a user’s per-
spective, let us consider the process of modeling a Pellaea falcata
(sickle fern) leaf. The photograph of the target structure is shown
in Figure 7a. Construction begins with a generic single-compound

(pinnate) leaf (b), which is generated when all graphically defined
functions are set to their default constant values. The length of the
leaflets is then modified as a function of their position on the stem
(c). Since the leaf silhouette is determined by the extent of its com-
ponent leaflets, this function controls the overall leaf shape. The
next two functions define the lengths of the internodes (d) and the
values of the branching angles between the stem and the leaflets
(e). The stem shape is then established by manipulating a paramet-
ric curve (f). Finally, the branching angles and the leaflet lengths
are randomized to capture the unorganized variation present in the
original leaf (g). The model also makes use of functions that have
not been shown in Figure 7, which define the taper of the stem and
the width of the leaflets.

In the above example, the individual leaflets have been modeled
as predefined surfaces L, scaled in length and width using func-
tions of their position on the stem (lines 18 to 20 in Algorithm 4).
Leaves, petals and similar organs can also be modeled as gener-
alized cylinders with Algorithm 1. We use this technique in most

Figure 8: Plants and plant organs with different phyllotactic pat-
terns: (a) Blechnum gibbum leaf with the distichous arrangement of
leaflets, (b) Antirrhinum majus (snapdragon) plant with a decussate
arrangement of leaves, (c,d) Casilleja coccinea (Indian paintbrush)
plant and Pinus strobus (white pine) cone with spiral arrangements
of leaves and scales.

294

models, because it allows us to define and manipulate organ shapes
more easily. For example, the rippled surface of the Blechnum gib-
bum leaflets (Figure 8a) was obtained by randomly changing the
shape, size and orientation of the generating curve.

Constant � in Algorithm 4 controls phyllotaxis, or the arrangement
of organs around the stem [28]. If � = 0, organs are arranged in a
planar distichous pattern, as in Figures 7 and 8a. If � = 90Æ, con-
secutive pairs of organs are issued in mutually perpendicular planes,
forming a decussate pattern (Figure 8b). Finally, if � = 137:5Æ

(the golden angle), and only one organ is attached to each node
(line 20 of Algorithm 4 is removed), a spiral phyllotactic pattern
results (Figure 8c and d). Thus, a change in a single constant ex-
tends Algorithm 4 to three dimensions.

Figure 9: Helichrysum
bracteatum (strawflower).

A distinctive feature of
Helichrysum bracteatum (a
strawflower, Figure 9) is
the posture of petals (ray
florets), which are more
curved near the center of
the flower head than on the
outside. To capture this gra-
dient, the position of the
petals on the main axis of
the flower head was used
to interpolate between two
curves that describe the ex-
treme postures of the petals.
A similar technique made it

possible to control the shape of leaves and petals in the beargrass
model (Figure 10). Photographs of the inflorescences that we used
as a reference to construct this model are shown in Figure 11.

7 Compact phyllotactic patterns

In spiral phyllotactic patterns, the individual organs, e.g. petals, flo-
rets, or scales, are often densely packed on their supporting surface
(the receptacle), as illustrated by the model of beargrass. Model-
ing such patterns using Algorithm 4 requires a coordinated manip-
ulation of the radius of the receptacle, the size of the organs being
placed, and their vertical displacement (corresponding to the intern-
ode length). In this section we facilitate the modeling process by re-
lating the vertical displacement to the radius of the supporting sur-
face and the size of organs. Both the radius and the organ size can
be defined as functions of organ position on the receptacle, making
it possible to capture a wide range of forms and patterns. The pro-
posed model has the same generative power as the collision-based
model of phyllotaxis introduced by Fowler et al. [11], but operates
faster because it avoids the explicit detection of collisions between
organs.

Vogel [35] provided the first mathematical description of phyllotac-
tic patterns used for computer graphics purposes [28]. His model
places equally sized organs on the surface of a flat disk, stating that
the n-th organ will have polar coordinates:

� = n � 137:5Æ; r = c
p
n; n = 1; 2; : : : (13)

where c is a constant. The angular displacement of 137:5Æ between
consecutive organs is treated as empirical data, reproduced but not
explained by the model. The formula for the radial displacement
r is justified by two observations: (a) since organs are placed from
the disk center outwards, the ordering number n of the organ placed
at a distance r from the center is equal to the total number of organs

Figure 10: Model of Xerophyllum tenax (beargrass).

Figure 11: Photographs of Xerophyllum tenax inflorescences.

that occupy a disk of radius r, and (b) if all organs occupy the same
area, the total number n of organs in a disk of radius r will be
proportional to r2, hence r = c

p
n.

Vogel’s model abstracts from the shape of organs and places them in
a disk according to the area they occupy. Lintermann and Deussen
proposed a similar approximation to derive a formula for placing
organs on the surface of a sphere [19]. Both approaches are sub-
sumed by the model of Ridley [31], which operates on arbitrary
surfaces of revolution. Our algorithm is based on Ridley’s analysis.

295

x

y

C

dA=2πfx(s)ds

fx(s)

ds

Figure 12: A receptacle.

Let (fx(s); fy(s)); s 2
[0; L] be a parametric def-
inition of a planar curve C
that generates the recepta-
cle when rotated around the
y axis of the coordinate sys-
tem (Figure 12). We as-
sume natural parameteriza-
tion of the curve C, which
means that parameter s is
the arc-length distance of
point (fx(s); fy(s)) from
the origin of this curve. The
area dA of the infinitesimal

slice of the receptacle generated by the arc [s; s+ ds] is then equal
to 2�fx(s)ds (Figure 12). We denote by ��2(s) the area occupied
by an organ placed on the receptacle at a distance s from the origin
of the generating curve C. As in the case of partitioning an axis
into internodes (Section 5), we can interpret 1=��2(s) as the organ
density at s. The integer part of the integral

N(0; s) =

Z s

0

2�fx(s)

��2(s)
ds =

Z s

0

2fx(s)

�2(s)
ds (14)

is then equal to the total number of organs placed in the portion
[0; s] of the receptacle. Consecutive organs are placed at locations
that increment N(0; s) by one. This leads to the following algo-
rithm:

Algorithm 5

1 #define C 1 /* generating curve ID */
2 #define ` curveLen(C) /* length of curve C */
3 #define �(s) func(2,s) /* density function */
4 #define �s 0.001 /* integration step */
5
6 Axiom: A(0,0)
7
8 A(s,a) : s < `
9 f while(a < 1 && s < `)
10 f x = curveX (C; s);
11 a = a+ (2x=�2(s))�s;
12 s = s+�s;
13 g
14 a = a� 1; y = curveY(C; s);
15 g
16 ; [f(y)-(90)f(x)˜O(�(s))] n(137.5) A(s,a)

Figure 13: Example of a
compact phyllotactic pat-
tern generated using Algo-
rithm 5.

The first parameter of module
A represents the arc-length dis-
tance s of the current point
from the base of the recepta-
cle. The second parameter is
the fractional part a of the inte-
gral N(0; s) (Equation 14). The
integration is performed incre-
mentally by the while loop in-
side the production (lines 9 to
13). When the integral reaches
1, an organ O of radius �(s) is
placed at height y and distance x
from the receptacle axis y (line
16). Consecutive organs are ro-

tated with respect to each other by the golden angle 137:5Æ mea-

Figure 14: Inflorescences of Kniphofia sp. (red-hot poker plant)
generated using Algorithm 5: models of two developmental stages
(top) and the photographs used as a reference (bottom).

sured around this axis. A sample pattern generated by Algorithm 5
is shown in Figure 13.

Figure 15: A Pinus
banksiana (Jack pine)
cone.

In realistic models, we replace
spheres O by models of plant or-
gans, as in [11]. For example,
Figure 14 shows two developmen-
tal stages of the inflorescence of
Kniphofia sp. (red-hot poker plant),
in which florets have been modeled
using generalized cylinders. In Fig-
ure 15 the algorithm has been ad-
ditionally modified to allow for a
curved cone axis. This modification
is equivalent to the deformation of a
straight cone, performed as a post-
processing step.

8 Modeling multiple-compound structures

Algorithms 4 and 5, introduced in the previous sections, have been
illustrated using examples of single-compound monopodial struc-
tures, each consisting of a sequence of organs placed along an axis
or on a receptacle. The same algorithms can also be used, how-

296

Figure 16: A photograph and a model of a Spiraea sp. twig. The
arrangement of shoots on the twig and the arrangement of leaves
and flowers in each shoot follow the spiral phyllotactic pattern.
The approximately vertical posture of all shoots reflects strong or-
thotropism, which has been simulated by biasing the turtle’s head-
ing vector in the vertical direction as described in [28, page 58].

ever, to generate structures in which the main axis supports entire
substructures. For example, the Spiraea sp. twig shown in Fig-
ure 16 was constructed using Algorithm 4 twice: first to place the
flower-bearing shoots along the main stem, then to place the leaves
and the flowers within each shoot. In this case, all shoots have been
assumed equal, except for the different shoot axis shapes caused by
their orthotropism (tendency to grow vertically). In general, how-
ever, the supported structures may vary in a systematic manner, re-
flecting a morphogenetic gradient along the main stem.

To capture this gradient, we assume that, given two branches of
the same order, the shorter branch is identical (up to the effects
of tropisms and random variation) to the top portion of the longer
branch. This concept of branch mapping is supported by both bio-
logical arguments and simulation results.

Biologically, it is related to the fact that apical meristems, the main
engines of plant development, are located at the distal ends of

Figure 17: The effect of branch mapping. (a) An inflorescence of
common lilac Syringa vulgaris. (b) Reconstruction of this inflo-
rescence based on the measurements of all branches and flowers.
(c) The same structure, all flowers assumed to be identical. (d) An
approximate reconstruction based on branch mapping.

branches. Thus, if branch B develops over a shorter time or at a
slower rate than an otherwise equivalent branch A, branch B will
resemble the top portion of A.

A modeling example supporting the use of branch mapping is
shown in Figure 17. An inflorescence of common lilac Syringa
vulgaris (a) has been measured and reconstructed at three levels of
accuracy: with all architectural information present (b), using the
assumption that all flowers are identical (c), and using the assump-
tion that shorter branches are identical to the top portions of the
longer branches of the same order (d). Although reconstruction (d)
is visually the least accurate, it still matches the real structure well.

Branch mapping makes it possible to define all branches of the same
order using one set of functions. This concept is captured by the
following algorithm.

Algorithm 6

1 Axiom: A(0,0)
2
3 A(o,s) : o <MAX && s < max len[o]
4 f rel = s=max len[o]; g;
5 #(int width(o,rel)) F(int len(o,rel))
6 [+(branch ang(o,rel))
7 A(o+ 1,max len[o+ 1] - branch len(o,rel))]
8 [�(branch ang(o,rel))
9 A(o+ 1,max len[o+ 1] - branch len(o,rel))]
10 /(90) A(o,s+int len(o; rel))
11
12 A(o,s) : s � max len[o]; ˜K

Algorithm 6 can be viewed as a recursive version of Algorithm 4,
with the mechanism for creating curved axes removed for simplic-
ity, and the internode length determined using point-sampled posi-
tional information as in Figure 6b for the same reason. Parameters o
and s of the apicesA represent the axis order and position along this
axis, respectively. The array max len[o] specifies the length `max
of the longest axis of each order o < MAX. This value is used to
represent positional information in relative terms, as a fraction rel
of `max (line 4). This facilitates the specification of all functions,
since they have fixed domain [0; 1]. Functions int width(o; rel),
int len(o; rel), branch ang(o; rel) and branch len(o; rel) character-
ize morphogenetic gradients: the width and length of internodes,
the branching angles at which the child branches are inserted, and
the length of these child branches. All axes of the same order share
the same set of functions. Within an axis of length `, parameter s
ranges from the initial value of `max � ` (assigned to the newly
created apices A in lines 7 and 9) to the maximum value of `max
(condition in line 3). Thus, morphogenetic gradients along shorter
axes are aligned with the distal portion of the longest axis of the
same order, as required for branch mapping. Predefined flowers K
are placed at the ends of the branches (line 12).

Examples of lilac inflorescences generated by Algorithm 6 are
shown in Figure 18. Lilac inflorescences have decussate phyl-
lotaxis. As was the case for Algorithm 4, a small modification
of Algorithm 6 makes it possible to generate structures with spiral
phyllotaxis. An example of the resulting structure — the inflores-
cence of an Astilbe plant — is shown in Figure 19.

Algorithm 6 can also be applied to approximate trees with clearly
delineated branch axes (many young trees satisfy this criterion).
If the axes of first-order branches are approximately straight and
higher-order branches are relatively short, the outline of the tree
crown is determined by the extent of the first-order branches and

297

Figure 18: Inflorescences of two lilac species modeled using Algo-
rithm 6: (a) Syringa chinensis CV. Rubra and (b) Syringa reticulata.

Figure 19: A photograph and a model of an Astilbe x arendsii CV.
Diamant plant.

can easily be controlled by function branch len(0; rel) (Figure 20).
In this sense, the use of positional information addresses the prob-
lem of progressing from silhouette to detail in the modeling process,
exemplified by Figure 1c.

Figure 20: A generic
tree model and its sil-
houette specifciation.

The problem of generating trees
given their silhouettes occurs in
several applications. One of them
is the modeling and rendering of
plant ecosystems. According to the
approach proposed by Deussen et
al. [10], the complexity of ecosys-
tem modeling can be addressed
by performing an individual-based
simulation of the whole ecosys-
tem, then replacing the coarse
plant models used in this simu-
lation with their detailed counter-
parts. The modeling method de-
scribed in the present paper pro-
vides a means of creating plant
models that match silhouettes de-
termined at the ecosystem level
(Figure 21).

9 Conclusions

We have explored the idea of plant modeling with functions that
relate features of a plant to their positions along plant axes. Our ex-
perience confirms previous observations that this use of positional
information is intuitive and well suited to the interactive model-
ing of plants. Visually important aspects of plant appearance —
posture, the arrangement of components, and the overall silhouette
— can easily be captured and controlled, while the procedural ap-
proach removes the tedium of specifying and placing each plant
component individually. The algorithms are sufficiently fast to sup-
port interactive plant modeling on current personal computers.

We demonstrated the power of the modeling with positional infor-
mation by recreating the form of several plants found in nature,
presented on photographs, or depicted in drawings. The modeled
structures range from individual leaves to compound herbaceous
plants and trees.

The use of positional information is not limited to interactive mod-
eling applications. We showed this by incorporating detailed tree
models into a plant ecosystem model that only provided coarse
characteristics of tree silhouettes. A related potential application
is the automatic generation of plant models that match silhouettes
of real trees, given their photographs [32].

At the technical level, our paper contributes: (a) a conceptual
distinction between L-systems and Chomsky grammars as formal
bases of developmental and structural plant models; (b) a general-
ized method for framing plant axes, free of the artifacts of the Frenet
frame; (c) a robust method for spacing organs along plant axes; (d)
an analytic method for generating phyllotactic patterns on arbitrary
surfaces of revolution, based on Ridley’s model; (e) the notion of
branch mapping and its application to the modeling of compound
plant structures; and (f) an example of the modeling system that
integrates all of these concepts.

One open research problem is the use of constraints. In Algorithm
5 we introduced a relation between organ size and available space
to constrain organ position in phyllotactic patterns. Many other re-
lations have also been identified by biologists and can be applied
to plant modeling [17]. By incorporating them into the algorithms
we may further facilitate the modeling process. Specifically, con-
straints may reduce the number of parameters and functions that
must be specified explicitly, while enforcing biological plausibility
of the resulting structures.

Another interesting problem falls in the domain of interactive mod-
eling techniques. In the present implementation, the user manip-
ulates function plots, curves, and surfaces that are displayed sepa-
rately from the model. A direct manipulation interface, in which
the user would interact with the modeled structure itself, may lead
to an even more intuitive modeling process.

A Appendices

A.1 Fundamental theorem of differential turtle
geometry

The method for modeling curved limbs presented in Section 4 is
based on the following extension of the fundamental theorem of
differential geometry for three-dimensional curves [34, page 61] to
the turtle reference frame.

Theorem. Let ~H(s)~L(s)~U(s) denote a moving reference frame de-
fined on an interval [0; `]. Furthermore, let ~H(0)~L(0)~U(0) be the

298

Figure 21: Visualization of an ecosystem simulation. Top: direct visualization. Bottom: realistic visualization. Tree silhouettes match the
shapes coarsely defined at the ecosystem level.

initial orientation of this frame, and differentiable functions !H(s),
!L(s) and !U(s) be its rates of rotation around the axes ~H(s),
~L(s) and ~U(s). The orientation of this frame is then uniquely de-
fined for all s 2 [0; `]. Moreover, given the initial frame position
~P (0), there is a unique differentiable curve ~P (s) for which s is the
natural (arc-length) parameter, such that ~H(s) is tangent to ~P (s)
for all s 2 [0; `].

Proof. Following [12], an infinitesimal rotation vector d~
 acting on
an arbitrary vector ~A changes it by d ~A = d~
� ~A. Thus, changes
of the ~H~L~U reference frame due to the rotation rate vector ~! =
!H ~H + !L~L+ !U ~U satisfy the system of equations:

d ~H

ds
= ~! � ~H;

d~L

ds
= ~! � ~L;

d~U

ds
= ~! � ~U: (15)

Given the initial frame orientation ~H(0)~L(0)~U(0), vectors ~H(s),
~L(s) and ~U(s) are thus the unique solution to the initial value prob-
lem for the system of differential equations (15) in the interval [0; `].
Moreover, curve ~P (s) is given by the integral:

~P (s) = ~P (0) +

Z s

0

~H(s)ds: 2 (16)

A.2 Stability of node distribution

The fact that the distribution of nodes defined by integer values of
Equation 11 does not depend critically on the choice of the initial
node can be formally stated as follows.

Theorem. Consider a function � such that �(s) > 0 for all s > 0,
and let so; s00 > 0 be two numbers. Using function N specified
by Equation 11, define sequences fsig and fs0ig such that si+1 =
N(s0; si)+ 1 and s0i+1 = N(s00; s

0

i)+ 1 for all i = 0; 1; 2; : : : : If
s0 < s00 < s1 then si < s0i < si+1 for all i = 0; 1; 2; : : : :

Proof by induction on i. The assumption �(s) > 0 implies that
F (s) � N(s0; s) is an increasing function of the argument s. Thus,
si < s0i < si+1 implies F (si) < F (s0i) < F (si+1), and therefore
F (si)+1 < F (s0i)+1 < F (si+1)+1. By substituting F (si)+1 =
F (si+1), F (s0i) + 1 = F (s0i+1), and F (si+1) + 1 = F (si+2), we
obtain F (si+1) < F (s0i+1) < F (si+2), hence si+1 < s0i+1 <
si+2: 2

A.3 Distribution of nodes defined by a linear
function �.

Theorem. Consider the sequence of nodes si defined by integer
values of Equation 11, and let �(s) = as + b. The length of con-
secutive internodes li = si+1�si satisfies the equation li+1 = eali
for i = 0; 1; 2; : : : :

299

Proof. From Equation 11 we obtain:

1 = N(s0; si+1)�N(s0; si) (17)

=

Z si+1

si

ds

as+ b
=

1

a
ln
asi+1 + b

asi + b
: (18)

Thus, asi+1 + b = ea(asi + b) and, similarly, asi+2 + b =
ea(asi+1+b). By subtracting these equations sidewise and dividing
by a we obtain si+2 � si+1 = ea(si+1 � si), or li+1 = eali: 2.

Acknowledgments

We would like to thank: Lynn Mercer for contributing Figures 1b
and c, Josh Barron for Figure 8a, Laura Marik for Figure 15, En-
rico Coen for joint work on the snapdragon model (Figure 8b),
Campbell Davidson for joint work on the lilac models (Figure 18),
Christophe Godin for joint work on the decomposition rules, Bernd
Lintermann and Oliver Deussen for a detailed demo of xfrog, and
the referees for their insightful comments. The support of the Nat-
ural Sciences and Engineering Research Council of Canada, the In-
ternational Council for Canadian Studies, the Alberta MACI project
and the University of Calgary is gratefully acknowledged.

References

[1] A. H. Barr. Global and Local Deformations of Solid Primitives. Pro-
ceedings of SIGGRAPH 84, in Computer Graphics, 18, 3, July 1984,
pages 21–30.

[2] D. Barthélémy, Y. Caraglio, and E. Costes. Architecture, Gradients
Morphogénétiques et Age Physiologique ches les Végétaux. In J. Bou-
chon, Ph. De Reffye, and D. Barthélémy, editors, Modélisation et Sim-
ulation de l’Architecture des Végétaux, pages 89–136. INRA Editions,
Paris, 1997.

[3] R. L. Bishop. There Is More Than One Way to Frame a Curve. Amer.
Math. Monthly, 82(3):246–251, March 1975.

[4] H. Bjornson. Weeds. Chronicle Books, San Francisco, 2000.

[5] J. Bloomenthal. Modeling the Mighty Maple. Proceedings of SIG-
GRAPH 85, in Computer Graphics, 19, 3, July 1985, pages 305–311.

[6] J. Bloomenthal. Calculation of Reference Frames Along a Space
Curve. In A. Glassner, editor, Graphics Gems, pages 567–571. Aca-
demic Press, Boston, 1990.

[7] T. E. Burk, N. D. Nelson, and J. G. Isebrands. Crown Architecture
of Short-rotation, Intensively Cultured Populus. III. A Model of First-
order Branch Architecture. Canadian Journal of Forestry Research,
13:1107–1116, 1983.

[8] N. Chomsky. Three Models for the Description of Language. IRE
Trans. on Information Theory, 2(3):113–124, 1956.

[9] P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. Plant
Models Faithful to Botanical Structure and Development. Proceedings
of SIGGRAPH 88, in Computer Graphics 22, 4, August 1988, pages
151–158.

[10] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and
P. Prusinkiewicz. Realistic Modeling and Rendering of Plant Ecosys-
tems. Proceedings of SIGGRAPH 98, Annual Conference Series, July,
1998, pages 275–286.

[11] D. R. Fowler, P. Prusinkiewicz, and J. Battjes. A Collision-based
Model of Spiral Phyllotaxis. Proceedings of SIGGRAPH 92, in Com-
puter Graphics, 26, 2, July 1992, pages 361–368.

[12] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, 1980.

[13] J. S. Hanan. Parametric L-systems and Their Application to the Mod-
elling and Visualization of Plants. PhD thesis, University of Regina,
June 1992.

[14] A. J. Hanson. Quaternion Gauss Maps and Optimal Framings of
Curves and Surfaces. Technical Report 518, Computer Science De-
partment, Indiana University, Bloomington, IN, 1998.

[15] C. Jirasek, P. Prusinkiewicz, and B. Moulia. Integrating Biomechanics
into Developmental Plant Models Expressed Using L-systems. In H.-
Ch. Spatz and T. Speck, editors, Plant Biomechanics 2000, pages 615–
624. Georg Thieme Verlag, Stuttgart, 2000.

[16] J. J. Koenderink. Solid Shape. MIT Press, Cambridge, 1993.

[17] P. Kruszewski and S. Whitesides. A General Random Combina-
torial Model of Botanical Trees. Journal of Theoretical Biology,
191(2):221–236, 1998.

[18] B. Lintermann and O. Deussen. XFROG 2.0. www.greenworks.de,
December 1998.

[19] B. Lintermann and O. Deussen. Interactive Modeling of Plants. IEEE
Computer Graphics and Applications, 19(1):56–65, 1999.

[20] R. Měch. Modeling and Simulation of the Interactions of Plants with
the Environment using L-systems and their Extensions. PhD thesis,
University of Calgary, October 1997.

[21] R. Měch and P. Prusinkiewicz. Visual Models of Plants Interacting
with their Environment. Proceedings of SIGGRAPH 96, Annual Con-
ference Series, August, 1996, pages 397–410.

[22] K. J. Niklas. Plant Allometry: The Scaling of Form and Process. The
University of Chicago Press, Chicago, 1994.

[23] P. Oppenheimer. Real Time Design and Animation of Fractal Plants
and Trees. Proceedings of SIGGRAPH 86, in Computer Graphics, 20,
4, August 1986, pages 151–158.

[24] W. F. Powell. Drawing Trees. Walter Foster Publishing, Inc., Laguna
Hills, CA, 1998.

[25] P. Prusinkiewicz, J. Hanan, and R. Měch. An L-system-based Plant
Modeling Language. Lecture Notes in Computer Science 1779, pages
395–410. Springer-Verlag, Berlin, 2000.

[26] P. Prusinkiewicz, M. James, and R. Měch. Synthetic Topiary. Proceed-
ings of SIGGRAPH 94, Annual Conference Series, July, 1994, pages
351–358.

[27] P. Prusinkiewicz, R. Karwowski, R. Měch, and J. Hanan. L-
studio/cpfg: A Software System for Modeling Plants, 2000. Lecture
Notes in Computer Science 1779, pages 457–464. Springer-Verlag,
Berlin, 2000.

[28] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[29] W. T. Reeves and R. Blau. Approximate and Probabilistic Algorithms
for Shading and Rendering Structured Particle Systems. Proceedings
of SIGGRAPH 85, in Computer Graphics, 19, 3, July 1985, pages
313–322.

[30] W. R. Remphrey and G. R. Powell. Crown Architecture of Larix lar-
icina Saplings: Quantitative Analysis and Modelling of (nonsyllep-
tic) Order 1 Branching in Relation to Development of the Main Stem.
Canadian Journal of Botany, 62(9):1904–1915, 1984.

[31] J. N. Ridley. Ideal Phyllotaxis on General Surfaces of Revolution.
Mathematical Biosciences, 79:1–24, 1986.

[32] T. Sakaguchi. Botanical Tree Structure Modeling Based on Real
Image Set. SIGGRAPH 98 Conference Abstracts and Applications,
1998.

[33] J. M. Snyder and J. T. Kajiya. Generative Modeling: A Symbolic
System for Geometric Modeling. Proceedings of SIGGRAPH 92, in
Computer Graphics, 26, 2, July 1992, pages 369–378.

[34] I. Vaisman. A First Course in Differential Geometry. Marcel Dekker,
New York, 1984.

[35] H. Vogel. A Better Way to Construct the Sunflower Head. Mathemat-
ical Biosciences, 44:179–189, 1979.

[36] J. Weber and J. Penn. Creation and Rendering of Realistic Trees. Pro-
ceedings of SIGGRAPH 95, Annual Conference Series, August, 1995,
pages 119–128.

[37] K. West. How to Draw Plants. The Techniques of Botanical Illustra-
tion. Timber Press, Portland, OR, 1997.

[38] E. Wunderlich. Botanical Illustration in Watercolor. Watson–Guptill,
New York, 1991.

300

