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METHODOLOGY

The use of plant models in deep 
learning: an application to leaf counting 
in rosette plants
Jordan Ubbens1*, Mikolaj Cieslak2, Przemyslaw Prusinkiewicz2 and Ian Stavness1

Abstract 

Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capabil-
ity of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically 
require large and diverse datasets to learn generalizable models without providing a priori an engineered algorithm 
for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, 
where available datasets are often small and the costs associated with generating new data are high. In this work 
we propose a new method for augmenting plant phenotyping datasets using rendered images of synthetic plants. 
We demonstrate that the use of high-quality 3D synthetic plants to augment a dataset can improve performance on 
the leaf counting task. We also show that the ability of the model to generate an arbitrary distribution of phenotypes 
mitigates the problem of dataset shift when training and testing on different datasets. Finally, we show that real and 
synthetic plants are significantly interchangeable when training a neural network on the leaf counting task.
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Background
Non-destructive, image-based plant phenotyping has 
emerged as an active area of research in recent years. This 
is due in part to a gap in capability between genomics 
and phenomics, as well as the complexity of genotype-to-
phenotype mapping [1]. The ability to correlate heritable 
traits with genetic markers relies on the accurate meas-
urement of phenotypes. In order to achieve statistical 
power, this measurement typically needs to be done at 
a large scale which makes measurement by hand intrac-
table. Image-based phenotyping is an important tool 
for genotype-phenotype association as it allows for the 
required automation. High-throughout imaging is aided 
by imaging technologies available in some automated 
greenhouses [2], as well as low-cost imaging tools which 
can be made with off-the-shelf parts [3]. An appropriate 
software environment is also required for the automatic 

extraction of phenotypic features from the image data. 
Ideally, such software should be highly automated, scal-
able, and reliable. Although high-throughput phenotyp-
ing is typically conducted in circumstances where the 
scene can be controlled, for instance on rotating stages 
in imaging booths, computer vision algorithms should be 
invariant to changes in the scene if they are to be used 
in greenhouse or field environments. These algorithms 
should also take into account other factors, such as the 
structural variation between different species or acces-
sions, the shape and color of leaves, and the density and 
geometric eccentricity of the shoots. Therefore, any algo-
rithm that contains parameters which are hand-tuned 
to a specific collection of plants is at risk of being overly 
specified.

Unlike engineered computer vision pipelines, deep 
neural networks learn a representation of the data with-
out image parameters specified by hand. This makes them 
potentially more robust to different types of variations in 
the image data, as the network can adapt to be invariant 
to such differences. However, the transition from hand-
engineered computer vision pipelines to deep learning is 
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not without limitations. While so-called “deep” networks 
have the representational capacity to learn complex mod-
els of plant phenotypes, the robustness of these represen-
tations relies on the quality and quantity of the training 
data. In most vision-based tasks where deep learning 
shows a significant advantage over engineered methods, 
such as image segmentation, classification, and detection 
and localization of specific objects in a scene, the size of 
the dataset is typically on the order of tens of thousands 
to tens of millions of images [4]. This allows for much 
variety in the training data, and very robust learned rep-
resentations as a consequence.

Unfortunately, datasets of plant images, labeled with 
corresponding phenotypic data, are not yet available on 
a large scale due to the considerable expense involved in 
collecting and annotating this type of data. In addition, 
any supervised machine learning method, including deep 
learning, requires that the data used to train the model is 
representative of the data used at test time. Plant pheno-
typing tasks are vulnerable to such problems with incom-
plete training data due to the difficulty of generating a 
dataset in which a comprehensively wide range of pheno-
types are represented.

The small size of existing plant phenotyping datasets, 
the expense of generating new data, and the limitations 
of naturally-generated datasets motivate the use of an 
alternative source of data to train deep networks for plant 
phenotyping tasks. For this purpose we propose the use 
of synthetic plants—images of computer-generated plant 
models—to augment datasets of plant images or to be 
used alone as a large and rich source of training data. 
Compared to generating new data using real plants, once 
a model is developed, the generation of new data is essen-
tially without cost. Moreover, models can be parameter-
ized to generate an arbitrary distribution of phenotypes, 
and ground-truth phenotype labels can be automatically 
generated without any measurement errors and without 
any human effort or intervention.

Deep learning
Deep learning refers to a broad category of machine 
learning techniques, which typically involve the learn-
ing of features in a hierarchical fashion. Such techniques 
have been shown to be successful in many types of com-
puter vision tasks, including image classification, multi-
instance detection, and segmentation [5]. Deep learning 
is an area of active research, and applications to plant sci-
ence are still in the early stages. Previous work has shown 
the advantage of deep learning in complex image-based 
plant phenotyping tasks over traditional hand-engineered 
computer vision pipelines for the same task. Such tasks 
include leaf counting, age estimation, mutant classifica-
tion [6], plant disease detection and diagnosis from leaf 

images [7], the classification of fruits and other organs 
[8], as well as pixel-wise localization of root and shoot 
tips, and ears [9]. The small body of existing research on 
deep learning applications in image-based plant pheno-
typing shows promise for future work in this field.

We trained Convolutional Neural Networks (CNNs) 
using the open-source Deep Plant Phenomics platform 
[6] to perform each of the experiments presented in this 
work. CNNs are often used for classification and regres-
sion, where the input data contains some sort of local 
connectedness, for example, spatially local features in 
images. A CNN contains one or more convolutional lay-
ers, each receiving an input volume and outputting an 
output volume. An image is considered to be a n×m× 3 
volume, where n and m are the image height and width 
in pixels, and 3 is the number of color channels. In a con-
volutional neural network, image features are extracted 
from a volume by a series of convolutional layers, which 
learn collections of filters. These filters are applied pixel-
wise in strided convolutions (in a sliding window fashion) 
over the input volume, where the dot product between 
the filter weights and each spatial location (assuming a 
stride size of one pixel) in the input volume creates an 
activation map. Similarly, the output volume of the con-
volutional layer is an p× q × k volume where p and q 
are some spatial extents, and k represents the number 
of filters in the layer (and therefore the number of filter 
activation maps). As with regular neural network layers, a 
non-linear function is applied to the activations.

In order to construct a hierarchical representation of 
the data, many convolutional layers are alternated with 
pooling layers, which downsample the spatial size of the 
input volume. The output of the final convolutional layer 
(or final pooling layer) represents a learned representa-
tion of the original input data. This learned representa-
tion is used by fully-connected neural network layers to 
perform classification or regression, and all of the net-
work’s parameters are learned simultaneously during 
training. A more detailed overview of CNNs for plant 
scientists is provided in [6], and readers may refer to the 
deep learning literature for more technical descriptions 
[5].

For some applications, the construction of large data 
sets of labeled images can be facilitated by crowd-sourc-
ing images freely available on the Internet [4]. Unfortu-
nately, this approach is not possible for plant phenotyping 
datasets, due to their specificity. The creation of these 
datasets requires sampling a wide range of accessions, 
and many individual plants need to be cultivated from 
germination to maturity. Along with the agricultural 
work involved, each plant must be imaged individu-
ally (or segmented from a tray image containing multi-
ple plants), and each image needs to be annotated with 
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ground truth data, measured manually and/or specified 
by an expert. Although high-throughput imaging sys-
tems do exist to expedite the process of collecting large 
sets of plant images, the end-to-end phenotyping process 
remains prohibitively time consuming and expensive, 
limiting the size of the available datasets. Existing plant 
image datasets are available for a wide range of applica-
tions, including both roots and shoots [10]. These public 
collections are a valuable source of data for many applica-
tions, and often do include annotations for ground truth. 
However, we find it compelling to offer a source of new, 
additional data alongside these public collections which 
is free of the aforementioned limitations.

Even for large training datasets, the network can still 
fail to properly recognize phenotypes if the distribution 
of testing data differs significantly from that of the train-
ing data. In the case of leaf counting, the distribution of 
leaf numbers in the training data must be similar to that 
of the testing data: if the rosettes used for training have 
significantly fewer leaves than the rosettes used for test-
ing, the learned model will likely be misspecified and 
mis-predict the number of leaves. In technical terms, the 
learning process infers a conditional model P(y|x): the 
conditional distribution of the outputs given the inputs. 
Differences between training and testing data can result 
in two related problems known as covariate shift, where 
P(x) changes between training and testing, and dataset 
shift, a different joint distribution P(x,  y) of the outputs 
and inputs in the test data, compared to that in the train-
ing data. This problem is common in machine learning 
and can be difficult to mitigate [11]. Available techniques 
often focus on statistically modeling the difference 
between the training and testing distributions. However, 
finding such a mapping is not only practically infeasible 
for complex vision-based tasks, but also assumes the 
availability of samples drawn from the test distribution. 
These issues are unique to supervised learning, as hand-
engineered pipelines containing a priori information typ-
ically do not have to model the conditional distribution 
explicitly. The problem of dataset shift is almost inevita-
ble when using supervised learning for plant phenotyping 
tasks, due to the limitations of generating new plant phe-
notyping datasets. It is not possible to specify the domain 
of phenotypes to be represented in the data, and so this 
limitation will tend to expose problems of dataset shift 
when using models of phenotypes learned from this data. 
We investigate the use of computational plant models to 
mitigate this problem.

Computational plant models
Computational modeling has become an inherent part of 
studies of plant physiology, development, architecture, 
and interactions with the environment. Diverse concepts 

and techniques exists, applicable to construct models at 
spatio-temporal scales ranging from individual cells to 
tissues, plant organs, whole plants, and ecosystems [12–
14]. The formalism of L-systems [15], augmented with a 
geometric interpretation [16, 17] provides the basis for 
a class of specialized programming languages [17–19] 
and software (e.g. [20–22]) widely used to model plants 
at different levels of abstraction and for a variety of pur-
poses. In the domain of phenotyping, Benoit et  al. [23] 
employed an L-system-based root model [24] to gener-
ate testing data for validating image-based root system 
descriptions. To create or augment training data sets for 
image-based leaf counting tasks considered in this paper, 
we constructed a descriptive model that reproduces 
early developmental stages of the plant shoot on the 
basis of direct observations and measurements (without 
accounting for the underlying physiological processes). 
Applications of L-systems to construct such models are 
presented, for example, in [17]; the subsequent enhance-
ments include gradual modifications of the organ shapes 
as a function of their age [25, 26] and position in the 
plant [27], as well as the use of detailed measurements of 
shape [28]. The model of rosettes used in this paper is the 
first application of L-systems to model plant shoots for 
phenotyping purposes.

Related work
The use of synthetic or simulation data has been explored 
in several visual learning contexts, including pose esti-
mation [29] as well as viewpoint estimation [30]. In the 
plant phenotyping literature, models have been used as 
testing data to validate image-based root system descrip-
tions [23], as well as to train machine learning models for 
root description tasks [31]. However, when using syn-
thetic images, the model was both trained and tested on 
synthetic data, leaving it unclear whether the use of syn-
thetic roots could offer advantages to the analysis of real 
root systems, or how a similar technique would perform 
on shoots.

The specialized root system models used by Benoit 
et al. [23] and Lobet et al. [31] are not applicable to tasks 
involving the aerial parts of a plant—the models have not 
been generalized to produce structures other than roots. 
Nonetheless, for image-based tasks Benoit et al. [23] were 
the first to employ a model [24] based on the L-system 
formalism. Because of its effectiveness in modelling the 
structure and development of plants, we chose the same 
formalism for creating our Arabidopsis rosette model

Methods
In the present work, we seek to demonstrate that realis-
tic models of synthetic plants are a sufficient replacement 
for real data for image-based plant phenotyping tasks. 
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We show that a model of the Arabidopsis thaliana rosette 
can be used either in conjunction with real data, or alone 
as a replacement for a real dataset, to train a deep con-
volutional neural network to accurately count the num-
ber of leaves in a rosette image. We also discuss how the 
concept of model-based data augmentation may extend 
to other plants and phenotyping tasks.

Image sources and processing
For the images of real plants used in the leaf counting 
task, we use a publicly available plant phenotyping data-
set from the International Plant Phenotyping Network 
(IPPN),1 referred to by its authors as the PRL dataset 
[32]. The PRL dataset is a multi-purpose phenotyping 
dataset that includes ground truth labels for several dif-
ferent phenotyping tasks, including leaf counting and 
segmentation, age estimation (hours after germination), 
and mutant classification. Two annotated image subsets 
are available within PRL for the leaf counting task using 
Arabidopsis rosettes considered in this paper. These sub-
sets, referred to as Ara2012 and Ara2013-Canon, vary in 
the several ways, including the accessions of the subjects, 
lighting, level of zoom, image sizes, leaf size and shape, 
and the distributions of the number of leaves (Table  1). 
The full datasets, as well as several alternative versions, 
are downloadable at https://figshare.com/articles/
SATLC-28-09-17_zip/5450080.

When training on synthetic images and testing on real 
images (as in Table  3 rows 3, 4, and Table  4 rows 1, 3), 
we set the background pixels to black using the segmen-
tation masks provided with the PRL dataset. This was 
done to prevent the network from reacting to objects in 
the background of the image, which were not accounted 
for in the plant model. Although training on images of 
real plants with a variety of non-uniform backgrounds 
results in a model which is conditioned to be invariant to 
such backgrounds, these backgrounds are more difficult 
to control for when using synthetic plants as the train-
ing data. Although we use the foreground-background 

1 https://www.plant-phenotyping.org/datasets-home.

segmentations provided by the authors of the dataset, 
automatic segmentation methods targeting plants [33–
35] or general-purpose [36] could also be considered.

CNN architectures
In the augmentation experiment, we replicated the archi-
tecture used in conjunction with the Ara2013-Canon 
dataset in the reference experiment [6], in order to com-
pare our results with those published previously. This 
architecture uses three convolutional layers, each with a 
5× 5 spatial resolution and a stride size of one pixel, and 
each followed by a 3× 3 pooling layer with a stride size of 
two pixels. In the remaining experiments (generalization 
and interoperability), we employed a larger CNN archi-
tecture, used in conjunction with the Ara2012 dataset in 
[6]. This architecture uses four convolutional layers, each 
followed by a pooling layer, and a single fully connected 
layer with 1024 units, followed by the output layer. 
The tanh activation function was used in all cases, and 
� = 10−4 was used for the L2 weight decay when training 
on synthetic data to limit overfitting. In all experiments, 
the static learning rate was 10−3. The training dataset 
was augmented with standard image-based techniques. 
Image variation was increased using vertical and/or hori-
zontal flips, and cropping by 10% to a window randomly 
positioned within the input image. The brightness and 
contrast were also randomly modified. As in previous 
work, we split the data randomly into training (80%) and 
testing (20%) for each experiment.

An L‑system model of the Arabidopsis rosette
To augment the PRL dataset of Arabidopsis rosette 
images, we developed a model of Arabidopsis in the veg-
etative stage based on an existing model [28]. The model 
was implemented using the L-system-based plant simula-
tor lpfg included in the Virtual Laboratory plant mode-
ling environment [20, 37]. The full model code is available 
in the dataset file which has been provided for download. 
The rosette was constructed as a monopodial structure 
with leaves arranged on a short stem in a phyllotactic pat-
tern. The length of a leaf, ln(t), at node number n and age 

Table 1 Real and synthetic training datasets

a Scale denotes the ratio of the plant diameter to the image size

Dataset Number of images Range of leaf counts Accessions Image size Scalea Background

Ara2012 120 12–20 Col-0 Varied 1:1 Soil/tray

Ara2013-Canon 165 5–13 Col-0/mutants Varied 1:1 Soil

S1 1000 12–20 N/A 256× 256 1:1–1:2 Soil

S2 1000 5–13 N/A 256× 256 1:1–1:2 Soil

S12 1000 5–20 N/A 256× 256 1:1–1:2 Varied

https://figshare.com/articles/SATLC-28-09-17_zip/5450080
https://figshare.com/articles/SATLC-28-09-17_zip/5450080
https://www.plant-phenotyping.org/datasets-home
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t was computed as ln(t) = flmax(n) · fl(t), where flmax(n) 
is the final length given the node number, and fl(t) con-
trols the leaf length over time. Leaf blades were modeled 
as flat surfaces, fitted to an arbitrarily chosen image of 
an Arabidopsis leaf from the Ara2012 dataset. The width 
of the leaf blade was scaled proportionally to its length, 
wn(t, x) = ln(t) · flw(x), where flw(x) is the leaf contour 
function and x is the distance from the leaf base along the 
midrib. Petiole length was set to be proportional to leaf 
length, and petiole width was assumed to be constant. 
The leaf inclination angle was specified as a function of 
node number fang (n).

All functions were defined using the Virtual Laboratory 
graphical function editor funcedit (Fig. 1). The shapes 
of the functions were drawn (by manual placement of 
control points) such that the final leaf length, leaf length 
over time, inclination angle, and leaf shape agreed with 
the published measurements [28].

We modeled the diversity of Arabidopsis rosettes by 
modifying the final leaf length (and, proportionally, the 
leaf width) using normally distributed random variables. 
Specifically, for each leaf along the stem, we multiplied 
flmax(n) by a variable Xn taken from normal distribution 
with mean µ = 1 and standard deviation σ = 10−2. Like-
wise, the divergence (phyllotactic) angle between con-
secutive leaves n and n+ 1 was calculated as a normally 
distributed random variable θn with mean µ = 137.5 and 
standard deviation σ = 2.5. Finally, the time of develop-
ment of the rosette was varied using a uniform random 
variable for each simulation run, such that the final num-
ber of leaves was in the range from 5 to 20.

Our model was implemented using parametric L-sys-
tems, in which each component of a plant (apex, leaf, and 
internode) has a corresponding module with associated 
parameters [17]. For example, in the module A(n) rep-
resenting the apex, the parameter n is the node number. 
We simulated the development of the plant by a set of 
rewriting rules, which specify the fate of each module 
(component) over an increment of time. An apex, for 
instance, produces a new internode and new leaf at regu-
lar time intervals. To account for diversity of rosettes, we 
generated 1000 images with a random variation. Details 
of our implementation are given in the Additional file 1. 
Figure 2 shows three example renderings alongside three 
real images for visual comparison.

Results
To validate the use of models with deep learning, we con-
ducted three leaf counting experiments using images of 
both real and synthetic Arabidopsis rosettes. The mean 
absolute count difference, and the standard deviation of 

Fig. 1 Leaf growth and shape functions used in the L-system model
Fig. 2 Synthetic rosettes (left) generated by the L-system and real 
rosettes (right) from the public dataset [32]
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absolute count difference, were measured in each experi-
ment. The experiments were conducted as follows:

Augmentation
This experiment tested the usefulness of synthetic plants 
in augmenting the Ara2013-Canon dataset of real plants 
for the leaf counting task. For this purpose, we generated 
a set of one thousand synthetic rosettes (S2) and added 
them to the training set. The model’s background was set 
to a brown color approximating the soil in the real data-
set. Using synthetic rosettes to augment the training set, 
we observed a reduction of approximately 27% in the 
mean absolute count error (Table 2).

Generalization
In this experiment we investigated whether the ability of 
the model to generate an arbitrary range of phenotypes 
may be used to mitigate the problem of dataset shift. To 
this end, we trained a leaf counting network on purely 
synthetic data and tested it on two real datasets, each with 
a different distribution of leaf numbers. These datasets 
exhibit both covariate shift in the different distributions 
of leaf counts, as well as dataset shift in the intersection 
between the two as described in the background on deep 
learning. For brevity, we will address both problems as 
dataset shift in our discussion. The synthetic training 
data consisted of one thousand synthetic rosettes with 
a uniform distribution of leaf numbers between five and 
twenty (S12). The model was then tested on the Ara2012 
dataset (with a range of between 12 and 20 leaves) and 
the Ara2013-Canon dataset (between 5 and 13 leaves). 
A synthetic training set which is easy for the network to 

fit will result in poor generalization due to overfitting; in 
order to introduce more variance to the synthetic data 
with the goal of reducing overfitting, the model’s back-
ground was set to either a soil color or a random color in 
RGB space (p = 0.5). Although the images the network 
was tested on were segmented onto a black background, 
the addition of different background colors in the model 
varied the contrast between the leaves and background in 
the individual color channels, which showed to be benefi-
cial for generalization when using synthetic images.

When training on dataset Ara2012 and testing on 
Ara2013-Canon, or vice versa, we observed significantly 
degraded performance due to dataset shift. However, 
when training on a purely synthetic rosettes, dataset shift 
is mitigated with mean count error more closely centered 
around zero (Table 3). The distributions of relative count 
errors for both real datasets when trained on real and 
synthetic data are shown in Fig.  3. Although the mean 
absolute count errors are similar in each case, the coef-
ficient of determination shows that the predictions made 
on Ara2012 are much more strongly correlated with the 
ground truth measurements (R2

= 0.42) than those on 
Ara2013-Canon (R2

= −0.33).

Interoperability
This experiment tested the interoperability between real 
and synthetic plants by training a network on real plants 
(Ara2013-Canon) and testing it on synthetic plants (S2) 
containing the same range of leaf numbers, or vice versa: 
training on the set S2 and testing on Ara2013-Canon. 
A small error value in this experiment signifies that the 
model is a suitable stand-in for real plants for the leaf 
counting task. Statistics are provided for both cases 
(Table 4), as well as scatter plots illustrating the correla-
tion between ground truth and predicted value (Fig.  4). 
Although the R2 statistics are substantially lower when 
using synthetic data, this is partially due to a small num-
ber of outliers which are highly penalized due to the 
squared error term in the R2 calculation. The scatter plots 
(Fig.  4) show these outliers as well as a line of best fit, 
which shows better correlation with ground truth than 
the R2 statistics would suggest.

Table 2 Augmentation results, Ara2013-Canon dataset

AbsCountDiff CountDiff MSE R
2 Agreement 

(%)

Ubbens and 
Stavness [6]

0.61 (0.52) – – – –

Synthetically 
augmented 
(S2)

0.48 (0.58) 0.15 (0.82) 0.73 0.92 80

Table 3 Performance when training and testing on different datasets.

Training on a single dataset of synthetic rosettes performs significantly better than training on a dataset of real rosettes with a different distribution of phenotypes

Training data Testing data AbsCountDiff CountDiff MSE R
2 Agreement (%)

Ara2013-Canon Ara2012 5.45 (2.04) − 5.45 (2.04) 33.9 − 4.79 0

Ara2012 Ara2013-Canon 5.39 (1.99) 5.39 (1.99) 33.13 − 6.15 0

S12 Ara2012 1.38 (1.03) − 0.25 (1.7) 2.97 0.42 22

S12 Ara2013-Canon 1.82 (1.38) 0.46 (2.24) 5.25 − 0.33 20
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Discussion
Deep learning models, including the deep CNNs used in 
the experiments presented here, have a large capacity for 
fitting the training data. This is essential to their learn-
ing ability, but also makes them susceptible to overfitting 
in the case of small datasets, or large datasets with an 
insufficient level of variation. Therefore, it is important 
to consider how to introduce as much variation as possi-
ble into the model and the scene. For example, we found 
that generalization improved when plants were randomly 

scaled, with the ratio of the plant diameter to the size of 
the entire image varying between 1:1 and 1:2. This helped 
prevent the network from using the number of green pix-
els as a proxy for the number of leaves, which could be 
a viable strategy if the model lacked enough variance in 
leaf size. Other considerations include varying the con-
trast between background and foreground pixels. Such 
variations in the model, the scene, as well as secondary 
image-based augmentations such as modifications of 

Synthetic Dataset Error, Ara2012 Dataset Synthetic Dataset Error, Ara2013-Canon Dataset

Fig. 3 Distributions of relative count difference in the generalization experiment. Training on one dataset and testing on another exhibits severe 
dataset shift (top), while training on synthetic data significantly reduces this error by encompassing a comprehensive range of leaf counts (bottom)

Table 4 Interoperability between real and synthetic rosettes

Training data Testing data AbsCountDiff CountDiff MSE R
2 Agreement (%)

S2 Ara2013-Canon 1.29 (1.01) − 0.02 (1.64) 2.7 0.26 24

Ara2013-Canon S2 0.81 (0.54) 0.28 (0.93) 0.95 0.82 34

S1 Ara2012 1.70 (1.21) 0.67 (1.98) 4.39 0.27 25
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the brightness and contrast all contribute to preventing 
overfitting.
Comparing the counting errors during training and 
testing, we observed that their difference (the gener-
alization error) is larger for real data than for synthetic 
data (Fig.  5). This means that, despite attempts to cap-
ture specimen-to-specimen variation using a stochastic 
model, our synthetic plants are significantly easier to fit 
and therefore do not fully capture the diversity of real 
rosettes. The network’s performance in the task of count-
ing real leaves could thus be improved by adding more 
variation to the set of synthetic plants used for train-
ing. However, even with the limited variation, networks 
trained on the synthetic rosettes do seem to benefit from 
larger training sets (Fig. 6), which is a characteristic typi-
cally seen in natural datasets as well.

Another consequence of overfitting is the network’s 
tendency to discriminate between different types 
of data. In tests with both real and synthetic data, if 
these datasets had different leaf distributions, the net-
work would learn to map each type of data to an indi-
vidual output distribution, with a detrimental effect 
on generalization performance. This means that the 
use of synthetic data in conjunction with real data is 
only advisable if the distributions of phenotypes of the 
real and synthetic data overlap. Although this could 
be seen as a disadvantage, we have also shown that the 
use of synthetic data alone is sufficient and avoids this 
effect.

We observed that models which are not sufficiently 
realistic resulted in degraded performance compared 
to more accurate models. For example, an initial rosette 

Fig. 4 Scatter plots of actual and predicted leaf counts in the interoperability experiments. Training on synthetic and testing on real (left), and train-
ing on real and testing on synthetic (right)

Fig. 5 Comparison of training and testing loss on real (red) and synthetic (blue) rosettes. Real plants show significantly higher generalization error, 
while the synthetic dataset is relatively easy to fit
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model in which all leaves were assumed to be of the same 
size showed significantly lower interoperability with the 
images of real rosettes. Taking into account not only the 
differences in leaf size, but also in shape as a function of 
their position [28], as well as capturing differences in leaf 
colour and texture, may further contribute to the real-
ism and diversity of synthetic images used for training 
purposes. Future work includes the inclusion of a more 
detailed model of leaf shape which includes serrations 
and sinuses. These considerations were not included in 
the present model due to limited variance in leaf shape in 
the available images of real rosettes. Ultimately, the most 
accurate images of plants under different conditions may 
be provided by mechanistic models relating plant appear-
ance to the underlying physiological processes.

Future directions for research could further explore 
the relationship between models trained on real data 
and those trained on synthetic data, including tech-
niques such as transfer learning. Using a feature extractor 
learned on synthetic data and re-training a regressor with 
these features may shed light on differences in learned 
representations between the two types of data.

In summary, the results presented in this paper show 
promise for the use of models in image-based plant phe-
notyping tasks. The existing body of work on L-system 
modeling of plants is extensive, with models available 
for many different species. These existing models are 
well positioned to take the results demonstrated here 
on Arabidopsis forward towards other applications. 
One potentially important application area is the mod-
eling of entire plots of crops. A simulated plot of plants 
could potentially make it possible to train algorithms for 

detecting biologically meaningful traits such as flower-
ing time or response to stress with a reduced number of 
real (annotated) crop images. Other directions for future 
work could include augmentation using synthetic data 
for other supervised learning problems, such as leaf seg-
mentation. Other applications, such as disease detection, 
would be possible if future plant models were able to 
model such phenomena.

Conclusion
We applied a computer-generated model of the Arabi-
dopsis rosette to improving leaf counting performance 
with convolutional neural networks. Using synthetic 
rosettes alongside real training data, we reduced mean 
absolute count error with respect to results obtained 
previously using only images of real plants [6]. We also 
demonstrated that—due to the model’s ability to gen-
erate an arbitrary distribution of phenotypes—a net-
work trained on synthetic rosettes can generalize to 
two separate datasets of real rosette images, each with 
a different distribution of leaf counts. Finally, the inter-
operability experiments have shown, in particular, that a 
CNN trained only on synthetic rosettes can be success-
fully applied to count leaves in real rosettes. 3D plant 
models are thus useful in training neural networks for 
image-based plant phenotyping purposes.
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