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ABSTRACT 

This pa.per proposes a. method for modelling compound leaves in plants. The layout of leaf lobes 
is captured by a. branching skeleton generated using a.n L-system. The leaf margin is then traced 
around the skeleton. Finally, the surface bounded by the margin can be bent and complemented 
with a relief, if these features are found in the real leaf. 

The paper focuses on the specification and tracing of the margin, and includes references to the 
techniques described in the literature for performing the other tasks. The margin is defined as an 
implicit contour - a one-dimensional counterpart of implicit surfaces used previously in computer 
graphics. Techniques for specifying and tracing the contour are discussed in detail. 

Keywords: modelling of natural phenomena, leaf, implicit surface, implicit contour, contour 
tracing. 

1 INTRODUCTION 

One of the challenges in the modelling of natural phenomena is the synthesis of realistic images 
of plants. In recent years, several methods, including L-systems (Lindenmayer 1968), were suc
cessfully applied to model branching plant structures (Prusinkiewicz, Lindenmayer, Hanan 1988; 
Prusinkiewicz, Hanan 1990). Subsequently, timed L-systems were.introduced to animate the de
velopment of these structures over continuous time (Prusinkiewicz, Lindenmayer 1990, Chapter 
6). Nevertheless, the animation of the development of plant organs presents a challenge to the 
modelling method, for in this case, the model must capture the changes in surfaces over time. 

A simple instance of this problem occurs while displaying leaves or petals that emerge from buds. 
This process can be compared to the unfolding of a two-dimensional figure, cut from a sheet of 
paper. Its embedding in the three-dimensional space changes, but the intrinsic geometry (Faux, 
Pratt 1979, Page 40), which specifies the shape of the margin within the sheet, remains the 
same (Bell 1991, Page 37). If the organ is modelled using parametric surfaces, its unfolding can 
be captured by global shape deformation techniques (Farin 1990, Page 292). In this case, the 
control points of the modelled surface are embedded in a three-dimensional object that undergoes 
deformations such a.s twisting, bending, or tapering (Barr 1984). Another possibility is to assume 
that the control points are positioned at the endpoints of a branching structure, evolving over 
time (Figure 1 ). This approach, with the branches specified using an L-system, has been applied 
to animate the development of leaves and flowers in Lychnis coronaria (Prusinkiewicz, Hammel 
1991). 

After the leaves or petals have unfolded, they continue to develop until they reach their mature 
form. In the case of homoblastic development, the shape of the organs remains the same, and 
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Figure 1: Development of a petal modelled using a parametric surface. Control points are placed 
at the endpoints of a branching structure that changes its geometry over time. 

Figure 2: Development of a leaf margin expressed using an L-system (Herman, Rozenberg 1975). 
The string symbols capture the sequence of lobes and notches, but no strict geometric interpreta
tion guides the drawing. 

• 

only their size changes. Many organs, however, follow the path of heteroblastic development (Bell 
1991, Page 28), with the younger. and older forms assuming significantly different shapes. The 
differences may include the generation of new lobes and notches. The magnitude of these changes is 
particularly pronounced in compound leaves, such as divided fern fronds (Jones 1987), where new 
lobes are often formed in a recursive fashion. The organs pursuing a heteroblastic developmental 
path are the focus of attention in this paper. 

The first formal description of the development of a compound leaf was proposed by Rozenberg 
and Lindenmayer (Rozenberg, Lindenmayer 1973; Herman, Rozenberg 1975), who applied the 
formalism of context-free L-systems to describe the sequence of lobes and notches around the leaf 
margin (Figure 2). No automatic graphical interpretation was proposed, and the corresponding 
images were band-drawn. Pursuing an alternative approach, Lindenmayer (1977) applied brack
eted L-systems to describe the branching structure of the lobe arrangement in a leaf (Figure 3). 
This type of description is readily amenable to the automatic visualisation of leaf skeletons rep
resenting the axes of symmetry of the lobes (Prusinkiewicz, Lindenmayer 1990, Chapter 5). The 
automatic visualisation of the leaf margin, lying at a certain distance from the skeleton, was ad
dressed by Lienhardt (1987), Lienhardt and Fran<;on (1987), Prusinkiewicz, Lindenmayer, and 
Hanan (1988), and Viennot et al. (1989). 

In principle, two approaches to the construction of a leaf margin, given its skeleton, can be 
followed. One is to use the skeleton to position a set of control points that will define a parametric 
curve. Problems occur when new control points are inserted to specify the emerging lobes. The 
sudden change of the skeleton topology (Figure 4) requires that all control points be repositioned 
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Figure 3: Development of a branching leaf structure expressed using an L-system {Lindenmayer 
1977). The terminal edges represent axes of the lobes, but no rules for tracing leaf margins have 
been specified. 

..,, ..• 

Figure 4: Drastic change of skeleton topology related to the formation of new lobes 

to maintain the continuity of leaf shape over time (Foley et al. 1990, Pages 507-510). Such a 
global change is difficult to express using L-systems. 

In this paper, we propose to generate leaf margins around skeletons automatically, using implicit 
contours, which can be viewed as a one-dimensional analogue of implicit surfaces (Wyvill et al. 
1986; Bloomenthal, Wyvill 1990). Intuitively, the method creates a planar scalar field in the 
proximity of the skeleton. The margin is represented by a contour, defined as the locus of points 
with a given field value. The area bounded by this contour forms the surface of the leaf (Figure 5). 

The relation of an implicit contour to a scalar field is illustrated in Figure 6. The skeleton is a 
simple branching structure. The field function J(x, y) defines the field by capturing the Euclidean
distances of sample points from the skeleton, and is represented if Figure 6 as a height field. The 
contour corresponds to a horizontal section of this field. 

The definition of the function f(x, y) in terms of the Euclidean distance between sample points 
and the contour does not provide sufficient flexibility to control details of the contour shape. For 

Figure 5: Margin definition using implicit contours. The margin is drawn in the proximity of the 
skeleton as a locus of points for which the field function assumes a constant value. 
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Figure 6: A planar scalar field represented using height values. The intersection of a horizontal 
plane with the height field represents the implicit contour. 

example, all notches are sharp, and no possibility for specifying gradually curving notches exists. 
In the next section, we introduce a more general definition of the field function, providing greater 
control of the contour shape. 

2 IMPLICIT CONTOURS 

Consider the field function f: !R2 -> �, defined for each point in a plane rr. An implicit contour is 
the set of all points in rr such that f(x,y) = c, where c is a constant threshold value. 1 Points (x,y) 
that evaluate to a number less than care considered to lie outside of the contour, and points that 
evaluate to a number greater than c are considered to be inside of it. We are interested in field 
functions defined in relation to skeletons made up of primitive skeletal elements (Bloomenthal, 
Wyvill 1990) embedded in rr. In our case, these elements are line segments forming a branching 
structure. The value of the field function at any point on the plane 1r is equal to the sum of 
the contributions from all skeletal elements. Each line segment has a radius of influence, within 
which it affects the value of the field function. The contribution from an individual element is the 
greatest on the line itself and decreases as the distance to the line increases, dropping to zero at 
the radius. 

We assume that each line's contribution is defined by the following function, originally proposed 
for implicit surfaces by Wyvill et al. (1986): 

F(d)={2�-3�+1 if 0�d�r,
0.0 if d > r.

(1) 

In this equation, d is the distance from a point in space to the line under consideration, and r is 
the radius of influence of this line. Figure 7 shows plots of F(d) and its derivative. The function 

1 We extend the usual definition of an implicitly defined curve, which sets the threshold value c to 0. 



203 

0 r/2 
d 

Figure 7: The field function F(d) and its derivative, defined for a single line segment

Figure 8: The implicit contour around a single line segment AB. Pi, P2 , and P3 are sample points. 

is equal to 1 on the line segment (d = 0), and to 0 at any distance d greater than or equal to
r. Within the range (0, r), the function decreases monotonically from 1 to 0. The slope of the
function is 0 at d = 0 and d = r, ensuring the first-order continuity of F(d) in the entire plane
1r. A sample implicit contour for a single line is shown in Figure 8. The threshold value has been 
set arbitrarily to c = 0.5. Note that the distance d to the segment AB is calculated either by
dropping a perpendicular from a sample point to the line AB (points Pi and P2) or by finding the 
distance to the closest endpoint (point Pa), whichever is the shortest. 

Blending of nearby contours is achieved through the summation of contributions from all n s�eletal 
elements. The total field function is defined as: 

n 

f(x,y) = EF(d;(x,y)), (2) 
i=l 

where d;(x,y) is the distance from a sample point P(x,y) to the line segment i. An example of
blending is shown in Figure 9. 

The semicircular shape of the contour around the endpoints of the skeletal lines is not always 
desirable. For example, Figure 10 shows a variety of shapes found in leaf apices. We propose 
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Figure 9: An example of an implicit contour around a single line segment, and contour blending 
of two line segments with soft, U-shaped notches 

acute subacute obtuse rounded cuspidate 

acuminate mucronate aristate retuse emarginate 

Figure 10: Variety of shapes of leaf apices, hand-drawn (Sugden 1984) 

to model such shapes by varying the radius of influence along line segments. Consequently, the 
specification of a line segment will include four components: a length, two radii of influence ( one 
at each end of the line), and a method of interpolation between these radii. A variety of functions 
can then be used for interpolation. Three examples are shown if Figure 11. 

3 TRACING THE CONTOUR 

The drawing of a contour does not require the evaluation of the field function at each. point of 
the plane 1r. Instead, we can examine the neighbourhood of the contour, tracing it until a closed 
curve is found. Naturally, care must be taken to consider all components if the contour consists 
of disconnected curves. 

To trace the contour, we impose a discrete grid on the plane including the field function. Although 
several methods for contour tracing in a discrete space are utilised in image processing (Pavlidis 
1982, Pages 142-148), we propose here another algorithm, analogous to the surface tracing method 
developed by Wyvill et al. (1986). The algorithm consists of two phases: finding an initial point 
on the contour, and following the contour. 

To find a .starting point, we first consider a grid location closest to the middle of some skeletal 
line segment. If the grid is fine enough, this point will be inside the contour. A scanning direction 
is then chosen, and successive points of the grid are examined until a point outside the contour is 
found. If two adjacent grid points straddle the contour (one is inside, the other outside) then a 
point on the contour is guaranteed to exist between these two locations. The position of this point 
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Figure 11: Controlling the shape of the radius of influence along a skeletal line using: a) a linear 
interpolation function, b) a sigmoidal function (as shown in Figure 7), and c) an exponential 
function. In all three cases, the radius of influence is equal to 1.0 at the bottom, and to 0.0 at the 
top of the skeletal line 

Figure 12: Traversing the contour of an isolated line segment 

can be approximated by interpolation, binary subdivision, or any other root finding method. 

Now that a point on the contour has been found, a grid cell can be associated with it, and the 
tracing can begin. Figure 12 illustrates this process. A direction, clockwise or counter-clockwise, 
is chosen. The traversal progresses from the initial cell through consecutive, adjacent cells. In 
each cell, a new point on the contour is found and connected to the previous point. The traversal 
halts when a new contour point overlaps an existing one - this will occur at the starting point. 

The process of moving from one cell to the next involves calculating the value of the field function 
at each vertex of the current cell. The value at a vertex can be greater than or equal to the 
threshold c (the vertex is in state 1), or it can be less than the threshold c (state 0). Assuming 
that the radius of curvature is large enough (the contour does not loop inside a single cell), each 
combination of vertex states determines a partition of the cell into an inside and outside region. All 
possible combinations are shown in Figure 13. Two cells, numbered 22 and 25 in Figure 13, have 
the same configurations of vertex states as cells 6 and 9, but correspond to different distributions of 
the inside and outside regions. The diagonally placed vertices in state 1 can be viewed as included 
in two separate interior regions or as belonging to a single interior region that runs diagonally 
down the cell. These ambiguous cases are distinguished by evaluating the field function in the 
centre of the cell. 

For a given direction of contour traversal, the configuration of the current cell determines the 
position of the next cell along the contour. Since the total number of cell configurations is small 
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Figure 13: Possible configurations of a cell with respect to a contour. A black dot represents a 
grid point inside the contour, and a clear dot represents a point outside the contour. The grey 
areas suggest the cell regions that are inside the contour. The labels represent dot configurations, 
viewed as binary numbers. 

(18), the position of the next cell can be conveniently found using a look-up table, indexed by the 
cell number. For example, if the current cell is of type 1, the next cell must be situated below. 
The contour will cross the edge between vertices O and 1; the position of the intercept can be 
approximated using any root finding method, as was done for the initial point on the contour. 

4 SAMPLE RESULTS 

Figure 14 shows a pinnate (Jones 1987, Page 29) fern leaf at three stages of development. The 
branching structures were generated using an L-system reaching three different derivation lengths. 
The implicit contours were then drawn using the technique described in the previous sections. 

Figure 15 shows a more complex bipinnatifid leaf (Jones 1987, Page 29). In this case, each branch 
stemming from the axis is surrounded by a separate contour, which does not blend with this axis. 
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Figure 14: Simulated development of a pinnate fern leaf 

5 CONCLUSIONS 

We have presented a method for generating the margin of compound leaves. The idea is to first 
specify a skeletal branching structure that captures the layout of the lobes, then trace the contour 
around it. The margin is defined as the set of points for which a field function, characterised with 
respect to the elements of the branching structure, evaluates to a given constant value. Thus, 
the contour can be viewed as a one-dimensional analogue of an implicitly defined surface. The 
proposed method offers the following advantages: 

• the generation of the contour is a separate task from the development of the skeleton, so it
is independent of the branch-generating system used,

• the method requires only a small set of parameters, which implies that a margin for a given
skeleton can be specified easily,

• the simulation of leaf development can be accomplished using known techniques for animat
ing the development of a branching structure (Prusinkiewicz, Lindenmayer 1990, Chapter
6), and generating the contour automatically,

• the resulting margin shapes correspond well with those observed in nature.

The contour bounds an area that represents the surface of a leaf. Once this surface has been 
defined, it can be bent or complemented with a relief for increased realism. Techniques for con
trolling the shape of a surface given by its contour were described by Fracchia and Prusinkiewicz 
(1991), Fracchia (1991), and Celniker and Gossard (1991). 
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Figure 15: A model of a bipinnatifid fern leaf 

6 FUTURE WORK 

Many problems remain open for further research. They include the incorporation of additional 

features, such. as leaf dentation and venation patterns, into the model. Also, several aspects of 

implicit contours require further consideration. One problem is illustrated in Figure 16, showing 
adjacent lobes that are bent and overlap in the image plane. Since the lobes are geometrically 
distinct, they should be represented by contours that intersect without blending. An extension of 
the method proposed in this paper is therefore needed to control the blending process. 

A mechanism for selecting the relevant skeletal elements could reduce the time needed to compute 
the value of the field function at a given sample point. The technique described in this paper 
requires that all skeletal elements be considered for every sample point along the contour, even 

if this point lies outside the radius of influence of some elements. An alternative would be to 

distinguish the set of active elements that provide non-zero contributions to the field function at 
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Figure 16: Overlapping lobes should not blend. 

a given point. This set could be determined using a presorting technique such as that described 
by Wyvill et al. (1986). 

Throughout this paper, we view leaves as two-dimensional surfaces. In reality, they are three
dimensional objects, and at least at the veins, their thickness is not negligible. Modelling very 
thin objects using implicit surfaces is an open problem, although some results in this direction 
have been obtained (Bloomenthal 1989). 
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