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Abstract

Recently, Runions et al. proposed a method for modeling trees, known as the space

colonization algorithm (SCA) [83]. The SCA works by distributing points in the

space enclosed by a surface (crown envelope). A tree grows towards these points

and consumes them in the process. In this thesis, implicit methods are used for

extending the range of trees that can be created by the SCA. Point distributions are

central to the SCA, and implicit surfaces are naturally suited for generating these

distributions, since it is easy to determine if a point belongs inside or outside an

implicit surface. Furthermore, the field values of implicit surfaces can also be used

to control the density of point distributions.

An implicit modeling system was developed for the interactive specification of

crowns, and for extending the range of crown shapes that can be defined, thus ex-

tending the flexibility of the SCA. This flexibility was further increased by generating

different point distributions. A particularly interesting case was to limit point sets

outside and in proximity to surfaces, thus causing trees to grow around surfaces, and

allowing shapes to be suggested by the surrounding branching structures.
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Chapter 1

Introduction

Recently, Runions et al. proposed a method for modeling trees, known as the space

colonization algorithm (SCA) [83]. The SCA works by distributing points in the

space enclosed by a surface (crown envelope). A tree grows towards these points and

consumes them in the process (Figure 1.1). In this thesis, implicit methods are used

for extending the range of trees that can be created by the SCA.

Figure 1.1: The Space colonization algorithm. a) A crown envelope populated with
points; b) A tree growing toward the points; c) The generated tree.

In the SCA, there are three ways by which a tree form can be controlled — by

defining the crown envelope, by varying the point distributions, and by controlling

the parameters of the SCA. In the original SCA, the emphasis was on the third step,

while the first two steps were relatively underplayed.

In this thesis, the flexibility of the SCA is increased by concentrating on the first

two steps. Specifically, implicit methods are used for extending the range of crown

shapes that can be defined, and for generating different point distributions in the

1
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space enlclosed by these crowns. The property of implicit surfaces that make them

particularly attractive for these tasks is that it is very easy to determine if a point

belongs inside or outside an implicit surface. This allows for the extension of crown

envelopes, since they can be easily populated with points. In contrast, parametric

or subdivision surfaces can also be used for defining arbitrary crowns, but since

these crowns can’t be easily populated with points, they are more difficult to apply

to the SCA. Another attractive property of implicit surfaces is that the density of

point distributions within a region can be controlled using the field values of implicit

surfaces.

An implicit modeling system was developed for the interactive specification of

crown shapes. Further, methods were implemented to generate different point dis-

tributions within the space enclosed by implicit surfaces. Specifically, Lane’s distri-

bution method [54, 55] was used to generate distributions based on the user-specified

probability density functions, and on the dynamic modification of these density func-

tions. The probability density functions were initialized using the field values of

implicit surfaces. This allowed for the generation of point distributions controlled

by field values of implicit surfaces. Trees with different branching strucutres were

generated by varying point distributions. A particularly interesting case was to

limit the point sets outside and in proximity to surfaces, thus causing trees to grow

around surfaces, and allowing shapes to be suggested by the surrounding branching

structures.

Figure 1.2 summarizes the tree modeling process. An implicit crown envelope

is defined within the implicit modeling system, is populated with points, and the

resulting tree structures are generated using the SCA.
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Figure 1.2: The tree modeling process. Left: The implicit modeling system and a
crown envelope defined using the modeler. Center: The crown populated with points
(both inside the space enclosed by the envelope, and in proximity to it.) Right: The
resulting tree structures.

The implicit modeling system was developed to be more powerful than is needed

for the specification of crown shapes. Specifically, implicit skinning was implemented.

Skinning, also known as lofting, is a popular modeling paradigm in the parametric
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domain, but it hasn’t caught up in the implicit area. In this technique, the user

specifies planar profile curves and a surface is created that passes through these

curves. The skinning framework described here uses interpolation of distance fields.

Interpolation of distance fields has been used earlier [79, 39]. The contribution here

is to adapt this method for implicit modeling purposes. It is shown that by using

this paradigm, many complex surfaces can be easily created by the specification of

cross-section curves.

1.1 Organization of Thesis

There are eight chapters in this thesis. Chapter 2 provides an overview of tree

modeling approaches. Chapter 3 discusses existing approaches to modeling using

implicit surfaces. Chapter 4 describes the implementation of the implicit modeling

system that was developed for this thesis. Specifically, implicit skinning framework is

presented. Chapter 5 examines existing techniques for generating point distributions.

Chapter 6 gives details of the algorithms that were used for generating various point

distributions. Also, methods to generate points in proximity to arbitrary triangular

meshes are described. Chapter 7 examines the modeling of trees using the system

developed for this thesis. Finally, in Chapter 8, I provide conclusions and discuss

the results.



Chapter 2

Tree Modeling - Overview

The following sections provide an overview of existing approaches to plant modeling.

2.1 Recursive Branching Structures

Honda introduced trees as recursive branching structures characterized by a small

number of geometric attributes such as branching angles and length ratio of intern-

odes [43]. Aono and Kunni adapted Honda’s model to computer graphics [7].

Mandelbrot introduced the concept of fractals and their use in the geometrical

representation of nature [61]. Inspired by this notion, Oppenheimer proposed fractal

tree models [69]. His procedure recursively calls itself to generate child branches along

main branches. The tree structure was controlled by parameters such as branching

angles, minimum branch size, and size ratio of parent and child branch. In order

to produce irregular structures, the parameters were varied throughout the tree by

using random numbers.

There exists a relationship between fractals and plants treated as recursive branch-

ing structures [61]. The models of Honda [43] and Aono and Kunni [7] can be

regarded as fractals. Similarly, the trees used by Bloomenthal [12] have a fractal

character.

De Reffye et al [23] proposed modeling of trees using statistical description of the

fate of buds — a bud may produce branches or flowers, it may become an internode

5
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or die.

2.2 Global-to-local models

The models listed so far can be described as local-to-global models. In these models,

the global form of a tree is the result of local growth rules. It is, however, difficult

to specify global aspects such as the overall silhouette of a plant and the shape of

a plant axes. An alternative approach is global-to-local models in which the global

structure is used to instantiate local characteristics.

Reeves et al [80] introduced a model in which the user specified the shape of the

crown. Based on this shape and other user-specified parameters, the algorithm se-

lected characteristics of the tree such as branch length, branching angle, and distance

between consecutive branches.

In the model proposed by Weber and Penn [97], a set of textually edited param-

eters specified the crown shape and geometric parameters for each branching level of

the tree. They then inferred the branching structure from this information and also

restricted the tree to grow within the bounds of the crown.

Lintermann and Deussen created xfrog modeling environment [26, 66]. It allows

users to graphically specify functions that map positions along an axis to attribute

values such as length of an internode, the branching angle, and the length of a branch.

Prusinkiewicz et al identified mathematical foundations for global-to-local mod-

eling of plants [78]. Global aspects can be specified by the user and the procedural

approach uses this information to instantiate local mechanisms such as the placement

of organs along the axes.
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2.3 Internal Processes

The development of models in this classification is regulated by the information

propagation within the tree structure. This flow of information within a tree is

termed endogenous information flow.

Borchert and Honda presented a model in which the development of a tree was

controlled by the flux of a substance such as water to different parts of the tree [16].

Branches competed for this limited resource. The flux from the mother branch to

the daughter branches was distributed asymmetrically. If the flux allocated to a

branch was greater than a minimum specified threshold, then this branch continued

to grow. Otherwise, it died.

A common method for specifying growth and development of plants is L-systems,

introduced by Lindenmayer [56]. L-systems is a parallel string rewriting system that

represents the growth of an object such as a tree. The rewriting process is controlled

by a set of production rules.

Prusinkiewicz, Lindenmayer and Hanan [77], based on biological studies [33, 34,

32, 31, 46], used signals to model growth and development in herbaceous plants [77].

They presented two models, both specified using L-systems. In the first model, a

signal is sent from the base to the apex. The signal stops all axis development and

causes production of flower upon reaching the apex. In the second model, several

signals are used. Before the first signal is sent, further development of the lateral

axes is suppressed. The first signal S1, a flowering signal, is sent from the base to the

top along the main axis. When this signal reaches the apex, it results in the initiation

of development of terminal flower. Simultaneously, a second basipetal signal S2 that
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enables the growth of lateral axes is sent down the main axis. After some delay, a

secondary basipetal signal S3 is sent along the main axis. Its effect is to send first

flowering signal S1 along lateral axes as they are encountered on its way down to

the base. If S2 travels faster than S3, that causes lower axes to grow longer than the

upper ones. Chiba et al presented a related model [18, 19].

Allen, Prusinkiewicz and Dejong [5] introduced a model of peach trees which

used interactions between sources and sinks of carbohydrates. L-systems were used

for specifying and implementing this model. The accumulated carbohydrates in the

leaf (due to photosynthesis) can flow into various sinks within the tree (root, fruits

or stems). If the supply of carbon is insufficient at the organs (fruits, leaves or

branches), then the organ is shed. Stem segments, in addition to being sources and

sinks, conduct fluxes throughout the tree. The magnitude of the flux depends upon

the resistance of the intervening path and upon the difference in the carbohydrate

concentrations between sources and sinks. In order to compute the accumulation,

flow and partitioning of carbohydrates between the components of the tree, an anal-

ogy with electric circuits is used and hence correspondence between biological and

electrical quantities is made. For instance, the amount of mobilized carbohydrates

correspond with electric charge. The equations that thus arise are solved numerically

in L-systems.

2.4 Environmental Influences

In a bid to create more diverse and realistic trees, researchers incorporated the effects

of environmental influences on the growth and architecture of trees.
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Arvo and Kirk [8] used ray tracing for sensing surroundings. In their work,

particles travel through the space by casting rays into the environment and the

returned intersection information is used to guide subsequent development. The

path of a particle corresponds to a branch or a leaf. By seeking locations that satisfy

predetermined environmental criteria such as proximity to surfaces and availability

of light, they were able to simulate a number of phenomena such as ivy and grass

growing among obstacles.

In a different procedure, Chiba et al considered the effect of light on branch

shedding and on the orientation of branches towards the brightest directions [19, 18].

They considered the amount of light falling on a cluster of leaves belonging to a

given branch which they termed as a leaf-ball. To do this computation, they used

the projection of a leaf-ball (i.e, a cluster of leaves) on a sphere, and estimated the

area of the shadows projected from the other leaf-balls. If the percentage of the

light that reached the leaf-ball was less than a given threshold, then they removed

the corresponding branch as a withered branch. Takenaka proposed a related model

in which the growth of branches and the fate of buds depend upon the local light

environment [91].

Prusinkiewicz, James and Mech introduced an extension to L-systems for simu-

lating the impact of environment on plant development [74]. They applied the system

to simulate plant’s response to pruning and created models of plants sculptured into

various interesting shapes represented, for example, by implicit surfaces.

The above model was extended by Mech and Prusinkiewicz [65]. They introduced

a modeling framework in which a plant and the environment are treated as two

separate processes interacting using a bi-directional communication channel. For
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this purpose, they introduced the language of open L-systems that could be used

to exchange information between the plants and their environment. They presented

models that demonstrated the development of roots in the soil, the propagation of

clonal plants, collision between the branches and the development of tree crowns

competing for light.

2.5 Competition for Space

In this class of models, branches compete for space and this competition between

the branches for space determines the tree structure. The idea of competition for

space can be traced back to Ulam, who, in 1962, created a 2D cellular-automation

of tree-like branching structures [94].

Ned Greene proposed a model in which 3D space is divided into voxels possibly

containing geometrical structures [36]. The voxels that are intersected by objects

and plants are marked as occupied. Plants grow towards voxels that are unoccupied.

Plants can be grown in proximity to surfaces by ensuring that a new node is not cre-

ated in a voxel whose distance to the nearest object is greater than a given threshold.

He incorporated the effect of light in his model by voxelizing the three dimensional

space. He computed light exposure at each voxel by casting rays towards the sun and

the sky. The fraction of occluded rays determined the sun and sky exposure at each

voxel. To grow plants towards brighter areas, a node was prevented from growing in

a voxel that had sun and sky exposure less than a minimum specified value.

Benes and Millan used the approach suggested by Ned Greene in their work on

climbing plants [10]. They used particles to represent the active and dormant buds.



11

The active particles seek their path through the environment which is voxelized.

Particles use available light and proximity to objects to select the best available

path. Benes and Millan incorporated the concept of inhibitors in their model. If the

active bud cannot proceed further, which might happen when it encounters obstacles

in its path, the bud activates a dormant bud down the path before aborting.

Rodkaew et al’s model works by distributing particles within a crown [81]. A

target point is specified at the bottom of the crown. In an iterative procedure,

particles move towards the average direction of its nearest neighbor and the target.

The path of the particle becomes a branch. When two particles are close enough

they are joined to form a parent branch. Each particle has an energy representing

branch width. When two particles join, their energies are also combined so that the

parent branch is thicker than the child branches. The simulation proceeds until all

the points have reached the target point.

Neubert et al [66] presented a model which builds on the Rodkaew’s model [81].

The input in their model is a set of photographs of a tree taken from different views.

They then remove background from the photographs and build a voxel-model of the

tree volume. Each voxel contains the estimated density of the tree biomass. They

then generate the particles within the voxels based on the density in each voxel.

The simulation proceeds by directing the particles to move towards the root as in

Rodkaew et al’s model [81]. The directions of the particles, however, are modified so

that the generated tree structure is similar to the input photographs. To achieve this,

they construct two-dimensional attractor graph for each input image by inspecting

the trunk and main branches present in the photograph. These attractor graphs

are combined to modify the directions of the particles. In both the approaches by
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Rodkaew et al and Neubert et al, the tree grows from the branch tips to the tree

base.

In the model presented by Runions, Lane and Prusinkiewicz [83], a given crown

is populated with marker points. These points mark the availability of free space.

From a given start node at the tree base, the tree grows in an iterative fashion. In

each iteration, each attractor point selects the closest tree node. Hence, for each tree

node v, there is a set S(v) of associated attractor points. If S(v) is not-empty, a

new node v′ is created and attached to v. The node v′ is positioned in the direction

defined by averaging all the normalized directions from v to each attractor point in

S(v). Then those attractor points are removed from the simulation that are with in

a specified distance from any tree node. Figure 2.1 summarizes the operation of the

algorithm.

2.6 Modeling Ramiforms

The previous sections reviewed methods for the modeling of tree structures. Once

we have a tree structure, we need to compute branch widths, and model tree limbs

and their connections (”ramiforms”) respecting these widths. A popular method

for computing branch widths is using the pipe model [89, 70]. The model assumes

that each leaf is connected to the base of the tree by a pipe of constant radius, and

that the number of pipes running through a branch contributes to the width of the

branch. If two branches with radius r1 and r2 meet at a branching point, then the

radius r of the supporting branch is computed as

rn = rn
1 + rn

2 (2.1)
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Figure 2.1: Space-colonization algorithm. a) Marker points (red disks) influence
closest tree nodes (blue disks); b) New tree nodes (black disks with white centers)
are created in the resultant influence direction (red arrows); c) Marker points within
the kill radius of new tree nodes are removed from the simulation; d) The simulation
continues with the remaining marker points, and new tree nodes.

where n is a parameter (usually between 2 and 3, see [59]). The branch width

computation proceeds from the branch tips which are assigned some radius r0 to the

base of the tree.

Holton [42] introduced a plant modeling method that was inspired by the pipe

model. In this model, strands run from the base of the tree through its branching

structure. A probabilistic model distributes the strands of the parent branch between

the child branches. Branch characteristics such as the branch thickness, branching

angle and the length can be specified as the functions of number of strands at that

branch. The width of each branch is proportional to the square root of the number
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of strands in that branch. The relationship between the diameters of the parent and

child branches is given using equation 2.1 with n = 2.

Once branch widths have been computed, we need to model tree limbs and their

connections (”ramiforms”) that respect these widths. Bloomenthal [12] used gen-

eralized cylinders to represent branches. In his model, branches were specified as

a list of points. Cubic interpolating spline was used to connect these points. A

generalized cylinder was constructed by sweeping a closed 2D curve along the cubic

spline. Bloomenthal presented a method to create a smooth surface (”ramiform“)

at the branching point. The ramiform was constructed by joining the circular cross-

sections at the end of each branch by cubic spline curves and joining these curves to

form a polygonized representation.

The method presented by Bloomenthal is not easily extended to arbitrarily com-

plex ramiforms. Furthermore, it creates a smooth junction between branches. Many

tree types exhibit non-smooth features such as branch bark ridges and collars. Gal-

braith, MacMurchy, and Wyvill addressed these issues in their work on BlobTree

Trees [35]. They used skeletal implicit surfaces to represent branches. To simulate

non-smooth features at the branching points, they deformed the child branches us-

ing precise contact modeling (PCM) (discussed in Section 3.3), and then blended

with the parent branch. To reduce bulging — a problem commonly observed when

blending implicit surfaces — they displaced away the branches from the branching

point before blending them.

MacMurchy described a method to form a smooth surface at the branching point

using subdivision surfaces [60]. In this method, the length of the branches at the

branching point are adjusted so that they do not intersect with each other. An initial
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coarse mesh is generated for the unbranched portion of the mesh. A coarse mesh can

be generated either as a closed volume (for trunks and stems) or as an open surface

(for compound leaves). At the branching point, different branches are connected by

inserting junction structures. The completed coarse mesh is subdivided using Loop’s

scheme. There are three types of ramifications supported by this method: a single

branch positioned laterally with respect to the main branch, symmetric bifurcation,

and branches on both sides of the main axis (trifurcation).

2.7 User control of the models

In any modeling environment, the ability to interact with the system plays an impor-

tant role. This interaction may be as simple as textually specifying parameters, or

more advanced, using a graphical interface. Oppenheimer used sliders in his system

[69]. Weber and Penn specified parameters in text files [97]. Mercer, Prusinkiewicz,

and Hanan [63, 76] created a virtual laboratory for L-systems that lets users cus-

tomize control panels for graphically manipulating diverse models.

Deussen and Lintermann created the xfrog modeling system [26, 66]. It is an

interactive plant modeling system which allows users to graphically edit function

plots, which specify functions that map positions along an axis to attribute values

such as the length of an internode, the branching angle, and the length of a branch.

Okabe, Owada, and Igarashi presented an interactive system in which the user

sketches a tree in 2D and the system converts it to 3D [68]. They perform this

operation using the assumption that the trees spread their branches so that the

distance between each branch is as large as possible. Further, once the tree has been
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constructed, the user can sketch a new trunk and a silhouette. The system changes

the shape of the trunk and adjusts the length of each segment of the tree to fit it

into the silhouette.

Ijiri et al. also presented a sketched-based system for flower modeling that trans-

formed an initial sketch to a 3D representation [44]. The user sketches 2D strokes

representing the overall appearance of the model. The strokes are created on hier-

archical billboards — each billboard representing the type of a component the user

wishes to create such as branch, leaf, or flower. The user can then refine each sketch

by adding more detail. Finally, each sketch is replaced by a 3D component.

Ijiri et al presented a sketch based system that encapsulated L-systems behind

its interface [45]. It allowed a user to sketch the central axis of a plant and generated

the whole structure around it. By varying the central axis curve, the user could

generate different global shapes that had the same branching topology. The system

also presented the L-system rules graphically, and allowed the user to modify the

parameters such as the length and the width ratio of the branches, twisting angle

etc.

Anastacio et al presented a sketched based system for modeling of single-compound

plant structures with phyllotactic arrangement [6]. In their model, a 3D represen-

tation of a plant is constructed from a set of 2D strokes. For instance, the user

draws a curve to represent the main plant body (stem), and lateral strokes across

the main plant body to represent the inclination of organs. Similarly, the user can

specify shape of organs by sketching in 2D. From this set of strokes in 2D, a 3D

representation is constructed and organs are placed in phyllotactic pattern.

Wither et al introduced a system in which the user sketches 2D silhouettes of the
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tree foliage at multiple scales, and the structure of the 3D tree is inferred from this

knowledge [99].

Palubicki et al [71] extended the space-colonization algorithm [83] by interactively

manipulating the environment in which the tree grows. They used a procedural 3D

brush that dynamically creates markers of free space. The brush is controlled by a

pressure-sensitive tablet pen. Light pressure is used to sketch individual limbs of the

tree, while heavier pressure yields entire branches or even the whole tree.

2.8 Summary

This chapter provided a review of the existing approaches for modeling trees. In this

thesis, the space colonization algorithm is used to grow plants. The crown shape

for these plants is defined using an implicit modeler. A review of existing modeling

approaches using implicit surfaces is presented in the next chapter.



Chapter 3

Implicit Surfaces - Overview

This chapter provides an overview of modeling approaches using implicit surfaces. In

this thesis, implicit surfaces have been used for the interactive specification of crown

shapes. Consiquently, this chapter focuses on basic techniques of modeling implicit

surfaces that are relevent for the specification of crown shapes.

3.1 Definition

The equation f(x, y) = c implicitly defines a curve in 2D. The curve is a set of points

that satisfy the above equation.

This concept extends to higher dimensions. The equation f(x, y, z) = c is the

implicit equation of a surface. The set of points p(x, y, z) that satisfy the above

equation form the implicit surface. For example, the equation below represents a

sphere of radius r

r2 − (x2 + y2 + z2) = 0. (3.1)

The function f can more formally be represented as f : R3 → R. It assigns a

scalar value to a given point. If the implicit surface is closed, then the sign of the

returned value indicates if the point is inside, outside or on the surface. For example,

in equation (3.1), a positive value indicates that the point is inside the surface, while

a negative value indicates that the point is outside, and zero value indicates that the

point is on the surface. The function f is known as a field function. The value f(p)
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is known as a field value of the given point p.

The points that belong to an implicit surface are not known and have to be found

by employing some search strategy in R3. Interactive visualization (Section 3.4) of

implicit surfaces is an active area of research in the field of implicit modeling.

3.2 Distance Surfaces

The implicit equation defined in equation (3.1) assigns a value to each point p(x, y, z)

of R3. A particular way of defining implicit surfaces is using composition:

(f ◦ d)(p) = f(d(p)). (3.2)

The function d(p) is a distance function – it is the distance of a given point p to

some entity known as a skeletal element. The entity may be a point, a line, a curve

or a surface. The implicit surface, known as a distance surface, is defined as the set of

points that, for a given scalar value v, satisfy the implicit equation f(d(p)) = v. v is

known as the iso-value. Figure 3.1 shows line and circle skeletons and corresponding

implicit surfaces.

This approach of using distance functions for modeling was introduce by Blinn in

1982 [11]. He was motivated by the problem of displaying molecular structures. Ex-

isting models of molecular structures consisted of a collection of intersecting spheres

and cylinders. Using this approach, he was able to model smooth bonds between

atoms. For each atom, he defined the field function as

g(p) = b exp(−ar2).

where r is the distance of a point p to the center of the atom and a and b are user
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(a) (b)

Figure 3.1: The skeleton elements and the corresponding implicit surfaces (Distance
surfaces). The white dots represent points and the red lines represent the distance
of these white points to the skeleton elements. a) A line skeleton element and the
corresponding implicit surface; b) A circle skeleton element and the resulting implicit
surface (Torus).

defined parameters that control the radius and blobbiness of the resulting surface.

The field value of a collection of atoms was obtained by summing the contribution

of each atom

f(p) =
∑

i

bi exp(−air
2
i ).

The field function introduced by Blinn has an infinite support. For purposes of

efficiency, it is desirable to have field functions that have compact support — these

functions evaluate to zero for all distance values greater than a given threshold R.

Consider an implicit surface that is composed from several skeleton elements. To find

the field value at a given point p, contribution from only those skeleton elements need

to be considered that are within the distance R from a point p. Nishimura [67] and

Wyvill et al [103] introduced field functions with compact support.

The field function introduced by Wyvill et al [103] is defined as
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f(r) =











a r6

R6 + b r4

R4 + c r2

R2 + 1 if r <= R

0 otherwise

where r is the distance of a given point from the skeleton element and R is

skeleton’s radius of influence (such that f(r) = 0 for r ≥ R). See Figure 3.2. The

coefficients a = −0.44444, b = 1.888889, c = −2.44444 are solved by specifying the

following constraints

f(
R

2
) = isovalue = 0.5

f(R) = 0

f ′(R) = 0

Figure 3.2: Wyvill field function defined in [103]

3.3 Blending

The purpose of blending is to combine implicit surfaces to form a new surface. In

this manner, complex implicit surfaces can be constructed from simple ones. The

inherent strength of implicit surfaces is that they can be easily blended smoothly. A
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particular form of blending is the summation blending. Given field functions f1 and

f2 for two surfaces, the blending between them is performed by adding the two field

functions. The field function f(p) of the blended surface is given as:

f(p) = f1(p) + f2(p)

Using this approach, an implicit model can be built hierarchically from other

implicit surfaces using blending and other operations such as difference and warping.

Wyvill, Galin, and Guy presented such a hierarchical system — the Blob tree — for

modeling using implicit surfaces [102]. Figure 3.3 shows the Blob tree for a model

constructed using this approach.

Figure 3.3: The Blob tree [102] for a model constructed from a cylinder and torus
using the blending and difference operations.
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3.4 Visualization

Visualization of implicit surfaces has received a great deal of attention. The points

that belong to the surface are not known and have to be found by employing some

search strategy in R3. Visualization approaches can be classified into two categories

— approaches that polygonize the implicit surface and then display this polygonized

approximation and the approaches based on ray tracing [38, 15]. In this section, I

briefly describe the approaches based on polygonization of implicit primitives.

Wyvill et al [103] and Lorensen and Cline [58] independently described a poly-

gonization approach in which the space is subdivided using cubes. The implicit

function is used to evaluate values at the corner of each cube. If some corner of

the cube is inside the implicit surface and the other corner is outside the surface,

then the surface intersects the cube. The surface passing through the cube is ap-

proximated by triangles using a predefined set of rules depending upon the state of

the corners. In this manner, the whole surface is polygonized. Wyvill et al [103]

optimized traversing through the space by making use of the surface continuity.

Over the years, researchers have proposed modifications and improvements to

this approach [14, 15, 49, 48, 41]. With the original approach, creases and corners

in the implicit surface can not be found. Wyvill and Overveld presented a polygo-

nization technique that accounted for the CSG operations on implicit surfaces, and

consequently preserved creases and corners. Kobbbelt et al introduced Extended

Marching Cubes [49] that allows them to find the sharp features in the surface.

They compare the normals at the eight corners of the cube. If the normals differ

greatly, they conclude that edge or a corner must be present.
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3.5 Summary

This chapter provided an overview of modeling approaches using implicit surfaces.

The next chapter discusses the features of the implicit modeling system that was

developed as part of this work.



Chapter 4

The Implicit Modeling System

This chapter provides a description of the implicit modeling system that was devel-

oped for this thesis. The purpose of the modeler is to interactively specify the crown

shapes that can be used for growing trees. The modeler is described in the following

sections.

This chapter also describes implicit skinning framework. The implicit skinning is

performed using interpolation of distance fields. Interpolation of distance fields has

previously been done by various authors [79, 39]. In [79, 39], shapes of organs were

reconstructed from parallel slices obtained from medical imaging scanners. The con-

tribution here is to adapt distance field interpolation for implicit modeling purposes.

4.1 The Implicit Modeler

The modeling system was developed using C++, OpenGL, and MFC. It incorporates

features such as distance surfaces, variational curves and surfaces, implicit surfaces

of revolution, CSG, blending, sweep implicit surfaces, and implicit skinning. Further,

deformation operations such as bending, tapering, and twisting are defined.

Users have two options to interact with the modeler. Firstly, the user interaction

is by means of toolbars, dialog boxes, or a mouse. For instance, the user can drag

the mouse to rotate, or translate a surface. Similarly, the user can sketch the cross-

sections for sweep and skinned surfaces. Figure 4.1 shows an example. Figure 4.2
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shows an example in which a boolean operation between two surfaces is performed

by sketching on the surfaces. The type of a boolean operation is selected from the

dialog box.

Figure 4.1: Defining a sweep surface by sketching the cross-section curve.

Figure 4.2: Specifying a boolean operation between two surfaces by sketching on
them (the red stroke on implicit surfaces), and selecting the desired boolean operation
from a list in the dialog box.

The modeling system also provides a command editor, which can be used to give
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textual commands to manipulate the models. For instance, to perform the boolean

operation of Figure 4.2, the user could give the following commands:

sphere s1
l i n e s2
d i f f s1 s2 s3

Figures 4.3, 4.4, 4.5, and 4.6 show some of the models created using the implicit

modeling system.

(a) (b)

(c)

Figure 4.3: Implicit surfaces of revolution
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Figure 4.4: A model created using the implicit modeling system.

Figure 4.5: A train model created using the implicit modeling system.
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Figure 4.6: The train model from a rotated view.

4.2 Implicit Skinning

Skinning, also known as lofting, is a very popular modeling paradigm in the para-

metric domain [100, 101, 72, 73]. In this process, the user specifies planar profile

curves and a surface is constructed that passes through these curves. Additionally,

as in the case of sweep surfaces [72, 22, 37, 86], a path curve is specified and the

surface follows this curve. In the implicit domain, there has been previous work on

constructing implicit functions from cross-sections [84, 17, 4, 93], but these methods

yield functions that are expensive to evaluate.

The approach presented in this section is to construct skinned implicit surfaces

as distance surfaces. As specified in Section 3.2, a distance surface is given by the

equation:
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(f ◦ d)(p) = iso-val

where f is a field function and d is a distance function. The field function used

was the one presented in Section 3.2 (Figure 3.2). In this section, the construction

of the distance function for skinning is presented.

One approach to define the distance function is the following. The cross-sections

can be represented as B-Splines, and these B-Splines can be interpolated to form a

skeletal element. This, however, results in a distance function that is expensive to

evaluate. Secondly, the scenario shown in Figure 4.7 is difficult to handle with this

approach. Given curves C1 and C2 in Figure 4.7, how should we interpolate between

these curves? The skinning framework presented in the next section handles this

case.

(a) (b)

Figure 4.7: For curves C1 in Figure a and C2 in Figure b, how should we create
inbetween curves?

4.2.1 The Method

Given a planar cross-section curve C, and a point p, it is assumed that the distance

function for the curve is known, and that the normalized arc-length parameterization

of the path curve is given by the function s(p). Secondly, for a given point p on a

path curve, the tangent, normal, and bi-normal vectors are denoted as T (p), N(p),
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and B(p). These vectors, for instance, can be found by using the rotation minimizing

frame of Bloomenthal [13].

4.2.2 Associating cross-sections with the path curve

To create skinned surfaces, the user first specifies planar cross-section curves, and

associates each curve with a point of the path curve. Figure 4.8 shows the process

for two cross-section curves, and the path curve that passes through the points PQR.

The rectangular cross-section is associated with the points P and R of the path curve

(whose normalized arc-lengths s(A) and s(B) are 0 and 1 respectively). The second

cross-section is associated with the point R of the path curve (s = 0.5).

Figure 4.8: Associating planar cross-section curves with the points of the path curve.

Associating a cross-section curve C with a point p of the path curve results in

the following. If a plane intersects the skinned surface such that it passes through

the point p of the path curve, and T(p) is parallel to the normal of the plane, then

the plane intersects the skinned surface along the cross-section curve C.
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4.2.3 Distance Field Computation

For a cross-section curve Ci and its associated point qi on the path curve, denote si

by s(qi). Given planar cross-section curves C1, C2, ..., Cn with distance functions d1,

d2, ..., dn, and a point p ∈ R3, the distance function d(p) of the skinned surface is

defined in the following manner. For a point p, its projection p′ on the path curve is

determined. The projected point satisfies the following condition, and can be found

by using Newton-Raphson method [72]:

T (p′).(p′ − p) = 0. (4.1)

The point p lies in the plane formed by the point p′ and the vectors T (p′) and

N(p′). Considering that the cross-section curves C1, C2, ..., Cn lie in this plane about

the point p′, the distance function d(p) of the skinned surface is given as:

d(p) = g(d1(p), d2(p), ..., dn(p), s). (4.2)

The choice of the interpolation function g affects the shape of the skinned surface.

For instance, for s(p′) ∈ [si, si+1), the linear interpolation function is defined as:

d(p) = (1 − u)di + udj, u =
s − si

si+1 − si

Figure 4.9 shows various skinned surfaces for the cross-section curves of Figure 4.8.

Figure 4.10 shows an example of an implicit skinned table. As shown in the

figure, four cross-sections are associated with the beginning of the path curve and

one cross-section for the end. Skinning such models with distance field interpolation

is very easy, and would be difficult using traditional parametric skinning methods.
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(a) (b)

(c)

Figure 4.9: The effect of different interpolation functions on the resulting implicit
surfaces. The cross-sections of Figure 4.8 are used for defining these surfaces. a)
Linear interpolation. b) Quadratic interpolation. c) Cubic Interpolation; the rect-
angular cross-section is repeated thrice near s = 0, s = 1, and the star cross-section
is repeated thrice near s = 0.5.

(a) (b)

Figure 4.10: An implicit skinned table defined from five cross-section curves.
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Figure 4.11 shows implicit surfaces created from circular cross-sections, and by

using different interpolation functions. The surfaces in Figures c and d have been

further refined by scaling and subtracting from the original surfaces. As shown in

the figures, a wide variety of shapes can be easily achieved by using this technique.

Figure 4.12 shows two cross-section curves and the corresponding skinned surface.

The surface is shown from different views. The skinned surface can be further refined

by blending operations. Figure 4.13 shows a cross-section of the field values of the

implicit surface of Figure 4.12. As shown in the figures, this method for implicit

skinning produces smooth and bounded field values.

4.3 Summary

This chapter provided a description of the implicit modeling system that was devel-

oped as part of this thesis. Further, the implicit skinning framework was presented.

The modeler is used to interactively specify the crown shapes. Once a user defines a

crown, it needs to be populated with point distributions. The next chapter provides

a review of the methods that generate point distributions.
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Figure 4.11: Skinning from circular cross-sections. Left: Cross-section curves, and
their association with path curves. Center: The path curves. Right: The resulting
surfaces.
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Figure 4.12: An implicit surface skinned from two cross-section curves, and then
further refined using difference and blending operations.

(a) (b)

Figure 4.13: Cross-section of field values of the implicit surface of Figure 4.12.



Chapter 5

Point Set Generation - Overview

This chapter provides an overview of point set generation techniques. These point

sets are used by the space colonization algorithm [83] for generating trees and for

growing structures in proximity to surfaces.

5.1 Sampling Patterns

A sampling pattern is a distribution of points, which is used for sampling a continuous

source, such as an area light source, or an image-plane in ray tracing. A sampling

pattern may be completely random, as shown in Figure 5.1a. The drawback of this

approach is that it may leave large sections of the sampling domain poorly sampled.

In contrast to this approach, some sampling patterns work by dividing the sampling

domain into smaller regions, and generating a sample for each region (Figure 5.1).

The rationale is that this process covers the sampling domain well. In uniform

sampling, the sampling domain is divided into a grid of cells and a sample is generated

at the center of each cell (Figure 5.1b). Adaptive sampling works by sampling the

corners of a cell. If the results returned at the corners differ significantly, then the cell

is further subdivided for sampling [98]. In stratified sampling, a sample is generated

for each cell of the grid, but is randomly jittered within the cell. Stratified sampling

is known to reduce the aliasing errors in ray traced images [21].

Stratified sampling is an instance of stochastic sampling, which was introduced to
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Figure 5.1: Random, Uniform, and Stratified. With random sampling, there may be
large areas that are poorly sampled.

computer graphics by Dippé and Wold [27]. They suggested that sampling patterns

with blue-noise characteristics in the frequency space would produce better quality

pictures and that stochastic sampling could be used to generate such patterns. The

sampling pattern has blue-noise characteristic if its spectrum is energy deficient at

low frequencies and has no concentrated spikes of energy. They suggested using such

patterns since, as they point out, the human visual system is more sensitive to low

and mid frequency noise than high frequency noise.

Cook advocated the use of Poisson-disk distributions [21]. He based his suggestion

on the study by Yellott [104], which pointed out that the photo receptor cells in the

eyes of rhesus monkey are arranged in Poisson-disk pattern and the eyes are very

good at avoiding aliasing errors.

In Poisson-disk pattern, a minimum specified distance is maintained between each

pair of samples. Cook generated Poisson-disk samples by dart-throwing algorithm.

In this algorithm, distance of the new sample to the already existing point set is

computed and the sample is accepted if this distance is greater than the threshold

radius [21]. This method is slow, takes long running time and may not sample

all available regions of the plane. The process is often terminated after a certain

predetermined number of attempts fail to generate a new point. Hence, this process
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may terminate before desired number of samples have been generated.

Mitchell introduced a sampling pattern that has properties similar to that of

Poisson-disk patterns [64]. To place the (n + 1)th point in a point set with n points,

mn candidate points are generated, where m is a constant parameter. The candidate

point that has the largest distance to the existing point set is selected. Mitchell used

grid methods for the nearest-neighbor calculations to speed up the process.

McCool and Fiume generated Poisson-disk pattern by selecting large initial radius

[62]. Once no more points could be placed after a certain number of trials, they

successively reduced the threshold radius by some fraction. The advantage of this

method over dart-throwing is that a Poisson-disk point set with any desired size

can always be created. Secondly, once a high density sample distribution has been

generated, a lower density distribution can be obtained from it by selecting any prefix

of the original sequence. They also adapted the Lloyd’s relaxation [57] to improve

the spectral properties of the point set. This method repeatedly moves each point

of the set to the centroid of its Voronoi region.

Jones presented O(Nlog(N)) method to generate Poisson-disk distributions [47].

In this method, a Voronoi diagram of the existing points is created. Then, for each

point p of the point set, free space is computed by subtracting a circle of radius r

around p from the Voronoi region of p. Figure 5.2 shows the Voronoi region of a

point p and the free space (shaded portion). A triangle fan is constructed in each

Voronoi region. To generate a new point, a triangle is randomly selected and a point

is randomly generated in the shaded portion of this triangle (see Figures 5.2.b and

5.2.c).
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(a) (b)

Figure 5.2: a) Voronoi region of a point p. Triangle fan is constructed in the region
to compute the area of the free space (shaded portion) and to generate a new point in
this space; b) A new point q is generated in the free space of the triangle (the shaded
portion) by repeatedly sampling the quadrilateral abcd until the distance between q
and p is greater than the minimum specified distance.The figures are based on the
figures in [47].

Dunbar and Humphreys developed a similar technique for Poisson-disk sampling

that maintains a list of available regions [28]. To generate a new sample, an available

region is selected and a new point is randomly generated in this region. The available

region is defined in the following manner. Let 2r be the minimum allowable distance

between each pair of samples, and D(p, r) be a disk of radius r around point p. For

a sampling domain X and an existing point set P , the available subdomain Ax is

defined as

Ax = X −
⋃

p∈P

D(p, 2r)

Figure 5.3 shows the available subdomain. The available neighborhood (the red region

in the figure) of the point set is defined as the intersection of the available subdomain

with the union of annuli of radius 2r and 4r around each point of the point set. A

new point is generated in the available neighborhood. The authors presented a
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representation of the available neighborhood that allowed them to generate a new

point in it in O(Nlog(N)) time.

Figure 5.3: Sampling from available region (red region) using the method described
in [28]. For a point p, its available region (red region) is the annulus between radii
2r and 4r around point p. A new point is generated in the available region.

In recent years, several researchers have used Wang tiles [96] for the generation

of points with blue-noise characteristics [40, 88, 20, 28, 50]. Wang tiles is a set of

square regions with colored edges. Each tile is filled with some data that can be a set

of points, texture or geometry [90, 88, 20]. The tiles are joined together in a plane

such that the neighboring edges have the matching color.

Shade et al generated Poisson-disk pattern using a set of eight Wang tiles [88].

Poisson-disk pattern in each tile is generated using dart-throwing algorithm. To

add a new point, all possible neigbouring tiles are checked. Once all tiles have

been populated with points, Poisson-disk pattern for a plane can be generated by

stochastically tiling it with Wang tiles. In this method, however, the regions around

the edges of the tiles are poorly sampled. Figure 5.4 illustrates the problem.

Hiller et al used Lloyd’s relaxation [57] on a set of 13 Wang tiles [40]. Initially,
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(a) (b) (c) (d)

Figure 5.4: Poisson-disk pattern using Wang tiles. The region near the edges is
poorly sampled. The point near the red edge in Figure a has a circle that extends
into the tiles in Figures c and d. If the tile with a point p in Figure b is joined with
the tiles in Figure c or d, then the region to the right of the point p will be poorly
sampled. The figures have been created on the basis of the figures in [20]

Poisson-disk distribution is generated independently in each tile. Then, a tile is

selected and is surrounded by eight other tiles. Voronoi diagram is constructed on

these tiles and points in the center tile are repeatedly moved to the centre of their

Voronoi region until Poisson-disk constraints are satisfied across the tile boundaries.

The sampling artifacts around the edges of the Wang tiles were corrected by

Lagae and Dutré [51, 52]. They used a variation of Wang tiles in which the corners

of the tiles are also colored. A tile is divided into three regions: edge region of

radius r (where r is the radius of Poisson-disk distribution), corner region and an

interior region. To generate samples, first corner regions are sampled. For each

corner color, a closed region is formed by combining the corners of four neighboring

tiles and samples are generated in this region using dart-throwing. Similarly, the

edge regions of the neighboring tiles are separately sampled, thus avoiding the edge

artifacts of Figure 5.4. Finally, for each tile, its interior region is sampled by taking

into consideration the points in the edge and the corner regions.

Lagae and Dutré have also presented a review of methods to generate Poisson-disk
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patterns [53].

Balzer, Schlömer, and Deussen [9] presented a variant of Lloyd’s method [57]

for generating point distributions. In this method, the points of the distribution

are called sites. A sampling domain X is discretely represented by m points. The

density of these points in any region is proportional to a given density function.

Given a random distribution of n sites, the method works by randomly assigning

m
n

points of X to each site. The assignment is then optimized by swapping points

between the sites until each point is assigned to its closest site, thus forming Voronoi

regions. Finally, each site is moved to the center of mass of its assigned points. The

method results in the improved blue-noise characteristics, prevents the emergence of

irregularities such as hexagonal structures of Lloyd’s method, and adapts to a given

density function.

5.2 Sampling from a Probability Distribution

This section presents methods for drawing samples from a given probability distri-

bution.

Deussen et al. presented a method to control the density of plant distribution

by defining a set of gray-level images using a paint program [24]. Given a gray-level

image, a point distribution is generated using Floyd-Steinberg half-toning algorithm

[30]. Half-toning [95] is a process which is used for the reproduction of a continuous

image on a bi-level device by distributing points varying in size or spacing. Deussen

et al. [25], Secord [87] and Balzer, Schlömer, and Deussen[9] presented related ap-

proaches for the stippling of images.
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A particular method for drawing samples from a given probability density func-

tion is the inverse cumulative distribution method [29]. This method uses the con-

cepts from the probability theory. Hence, a review of relevent concepts from the

probability theory is presented in the next section, followed by the description of the

method.

5.2.1 Probability Theory Review

Given continuous random variables [82] X and Y and a joint density function f(x, y),

the joint distribution function F (x, y) is given by

F (x, y) = Pr{X <= x, Y <= y} =

∫ y

−∞

∫ x

−∞

f(x, y) dx dy,

The joint distribution function satisfies the following property

F (∞,∞) =

∫

∞

−∞

∫

∞

−∞

f(x, y) dx dy = 1.

The conditional density of X given Y = y is given by

f(x|y) =
f(x, y)

f(y)
,

where f(y) is the marginal density function and is obtained by integrating along

Y = y line:

f(y) =

∫

∞

−∞

f(x, y) dx.

The conditional probability distribution of a random variable X given a fixed value

of Y is

F (x|y) = Pr{X <= x|Y = y} =

∫ x

−∞

f(x, y)

f(y)
dx.
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5.2.2 Inverse Cumulative Distribution Method

This method is used for drawing a sample from a given probability density function

(pdf) f(x) [82]. A normalized function p(x) is obtained from f(x):

p(x) =
f(x)

∫

∞

−∞
f(x) dx.

Given a cumulative distribution function F (x) =
∫ x

−∞
p(x) dx, a random variable

Y ∈ [0, 1] is drawn from a uniform distribution. Then, X = F−1(Y ) is the required

random variable from the given pdf p(x) (See Figure 5.5).

Figure 5.5: Drawing a random variable from a given pdf f(x): Random variable Y
is drawn from a uniform distribution. Then F−1(Y ) is the random variable drawn
from f(x).

A useful technique is to represent the probability density function as a step func-

tion [29]. In this case, the computation of cumulative distribution function F and

the inverse function F−1 is very easy, and consequently it is easy to draw samples

from this function. Suppose f is a step function defined over the interval [a, b]. The

interval is divided into n equal-sized intervals, and the value of f over each of these
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equal-sized smaller intervals is constant, and is c0, c1, ..., cn−1. The size of each

smaller interval is ∆x = (b − a)/n. Suppose, a given x belongs to the ith interval,

then the cumulative distribution function F(x) is defined as:

F (x) =

∫ x

a
f(x) dx

∫ b

a
f(x) dx

=

∑i−1
j=0 cj∆x + ci(x − i∆x)

∑n−1
i=0 ci∆x

The inverse function F−1 can be easily solved by noting that F is a monotonically

increasing function (see Figure 5.6). Suppose a given y ∈ [Fi∆x, F(i+1)∆x), then

F−1(y) belongs to the ith interval, and the value of F−1(y) can be found by linear

interpolation:

F−1(y) = i∆x +
y − Fi∆x

F(i+1)∆x − Fi∆x

Figure 5.6: The cumulative distribution function F(x) of a step function is a piecewise
linear function. Given a y ∈ [Fi∆x, F(i+1)∆x), F−1(y) can be solved using linear
interpolation.

The extension of the inverse cumulative distribution method to two-dimensions

is as follows [82]: Suppose we wish to find the values of jointly continuous random

variables X and Y , given a joint density function f(x, y). We first compute F (y),
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which characterizes the probability that the value of the random variable Y is less

than or equal to y:

F (y) = Pr{Y <= y} =

∫

∞

−∞

∫ y

−∞

f(x, y) dy dx.

Given F (y), we can find the value of the random variable Y using the function

F−1(u) for a uniform random variable u ∈ [0, 1]. To find the value of the random

variable X, we use the conditional cumulative distribution F (X|Y ).

In the case of 2D, similar to 1D, it is easy to draw samples from a probability

density function that is represented discretely. In this case, the domain of the density

function is divided into a grid of cells of equal size, and the probability density

function is constant over each cell. The computation of cumulative distribution

function and the inverse cumulative distribution function is similar to the case of

one-dimension discussed above.

Based on the inverse cumulative distribution method presented in the previous

section, Lane [54] and Lane and Prusinkiewicz [55] presented a method to generate

point set distributions in a plane. In this method, probability density function is

modified dynamically by the user-specified kernel function. At each step, when a

new point is placed in the plane, the probability density field (pdf) around that

point is deformed by multiplying it with the kernel function. Hence, the placement

of a point in the plane modifies the probability that another point will be found at

a given distance from it.

Figure 5.7 shows a kernel function that sets the probability in the immediate

neighbourhood of the generated point (red square) to zero. Figure 5.8 illustrates

how point distributions are obtained using this approach, and the kernel function
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of Figure 5.7. Initially, when no point is generated, we have a constant probability

density field (Figure 5.8a). When a point is generated, the kernel function is used

to deform the probability field around the generated point (Figure 5.8b, c, and d).

The dark blue disks represent the regions with zero probability. Using this process,

eventually Poisson-disk pattern is obtained.

Figure 5.7: A kernel function that sets the probability in the immediate neighbour-
hood of the generated point (red square) to zero.
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(a) A constant probability density function.

(b) After generating one point and deforming

(c) After generating several points

(d) Eventually Poisson-disk pattern is obtained.

Figure 5.8: An example illustrating how point distributions are obtained using the
approach presented by Lane [54], and with the kernel function of Figure 5.7. Left:
the point distribution. Right: the probability density function. Dark blue disks
represent regions where probability is zero.

Figure 5.9 shows a kernel function, and the corresponding point distribution. The
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kernel function sets the probability density in the immediate negihbourhood N of

the generated point to zero, but increases it in the region beyond N , thus increasing

the probability that the points will be clustered together, as shown in Figure 5.9b.

(a) (b)

Figure 5.9: (a) A kernel function; (b) The corresponding point distribution and the
probability density field obtained using Lane’s method [54].

5.3 Summary

In this chapter, an overview of existing methods for generating point set distributions

was presented. The point sets, in this thesis, are used for generating trees, and for

growing structures in proximity to surfaces. The next chapter describes the methods

that were used to generate point distributions. These distributions are generated in

the space enclosed by implicit surfaces, and close to the boundary of the surfaces.



Chapter 6

Point Set Generation — Implementation

In this chapter, details of the algorithms that were used to generate point set distri-

butions are provided. These distributions are used for two purposes. First, points

can be generated inside the space enclosed by implicit surfaces. These points are

used by the space colonization algorithm to generate trees. By changing distribu-

tions, variations in trees can be introduced. Further, the point set can be limited

to the proximity of surfaces, which is useful for growing trees around these surfaces.

The details are presented in the following sections.

6.1 Generating points inside an implicit surface

For each implicit surface, the implicit modeler (Chapter 4) creates an axis-aligned

bounding box. An implicit surface lies inside its bounding box.

The importance of the bounding box stems from the fact that the point set

generation algorithms listed in this chapter use these to generate points in the volume

enclosed by the implicit surfaces. First, a random point is generated from a uniform

distribution inside the bounding box of a surface. Then a test is made to check if the

point lies inside the implicit surface. If the point lies outside the surface, then the

point is rejected and the process continues until a point inside the implicit surface is

generated. An axis-aligned bounding box is used since the random number generator

creates each component of a random point in [0, 1], and this point can be easily scaled

51



52

and translated into the bounding box.

In this thesis, Lane’s distribution method [54, 55] was used for generating point

distributions. This method was discussed in Section 5.2.2 for 1D and 2D distribu-

tions, and the details are the same for generating 3D distributions. This method

generates a point inside a 3D grid, and this point is transformed to the bounding

box of the implicit surface.

The advantage of using Lane’s method for generating point sets is that different

distributions can be generated by specifying an appropriate kernel function. The

underlying implementation remains unchanged. Figure 6.1 shows the cross-section

of a probability density function obtained using the kernel function of Figure 5.7. In

the figure, the dark blue disks represent the regions where the probability is zero. The

disks are of different radii since the figure shows the cross-section of a 3D probability

density function. Figure 6.2 shows the cross-section of a probability density function

obtained using the kernel function of Figure 5.9.

Figure 6.1: Cross-section of a probability density function obtained using Lane’s
distribution with the kernel function of Figure 5.7. The dark blue disks represent
regions with zero probability. Since the figure shows a cross-section of a 3D density
function, the blue disks are of varying radii.
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Figure 6.2: Cross-section of a probability density function obtained using Lane’s
distribution with kernel function of Figure 5.9.

Lane’s method draws samples from a given probability density function, and

hence the point distributions can be further controlled by using appropriate prob-

ability density functions. In particular, the density functions can depend upon the

field values of implicit surfaces. Figure 6.3 shows two examples. In Figure a, the

density function is non-zero only for the narrow region close to the boundary of the

surface, and hence the resulting points are generated close to the boundary. In Fig-

ure b, the probability density function is inversly proportional to the field values. As

a result, the resulting distribution is dense near the boundary, while it is sparse near

the center of the circle.

6.2 Generating points in proximity to surfaces

This section presents algorithms to generate points in proximity to surfaces. These

point sets were used to grow structures around surfaces.
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Figure 6.3: Controlling point distributions using field values of implicit surfaces.

6.2.1 Generating points close to implicit surfaces

The methods described in Section 6.1 can also be used for generating points outside

and in proximity to implicit surfaces. A uniform number generator generates a

random point inside a unit cube. This point is scaled and translated inside the axis-

aligned bounding box of the implicit surface. The bounding box is defined such that

it encloses all points whose field value is not zero. The random point is accepted if

it lies close to the boundary of the surface, otherwise it is rejected. Suppose f is a

given implicit function. Given iso-value and a point p, the point is outside and in

proximity to the implicit surface if it satisfies the following condition:

f(p) ∈ (isov − ǫ, isov)
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where ǫ > 0 is a user-specified parameter.

This approach of using the rejection criterion for generating point distributions is

very ineffecient, since the volume of the region in proximity to a surface where points

are to be generated is small compared to the region inside the surface. This would

lead to a large number of samples being generated, and rejected. If the field function

is complex, the rejection cost would be very high. A possible improvement would be

the selection of a bounding box which is not axis-aligned, and encloses the implicit

surface more tightly than the axis-aligned bounding box. This would, however, not

solve the problem of a large available region inside the surface, and the number of

samples rejected would still be very high.

To avoid slow generation times, two optimizations were implemented that are

described in the following sections.

6.2.2 Caching field values

The objective of this optimization is to reduce the time it takes to evaluate a field

function. Thus, even though a large number of samples are generated and rejected,

the overall computation time is reduced.

The strategy used is to cache field values for regions that contain points in prox-

imity to surfaces, and by identifying if a point belongs to the proximity of the sur-

face (point classification). Both of these objectives are achieved by marching cubes

around a surface using the approach described by Wyvill et al. [103]. The cubes

thus created are stored in a hash table. The field values at the corners of cubes are

also cached (as was done by Schmidt [85].) If for a point p, there exists a cube in

the hash table that encloses the point, then the point is a potential candidate of the
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Without cache 94.7 seconds
With cache 4.1 seconds

Table 6.1: Time of generating 1000 points, with and without cache, for a surface in
Figure 6.4. For building the cache, a cube of edge length 0.5 is used. Total number
of cubes in the cache is 2275. The points are generated between the field value 0.40
and 0.41.

point distribution, otherwise it is rejected. The field value at the point is approxi-

mated by tri-linearly interpolating the field values at the eight corners of the cube

that encloses the point. The computation time for a rejected sample is equivalent to

a hash table lookup.

Table 6.1 shows time of generating 1000 points, with and without cache, for a

surface in Figure 6.4. The second method – where the cache was used – is about

twenty three times faster than the first method. However, in a simple case where

the field value computation is fast (such as for a sphere), this method may actually

increase the overall time to generate points. For instance, generating 1000 Poisson-

disk points using the cache for a sphere of radius 10 was about twenty times slower

than generating the points directly.

As seen in the examples above, the use of the cache reduces the computation

time only if the hash table look up and tri-linear interpolation of field values is faster

than the computation of field values, which is typically the case if the Blob tree [102]

has a large depth, and the speed up by caching occurs by not explicitly traversing

the Blob tree.
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Figure 6.4: Test surface for profiling point set generation time

6.2.3 Optimizing using Lane’s distribution method

The cache (previous section) tries to optimize point set generation by reducing the

field value computation time. A large number of samples, however, are rejected. In

the second optimization, the objective is to reduce the number of samples that are

rejected by making use of the Lane’s distribution method [54, 55]. This method, as

discussed in Section 5.2.2, draws samples from a given probability density function.

Thus, if the domain of the probability density function is the same as the bounding

box of the implicit surface, and the probability density function is non-zero only for

regions close to the boundary of the surface, then all the samples would be generated

in proximity to the surface. The key to initializing the probability density function

(pdf) is the observation that in Lane’s distribution, the domain of the pdf is divided

into voxels of equal size, and the function is constant in each voxel. Hence, the pdf

for a voxel is initialized to a non-zero value if the center of the voxel is in proximity
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to the implicit surface, otherwise the pdf is set to zero.

In Figure 6.5, points are generated using this method. Note that no point is

generated inside the circle and all the generated points are close to the boundary of

the circle.

Figure 6.5: Restricting points outside and in proximity to the circle using Lane’s
distribution method [54, 55].

This method, however, adds the overhead of initializing the pdf – we need to

evaluate the field value at the center of each voxel to determine if the voxel lies

inside, or outside and close to the surface and then initialize it appropriately. We

can, however, optimize by defining the field value approximation, as described in

the previous section. A point that would be rejected is assigned a probability of 0,

otherwise it is assigned a probability of 1.

Table 6.2 shows the time taken, using these approaches, to generate 1000 Poisson-

disk points for the implicit surface in Figure 6.4.
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Lane’s distribution method 145.9 seconds
Initialize grid without cache 45.01 seconds
Initialize grid with a cache 8.67 seconds

Table 6.2: Time taken to generate 1000 Poisson-disk points, using Lane’s distribu-
tion, on a surface of Figure 6.4. For building the cache, a cube of edge length 0.5 was
used. Total number of cubes in the cache is 2275. The points are generated between
the field value 0.40 and 0.41.

6.3 Generating points close to triangular meshes

The methods described above work for implicit surfaces. However, many models are

defined in a polygon format [1, 2, 3]. The points are generated in proximity to these

meshes in order to grow trees around these meshes.

If an implicit function can be created from a given polygon mesh, then the meth-

ods discussed in Section 6.2 can be used to generate points close to implicit surfaces.

There has been work done in this direction. For instance, Yngve et al [105] use

variational methods [93] (Section 3.2) to create an implicit function from a given

mesh. This method, however, is computationally very expensive. Hence, a different

approach is used as outlined below.

It is assumed that the mesh is oriented 2-manifold. A triangle mesh consists

of a list of vertices and a list of faces (triangles) where each face consists of three

indices into the vertex list. To generate a candidate point q, first a face is randomly

selected, and then a point p is randomly selected on this face. A random point p

can be generated inside a triangle using the method presented by Turk [92]: Two

uniform random variables s and t are drawn such that s+ t < 1. If v1, v2, and v3 are

the vertices of the triangle, then p = (1−s−t) v1 +s v2 + t v3. If n is the interpolated
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face normal (as in Phong shading), then the candidate point q is translated along the

face normal: q = p + u ∗ n where u is a random number between the user-specified

limits.

Using this approach, the triangles of a mesh are selected from a uniform distri-

bution. If a mesh consists of a large number of small triangles and relatively small

number of large triangles, then this method would generate points that would not

cover the surface well. Figure 6.6a shows an example. The density of points is high

at the top and bottom, where presumably the triangles are small, while it is sparse

in the center.

To address this problem, triangles of a mesh can be selected from a probability

distribution that is proportional to the area of the triangle. The inverse cumulative

distribution method, as discussed in Section 5.2.2, can be used for this purpose.

Details are as follows.

Suppose a mesh has N triangles. Let Ai be the area of the ith triangle where i is

a 0-based index. Define a probability density function p(x) over interval [0, N ] such

that for x ∈ [i, i + 1), p(x) is proportional to the area of the ith triangle. Specifically

p(x) =
Ai

∑N−1
j=0 Aj

(x ∈ [i, i + 1))

Then, cumulative distribution function F (x) is defined as

F (x) =

∫ x

0

p(x) dx =

∑i−1
j=0 Aj + Ai ∗ (x − i)

∑N−1
j=0 Aj

The cumulative distribution function is computed for discrete points (i = 0, 1, 2, ...)

and saved in a cdf array. The cdf array is used in equation 6.1 below.
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Now to select the triangle index, we first draw a uniform random variable u ∈

(0, 1) and find F−1(u), that satisfies the following relation

cdf[index] <= u < cdf[index+1] (6.1)

Figure 6.6b shows points distributed using this approach. As shown in Figure b,

the points cover the mesh more uniformally than the points in Figure a.

(a) (b)

Figure 6.6: Generating points close to a mesh using algorithm that selects triangles
from a uniform distribution and algorithm that selects triangles from a probability
distribution that is proportional to triangle area. Model is provided courtesy of
IMATI/INRIA by the AIM@SHAPE Shape Repository
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6.4 Summary

In this chapter, algorithms for generating point set distributions were discussed.

Point sets are generated within the region enclosed by an implicit surface. These

points can then be used by space colonization algorithms for generating tree struc-

tures. Further, algorithms for generating point sets close to implicit surfaces and

triangular meshes were discussed.



Chapter 7

Modeling Trees

This chapter provides a description of the working of all the three components of

the proposed system — interactive definition of the tree crowns, populating these

crowns with points, and generating trees. The tree architecture can be influenced by

the specification of crown shapes and by varying point distributions. A particularly

interesting case occurs when we restrict point sets outside and in proximity to sur-

faces. With these point sets, trees grow around surfaces. Furthermore, the resulting

tree structures suggest the shapes of the underlying surfaces.

7.0.1 The Modeling process

To generate a tree, a tree crown is first defined using the implicit modeler. As

mentioned in Chapter 4, the user can interact with the modeler in various ways.

One of the methods is using the textual commands. These commands can be saved

to a file. This is especially useful if the user later wishes to modify parameters or

regenerate the model. For instance, the user can give the following commands to

define a crown, generate Poisson-disk point distribution in the crown and save the

points to a text file. The properties of the Poisson-disk point distribution — such as

the minimum distance between points and the number of points — is specified in a

file (poisson.props in the listing below):

sphere s
s c a l e s 50 80 50

63
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po in t s e t g en s po i s son po i sson . props
s a v e po i n t s e t po in t s . txt

The result of executing these commands is shown in Figure 7.1. The figure

shows the interface of an application that was motivated by the vlab object manager

[63], and was written to facilitate interaction between various components. The

application allows users to specify the menu (shown in Figure b) in a text file, and

associate actions with each menu item. The allowable actions are setting environment

variables, changing current directories (on Windows), and running other applications.

The objective was to minimize the number of steps the user has to take to generate a

tree model. Figure c shows the tree model generated using the previous commands.

(a) (b) (c)

Figure 7.1: Tree generation process. a) A crown defined using the implicit mod-
eler, and populated with points; b) An application to communicate with various
components of the system; c) The resulting tree.

Figures 7.2, 7.3, and 7.4 show the relationship between crown envelope and the

resulting tree, shown in different views. A tree such as this could not be generated

in the original formulation.
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The branching structures of trees can be further influenced by varying point

distributions, as shown in Figure 7.5. In Figure a, Poisson-disk distribution is used,

and the resulting crown uniformally fills the space. In Figure b, points are generated

close to the boundary of the surface (using the approach of Section 6.1, Figure 6.3a),

and this results in a tree whose branches tend to grow towards the boundary of the

surface. The tree of Figure c is generated using a clustered distribution, and this

results in masses of branches concentrated in small regions. The tree in Figure d

was created using the method described in Section 6.1, Figure 6.3b. The density of

points is inversly proportional to the field values of the implicit surfaces.

(a) (b) (c) (d) (e)

Figure 7.2: a) Implicit surfaces used for defining the crown envelope, and the resulting
crown in various views; b) Front view; c) Back view; d) Side view; e) Top view.
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(a)

(b)

Figure 7.3: Front and back views of the tree for the crown envelope of Figure 7.2.



67

(a)

(b)

Figure 7.4: Side views of the tree for the crown envelope of Figure 7.2.
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(a) Poisson distribution (b) Poisson distribution
along the crown boundary

(c) Clustered distribution (d) Point distribution based
on field values, as shown in
Figure 6.3b.

Figure 7.5: Generating plants by varying point distributions.
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7.1 Interactive manipulation of point distributions

The previous chapter described methods to generate point sets with different dis-

tributions. The user can further manipulate these point sets using two methods.

First, the user can reduce the density of points in a given region of the crown by

using a secondary implicit surface. For instance, given an implicit surface named

crown and a secondary implicit surface named secondary, that occupies some region

of the crown, the following command can be specified to reduce by eighty percent

the density of points in the region enclosed by secondary :

p o i n t s e t t h i n crown secondary 80

The operation works as follows. Let n be the number of points that are inside

the secondary implicit surface, and d be a user-specified parameter indicating the

factor by which the density of points should be reduced. Then, the first d
100

n points

are removed from the distribution. Implicit surfaces make it very easy to perform

this operation, since points can be easily classified as inside, or outside the surface.

Secondly, the distribution of a given region of a crown can be made more dense

by using a secondary implicit surface that encloses the given region, and generating

points in this surface.

Figure 7.6 shows models of two trees generated using a spherical crown. In the

second figure, the density of points was reduced in a region using a secondary implicit

surface.
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(a) (b)

Figure 7.6: Manipulating tree shapes by interactively reducing the density of points
in some regions of the crown.

7.2 Growing trees around surfaces

To grow trees that surround a given surface, do not pass into or wander away from

the surface, it seems logical to generate point sets outside but in proximity to the

surface. If marker points are inside the space enclosed by the surface, they will

attract the branches into the surface. We can, however, come up with scenarios

where trees enter the interior of the surface even when points are limited to the

proximity of the surface, as Figure 7.7 illustrates. The figure shows a cross-section

of a sphere and a tree node (green circle). The tree node is influenced (blue arrows)
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by two marker points (red circles). The resultant direction (red arrow), where a new

node will be created, points inside the surface. Figure 7.7b shows branches growing

away from the boundary of the torus. This is due to the fact that the marker points

toward the north end influence the tree nodes at the south end.

(a) (b)

Figure 7.7: Examples of cases when the branching structure may enter into the
surface or grow away from the boundary of the surface. a) Cross-section of a sphere
with marker points (red circles) and a tree node (green circle). The direction where
a new tree node will be created points inside the surface (red arrow); b) A branching
structure grows away from the boundary of the torus.

These examples suggest that not all marker points should influence the nearest

tree node. By using a small radius of influence, the tree nodes are not attracted by

marker points that are far way from them, thus avoiding the problems illustrated

in Figure 7.7. Figure 7.8 shows the structures grown around spheres and a torus,

by limiting points outside and in proximity to these surfaces, and by using a small

radius of influence.

The figures in the following pages illustrate examples of structures generated in

proximity to implicit surfaces and triangular meshes (Figures 7.9 and 7.10). It is

interesting to compare Figure 7.11 with the topiary dino of [75]. In [75], trees were

grown within the volume of a predefined surface. The branches that grew outside
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(a) (b) (c)

Figure 7.8: Growing trees around spheres and a torus by limiting point distributions
outside and in proximity to surfaces, and by using a small radius of influence.

the surface were cut off. This promoted outgrowth of lateral branches. Figure 7.11

achieves a similar visual effect by growing structures in proximity to surfaces.

Figures 7.12 and 7.13 illustrate that the grown structures suggest the shape of

the underlying surfaces, and can be used for decoration and ornamental patterns.

7.3 Summary

This chapter described the working of all the three stages of the proposed system

— interactive specification of tree crowns, generation of points in these crowns, and

generating trees using the space colonization algorithm. It was shown that the shape

and branching strucutre of the tree can be manipulated by the specification of crown

shapes and by varying the point distributions. Furthermore, trees can be grown

around surfaces by restricting point sets outside and in proximity to surfaces. The

shape of the surface is suggested by the branching structure that surrounds it.
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(a)

(b)

Figure 7.9: Growing structures around implicit surfaces.
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Figure 7.10: Growing a structure in proximity to a triangular mesh. The mesh is a
courtesy of Aim@Shape IMATI/INRIA.
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(a)

(b)

Figure 7.11: Achieving the visual effects of topiary. In both the figures, the surfaces
used are implicit surfaces (Chapter 4).
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(a) (b)

(c)

Figure 7.12: Trees suggesting the shapes of the underlying surfaces. The underlying
surface used for a) is the Stanford bunny, while implicit surfaces (Chapter 4) were
used for b) and c).
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Figure 7.13: Growing a structure in proximity to a triangular mesh. The underlying
mesh, courtesy of Aim@Shape IMATI/INRIA, is not shown. The grown structure
suggests the shape of the underlying mesh (see Figure 6.6).



Chapter 8

Conclusions

In this work, implicit surfaces are used for the modeling of plant structures. There

are three components to the proposed system. First, an implicit modeling system is

implemented. The implicit modeler is used to interactively specify the shapes of the

tree crowns. The implicit modeler incorporates features such as distance surfaces,

implicit surfaces of revolution, variational surfaces, sweep surfaces, blending, CSG,

deformations, and implicit skinning. The user interacts with the system using a

graphical interface and a command editor, which can be used to specify textual

commands to define and manipulate the models.

The implicit skinning framework was discussed in detail. Skinning, also known

as lofting, is a popular modeling paradigm in the parametric domain, but it hasn’t

caught up in the implicit arena. Existing approaches construct expensive implicit

functions from parallel contours [84, 17, 4, 93]. Further, these approaches loft cross-

sections along straight line segments. The method presented here uses interpolation

of distance fields. It is shown that the field values produced by this process are

smooth and bounded and hence the resulting surfaces can be further modified by

the summation blending. Another benefit of using this approach is that it seamlessly

handles complex cases such as those shown in Figures 4.7 and 4.10.

The second part of the proposed system involves generating point set distributions

in the space enclosed by implicit surfaces, or in proximity to surfaces. The density

of these point distributions is further controlled by the field values of the implicit

78
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surfaces.

Points are also generated close to triangular meshes. A method was presented

that generates a point by first selecting a triangle of the mesh from a uniform dis-

tribution, and then generating a point in proximity to the selected triangle. This

method, however, poorly samples those triangular meshes which consist of triangles

with greatly varying areas; in particular, triangular meshes that have a large number

of small triangles and relatively small number of larger triangles (Figure 6.6). To ad-

dress this problem, a method was presented that selected triangles from a probability

distribution that is proportional to the area of triangles.

The point distributions are interactively manipulated using implicit surfaces.

Specifically, the density of points in any given region of the crown is reduced by intro-

ducing a secondary implicit surface in the desired region, and deleting user-specified

percentage of points in the volume enclosed by the secondary implicit surface.

The proposed system extends the original space colonization algorithm in several

directions [83]. The use of implicitly defined surfaces as crown envelopes extends

the range of crown shapes that can be defined, thus improving the flexibility of the

space colonization algorithm. This flexibility is further increased by the possibility

of defining different probability distributions for placing the markers of free space,

either in the entire volume enclosed by the surface, or close to the surface. Further,

growing a tree near a surface offers an unexpected visual quality, allowing a shape

to be suggested by the branching structure that surrounds it. This may be used for

illustrative and NPR purposes.
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For a future work, the use of implicit skinning for defining the crown shapes could

be explored. By using this approach, a wide variety of crowns can be easily defined

by interactively sketching the cross-section curves.
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