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ABSTRACT struction consists of recursively replacing edges of an
arbitrary polygon (called the initiator) by an open polygon
(the generator), reduced and displaced so as to have the
same end points as those of the interval being replaced.
(The original construction [Koch 1905] was limited to the
definition of the now famous "snowflake" curve.) As pointed
out by A.R. Smith [1984], this is a language-theoretic
approach: the fractal is generated by a rewriting system (a
"granunar") defined in the domain of geometric shapes. In
contrast, the method of function iteration refers to notions of
complex analysis. The main idea is to analyze sequences of
numbers {xn} generated by the formula Xlttl = /{xn>, where f
is a complex function. The fractal, called a Julia set, is a set
invariant with respect to f. Sequences of points originating
outside the fractal may gradually approach it - in which
case the Julia set is said to be an attractor of the process f -
or they may diverge from the fractal, and the set is then
called a repeller of f. A discussion of fractal generation
techniques using attractive and repelling processes was
presented, among others, by Peitgen and Richter [1986].

According to the above descriptions, the methods for
generating Koch curves and Julia sets appear totally unre-
lated to each other. But is this the case indeed? From the
theoretical point of view, an answer to this question was
given by Hutchinson [1981]. He studied sets closed under a
union of contraction maps on the plane (specifically, similar-
ities), showed their fractal character, proved that they can be
considered as attractors, and indicated the relationship
between these sets and Koch curves. Our paper applies
Hutchinson's theory to computer graphics. We present two
algorithms for generating images of Koch curves. The
attractive method is similar to a method for generating
images of Julia sets termed the inverse iteration method
(JIM) by Peitgen and Richter [1986]. An image is obtained
by plotting consecutive points attracted by the fractal. This
method is relatively fast and particularly useful when study-
ing the impact of parameter changes on the curve shapes.
Numerical parameter modifications make it easy to generate
new variants of known curves. Continuous parameter
changes allow for animating transformations of Koch curves
in a way similar to the transformations of Julia sets [Norton
1986]. On the other hand, the repelling method makes it
possible to obtain colorful images of the entire plane con-
taining a Koch curve. This method is analogous to the
method for creating colorful images of Julia sets. However,

This paper presents two methods for generating Koch
curves, analogous to the commonly used iterative methods
for producing images of Julia sets. The attractive method is
based on a characterization of Koch curves as the smallest
nonempty sets closed with respect to a union of similarities
on the plane. This characterization was first studied by
Hutchinson. The repelling method is in principle dual to the
attractive one, but involves a nontrivial problem of selecting
the appropriate transformation to be applied at each iteration
step. Both methods are illustrated with a number of
computer-generated images. The mathematical presentation
emphasizes the relationship between Koch construction and
formal languages theory.

RESUME
Dans cet article nous presentons deux methodes pour pro-
duire des images des courbes de Koch. La methode par
attirance est fondee sur une etude des ensembles autosimi-
laires inauguree par Hutchinson. Une courbe de Koch est
consideree comme Ie plus petit ensemble non-vide fenne par
rapport a l'union des sirnilarites dans la plaine. La methode
par repulsion est une reciproque a la methode par attirance.
On observe alors une analogie avec les methodes a
engendrer des ensembles de Julia qui, elles aussi, peuvent
etre soit attirantes, soit repoussantes. Les deux methodes
sont iIlustrees par plusieurs images produites a l'aide de
l'ordinnateur. La presentation mathematique se sert d'un
lien entre la construction de Koch et la theorie des langages
fonnels.

KEYWORDS: fractal, attractor, repeller, Koch construc-
tion, rewriting system, iterative function system, dynamic
process.

1. INTRODUCTION
In recent years the beauty of fractals has attracted wide

interest among mathematicians, computer scientists and
artists. A number of techniques for generating fractal shapes
were developed and used to produce fascinating images.
Two techniques, popularized by Mandelbrot's book [1982],
have gained a particular popularity. These are the Koch
construction, and function iteration in the complex domain.
According to Mandelbrot's generalization, the Koch con-
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in the case of Koch curves a specific new problem occurs.
The~ are a number of similarities involved in the iteration
process, and only one should be applied at each iteration
step. The problem is to select the correct transformation.

Our paper extends Hutchinson's results in three direc-
tions:
. We analyze the relationship between Koch construction

and iteration of similarities in a formal way, based on a
definition of the Koch construction in terms of formal
languages theory. Our analysis is not restricted to the
limit Koch curves, but also includes their finite approxi-
mations.

. In addition to the attractive algorithm for generating
images of Koch curves, which is a straightforward
consequence of Hutchinson's paper, we introduce a
repelling algorithm.

. We illustrate both algorithms on a number of examples

using computer-generated images.

The paper is organized in the following manner. Sec-
tion 2 presents a fonnal definition of the Koch construction
expressed in terms of formal languages theory. Section 3
shows the equivalence between the Koch construction and
iteration of a set of similarities on the plane. The discussion
is limited here to curves which can be constructed in a finite
number of steps. An extension to infinite-order curves is
p~sented in Sections 4 and 5. Section 4 recalls the standard
notion of the topological limit of a sequence of sets. Section
5 applies this notion to define limit Koch curves, and pro-
vides their algebraic characterization. Section 6 presents the
corresponding method for generating approximations of limit
Koch curves, with examples of fractal images. Section 7
introduces a dual description of the limit Koch curves which
characterizes them as repellers rather than attractors. The
resulting method for generating limit Koch curves is also
discussed and illustrated.

a plane. We write: A = {a-v . . . .~}, or A = ift . . . a-n in
short. Given the plane, we denote by W and W* the set of
all vectors and the class of all polyvectors, respectively.

Definition 2.2. A Koch system is a pair K = < I, P > where
I = 0'1 . . . ~ E W* is called the axiom or initiator, and
P = (~ ql... qm) E WxW* is called the production. To
specify a production, we use the notation P' -t ql . . . qm.
The vector P' is called the predecessor of production P, and
the polyvector ql... qm is called the successor or genera-
tor.

Remark 2.1. Definition 2.2 extends Mandelbrot's [1982]
description of the Koch construction in three directions:. The basic elements of the construction are vectors, not

line segments.. The initiator and the production successor are arbitrary

sets of vectors. They need not be of equal length, form
a polygon or even be connected.

. The predecessor of the production is an arbitrary vec-
tor. It need not be connected to the successor.

The above extensions have the following justification:. Vector orientation plays an essential role in the Koch

construction. Two Koch systems which differ only by
the orientation of vectors in the initiator and/or produc-
tion may generate totally different fractals. Thus, a
definition of a Koch system which makes no reference
to line orientation is incomplete.

. When describing the construction of some fractals - for
example the dragon curve and the Gosper curve - Man-
delbrot complements the specification of the initiator
and the generator with additional rules of application.
These rules require the starting point and the end point
of the generator to exchange their role in some-
-derivation steps. By expressing productions in terms of
vectors instead of line segments it is possible to incor-
porate the rules of application into the formal definition
of the Koch system.

. Interesting modifications of fractal shapes can be
obtained by allowing the vectors in the generator to be
of different lengths.

In the following definitions we will refer to the notion
of direct similarity. A direct similarity is a transformation
on the plane which may change the position and size of
geometric figures, but preserves their shape and orientation
(which can be either clockwise or counterclockwise) as
shown in Fig. 2.1. Such similarity can be expressed as a
composition of scaling, rotation and translation; no
reflections are allowed.

If a transformation T takes figure A to the figure B, we
will write AT = B.

Definition 2.3. Let P' -t ql . . . qm be the production of a
Koch system K. Consider an arbitrary vector a- and denote
by T the direct similarity which takes vector P' to the vec-
tor a': pT = £ (Obviously, T is unique.) We will say that
polyvector ~ . . . b'., is directly derived from the vector a-
and write a'~ ~ . . . b'., iff ~ . . . b'., = (1i'I . . . qm) T.

Remark 2.2. In the case of rewriting systems which operate

2. THE KOCH CONSTRUCTION.
In order to accurately state and prove theorems related

to the Koch construction, we must substitute a formal
definition for its intuitive description usually presented in the
literature. A fundamental notion is that of a vector,
specified as an ordered pair (x, y) of points in the plane.
(Note that throughout this paper, unless otherwise noted, the
symbols x, y, z refer to points rather than coordinates.)
Unless stated otherwise, we operate on fixed vectors, which
means that two vectors a'= (xp yJ and b' = (~, Y2) are
considered equal if and only if their respective endpoints
coincide: xl = X2 and Yl = Y2' (In contrast, free or abstract

vectors are considered equal if they can be made to coincide
by a translation.) As usual, it is convenient to identify a vec-
tor (a pair of points) with its graphical representation (a line
segment in the plane). Consequently, we write that a point x
belongs to a vector a' if x belongs to the line segment
representing a'; This convention extends to sets of vectors.
Thus, we assume that point x belongs to a set ~. . . . .P'n}
when x belongs to the figure formed as the union of the line
segments of the component vectors.

Definition 2.1. A polyvector is an ordered set of vectors on

GraDhics Interface '88



B

-1

U"

""

/ '"

The next definition extends the notion of direct deriva-
tion to the predecessors which are not single vectors.

Definition 2.4. Let Q'I... ~ be a polyvector and
P' -+ ql . . . ~ the production of a Koch system K. The
poly vector bll... ~m . . . ~I . . . ~ is directly derived

from the polyvector Q'I... ~ in the system K iff
~ =} ~I . . . ~m for all i = 1. . . . ,I. We write:

".
a';1 ...a'; I =}b ...b ...b ...b111m 111m.

Remark 2.4. Note that in the derivation
... .-+.-+"..-+a'I ...a'; I =}b ...b ...b...b111m II 1m

all vectors ~ (i = 1, . . . ,/) are substituted by their succes-
sors in a single derivation step. Consequently, Koch sys-
tems belong to the class of parallel rewriting systems. In the
domain of strings, the analogous derivation type character-
izes L-systems [Lindenmayer 1968, see also Rozenberg and
Salomaa 1980]. The relationship between Koch systems and
L-systems is quite close: in fact, many Koch curves can be
generated using L-systems with a geometric intetpretation of
string symbols [Szilard and Quinton 1979, Dekking 1982a
and 1982b, Prusinkiewicz 1986]. However, a discussion of
the formal aspects of this relationship is beyond the scope of
this paper.

Definition 2.5. The notion of the direct derivation is
extended to the derivation of length n ~ 0 in the usual recur-
sive way:. For any po1yvector C, C ~o C,. If Co ~,. C,. and C,. ~ C I then CO ~""I C I.

Definition 2.6. A po1yvector C,. is the Koch curve of order
n generated by a Koch system K = < I, P > if C,. is derived
in K from the axiom I in a derivation of length n: I ~,. C,..

'"
/"'- '>C-

/
"-J V

A A"

Triangle A 'B 'C' is related to ABC by a direct similarity
Triangle A"B"C' is not directly similar to ABC because
the mapping of ABC to A"B"C" involves a reflection.

Fig. 2.1. illustration of the notion of direct similarity.

on strings (for example, context-free grammars), the result of
applying a production p -+ ql . . . qm to the letter p is ident-
ical with the production's successor: ql'.. qm' Conse-
quently, there is no need for distinguishing between produc-
tion p -+ ql . . . qm and the derivation p =) ;J,I . . . qm' In
contrast, in a Koch system the result ~ . . . bm of applying
production P -+ il'J . . ."ltm to a vector 7/ is, in general,
different from the successor ifl . . . ifm (since, in general,
7/~ P .)

Corollary 2.1. Consider a Koch system K with production
P -+ ifl . . . ifm' and let 7/ -+ ~ . . . ~ be a derivation in K.
Denote by 9j the direct similarity which takes vector pto the
vector qj : P9j = qj (j = 1, . . . ,m). In an analogous way,
denote by ~ the similarity which takes vector 7/to the vector
bj : 7/~j = bj- If T is the similarity which takes vector jj'to
a: then ~j = rl9jT.

Proof. According to Definition 2.3, if 7/= jj'T then
bj = qj T. Thus,

,,+
jj'(T~) = <PT>c.j = 7/~j = b = qj T = <P9)T = jj'(9j7)

or ~j = rl9jT . 0

Remark 2.3. In the following sections we will focus on
Koch systems with the axiom limited to a single vector U;
In this case the derivation 0' =) q . . . ~ starting from the
axiom 0' plays a particular role which justifies the use of
special symbols R and cp in place of T and~. Thus, by
definition, pR = 0' and 0' CPj = cj. The relationship between
different vectors and transformations discussed above is
represented diagramatically in Fig. 2.2. Note that the map-
pings 9jo CPj and R are completely defined by the Koch sys-
tem K, while the mappings ~j and T vary from one argument
vector o'to another.

--- T --- R ---
a 04D ~O

T R-- --
b -q oc

Fig. 2.2. Relationship between mappings 9p </Ip ~p R and T.

-

3. FINrrE-ORDER KOCH CURVES.
This section presents a characterization of Koch curves

in terms of algebra of relations. We show that any Koch
system K corresponds to a geometric relation cII in such a
way that the Koch curve of order n generated by K can be
represented as [cII". The formal discussion is limited to the
Koch systems in which the initiator [ is a single vector. A
method for removing this limitation is outlined in Section 8.

Theorem 3.1. Consider a Koch system
K = < 0', P' ~ lJ'1 . . . 7/.. >. For any sequence of indices

h,... J,,:j; e{l,... ,m} the following equality holds:
'it~. ... ~. = 'it 41. ... 41.

~I ~. /. JI
where mappings ~j and 4Ij are defined as in Corollary 2.1 and
Remark 2.3. The operation ~j is assumed to be left-
associative: 'it~h". ~j. = (...('it~h) . .. ~j).

Proof - by induction on n.

. Assuming that the sequence of zero transformations is
equal to the identity mapping, for n = 0 the thesis is
obvious.. Assume the thesis true for an n ? 1 and consider a vec-
tor '1:'= o'~h . . . ~j.~j~l. According to the inductive
assumption, the vector a'= 'it~h . . . ~j. can be

Graphics Interface '88



expressed as a'= 3'TJ, where TJ = cl>j. . . . cl>h' Further-

more, from the Corollary 2.1 it follows that the vector
t = a'E.jMI can be expressed as a'r1ejMIT, where Tis

the direct similarity which takes the production prede-
cessor j1 to the vector a'; The transformation T is in
turn equal to the composition of the direct similarity R
which takes the predecessor j1 to the axiom 0'; and the
transformation TJ which takes axiom 3' to the vector a';
Consequently, we obtain:

b'=a'J:. =1Irle. T=1I(TJ-IKI)e. (RTJ)="JMI JMI JM'
(1ITJ-I)(R-IejMIR)TJ = -ucl>jM,TJ = -ucl>jM,cI>j. . . . cl>h 0

Interpretation. According to the above theorem, associated
with a Koch system K is a set of direct similarities cl>t A
vector b' can be derived from the axiom in a sequence of
production applications if and only if it can be also obtained
by transforming the axiom vector using a sequence of direct
similarities cl>t The similarities cl>j must be applied in the
reversed order compared to the corresponding F;j mappings.

Example 3.1. In order to illustrate Theorem 3.1, let us
introduce the following notation:. S(a) - scaling with respect to the origin of the coordi-

nate system where parameter a > 0 is the scaling ratio,. R(a) - rotation by angle a with respect to the origin of

the coordinate system,
. M(u,v) - translation by vector (u, v). (Note that in this

case u and v are coordinates of a free vector, not end-

~

points of a fixed vector.)
The similarities corresponding to the Koch system presented
in Fig. 3.1a can be expressed as follows:

1</II = S(-)
3
1 1t 1

<i>2 = S(3) R(3) M(3'0)

4>J = S(.!.) R(-!:-) M(.!.:!1.)
3 3 2' 6
1 2</14 = S(3) M(3'0) .

Figure 3.1 b shows that a vector I: E C2 can be derived from
the axiom using mappings ~2~' or obtained as the image of
the axiom using similarities </14</12' Operations </Ij are applied
in the reversed order compared to the corresponding opera-
tions ~t

Remark 3.1. The specification of similarities </Ij by a com-
position of more primitive operations has an intuitive
geometric appeal - it is conceptually close to the

specification of symmetries in terms of rotations, transla-
tions, reflections and glide reflections. This emphasizes the
relationship between fractal and "classic" geometry: Koch
curves can be perceived as symmetric patterns which admit
similarities as symmetries. The concept of considering simi-
larities as symmetries is certainly not new. The extensive
study of "patterns and tilings" by Grllnbaum and Shephard
[1987] provides several examples of so-called "similarity
patterns" obtained by overlaying smaller and smaller copies
of a given motif. However, all these patterns use exactly
one similarity. The possibility of generating an abundance
of interesting patterns using two or more similarities went
unnoticed there.

Since each sequence of n similarities </Ij takes the axiom
a to a vector I: which belongs to the Koch curve C" and
each vector of C" corresponds to some sequence of such
transformations, the following corollary holds.

Corollary 3.1. Consider a Koch system
K = < it, j/-t ql . . . qm >, and let <I> denote the union of

the similarities </Ij associated with K:

m

<I>=U</lj.
pi

For any n = 0,1,2,... the Koch curve of order n generated
by K can be expressed as C" = a<I>".

Interpretation. According to the above Corollary, a Koch
curve of order n can be obtained recursively, starting from
Co = a and using the relation Cj+1 = Cj <I> to progress

through the sequence of Koch curves of consecutive orders.
Note that in general the relation <I> is not monotonic, i.e.
Cj <I> is not a superset of Cj. Consequently, the curve Cj+1
cannot be simply obtained by adding new vectors to Cj.
Some, if not all, vectors of Ci must also be erased.

In the following sections we will introduce the notion
of a limit Koch curve and we will show that, by operating
on points instead of vectors, it is possible to generate the
limit Koch curves in a monotonic process with no erasing.

Cz

Fig. 3.1. a) The production of a Koch system.
b) Two methods for obtaining a vector b' E Cz

a sequence of productions and a
sequence of similarities.
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Definition 5.1. The spread (J of a Koch system K is the
distance between the axiom it and its direct successor
c'1 . - . c'm:

(J = P(1t, cj . . . c'",) where it~ cj - . - c'm -
Lemma 5.1. The distance between two consecutive curves
Cn and C ! generated by a Koch system K with production
P' -t 7[! . . - 7[m satisfies the the inequality:

length(a'max)d- < ct-

4. THE TOPOLOGICAL LIMIT OF A SEQUENCE OF
SETS.

In this section we recall some basic topological notions
according to Kuratowski [1972] and Hutchinson [1981].

Let us assume that all sets considered are closed sets on
the plane P.
Definition 4.1. Let p(x,y) denote the Euclidean distance
between points x,y. The distance between point x and set Y
is defined as: -II --

length(o')
where a'max is the longest vector in the polyvector CII.

Proof. Consider derivation a'~ ~ . . . ~ which results
from the application of production P' -'t 1fI . . . qm to a vec-

tor a'. According to Fig. 2.2, the vectors 12'. ~, . . . ;;-.. arc
related to the vectors 0', q, . . . ,cm by a similarity R-IT.
hence:

~

p(C,.,C,..v s
,,+ ,,+
bj~): ajeC,. & aj~bj,

length(itmax)
I:]

b.fm}
,.+

max {p(aj. bit

-v -
length(O')

Definition 5.2. The contraction ratio of a production
p' -7 "if! . . . "ifm is defined as:

length(q'max)
y=

length(Jj')
where 7/max is the longest vector of the generator 7/1 . . . 7/m.

Lemma 5.2. Assuming the notation of Corollary 2.1 and
Remark 2.3, the following equality holds:

y = max {Lip (9;: lSj~} = max {Lip (4>;: l5J~}

= max {Lip (~;: lSj~} .
Proof. The equality y = max {Lip (9;: lSjSm} results
directly from the Definition 5.2. Furthermore, taking into
account the property (**) in Section 4, we obtain:

Lip (4» = Lip (K"19j R) = Lip (9) .

Using the same argument for ~r we conclude that:

Lip (9) = Lip (4>; = Lip (~;
for any j E {I, . . . ,m}, so the thesis holds. 0

Lemma 5.3. The length of any vector "i! in the polyvector

Cn satisfies the inequality:
'""'

length(b ) S length(o')i' .

p(x,Y) = inf p(x,y) .
lEY

The half-distance between set X and set Y is equal to:

p'(X,Y) = ~~ p(x,Y) .

Note that, in general, p'(X,Y).. p'(Y,x). The distance
between sets X and Y is the greater of the two half-distances:

p(X,Y) = max {p'(X,Y), p'(Y,x)} .

The function p(X,Y) satisfies the distance axioms in the
space of all closed nonempty subsets of the plane P and is
called the Hausdorff metric on this space. It is easy to
notice that for any set families Xv . . . ,xm and Yv . . . 'Yn

the following inequality holds:

p r~ Xi, C; Yj ] ~ max {P(Xjo Yj) : 1S.i~, l~~n} (*)
l~1 j=t

Definition 4.2. A set A such that
limp(An.A) = 0
n--

is called the topological limit of the sequence of sets
AO.AI.A2' . . .. It is known that if a topological limit exists,
it is unique. Consequently, we can use notation A = Lt An.

Definition 4.3. Consider a function f P -+ P. The
Lipschitz constant of / is defined as

lip (f) = sup p~~)!~» .
#y p(x,y)

We will use the following properties of lip (f):. For any points x, yeP

p(f(x), fly» ~ Lip (f) p(x,y). If f P -+ P and g: P -+ P then

Lip (fg) = lip (f) lip (g). If / is a similarity then

Lip (f-I) = ~ (**)
Lip (f)

A function/is called a contraction if Lip (f) < 1.

5. THE LIMIT KOCH CURVES.

Proof. According to Theorem 3.1, if b'eC" then thcrc
exists a sequcnce of n transformations cl>j, . . . cl>j, such that

t="itcl>j,...cI>j,. From Lcmrna 5.2 it follows that
Lip (cI» ~ y for ~l functions cl>j under consideration. Conse-
quently, lcngth(b ) ~ length("it}i'. 0

This section characterizes limit Koch curves as sets
invariant with respect to unions of similarities. The material
of this section is based on (Hutchinson 1981].
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Definition 5.3. Consider a sequence of polyvectors C,. gen-
erated by a Koch system K using derivations of length
0,1,2, A set C- = Lt C,. is called the limit curve gen-
erated by the system K.
Theorem 5.1. Consider a Koch system
K = < a', P' ~ ql . . . qm >. If the contraction ratio y of the
production P' ~ ql . . . qm is less then 1, then the limit curve
C- exists and is bounded.
Proof. Consider a sequence C,..C,...v . . . ,Cp of po1yvectors
generated by the Koch system K. According to the Lemmas
5.1 and 5.3, the distance dj between consecutive polyvectors
Cj and Cj+1 satisfies the inequality dj ~ 0-1. The distance
between polyvectors C,. and Cp does not exceed the sum of
distances d,. + d""l + . . . + dp-1 :

p-l. ~
p(C,.,Cp) ~ }:o'Y = 0"'{' .

i= 1-)'
Since y < 1 and p > n, we obtain:

1p(C",Cp) ~ O"'{'- .
1-)'

The above formula shows that the distance p(C",Cp) tends to
zero with n-tco, hence according to the Cauchy criterion
there exists the limit set C_such that

lim p(C,.,C_) = 0 .
,.--

Or, C- = Lt C,.. Furthermore,

1p(Co.C_) ~ (J1=y ,

so C- is bounded. 0

Theorem 5.2. Consider a Koch system
K = < a', P' ~ qj . . . qm >. Th~ contraction ratio y is

assumed to be less then 1. Let ~ denote the union of the
similarities cl>j associated with K:

m
II> = U cl>j .

pi
The limit curve C- generated by K has the following proper-
ties:
a) C_II> = C- ,

b) For any nonempty set X on the plane, if XII> c X then
C_cX,

c) For any point x in the plane limp'(xcI>'" C_) = O.
,.--

p( E: (y}) ~ doY'. Since the set X is assumed to be
closed with respect to all transfornlations included in <1>,
y belongs to X. Thus, the half-distance d" = p'( E: X) is

less then or equal to doY'. Considering that the con-
traction ratio y is less then one, the half-distance d"
between an arbitrary vector lj' cC" and the set X tends
to zero when n tends to infinity. Thus, the limit set C-
is a subset of X.

c) Consider an arbitrary point x in the plane, and a point z
which belongs to C_- Denote by do the distance
p(x, z). Following the same arguments as in a previous
part of this proof, we obtain:

P(""'- - - - 4>- z4>. - - . 4>- ) ~ doY'~'t'J. /I' J. /I '
where 4>j. . . . 4>j, is an arbitrary sequence of transforma-

tions included in <1>". According to part (a),
z4>j. . - . 4>iI E C_, thus p(x<I>j.'.. 4>iI' C_) ~ doY', or

p'(x<I>", C_) ~ JoY'. Considering that the contraction
ratio y is less then one, the thesis is obtained. 0

Corollary 5.1. For any Koch system K with a contraction
ratio y < I and any point x in the plane,

C- = Lt x<I>" .

Proof. Following the same argument as in the proof of
Theorem 5.2a, we find that the set X = Lt x<I>" has the pro-
perty X<1> = X. Thus, according to part (b), C_c X. On the

other hand, from part (c) it follows that X c C_. Thus,
X = C_. 0

Interpretation. Parts (a) and (b) of the Theorem 5.2
characterize the limit Koch curve C- as the smallest
nonempty set invariant with respect to a union of similari-
ties. Part (c) characterizes a set C- as an attractor. The
iterative application of the transformations included in <1> can
be considered as a dynamic process [Mandelbrot 1982, Peit-
gen and Richter 1986] which describes evolution of the set
of points S" in time. The process starts with a one-element
set So = {x}. The subsequent sets S" get closer and closer to

the limit set C- regardless of the selection of the initial
point x: Thus, C- attracts points from the entire plane.
Corollary 5.1 further specifies that all points of C- will by
reached by applying some (possibly infinite) sequences of
transformations from <1> to an arbitrary starting point x.

Proof.
a) C- = Lt a"<II" = Lt a"<I>IH-! = ( Lt a"<II") <I> = C_<I> .

n--- n-.- n---
b) Let X be an arbitrary nonempty set closed with respect

to <1>. In order to show that C_c X we will consider a
point xeX and a vector b' cCn (n?Q). According to
the Theorem 3.1, b' is the image of the axiom 0' with
respect to some sequence of transformations included in
<II" : b' = o'cI>j.cI>j_t . . . cl>it. Let y denote the image of x

with respect to the same sequence of transformations,
y = xcl>j.cI>j_t . . . cl>it, and assume that the distance

between the axiom 0' and the set {x} is equal to do.
According to Lemma 5.2, the distance between the vec-
tor b' and the set {y} satisfies the inequality

6. THE ATTRACTIVE METHOD FOR KOCH CURVE
GENERATION.

Theorem 5.2 and Corollary 5.1 suggest a simple
method for generating finite approximations of the limit
Koch curves.
. Start from a set So = {z} where point z is known to

belong to C_.
. Given set S". construct set SlI+l by applying all transfor-

mations $j c <II to all points Zt eS". Repeat this step
for consecutive values of n until the desired number of
points approximating C- is reached.

Note that all generated points Zt belong to the limit curve
C_. so all calculated points contribute to the approximation
of C- and no erasing occurs.
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a)The above method assumes that an initial point z e C-
is known. Two approaches can be used to find such a point.. Solve for z any of the equations z«Pj = z, where «Pj C <1>.

Since each mapping «Pj is a contraction, it has a unique
fixed point z. Furthermore, z=z«pj for any n ;?; 0, thus
according to the Corollary 5.1, z e C- .

. Choose an arbitrary point x in the plane, and apply to it
a sequence of transformations «Ph . . . «Pj. c<P". Accord-

ing to the Theorem 5.2(c), if n is sufficiently large, the
resulting point z will be arbitrarily close to the curve
C_. Consequently, z can be used as the starting point
for curve generation. Because of the attractive nature
of the process <1>, the impact of the error in choosing
the initial point will further decrease as the iteration
continues.

Example 6.1. Figure 6.1 shows two approximations of one
branch of the snowflake curve. The relation <1> used for itera-
tion is the union of similarities «PI - «P4 from Example 3.1.

Example 6.2. Plate 6.2 shows four curves generated by a
pair of mappings:

-~~5n~_,.h,,-
Fig. 6.1. Two approximations of the limit snowflake curve

obtained by the attractive method. Approximation (a)
consists of 100 points. Approximation (b) has 10,000 points.

Example 6.4. Figure 6.4 shows the production of a Koch
system generating twig-like shapes [prusinkiewicz 1986].
The corresponding similarities are given below:

IPI(z)='Ylz
«P2(z) = Y2z + 'Yli

c!I3(z) = (I-'YI-'Y2>z + ('YI+'Y2>i

IP4(Z) = Y2zeia + 'Yli

IPs(z) = (I-'YI-'Y2>ze-ia + ('YI+'Y2>i

Figure 65 presents the images resulting from iterating the
similarities IPI - IPs for three different values of parameters

'YI and 'Yz. In all cases, IX =::.. As in Example 6.2,
6

modification of the numerical parameters reveals interesting
shape variations.

7. THE REPELLING METHOD FOR KOCH CURVE
GENERATION.

The sets of equations considered in the previous section
defined Koch curves as attractors of dynamic processes. In
this section we address the problem of describing Koch
curves as repellerso The basic concept is to use reciprocal
mappings <Pit instead of the functions <Pj [cor. Mandelbrot
1982]. However, the repelling algorithm for Koch curve

." .3"
4>1(Z) = rye'4 <i>2(Z) = rye'7 + i

for different values of parameter y. A point is colored red if
4>1 is the last transformation used, otherwise it is colored
green. The area in which green and red points are adjacent
to each other appears as yellow. Modification of the numer-
ical parameters reveals interesting variations of the basic
dragon curve shape.

Remark 6.1. The use of complex variables emphasizes an
analogy between the Koch curves and the Julia sets. For
example, a Julia set can be generated using the inverse itera-
tion method, by iterating two mappings:

fJ(z) = +;IZ+T h(z) = -;Iz+T .
The particular mappings generating a Koch curve and a Julia
set are different, but the underlying iterative algorithm is the
same.

Example 6.3 (Based on [Demko et al. 1985]). Plate 6.3
shows the curve generated by the union of three transforma-
tions:

1 1.
-Z+-I
2 2

.S1 1 -j-7t
-;;-z~e 6

.11 1 -I-X
cI>3(z) = -z+-e 6 .

2 2
As previously, the point colors indicate the last transforma-
tion used. Note that the figure obtained is the Sierpiflski
gasket [Mandelbrot 1982]. Transformations $1-413 provide
an interesting characterization of this well-known curve: the
Sierpiflski gasket is the smallest nonernpty set closed with
respect to three scaling transformations. Their centers (fixed
points) lie at the vertices of an equilateral triangle and the

aI'. aI 1 sc mg rauos are equ to-.
2

(0.0) (0.0)

Fig. 6.4. Production of the Koch system generating
twig-like shapes.
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a

~

Fig 6.5. "Twigs" generated using the attractive method.
a) 11 = 0.5, 12 = 0.3. b) 11 = 12 = 0.5.

c) 11 = 0.2, 12 = 0.3.
ItIn all three cases, <X = ""6".

generation is more complicated than its attractive counter-
pan: for all points and at all iteration steps it requires a care-
ful selection of the applicable mapping.

Theorem 7.1. Consider a Koch system K with the contrac-
tion ratio 1 < 1 and let <P denote, as previously, the union
of similarities <1>10 . . . ,<I>m associated with K. A point x
belongs to the limit curve C- if and only if there exists a
function <l>j C <P such that x<l>jl e C_.

Proof. According to the Theorem 5.2a, C- = C_<P. Thus,
for any point x e C- there exists a point ye C- and a
transformation <l>j C <P such that Y<l>j = x, or x<l>jl = y e C_.
On the other hand, if ;xIIIjl e C- then x<l>jl<l>j = x e C_. 0

Theorem 7.2. Consider a Koch system K with the contrac-
tion ratio 1 < I and let <P denote the union of similarities
<1>10 . . . ,<I>m associated with K. If a point x does not belong
to the limit curve C- then for any infinite sequence of
transformations ",:-1 ",:-1 . . .

'I'll 'l'jz

lim p("",:-1 . . . ",:-1 C ) =00 .
""I'll 'l'J.'-n-.-

sequence of transfonnations «Pj;I«Phl . .. which does not take

x to infinity. This observation can be used a basis for gen-
erating images of Koch curves, although only finite transfor-
mation sequences and finite distances on the plane can be
considered in practice. The algorithm proceeds as follows.
. Define a window on the image plane to establish the

area of interest within which the curve will be traced.
Subdivide this window into an array of sample points
which will correspond to the pixels on the screen (for
example, each sample will represent one pixel if no
oversampling is used.) Assume the maximum length N
of the transfonnation sequence considered. Define a
"large" circle Q (including the curve C-> which will be
used to test whether points tend to infinity.

. Partition the plane into regions Dj such that for any
x E C- ("\ Dj the function «Pil c 11>-1 takes point x to
some point of C_: xcIIil E C_. According to the
Theorem 7.1, at least one such function «Pil exists,
hence this partition is feasible.. For each sampling point Xo calculate a sequence of

points xO,xI,x2.'" according to the rule:

if XII EDj then xn+1 = XII «Pil

Stop this iteration if the index n reaches limit N or XII
falls outside of the circle Q. Assign a color to the
point Xo according to the final value of n.

The justification of the above method is straightfor-
ward. If, after N iterations, a point X is taken out of the cir-
cle Q which contains the curve C-. X docs not belong to C_.
On the other hand, if after N iterations X stays within Q. it
is assumed that X E C_. In fact, in this latter case x can be
at some small distance from C_, but if the parameters are
properly chosen, the error will be negligible compared to the
screen resolution.

Example 7.1. Let us apply the repelling method to generate
an image of the Sicrpiflski gasket According 10 Example
6.3, the gasket is invariant with respect to three scalings
«PI-CP3, with centers at the vertices of an equilateral triangle

and the scaling ratios equal to 1.. Obviously, the reciprocal
2

Proof. Consider a sequence of similarities $j. . . . $j, and a

point v e C_. Since the set C- is closed with respect to all
similarities $j c: II> (Theorem 5.2a), the point u = vC/Ij. . . . $j,

also belongs to C_. Now, let us consider point
y = x$];l . . . $kl. According to the Definition 4.3 and

Lemma 5.2, p(x, u) ~ Y'p(y, v), or:

p(y, v) ~ y"p(x, u) .

The distance p(x, u) is greater then zero, because xe C- and
the set C- is closed. Thus, y"p(x, u) -t 00 with n -t 00,

and consequently p(y, v) -t 00. Since v e C- and C- is
bounded (Theorem 5.1), the distance between
y = x$];l . . . $kl and C- tends to infinity with n -t 00. 0

From Theorems 7.1 and 7.2 it follows that a point x
belongs to the curve C- if and only if there exists an infinite

Fig. 7.1. Relative position of the scaling centers PI - PJ
and domains DI - DJ for generating the Sierpiilski

gasket using the repelling method. All scaling ratios
are equal to 2.

Graphics Interface '88



Fig. 7.5. Relative position of the scaling centers PI - Ps
and domains DI - Ds for generating the Sicrpinski carpet.

The scaling ratios for Db D3. Ds and D7 are
equal to 2..fi. The scaling ratios for D2. D4. D6

and Ds arc equal to 2.

satisfy the condition:

if z eDj n C- then z cIIjl e C- .

In principle, the repelling method for generating Koch
curves is analogous to the widely used method for generat-
ing colorful images of Julia sets. However, the necessity of
partitioning the plane into domains Dj can make it difficult
to apply to some Koch curves. For example, refer to the
Example 6.2 and Plate 6.2. According to the coloring rules
assumed, red points belong to the domain Dl and green
points belong to the domain Dz. Plate 6.2b indicates that
the boundary between these two domains can itself be a
fractal line. Domain definition in the cases (c) and (d)
appears to be even more enigmatic.

If the plane cannot be easily subdivided into domains,
the fractal can be still generated using a "brute force" variant
of the repelling method. The idea is to keep track of all
points resultin¥ from the repetitive application of transforma-
tions cIIjlC <1>- to the sampling point xo, as long as they stay
within the circle n. Formally, if Xo is the initial sampling

Fig. 7.2. The Sierpihski gasket generated using
the repelling method.

transformations $11~13 are also scalings, with the same
centers and the scaling ratio equal to 2. In order to deter-
mine their domains Dp let us refer to Plate 6.3. It shows
that the gasket can be divided into three subgaskets (the red
one, green and yellow) which belong to different domains.
Thus, the domain boundaries can be defined as the bisectors
of the line segments connecting pairs of the scaling centers
(Fig. 7.1). The resulting image of the Sierpihski gasket
obtained using the repelling method is shown in Fig. 7.2.

Example 7.2. The concept of using sets of scalings can also
be used to generate other fractals. Figures 7.3 and 7.5
define the scalings and their respective domains which were
used to generate images shown in Plates 7.4 and 7.6. The
fractal in Plate 7.4 consists of an infinite number of
snowflake curves. The fractal in Plate 7.6 is the Sierpiflski
carpet Note that in this latter case two different scaling
ratios were used.

Example 7.3. Plate 7.8 shows the repelling version of a
"twig" from Example 6.4, with parameters 11 = 12 = 1.. and

3

a = ~. Partition of the plane into domains DI - Ds is

given in Fig. 7.7. The exact positions of domain boundaries
were arbitrarily chosen from the range of possibilities which

Fig. 7.7. Partition of the plane into domains D, - Ds
for generating a twig using the repelling method.

Transformations $ll - $Sl are the reciprocals
of the transformations from Example 6.4. For orientation,

the dashed lines show the corresponding first-order
curve CI.

Fig. 7.3. Relative position of the scaling centers PI - P6
and domains DI - D6 for generating the

"multi-snowflake" of Plate 7.4.
All scaling ratios are equal to 3.
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point, the set Xn of points considered after the nth iteration
step is given by the recursive formula:

Xo = {X'o}

X,..,I = Xi «1>-1(") Q

The iteration stops if the set Xn becomes empty or the index
n reaches a limit N. As previously, the final value of n
determines the color of the point xo.

Example 7.4. Plate 7.9 shows the repelling version of the
dragon curve from Plate 6.2b.

- Fig. 8.1. An example nonunifonn fractal

generated using the attractive method.

sidered was limited to the direct similarities. It would
be interesting to remove this limitation and investigate
the class of curves generated by arbitrary linear
transfonnations on the plane. While the straightforward
correspondence with the Koch curves will probably be
lost, new interesting fractal images may be produced.

. This paper shows that the usual description of the Koch
curves in tenns of an iterative geometric construction
can be replaced by an algebraic characterization. A
"dual" question applies to the Julia sets. Their known
descriptions refer to the function iteration. Is it possi-
ble to define Julia sets by geometric constructions?

. Our results appear to be related to the theory of iterated
function systems originated by Barnsely and Demko
[1985] (for further results, see [Demko, Hodges and
Naylor 1985, Levy-Vehel and Gagalowicz 1987]).
However, these systems operate in a probabilistic
manner, while our approach is purely detenninistic. It
would be therefore interesting to investigate the role of
probability in iterative function systems, and conse-
quently establish their relation to the "attractors and
repellers of Koch curves" presented in this paper.

Finally, we would like to convey our impression on the
general character of the reported research. We find it
remarkable that it combines notions from areas of mathemat-
ics and computer science which traditionally have been per-
ceived as quite unrelated. To name a few, we draw on
results of the theory of formal languages, geometry, topol-
ogy and complex analysis, and we illustrate them using
computer-generated images of fractals. Extrapolating this
experience, we believe that fractals may have great yet
largely unexploited educational potential as a visually
appealing method for illustrating various concepts of
mathematics and computer science. Interestingly, the educa-
tional applications were also presented as the original
motivation of Koch's work.

8. CONCLUSIONS.

This paper presents two methods for generating Koch
curves. They are analogous to the commonly used iterative
methods for producing images of Julia sets. The attractive
method is based on a characterization of Koch curves as the
smallest nonempty sets closed with respect to a union of
similarities on the plane. This characterization was first stu-
died by Hutchinson. The repelling method is in principle
dual to the attractive one, but involves a nontrivial problem
of selecting the appropriate transformation to be applied at
each step. Both methods are illustrated with a number of
computer-generated images.

The Koch systems discussed in this paper have the
axiom limited to a single vector and use only one produc-
tion. These restrictions can be removed by grouping all vec-
tors into classes. The applicable production is then deter-
mined by the class a given vector belongs to. Each produc-
tion also specifies the target classes for all resulting vectors.
A corresponding approach can be applied to generate Koch
curves by function iteration. In this case, a point in the
plane is characterized by its position and an attribute or
state. A typical transformation $j has a form "if point x is in
state sp than take it to point y and make the state of the
result equal to Sq." For an example of an image generated
using this technique, see Fig. 8.1. This branching shape
belongs to a class termed "nonuniform fractals" by Mandel-
brot [1982] and cannot be generated by a' Koch system with
a single production. A fonnal characterization of Koch sys-
tems with multiple productions is left for further research.

There are also many other problems open for further
research. Some of them are listed below.
. The repelling method for generating Koch curves

presented in Section 8 relies on a partition of the plane
into domains Dr However, domains Dj are defined
only for the points which belong to the curve C_, and
an arbitrary partition can be assumed outside of it. Are
some of these partitions more "natural" then others?
What is the impact of the partitions used on the images
generated by the repelling method?

. The correspondence between Koch curves and Julia sets
would be even more convincing if it could be illus-
trated by a continuous transformation of a Koch curve
(such as the dragon curve) into a Julia set (such as the
self-squared dragon).. This paper focused on the correspondence between the
generative and the algebraic characterization of Koch
curves. Consequently, the class of transformations con-
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Von Koch, H. [1905]: Une methode geometrique
f.lementaire pour l'etude de certaines questions de la
throne des courbes planes. Acta mathematica 30, pp.
145-174.
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