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I n  recent years the beauty of‘ fractals has attracted wirle 
interest among mathematicians, computer scientists. 
and artists. Several techniques for gentmting fractal 
shapes were developed and used to produce fascinating 
images. Two techniques, popularized by h4andelbrot’s 
book,2 have gained a particular popularity These are 
the Koch construction, and function iteration in tht, 3 com- 
plex domain. According to Mandelbrot’s generalization, 
the Koch construction consists of recursively replacing 
edges of an arbitrary polygon [called the inil iatorj by an 
open poIygon (the generator), reduced and rfisplaced so 
as to have the same endpoints as those of the interval 
being replaced. (The originaI construction ’ was limited 
to the definition of the now famous “snowflake” curve.) 
As pointed out by A.R. Smith: this is a language- 
theoretic approach: the fractal is generatcd by a rewrit- 
ing system (a “grammar”) defined in the rlomain of gco- 
metric shapes. In contrast. the method of funclion 
iteration refers to notions of complex analysis. The main 
idea is to analyze sequences of numbers {x,,) generated 
by the formula x, +, =f(xn). where f is a complex filnc- 
tion. The fractal, called a Julia set, is a set ir‘ivariant with 
respect to f, Sequences of points originating outsidt? thc 
fractal may gradually approach it-in which case the 
Julia set is said to be an attractor oftha process f-or they 
may diverge from the fractal, and the set is then called 
a repeller of f a  A discussion of fractal generation tech- 
niques using attracting and repelling processes has been 
presented by Peitgen and Richter,’ among others. 

According to the above descriptions, the methods for 
generating Koch curves and Julia sets appear totaly 
unrelated to each other. But is this the case indeed? From 
the theoretical point of view, an answer to this question 
was giwn by Hutchinson.’ He studied sets closed uncler 
a union of contraction maps on the plane (specifically, 
similarities], showed their fractal character, proved that 
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they can be considered as attractors, and indicated the 
relationship between these sets acd Koch curves. Our 
article applies Hutchinson’s theory to computer 
graphics. 

We present two algorithms for generating images of 
Koch curves. The attracting method is similar to a 
method for generating images of Julia sets termed the 
inverse iteration method (IIM) by Peitgen and Richter.’ 
An image is obtained by plotting consecutive points 
attracted by the fractal. This method is relatively fast and 
particularly useful when studying the impact of param- 
eter changes on the curve shapes. Numerical parameter 
modifications make it easy to generate new variants of 
known curves. Continuous parameter changes allow for 
animating transformations of Koch curves in a way simi- 
lar to the transformations of Julia sets.6 On the other 
hand, the repelling method makes it possible to obtain 
colorful images of the entire plane containing a Koch 
curve. This method is analogous to the method for creat- 
ing colorful images of Julia sets. However, in the case of 
Koch curves a specific new problem occurs. There are 
a number of similarities involved in the iteration process, 
and only one should be applied at each iteration step. 
The problem is to select the correct transformation. 

Our article extends Hutchinson’s results in three 
directions: 

We analyze the relationship between Koch construc- 
tion and iteration of similarities in a formal way, 
based on a definition of the Koch construction in 
terms of formal languages theory. Our analysis is not 
restricted to the limit Koch curves, but also includes 
their finite approximations. 

In addition to the attracting algorithm for generating 
images of Koch curves, which is a straightforward 
consequence of Hutchinson’s paper, we introduce a 
repelling algorithm. 

We illustrate both algorithms on a number of exam- 
ples using computer-generated images. 

The article is organized as follows. The next section 
presents a formal definition of the Koch construction 
expressed in terms of formal languages theory. Then we 
show the equivalence between the Koch construction 
and iteration of a set of similarities on the plane. The dis- 
cussion is limited here to curves that can be constructed 
in a finite number of steps. An extension to infinite-order 
curves is presented next. We recall the standard notion 
of the topological limit of a sequence of sets and apply 
this notion to define limit Koch curves and provide their 
algebraic characterization. The corresponding method 
for generating approximations of limit Koch curves is 
presented with examples of fractal images. Finally we 
introduce a dual description of the limit Koch curves, 
which characterizes them as repellers rather than attrac- 
tors. The resulting method for generating limit Koch 
curves is also discussed and illustrated. 

The Koch construction 

To accurately state and prove theorems related to the 
Koch construction, we must substitute a formal defini- 
tion for the intuitive descriptions usually presented in 
the literature. A fundamental notion is that of a vector, 
specified as an ordered pair (x,y) of points in the plane. 
(Note that throughout this article the symbols x, y, z refer 
to points rather than coordinates.] Unless stated other- 
wise, we operate on fixed-vectors, which means that two 
vectors d=(x,, yl) and b =(x,,y,) are considered equal 
if and only if their respective endpoints coincide: x1 = xz 
and y1 = y2. (In contrast, free or abstract vectors are con- 
sidered equal if they can be made to coincide by a trans- 
lation.) As usual, it is convenient to identify a vector (a 
pair of points) with its graphical representation (a line 
segment in the plane). Consequently, we write that a 
point x belongs to a vector Z if x belongs to the line seg- 
ment representing ??This convention extends to sets of 
vectors. Thus, we assume that point x belongs to a set {z, . . . , f j * n }  when x belongs to the figure formed as the 
union of the line segments of the component vectors. 

Definition 1. A polyvector is an ordered set of vectors 
in a plane. We write A={G ,..., Z}, or A=%.. ,% in 
short. Given the plane, we denote by Wand W* the set 
of all vectors and the class of all polyvectors, respectively. 

Definition 2. A Koch system is a pair K = (I ,P) where 
I = s . . . T E W *  is called the axiom or initiator, and 
P=(p ,  q l ” ’  $+Wx W* is called the production. TO 
specify a production, we use the notation is’ -+ q , . . .  
q,n. The vector is’ is called the predecessor of production 
P, and the polyvector $... Tn, is called the successor or 
genera tor. 

+-+ 
-+ 

-+ 

Remark 1. Definition 2 extends Mandelbrot’s descrip- 
tion of the Koch construction’ in three directions: 

0 The basic elements of the construction are vectors, 
not line segments. 

0 The initiator and the production successor are arbi- 
trary sets of vectors. They need not be of equal length, 
form a polygon, or even be connected. 

0 The predecessor of the production is an arbitrary vec- 
tor. It need not be connected to the successor. 

The above extensions have the following justification: 

0 Vector orientation plays an essential role in the Koch 
construction. Two Koch systems that differ only by 
the orientation of vectors in the initiator and/or 
production may generate totally different fractals. 
Thus, a definition of a Koch system that makes no 
reference to line orientation is incomplete. 
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Figure 1. Illustration of the notion of direct similar- 
ity. Triangle A’B’C’ is related to ABC by a direct 
similarity, while triangle A”B”C”is not directly simi- 
lar to ABC because the mapping of ABC to A”B”C” 
involves a reflection. 

Figure 2. The relationship between mappings e,, +j, tj, 

R ,  and T. 

0 When describing the construction of some fractals- 
for example, the dragon curve and the Gosper 
curve-Mandelbrot complements the specification of 
the initiator and the generator with additional rules 
of application. These rules require the starting point 
and the endpoint of the generator to exchange their 
roles in some derivation steps. By expressing produc- 
tions in terms of vectors instead of line segments it 
is possible to incorporate the rules of application into 
the formal definition of the Koch system. 

0 Interesting modifications of fractal shapes can be 
obtained by allowing the vectors in the generator to 
be of different lengths. 

In the following definitions we will refer to the notion 
of direct similarity. A direct similarity is a transforma- 
tion on the plane that may change the position and size 
of geometric figures, but preserves their shape and orien- 
tation (which can be either clockwise or counterclock- 

wise), as shown in Figure 1. Such similarity can be 
expressed as a composition of scaling, rotation, and 
translation; no reflections are allowed. 

If a transformation T takes a figure A to the figure B, 
we will write AT = B. 

Definition 3. Let p’ - Z:.Trn be the production of a 
Koch system K. Consider an arbitrary vector E’ and 
denote by T the direct similarity that takes vector p’ to 
the vector E’: p’T: SifiObviously, Tis  unique.) We will say 
that polyvector bl...b, is+dir-ctIy derived fromJhejec- 
tor and write Z 3 b,**.b, if and only if bl.*.brn= 
(Z ..*T,)T. 

Remark 2. In the case of rewriting systems that operate 
on strings (for example, context-free grammars), the 
result of applying a production p -+ q1”.q, to the letter 
p is identical with the production’s successor: q,...q, . 
Consequently, there is no need for distinguishing 
between production p -+ q,...qrn and the derivati%n p 3 
ql. . .q,  . In contrast, in a Koch system the result b,*..b,,, 
of applying production p’ -+ Z *..Tm to a vector Z is, in 
general, different from the successor -d;...Trn (since, in 
general, E’ # j7). 

Corollary 1. Consider a Kosh sy$em K with production 
p’ -+ Z:.Trn, and let E’ -+ bl...b, be a derivation in K. 
Denote by 6, the direct similarity that takes vector to 
the vector % : p’6, = $6 = 1,. .. ,m). In an analogous way, 
denzte by 5, t2e similarity that takes vector E’ to the vec- 
tor b, : E’t, = b,. If T is the similarity that takes vector p’ 
to <then 5, = T-’ BIT. 

Proof. According to Definition 3, if 2 = TT, then b, = 

<T. Thus, 

-+ 

or 5 ,  = T-’ 8,T.O 

Remark 3. In the following sections we will focus on 
Koch systems with the axiom limited to a single vector 
:In this case the derivation d 3 z..*C,, starting from 
the axiom d plays a particular role which justifies the 
use of special symbols R and + in place of T and 5 .  Thus, 
by definition, j3’R = $ and d+, = c. The relationship 
between different vectors and transformations discussed 
above is represented diagrammatically in Figure 2. Note 
that the mappings e,, +,, and R are completely defined 
by the Koch system K, while the mappings 5, and T vary 
from one argument vector z;’ to another. 

The next definition extends the notion of direct deri- 
vation to the predecessors that are not single vectors. 
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Definition 4. Let <...s be a polyvector and r;' + 

%*..Ti*, thz production of a Koch system K. The polyvec- 
tor ~ l ~ ~ ~ b l , ~ * * b ~ l ~ ~ ~ b r ,  is directly derived from th,e poly- 
vector z . . . < i n  the system Kif and only if ?$ + bil*..Km 
for all i = 1,. ..,I. We write 

Remark 4. Note that in the derivation 

all vectors 7;: (i = 1,. ., ,I)  are substituted by their succes- 
sors in a single derivation step. Consequently, Koch sys- 
tems belong to the class of parallel rewriting systems. In 
the domain of strings, the analogous derivation type 
characterizes L - s y s t e m ~ . ~ , ~  The relationship between 
Koch systems and L-systems is quite close; in fact, many 
Koch curves can be generated using L-systems with a 
geometric interpretation of string  symbol^.^^'^ However, 
a discussion of the formal aspects of this relationship is 
beyond the scope of this article. 

Definition 5. The notion of the direct derivation is 
extended to the derivation oflength n L 0 in the usual 
recursive way: 

0 For any polyvector C, C 3' C. 

0 If CO +" C, and C, 3 Cn+], then CO >"+lCn+l 

Definition 6. A polyvector C, is the Koch curve oforder 
n generated by a Koch system K =  (I ,P) if C, is derived 
in K from the axiom I in a derivation of length n: 
r ~ c , .  

Finite-order Koch curves 
This section presents a characterization of Koch 

curves in terms of algebra of relations. We show that any 
Koch system K corresponds to a geometric relation UJ in 
such a way that the Koch curve of order n generated by 
K can be represented as I@". The formal discussion is 
limited to the Koch systems in which the initiator I is a 
single vector. A method for removing this limitation is 
outlined in the final section of the article. 

Theorem 1. Consider a Koch system K = (< p" 
Ti;...Tm). For any sequence of indices j l ,  ...,j, : ji E 

{ I, ..., m}, the following equality holds: 

where mappings <, and +, are defined as in Corollary 1 
and Remark 3. The operation <, is assumed to be left- 
associative: ;5' <,;~.<,, =(...(Z<,l)..*<,,). 

is equal to the identity mapping, for n =O the thesis 
is obvious. 

0 Assume the thesis true for an n r l  and consider a 
vector i? = Z<i,...~i,<i,+,. According to the inductive 
assumption, the vector Ti' = i7,S,;..,Si, can be 
expressed as S ; ' = ~ Y J ,  where YJ = Further- 
more, from Corollary 1 it follows that the vector 
b = a  can be expressed as dT-16i,+,T, where T 
is the direct similarity that takes the production 
predecessor p' to the vector d T h e  transformation T 
is in turn equal to the composition of the direct 
similarity R, which takes the predecessor r;' to the 
axiom Xand the transformation YJ, which takes axiom 
b to the vector d Consequently, we obtain 

- +  

Interpretation. According to the above theorem, 
associated with azoch  system K is a set of direct similar- 
ities +,. A vector b can be derived from the axiom in a 
sequence of production applications if and only if it can 
also be obtained by transforming the axiom vector using 
a sequence of direct similarities Q,. The similarities +, 
must be applied in the reversed order compared with the 
corresponding <, mappings. 

Example 1. To illustrate Theorem 1, let us introduce the 
following notation: 

0 S(a) is scaling with respect to the origin of the coor- 
dinate system where parameter a > 0 is the scaling 
ratio. 

0 R(a) is rotation by angle a with respect to the origin 
of the coordinate system. 

0 M(u,v) is translation by vector (u,v). (Note that here U 

and v are coordinates of a free vector, not endpoints 
of a fixed vector.) 

The similarities corresponding to the Koch system 
presented in Figure 3a can be expressed as follows: 

Proof-by induction on n. 

0 Assuming that the sequence of zero transformations 
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Figure 3. (a) The production of azoch  system. (b) N o  
methods for obtaining a vector b E Cz: a sequence of 
productions and a sequence of similarities. 

Figure 3b shows that a vector C2 can be derived 
from the axiom using mappings t2t4, or obtained as the 
image of the axiom using similarities +4+2. Operations 
are applied in the reversed order compared with the cor- 
responding operations (,. 

Remark 5. The specification of similarities by a com- 
position of more primitive operations has an intuitive 
geometric appeal-it is conceptually close to the speci- 
fication of symmetries in terms of rotations, translations, 

reflections, and glide reflections. This emphasizes the 
relationship between fractal and “classic” geometry: 
Koch curves can be perceived as symmetric patterns that 
admit similarities as symmetries. The concept of consid- 
ering similarities as symmetries is certainly not new. The 
extensive study of “patterns and tilings” by Grunbaum 
and Shephard provides several examples of so-called 
“similarity patterns” obtained by overlaying smaller and 
smaller copies of a given motif.I3 However, all these pat- 
terns use exactly one similarity. The possibility of gener- 
ating many interesting patterns using two or more 
similarities went unnoticed there. 

takes the 
axiom $ to a vector b that belongs to the Koch curve 
C,, and each vector of C, corresponds to some sequence 
of such transformations, the following corollary holds. 

Since each sequenze of n similarities 

Corollary 2. Consider a Koch system K = <Z j7 + 

2;; ...zn >, and let Q, denote the union of the similarities 
+, associated with K: 

m 

j=1 
t Q = u 4 j .  

For any n = 0,1,2,. . . the Koch curve of order n generated 
by K can be expressed as C, = $0”. 

Interpretation. According to the above corollary, a Koch 
curve of order n can be obtained recursively, starting 
from CO = ;i’ and using the formula C, = C,Q, to pro- 
gress through the sequence of Koch curves of consecu- 
tive orders. Note that in general the relation Q, is not 
monotonic; i.e., C,O is not a superset of C,. Conse- 
quently, the curve C,,, cannot be obtained simply by 
adding new vectors to C,. Some if not all vectors of C, 
must also be erased. 

In the following sections we will introduce the notion 
of a limit Koch curve and we will show that, by operat- 
ing on points instead of vectors, it is possible to gener- 
ate the limit Koch curves in a monotonic process with 
no erasing. 

The topological limit of a sequence of 
sets 

In this section we recall some basic topological 
 notion^.','^ To start with, let us assume that all sets con- 
sidered are closed sets on the plane P. 

Definition 7. Let e(x,y) denote the Euclidean distance 
between points x,y. The distance between point x and 
set Y is defined as 
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The half-distance between set X and set Y is equal to 

p’(X,Y) = p(x,Y, . 
XE R 

Note that, in general, @[X,Y) # @(yX). The distance 
between sets X and Y is the greater of the two half- 
distances: 

The function e [ X ,  yl satisfies the distance axioms in the 
space of all closed nonempty subsets of the plane P and 
is called the Hausdorffrnetric on this space. Note that for 
any set families X ,  ,..., X,, ,  and Y ,,..., Y,, the following ine- 
quality holds: 

Definition 8. A set A such that 

limp(A,,,A) = 0 
n-i- 

Definition 10. The spread o of a Koch system K is the dis- 
tance between the axiom Ti’ and its direct successor 
c,. . .c,, ,:  + +  

where 

Lemma 1. The distance between two consecutive curves 
C,, and C,, i ,  generated by a Koch system K with produc- 
tion -+ z...g,, satisfies the inequality 

where q,,a, is the longest vector in the polyvcctor Cl,. 

+ - +  
Proof. Consider derivation ?i’ 4 b,. . .b, , ,  , which results 
from the application of production F -+ z...$,, to2 vec- 
tor 2 According to Figure 2, the vectors c, .. . , b,,, are 
related to the vectors ci?,,...,c,, by a similarity R “J’, 
hence 

is called the topological limit of the sequence of sets 
A,,,A,,AL;.. . It is known that if a topological limit 
exists, it is unique. Consequently, we can use notation P(z bi ’ ’ ‘ ’J - - length@) 
A = IJti4,,. p(Z 8 . . . ?& length($) 

Definition 9. Consider a function f: P+P. The Lipschitz 
constant of f  is defined as 

The longer the vector E’ is, the bigger thc value of both 
ratios. Taking into account Inequality 1 from the previ- 
ous section, we obtain 

We will use the following properties of Lip (0: 
0 For any points x ,y  E P 

-+ 
P ( f ( x ) , f i ) )  5 Lip U, p(x,y) P(c,,,c,,) 5 max (p(q,  . . . b,,) : 

0 I f f :  P-P and g: P+P, then 

Lip Vg) = Lip V, Lip (s) 

0 Iff  is a similarity, then 

(2) Definition 11. The contraction ratio of a production 
iJ* -+ $...g,, is defined as 

A function f is called a contraction if Lip(fl< 1. 
length(&,) 

length@) 
Y =  The limit Koch curves 

This section characterizes limit Koch curves as sets 
invariant with respect to unions of similarities and is 
based on the work of Hutchinson.’ where is the longest vector of the generator z.’.&. 
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Lemma 2. Assuming the notation of Corollary 1 and 
Remark 3, the following equality holds: 

y =  max (Lip (e,): l<<-m) = 

max (Lip ($j):  I 9 % ]  = 

max (Lip (si): l ~ j ' 4 n )  . 

Proof. The equality y = max { Lip(Bi): 11 j 5 m} results 
directly from Definition 11. Furthermore, taking into 
account Equation 2 in the previous section, we obtain 

Lip (qj) = Lip (R-le, R )  = Lip (e,) . 

Using the same argument for si, we conclude that 

Lip (e,) = Lip ($,) = Lip (s,) 
for any j E { 1 ,..., m}, so the thesis holds.0 

Lemma 3. The length of any vector c in the polyvector 
C,, satisfies the inequality 

length($) I length($ 

Proof. According to Theorem 1, if TE C,, then there 
exists a sequence of n transformations +," such that 
b = " '+I , .  From Lemma 2 it follows that Lip (+,) 5 
y for allLunctions under consideration. Consequently, 
length(b ) I length(T) f.0 

-+ 

Definition 12. Consider a sequence of polyvectors C, 
generated by a Koch system K using derivations of length 
0,1,2, .... A set C,=LtC, is called the limit curve gener- 
ated by the system K. 

Theorem 2. Consider a Koch system K = (z,? -+ 

ql . . . z l l ) .  If  the contraction ratio y of the production 
-, z...zll is less than 1, then the limit curve C, exists 

and is bounded. 

+ 

Proof. Consider a sequence C,,, C, +,, .. .,C,, of polyvec- 
tors generated by the Koch system K. According to 
Lemmas 1 and 3, the distance d, between consecutive 
polyvectors C, and C, +, satisfies the inequality d, I oy'. 
The distance between polyvectors C,, and C, does not 
exceed the sum of distances d, +d,,+] + ." +d,-,: 

Since y < 1 and p > n,  we obtain 

The above formula shows that the distance g(C,,C,) 
tends to zero with n + 03; hence according to the Cauchy 
criterion there exists the limit set C, such that 

limp(Cn,C,) = 0 . 
n - w  

Or C, =LtC,. Furthermore, 

so C, is bounded.0 

Theorem 3. Consider a Koch system K = ( x  -+ 

Z*..F,). The contraction ratio y is assumed to be less 
than 1. Let @ denote the union of the similarities +i 
associated with K: 

m @=ut$. I '  
J3 

The limit curve C, generated by K has the following 
properties: 

1. C,@=C,. 

2. For any nonempty set X on the plane, if X@ c X, then 
c, c x. 

3. For any point x in the plane 

Proof. 

1. c, = Lt i?w = Lt 7i'V' = 
n-wm n - w  

( Lt 2 W )  @ = Cm@. 
n-m 

2. Let X be an arbitrary nonempty set closed with 
respect to @. To show that+C, c X we will consider 
a point XEX a n 2  a vector b C C, (n 2 0). According 
to Theorem 1, b is the image of the axiom with 
respect to so%e sequence of transformations 
included in a": b =E' + l , + l , l ~ l ~ ~ ~ + l l .  Let y denote the 
image of x with respect to the same sequence of 
transformations, y = ~1 ,,+and assume that 
the distance between the axiom o and the set {x} 
is equal to do. According to Lemma 2, the distance 
between the v z t o r  b and the set {y) satisfies the 
inequality e (b,{y}) 5 doyfl. Since the set X is 
assumed to be closed with respect to all transforma- 
tions included i n 2 ,  y belongs to X. Thus, the half- 
distance d, = e'(b,X) is less than or equal to day". 
Considering that the contraction ratio y is less than 
oneLthe half-distance d, between an arbitrary vec- 
tor b c C,, and the set X tends to zero when n tends 
to infinity. Thus, the limit set C, is a subset of X. 
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3. Consider an arbitrary point x in the plane, and a 
point z that belongs to C,. Denote by d, the distance 
e (x , z ) .  Following the same arguments as in a previ- 
ous part of this proof, we obtain 

P m j ,  . . .  +jp z+j. . . .  +,,I 5 4lY . 
where is an arbitrary sequence of transfor- 
mations included in m". According to part 1 of this 
proof, Z Q ~ ~ ~ . ~ + , ~ E C , ,  thus e(xQ,;.~Q,,, C,) 5 day", or 
e'(xO",C,) 5 d,y". Considering that the contraction 
ratio y is less than one, the thesis is obtained.0 

Corollary 3. For any Koch system K with a contraction 
ratio y < 1 and any point x in the plane, 

C , = L t f l "  . 

Proof. Following the same argument as in the proof of 
part 1 in Theorem 3, we find that the set X = Ltxm" has 
the property X @ =  X .  Thus, according to part 2, C, c X. 
On the other hand, from part 3 it follows that XCC,. 
Thus, X=C,.O 

Interpretation. Parts 1 and 2 of Theorem 3 character- 
ize the limit Koch curve C, as the smallest nonempty 
set invariant with respect to a union of similarities. Part 
3 characterizes the set C, as an attractor. The iterative 
application of the transformations included in 0 can be 
considered as a dynamic that describes evolu- 
tion of the set of points SI, in time. The process starts 
with a one-element set S, = {x).  The subsequent sets SI, 
get closer and closer to the limit set C, regardless of the 
selection of the initial point x. Thus, C, attracts points 
from the entire plane. Corollary 3 further specifies that 
311 points of C, will be reached by applying some (pos- 
sibly infinite) sequences of transformations from 0 to an 
arbitrary starting point x. 

The attracting method for Koch curve 
generation 

Theorem 3 and Corollary 3 suggest a simple method 
for generating finite approximations of the limit Koch 
curves. 

Start from a set S,, = {z} where point z is known to 
belong to C,. 

Given set S,,, construct set SI, *,  by applying all trans- 
formations Q , c @  to all points z~ES, .  Repeat this 
step for consecutive values of n until the desired 
number of points approximating C, is reached. 

Note that all generated points zA belong to the limit 
curve C,, so all calculated points contribute to the 
approximation of C, and no erasing occurs. 

The above method assumes that an initial point ZEC, 
is known. Two approaches can be used to find such a 
point. 

.... . . . .  ........ . .  . . . .  . . . .  . . . . . . . . . . . .  . . . . . . . . . .  ........ ........ 
a 

.... .... . .  .... .... . . . .  . . . .  ........ .... .... ........ . .  . . . .  . . . .  . .  
. . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . .  

. .  
. . . . .  . . . . . . .  . .  

. . . . . .  . . . . . . . . . . .  ......... ........ ........ ....... . - . . .  

Figure 4. Two approximations of the limit snowflake 
curve obtained by the attracting method. 

0 Solve for z any of the equations zQl = z, whorc  Q, c 0. 
Since each mapping Ql is a contraction, i t  has a 
unique fixed point z. Furthermore, z = zQ;' for any 
n 2 0 ;  thus according to Corollary 3, ZEC,,. 

0 Choose an arbitrary point x in the plane, and  apply 
to it a sequence of transformations + , ; . . Q , , , c  0". 
According to part 3 of Theorem 3, if n is sufficiently 
large, the resulting point z will be arbitrarily close to 
the curve C,. Consequently, z can be used as the 
starting point for curve generation. Hecaust: of the 
attracting nature of the process 0, the impact of the 
error in choosing the initial point will furthcr 
decrease as the iteration continues. 

Example 2. Figure 4 shows two approximations ol ont: 
branch of the snowflake curve. The relation 0 used lor 
iteration is the union of similarities Q, through Q, froin 
Example 1. 

Example 3. Figure 5 shows four curws genc:rated by a 
pair of mappings 

3n 
i- . x  i- 

+l(Z)  = 2Ye $z(z) = rye + i 
for different values of parameter y. A point is colored red 
if Q, is the last transformation used; otherwise i t  is col- 
ored green, Modification of the numerical parameters 
reveals interesting variations of the basic: dragon curve 
shape. 

Remark 6. The use of complex variables emphasizes an 
analogy between the Koch curves and the Julia sets. For 
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Figure 5. Variations of the dragon curve: (a) 

y=0.85. 
, ~ ~ 0 . 6 5 ,  fbf ~=0.7071=fl/2, fc) y=0*75, (d) 

example, a Julia set can be generated using the inverse 
itcration method, by iterating two mappings: 

fI(Z> = +m fz(2) = -m 

'The particular mappings generating a Koch curve and 
a Julia set are different, but the undcwlying iterative algo- 
rithm is the,, 3 .;ame. 

Example 4 [based a n  work by Dernko e t  aI."j. Figure 6 
shows ttic curve generetecl by the unirm of tlxree trans- 
Lorrnatiuns: 

A s  previously, the r x m l  colors inciicttc the last transfor- 
mation used. Note that the figore obtained is the Sierpin- 

kek2 %ansformations 4, through Q I 13rovide an 
esting characterization of this well-known curve: 
Sierpinski gasket is the s m a h t  rronempty set 

ed with respect tu three scaling transforniations. 
* centers [fixed points) lie at the vertices of an 

era1 triangle and the scaling ratios are tqual to 1/2. 

. Figure 7 shows the production of a Koch sys- 

Figure 6. The Sierpinski gaskef approximated 
using the attracting method. 

1 

_11_1) 

- x 

Figure 7. Production of the Koch system generating 
twiglike shapes. 

tern generating twiglike shapes.I2 The corresponding 
similarities are given below: 
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Figure 8 presents the images resulting from iterating the 
similarities +, through +., for three different values of 
parameters y I  and y2. In all cases, a= n/6. As in Example 
3, modification of the numerical parameters reveals 
interesting shape variations. 

The repelling method for Koch curve 
generation 

The sets of equations considered in the previous sec- 
tion defined Koch curves as attractors of dynamic pro- 
cesses. In this section we address the problem of 
describing Koch curves as repellers. The basic concept 
is to use reciprocal mappings + instead of the func- 
tions However, the repelling algorithm for Koch 
curve generation is more complicated than its attracting 
counterpart: For all points and at all iteration steps it 
requires a careful selection of the applicable mapping. 

Theorem 4. Consider a Koch system K with the contrac- 
tion ratio y < 1 and let Q, denote, as previously, the union 
of similarities +,], associated with K. A point x 
belongs to the limit curve C, if and only if there exists 
a function c Q, such that x+-: E C,. 

Proof. According to part 1 of Theorem 3, C,=C,Q,. 
Thus, for any point x E C, there exists a point y E C, 
and a transformation c Q, such that y+l = x, or x+ = 

y E C,. On the other hand, if x+-,’E C,, then x+-; = 

x E c,.u 

Theorem 5. Consider a Koch system K with the contrac- 
tion ratio y <1 and let Q, denote the union of similarities 
+,, .. . ,+,,, associated with K. If a point x does not belong 
to the limit curve C,, then for any infinite sequence of 
transformations 

Proof. Consider a sequence of similarities and 
a point v E C,. Since the set C, is closed with respect 
to all similarities c 0 (Theorem 3, part I), the point 
U = V + , , ; ~ ~ + ~ ~  also belongs to C,. Now let us consider 
point y = x +  According to Definition 9 and 
Lemma 2, e(x,u) 5 y”e(y,v), or 

The distance e(x,u) is greater than zero, because 
x @ C, and the set C, is closed. Thus, y-”e(x,u) +. 03 

with n + 03, and consequently e(y,v) 4 W.  Since v E C, 
and C, is bounded (Theorem z), the distance between 
Y=X+-,!~...+-;,] and C, tends to infinity with n +. 03.0 

From Theorems 4 and 5 it follows that a point x 
belongs to the curve C, if and only if there exists an 
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a 

Figure 8. “Tbigs” generated using the attracting 
method: (a) y1 =0.5, yz=0.3,  (b) y1 = yz =1/3, ( c )  y1 =0.2, 
yz=0.3 .  In all three cases, a =  n/6. 

infinite sequence of transformations + :2 . . .  that does 
not take x to infinity. This observation can be used as a 
basis for generating images of Koch curves, although 
only finite transformation sequences and finite distances 
on the plane can be considered in practice. The algo- 
rithm proceeds as follows: 

0 Define a window on the image plane to establish the 
area of interest within which the curve will be traced. 
Subdivide this window into an array of sample points 
that will correspond to the pixels on the screen (for 
example, each sample will represent one pixel if no 
oversampling is used.) Assume the maximum length 
N of the transformation sequence considered. Define 
a “large” circle R (including the curve L), which 
will be used to test whether points tend to infinity. 

0 Partition the plane into regions D, such that for any 
x€C,nD, the function + ;CW1 takes point x to 
some point of C,: x+ ;E C,. According to Theorem 
4, at least one such function +-:exists; hence this 
partition is feasible. 

0 For each sampling point xo calculate a sequence of 
points xo,xl,x2, ... according to the rule 

if x,, €Dj then x,+1 = x ,  $,:l . 

Stop this iteration if the index n reaches limit N or x,, 
falls outside of the circle R. Assign a color to the point 
xo according to the final value of n. 
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a t 

Figure 9. (a) Relative position of the scaling centers 
P ,  thpough P ,  and domains D, through D3 for gener- 
ating the Sierpinski gasket using the repelling 
method. AI1 scaling ratios are equal to 2% 

’Ttre justification of the a tme  method is slraightfor- 
ivard. If, affcr N iterations, a point x i s  t-aken aut of the 
circle Q that contains the curve C,, x does riot belong to 
Ca. On the other hand, if aftcr IL‘ iterations x stays 
within Q, it i s  assumed that .x E C,, In fiict, in this latter 
casc x can be at  some small distance from C,, but if tile 
parameters are properly chosen, the error wil1 be negligi- 

curnpared with the screen r’esolution. 

Example 6, Let us apply the repelling method to gener- 
e of the Sierpinski gasket. According to 
ze gasket is invariant with respect to three 

a 

b 

Figure 10. (a) Relative position of the scaling centers 
PI through Ps and domains D, through De for gener- 
ating the “mulfismowflake” curve (b) using the repel- 
ting method. All scaling ratios are equal to 3, 

scalings Q, through (bj, with centers at the vertices of an 
equilateral triangle and the scaling ratios equal to 1/2. 
Obviously, the reciprocal transformations + [ through 
(b are also scalings, with the same centers and the scal- 
ing ratio equal to 2. To determine their domains D,, let 
us refer to Figure 6. It shows that the gasket can be 
divided into three subgaskets [red, green, and yellotv), 
which belong to different domains. Thus the domain 
boundaries can be defined as the bisectors of the line seg- 
ments connecting pairs of the scaling centers (Figure %I). 
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Figure 1%. (a) Relative position of the scaling centers 
P ,  through Ptl and domains U, through ElB for gener- 
ating the Sierpinski carpet (b] using the repelling 
method. All scaling ratios are equal tci 3. 

The resulting iniage of the Sierpinski gasket obtained 
wing the repelling method i s  shown in Figure 9b. 

Example 7. 'The concept of sets of scalings can also be 
used to generate other fractals. Figures 10a and 11a 
define the scalings and their respective domains, which 
were used to generate images shown in Figures lob and 
lllr The fractal in Figure 1ob consists of an infinite num- 
ber of snowflake curves. The fractd in Figure 1% is the 
Sierpinski carpet. 

Example 8. Partition of the plane into domains D, 
through D,, corresponding to the "twig" from Example 
5, is given in Figure 12a. The parameter vaIues are yI = 

a I 

b 

Figure 12. (a) Partition of the plane into domains D, 
through D, for generating a twig (b) using the repel- 
ling method. Transformations +-; through +-! are the 
reciprocals of the transformations from Example 5. 
For orientation, the dashed lines show the coc- 
responding first-order curve C1. 

y2=1/3 and a=n/3. The exact positions of domain 
boundaries were arbitrarily chosen from the range of 
possibilities that satisfy the condition 

if z E D ,  n C, then z E C, . 

Figure 12b shows the repelling twig. 
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Example 9. Figure 13 shows the repelling version of the 
dragon curve from Figure 5b. 

Conclusions 

This article presents two methods for generating Koch 
curves. They are analogous to the cornmonly used iter- 
ative methods for producing images of Julia sets. The 
attracting method is based on a characterization of Koch 
curves as the smallest nonempty sets closed with resprxt 
to a union of similarities on the plane. This characteri- 
zation was first studied by Hutchinson. ‘The repelling 
method is in principle dual to the attracting one, but 
involves a nontrivial problem of selecting the appropri- 
ate transformation to be applied at each step. Both 
methods are illustrated with a number of computer- 
generated images. 

Figure 13. The dragon curve generated using the 
repelling method. 

I n  principle, the repeIling method for generating Koch 

variant oi the repcllirig metht 

transformations ip ;c@ ’ to the sempling p i n t  xc8. as 
long as they stay within the circle 52. Formally if so is the 
initial sampling point, the set X, ,  of points c;onsidered 
aftey the nth iteration step i s  gia*en by the recursive 
forxnula 

The Koch systems discussed in this article have the 
axiom limited to a single vecior and use only one produc- 
tion. These restrictions can be removed by grouping all 
vectors into classes. The applicable production is then 
determined by the class a given vector belongs lo. Each 
production also specifies the target classes for all restilt- 
ing vectors, A corresponding approach can he applied 
to generate Koch GUIWS by function iteration. I n  this 

is characterized by its position 
1% typical t ransformalion 4, has 

state sj,. then take i t  to pointy and 
esult  quai to s , ~ ”  For an example 

sing this technique, see Figure 
pe Iiulongs to a class termed 

runiform fractals” by Mandelbrot‘ and cannot be 
ted by a Koch system with a single production. A 
characterization of Koch systems with multiple 

There are also many other problems open for further 
praciiictions is left for further research. 

rescarch. Some of them follow: 

I, The repelling method for generating Koch curves 
presented in the previous section relies on a partition 
a€ the plane into domains D,. However. domains U, 
are defined only for the points that belong to the 
curve C,, and an arbitrary partition can be assumed 
outside of it. Are some of these partitions more “nat- 
ural” than others? What is the impact of the partitions 
used on the images generated by the repelling 
method? 

0 The correspondence between Koch curves and Julia 
sets would be even more convincing if it could be 
illustrated by a continuous transformation ofa Koch 
curve (such as the dragon curve) into a Iulia set (such 
as the self-squared dragon). 

‘The itcrafion stops if the set X,, becomes empty or the 
hes a limit M. As previously, the final value 

IIWS the color of the point x”. 

1. .* 
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Figure 14. An example nonuni- 
form fractal generated using the 

attracting method. 

0 

This article shows that the usual description of the 
Koch curves in terms of an iterative geometric con- 
struction can be replaced by an algebraic characteri- 
zation. A "dual" question applies to the Julia sets. 
Their known descriptions refer to the function iter- 
ation. Is it possible to define Julia sets by geometric 
constructions? 

Our results are related to the theory of iterated func- 
tion systems originated by Barnsley and Demkolfi 
(further results also appear in the l i terat~re~". '~).  
However, these systems operate in a probabilistic 
manner, while our approach is purely deterministic. 
Recently, a deterministic variant of iterated function 
systems has also been investigated by M. Barnsley, as 
he noted to us  in a personal communication (August 

1988). It would be interesting to study the relationship 
between his approach and our approach. 

Finally, we would like to convey our impression of the 
general character of the reported research. We find it 
remarkable that it combines notions from areas of 
mathematics and computer science that traditionally 
have been perceived as quite unrelated. To name a few, 
we draw on results of the theory of formal languages, 
geometry, topology, and complex analysis, and we illus- 
trate them using computer-generated images of fractals. 
Extrapolating from this experience, we believe that frac- 
tals may have great and still largely unexploited educa- 
tional potential as a visually appealing method for 
illustrating various concepts of mathematics and com- 
puter science. Interestingly, the educational applications 
were also presented as the original motivation of Koch's 
work. 
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