
THE UNIVERSITY OF CALGARY

Biomechanics in Botanical Trees

by

Julia Taylor-Hell

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2005

c© Julia Taylor-Hell 2005

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Stud-

ies for acceptance, a thesis entitled “Biomechanics in Botanical Trees” submitted by Julia

Taylor-Hell in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. Przemyslaw
Prusinkiewicz
Department of Computer Science

Dr. Lawrence D. Harder
Department of Biological Sciences

Dr. Faramarz Samavati
Department of Computer Science

Date

ii

Abstract

In this thesis, I describe a method for creating tree models with realistically curved branches,

by considering the tree’s development in the context of its environment. The final shape of

the branches results from their growth under the influence of gravity and tropisms. Using

the framework of L-systems, I extend Jirasek’s biomechanical simulation of a plant axis to

correctly represent entire trees. I present simulations ofreaction wood and branch breakage

due to excessive stress, as well as methods for controlling tree architecture. The result of

all these factors is a multi-year biomechanical simulation of tree growth, which produces a

realistic tree shape at every stage of its development. As a case study, my model is used

to represent the mutantcrooked poplar tree. I also investigate the dynamics problem of

representing oscillatory motion of tree branches. I solve a two-dimensional problem using

non-inertial systems to model a branched system of spring-linked segments. The remainder

of the dynamics solution is left as future work.

iii

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Przemyslaw Prusinkiewicz for his

guidance in the completion of this thesis, and for his infectious enthusiasm. I am also grateful

Dr. William Remphrey for his botanical insights and communications about the crooked

poplar tree, as well as Prof. Alfredo Louro for his generous assistance with the dynamics

problem. I would like to thank Mark Myhre for his encouragement, as well as my father

Pavol, mother Susan and sister Catherine for their support and for reading through endless

chapters. I am grateful for the help of Mikolaj Cieslak, Peter MacMurchy, Kevin Foster

and Kelly Poon. I very much appreciate the financial support provided for this work by the

Natural Sciences and Engineering Research Council of Canada and the Alberta Informatics

Circle of Research Excellence.

iv

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents v

1 Introduction 1

2 Previous Work 3
2.1 Modelling for statics . 3
2.2 Modelling for dynamics . 6
2.3 Similarity to hair modelling and animation 7
2.4 Botanical background . 8

2.4.1 Branch girth . 8
2.4.2 Branching angles . 9
2.4.3 Fate of buds . 11
2.4.4 Tropisms . 11
2.4.5 Reaction wood . 12

3 L-systems 13
3.1 Context-sensitive L-systems . 13

3.1.1 Example 1 . 14
3.1.2 Example 2 . 14

3.2 Branching structures . 15
3.3 Improvements in LPFG . 16

3.3.1 User-defined parameter types . 16
3.3.2 Fast information transfer . 16

4 Tree growth and resource allocation 19
4.1 Simulation of seasons . 19

4.1.1 Seasons in the model . 20
4.2 Descriptive rules for architecture development 22
4.3 Allocation of resources . 24

4.3.1 Fate of buds . 27
4.3.2 Shedding of unproductive branches 30
4.3.3 Fairness of resource allocation . 31

v

5 Elasticity Theory 33
5.1 Load and stress . 33
5.2 Young’s modulus and strain . 34
5.3 Strength . 36
5.4 Rigidity and moment of area . 36

5.4.1 Flexural rigidity – resistance to bending 37
5.4.2 Torsional rigidity – resistance to twist 39

5.5 Bending stress . 39
5.6 Shear stress from torsion . 40

6 Biomechanics 41
6.1 Biomechanical model of a single stem . 41

6.1.1 Torques due to negative geotropism and self-weight 44
6.1.2 Overview of the simulation . 45
6.1.3 Forward propagation . 46
6.1.4 Backward propagation . 46
6.1.5 Adding a segment . 49

6.2 Lateral branching . 51
6.3 Buckling tests . 54
6.4 Results and discussion . 57

7 Case study: Crooked poplar tree 60
7.1 Review of the biomechanical simulation 61
7.2 Modelling the crooked poplar . 61

7.2.1 Allocation of resources and fate of buds 62
7.2.2 Shedding of unproductive branches 63
7.2.3 Other characteristics of the crooked poplar 64

7.3 From wild type to crooked mutant . 64
7.4 Results and discussion . 66

8 Wood properties, reaction wood and breakage 69
8.1 Increasing the moment of area, I . 69
8.2 Increasing Young’s modulus, E . 70

8.2.1 Wood aging . 71
8.3 Reaction wood in nature . 73

8.3.1 Detection of a lean . 74
8.3.2 Differentiated shape . 75
8.3.3 Differentiated material properties 76
8.3.4 Growth strains . 76

8.4 Reaction wood simulation . 77
8.4.1 Detection of a lean . 77
8.4.2 Differentiated shape . 77
8.4.3 Differentiated material properties 82
8.4.4 Growth strains . 82

8.5 Reaction wood results and discussion . 84

vi

8.6 Breakage . 85
8.7 Simulation of breakage in a fruit tree . 86
8.8 Breakage and reaction wood . 87

9 Toward a model of tree branch dynamics 90
9.1 Introduction to non-inertial systems . 91
9.2 A one-dimensional mass-spring system 93

9.2.1 The system expressed inertially 93
9.2.2 The system expressed non-inertially 95

9.3 A non-inertial system for rotation – multiply-linked pendula 97
9.3.1 Radial and tangential components of forces 98
9.3.2 Overview of the equations for the rotational system 102
9.3.3 The rotational system’s equations in detail 103
9.3.4 Summary of the equations . 108
9.3.5 Implementation . 108

9.4 Addition of springs to the system . 110
9.5 Response to instantaneous forces . 112
9.6 Branching . 112
9.7 State of the solution . 113

10 Conclusions and future work 115
10.1 Conclusions . 115
10.2 Future work . 116

A Appendix: Code for the simulations 118
A.1 General biomechanical model . 118
A.2 Crooked poplar . 140
A.3 Architecture control via descriptive functions 142
A.4 Dynamics . 143

Bibliography 150

vii

List of Tables

6.1 Table of buckling lengths for ideal columns made from various species of
woods . 56

viii

List of Figures

2.1 Radiir1, r2 of lateral branches lead to parent radiusr0 9
2.2 Deviation anglesθ1 andθ2 of lateral branches 10
2.3 Spiral phyllotaxis in newly produced buds 10
2.4 Yearly growth increment . 11

3.1 Two directions of information propagation 15
3.2 At a branching point, both children obtain context from the parent module. . 15
3.3 Signal propagation using old context . 17
3.4 Signal propagation using new context . 17

4.1 A fruit tree shown in summer, bearing the load of fruit and leaves, and the
following winter under reduced load. 21

4.2 L-studio’s graphical function editor provides control points to be modified
by the user . 23

4.3 Acrotony is achieved from a graphically-defined function 24
4.4 Two trees of different architectures created by modifying graphical functions 25
4.5 At branching points, resources are distributed according to relative girth. . . 26
4.6 Resources flowing to several buds. In (a), none of the buds are determined to

shoot. In (b), bud X is determined to shoot and becomes a sink for resources. 29
4.7 A tree model using two different resource allocation strategies, (a)z = 1

and (b)z = 0.2. 32

5.1 A bending rod undergoing tensile stress above and compression stress below
the neutral axis, where no stress is experienced. 34

5.2 Stress vs. strain graph showing the elastic and plastic phases of a material . 35
5.3 Flexural and torsional rigidities . 36
5.4 Distancex from the neutral axis, and radius of curvatureR. 37

6.1 A mechanical manipulator with straight links and rotational joints. 42
6.2 New heading vector direction found by rotation around~Ω 43
6.3 Accumulated torque due to distal segments 47
6.4 Accumulated torques at child segment . 48
6.5 Lateral branching . 51
6.6 Equilibrium positions of simulated apple wood column at lengths (a) 18.0m

and (b) 18.1m, after buckling occurred. 56
6.7 "S" shape of a stem due to self-weight and negative geotropism 57
6.8 Tree model: (a) inspiration from nature (b) the model with biomechanics (c)

the model without biomechanics. 59

7.1 Populus tremuloides, (a) wild type and (b) crooked mutant. Taken with per-
mission from [43]. 61

ix

7.2 Parent branch with two vigourous relay shoots. Beyond the relay shoots is
the unproductive pendulous portion of the parent branch which will soon be
shed. Taken with permission from [43]. 63

7.3 Unproductive pendulous portion of a parent branch in the model. 64
7.4 A crooked poplar tree displaying multiple upright shoots. Taken with per-

mission from [42]. 65
7.5 Crooked poplar model. 66
7.6 Wild type poplar model. 67
7.7 Crooked poplar model. 68

8.1 Branch segment with inner core of stiffnessEcore and new outer ring of stiff-
nessEring. 73

8.2 Photograph of a tree in which reaction wood has corrected a leaning trunk. . 74
8.3 Cross-section showing asymmetrical thickening of rings due to reaction wood.

The resulting elliptical cross-section aids to resist bending along the axis of
thickening. Taken with permission from [17]. 75

8.4 Elliptical cross-section with semi-axesa andb, showing the model’s three
orthogonal axes and the vector (0, 1, 0). 78

8.5 Preexisting inner core with new elliptical reaction wood ring 81
8.6 A single stem (a) without reaction wood (b) with reaction wood. 84
8.7 A simple tree, before and after reaction wood is produced. 85
8.8 A simple tree, before and after the breakage of two branches A and B due to

stress from weight of fruit. 87
8.9 Comparison of the same model with (a) high and (b) low MOR thresholds

for breakage. 89

9.1 Inertial reference frame W and non-inertial reference frames for a one-dimensional
mass-spring system. 94

9.2 Rotational system of three linked pendula. 99
9.3 Decomposition of a force vector~F , with respect to a reference vector~r i . . . 99
9.4 Radial force component causes stretching and tangential component causes

rotation. 100
9.5 Three links, the second two parallel, with components of force~F2 shown with

respect to each link~r i . Only ~F2⊥0
causes rotation, as it is the only nonzero

tangential component of~F2. 101
9.6 Accumulated radial forces from the right, taking perpendicular and parallel

components at each step. 106
9.7 Centripetal and tangential accelerations. 107
9.8 Effects of a rotational spring located at particle 0 withθ = 0, as well as

torques due to gravity. 111
9.9 Branching rotational system in (a) its initial position and (b) its equilibrium

state. 113

A.1 Panels allow user control over the L-system’s parameters 139

x

Chapter 1

Introduction

Botanical trees are modelled extensively for the portrayal of natural scenes in the animation

industry. Obtaining realistic models of trees is a common goal in this field as well as in botan-

ical research, horticulture and forestry [12]. Instead of painstakingly reproducing observed

characteristics or using data capture from real trees, the goal of this thesis is to generate real-

istic models from the results of a biomechanical simulation. With this approach, tree shapes

and behaviours can be obtained as they are in nature – as the result of their physical makeup

in interaction with their environment.

An important shape characteristic of many trees seen in nature is the bending and curving

of branches. These shapes result from the influences of gravity and tropisms while a branch

is undergoing radial growth [15]. Jirasek used L-systems to express a biomechanical model

of a growing plant axis that responds to these influences [25]. One contribution of this thesis

is to extend her method to handle the biomechanics at branching points, allowing complete

representations of trees. By using a new capacity for fast information transfer in L-systems,

the goal is to significantly speed up simulations.

Another contribution of this thesis involves the simulation of wood properties, based in

a study of elasticity theory. In nature, reaction wood is produced to actively reorient a lean-

ing branch, resulting in a curved trunk which regains its desired direction of growth. To

accomplish similar results in the model, I simulate several aspects of reaction wood produc-

tion described in botanical literature. Breakage of branches due to excessive stresses from

weight, as experienced by some fruit trees, is also simulated.

To visualize the influence of biomechanics on tree growth, one must begin with a realistic

tree architecture. In this thesis, two methods of controlling tree architecture are presented.

1

2

The first method is descriptive; it specifies stochastic rules for tree growth based on obser-

vations of natural trees. Such rules are incorporated into the model by means of graphical

functions which can be edited by the user. The second method allows tree architecture con-

trol to emerge from a physiologically-based simulation of resource allocation, symbolically

based on the flow of water and minerals throughout a growing tree.

I also investigate the dynamics problem of representing oscillatory motion of tree branches

in response to external forces, such as the quick pulling of a branch. With such a represen-

tation, realistic motion could be generated automatically, as a result of a physically-based

simulation, instead of being created by animators. I solve a two-dimensional problem using

non-inertial systems to model a small branched system of spring-linked segments under the

influence of gravity. The remainder of the dynamics solution is left to future work.

The thesis is organized as follows. Relevant previous work is discussed in Chapter 2.

Chapter 3 is a description of L-systems, the framework used to express the tree models. In

Chapter 4, two approaches to controlling tree architecture are presented, and the tree’s sea-

sonal cycle of development is described. An introduction to the theory of elasticity as it

affects the models is given in Chapter 5. In Chapter 6, an in-depth description of the biome-

chanical simulation is given, reviewing Jirasek’s method for single plant axes and extending

her model to branching structures. Chapter 7 is a case study of the "crooked" mutant of the

Populus tremuloides species, a tree composed of curved and twisted branches caused by se-

vere bending due to gravity. The simulations of reaction-wood production and breakage are

described in Chapter 8. Chapter 9 provides an investigation of the dynamics problem, using

non-inertial systems. Conclusions and directions for future work are discussed in Chapter

10. The most important L-system code for the models described in this thesis is presented in

the Appendix.

Chapter 2

Previous Work

Much research has gone into the development of realistic tree models, because of its im-

portance in both the computer graphics industry and the biological modelling community.

General methods of modelling trees for computer graphics have been reviewed in [40] and

[12]. As the field of tree modelling is very broad, this chapter focuses on reviewing works

related to biomechanics. Background for other components of the models will be introduced

in the relevant chapters.

Several methods have been used to create physically-based tree models to represent

branch bending. Though the approaches range from trajectories of particle systems [48]

to fluid flow [49], most of the work has focused on either deformable beams or spring-linked

segments. A survey of physically-based tree modelling techniques for semi-static simula-

tions is presented in Section 2.1. In particular, previous work is described which represents

bending of branches due to weight and tropisms. In Section 2.2, previous work in repre-

senting the dynamic motion of tree branches is described. In Section 2.3, I outline some

relevant work from the fields of hair modeling and animation. Section 2.4 is a review of

some botanical research relevant to the model.

2.1 Modelling for statics

Statics is the study of objects at rest [19]. Static tree modelling methods balance internal

and external forces to achieve an equilibrium position, or shape, for the tree. These methods

can be used alongside a growth simulation in order to represent a tree’s equilibrium shape at

each step during its development.

Hart et al. [21] have created such a developmental tree model in which growth is partly

3

4

controlled by the solution to a static system. In their model,growth rates of branches were

computed based on a compromise between two goals – balancing weight around the centre

of mass and maximizing the results of photosynthesis. Torques acting on the trunk were

reduced by balancing the tree’s centre of mass over its trunk. The growth of branches was

accelerated or inhibited in response to a centre-of-mass calculation. However, branches in

their model did not curve or alter their orientation in response to gravity.

Other authors have sought to simulate the curving of branches due to weight and tropisms.

Archer [5] described the curvature of a tree stem as being affected by three phenomena:

1. bending from self-weight (long-term loading),

2. stem rigidification due to radial growth, and

3. secondary reorientation caused by differentiation of material within a branch.

Fournier et al. [15] presented a biomechanical model using beam theory to approximate

the bending of a plant stem due to loading and stresses. They performed a biomechanical

study of tree growth, which included the development a mechanical model for stresses and

strains in a cross-section. Their model described the effect of added radial layers on these

stresses and on stem shape. As a result, the authors predicted a tree stem characterized by an

"S" shape visible in many plant axes.

More recent advances have made use of these results. Alméras et al. [3] modelled a two-

dimensional branch using a chain of beams that bend due to masses concentrated at their

base. In their model, bending moments and beam curvatures were continually recalculated

until equilibrium was reached. Fourcaud et al. [13] used finite-element analysis to represent

the mechanical behaviour of growing trees. Their model was composed of a sequence of

multi-layer deformable beam segments which grew radial layers to simulate thickening of

the branch. New beams were added to simulate branch lengthening.

Instead of representing a tree stem as a continuously bending beam, the structure may be

5

discretized and the bending of a branch modelled by rotating a set of joints between small

straight segments. This representation is similar in structure to themechanical manipulator

robot described in detail by Craig [10]. The most intuitive way to specify orientations and

positions of the segments is relationally, describing each in terms of its deviation from the

previous segment. With this approach, the orientation of any segment implicitly accounts for

rotations of ealier segments.

Jirasek [25] employed L-systems to create a biomechanical model of a growing plant

axis that bends due to external forces. In her model, physical properties were propagated in

both directions along a growing axis, resulting in the shape of the axis at static equilibrium.

Jirasek’s model dealt largely with single plant axes. Although branching structures were

represented, the biomechanical simulation at branching points was not handled because her

approach relied on the assumption of infinitesimal rotations. Her work was also limited

by the complexity of the model’s representation in CPFG, the modelling framework for L-

systems in use at the time.

Recent development of L-system languages has enabled extension of Jirasek’s approach.

Karwowski introduced the L+C modelling language [29], which makes two important im-

provements to the workings of L-systems relevant to modelling biomechanics. First, it al-

lows user-defined structures to be passed as parameters to L-system modules. Thus, multiple

parameters such as torques and velocities may be carried together in a single structure. Pre-

viously, only simple types were allowed as parameters, which made the lists of production

parameters prohibitively complex for physically-based models such as Jirasek’s.

Also, L+C introducesfast information transfer, described in Chapter 3, by which a signal

originating at one end of a structure can be propagated to the other end in a single rewriting

step. This speeds up simulations significantly, allowing for interactive frame rates and much

more complex models.

Part of this thesis is focused on extending Jirasek’s method to handle the biomechanics

6

of branching structures, so that entire trees may be simulated.

2.2 Modelling for dynamics

Several researchers have proposed systems to model the dynamics of trees. Often, the goal

has been to represent wind acting on tree branches, causing them to sway.

Shinya and Fournier [48] created a simulation of the dynamics of tree branches in wind.

The authors used a combination of stochastic and physically-based methods to reduce the

required computation. Their simulation of the wind and dynamic models were kept separate

from the deformation models, so that different geometric descriptions of the tree model could

be used with the same system. The authors approximated dynamic motion of various types of

tree models either by using damped coupled harmonic oscillators or by synthesizing motion

from the vibration modes of a uniform beam.

Stam [50] built on this work, creating efficient dynamics simulations by modelling the

effect, instead of the cause, of the movement. He used modal analysis to create a filter of

noise in the Fourier domain. Good results were obtained by superimposing precomputed

characteristic shapes for a small number of modes to obtain the resulting shape for any

particular force. With this method, he eliminated the need to integrate dynamics equations,

thereby obtaining real-time results.

Several other dynamics approaches use a two-pass method which propagates physical

information forward and then backward along a branch. Jones et al. [26] used a simple L-

system tree model to represent deflection, resistance and twist of branches due to simulated

wind. The techniques used were described aspseudophysics, as their goal was to produce

visually pleasing results quickly, instead of achieving physical accuracy.

In the work of Sakaguchi et al. [46], external forces acting on each segment were cal-

culated in a forward pass from the branch base to the tip, and then restoration forces were

calculated in the reverse direction from tip to base. Finally, the rotations were applied to each

7

segment and they were reconnected and oriented so that the rotations calculated became rel-

ative to the end of the previous segment. This last step is less elegant than it could be if

the author had used a relational representation and non-inertial reference frames; segments

that remain attached and rotate in relation to each other are the natural product of such a

framework.

Armstrong developed the theory for simulating dynamics of tree branches in wind using

non-inertial reference frames and the associated non-inertial forces. This work also used

bidirectional information propagation, collecting physical information in separate forward

and backward passes. The author made some simplifying assumptions to reduce the re-

quired computation, claiming that link rotations could be considered infinitesimal and as

such could be represented as vectors. He also ignored these rotations during some interme-

diate calculations. These simplifications limited the model to representing trees swaying in

a slight breeze, as the deviation from the initial state must be relatively small at any stage.

In the case of wind, it is difficult to discern whether the visual results are physically

accurate, as one cannot see the wind which is causing the motion. Thus, even ad hoc methods

can produce convincing results. Creation of believable motion in response to visible stimuli,

such as a hand quickly pulling the end of a branch, is more difficult because the viewer is

cued as to what motion to expect.

2.3 Similarity to hair modelling and animation

A study of the static and dynamic behaviour of tree branches has much in common with

the fields of hair modelling and animation. As such, techniques suggested in this field are

applicable to the problem of tree modelling. Explicit models which represent the dynamics

of individual hair strands are particularly relevant to the simulation of plant axes.

Daldegan et al. [11] used a mass-spring-hinge model, similar to the spring-linked seg-

ment model for tree modelling, to represent hair strands. A similar structure is also used by

8

Rosenblum et al. [45]. Anjyo et al. [4] also used a simplified cantilever beam divided into

segments to represent a hair strand, and used this model to approximate the dynamics of hair

motion. Hadap and Magnenat-Thalmann [18] conceptualized an individual hair as a string

of particles connected by bending and torsional springs, ignoring the rigid tensile springs

which would lead to stiff equations. As such their final representation used links attached by

spherical joints with a set of reference frames that moved with the links. Quaternions were

used to represent each joint’s rotation. The influences of gravity and of interactions with air,

body or other hairs are applied to this structure.

2.4 Botanical background

For centuries, observers of nature have formed theories about the structure of trees [44] [34]

[24]. This section presents background findings and definitions relating to tree growth and

structure.

Theorder of a branch refers to the number of ancestors it has in the tree; a main trunk

has order 0. A branch of orderj is called thechild of the(j −1)-order branch from which

it originated. In a growing tree,primary growth refers to the lengthening of branches by the

growth of newinternodes or small segments, as well as the production ofnodes, including

leaves and buds.Secondary growth is radial thickening that occurs to support the added

primary growth [53].

2.4.1 Branch girth

With regard to the girth of branches, Da Vinci hypothesized that the cross-sectional area of a

parent branch equals the sum of cross-sectional areas of its child branches [44]. In the case

of bifurcation (branching into two lateral segments) his hypothesis translates to

r2
0 = r2

1 + r2
2. (2.1)

9

r1

r2

r0

Figure 2.1: Radiir1, r2 of lateral branches lead to parent radiusr0

In 1927, Murray [34] performed measurements on many species of trees and came to a result

which is a variant of Da Vinci’s equation:

rP
0 = rP

1 + rP
2 (2.2)

whereP ranged between 2.49 for large trees and 3.0 for smaller trees. Murray’s findings

were reinforced by theoretical reasoning in 1964 with the introduction of thepipe model of

Shinozaki et al. This theory determines branch girth by requiring that every leaf have a pipe

to conduct water to it from the base of the tree [47]. Therefore the cross-section at any point

along a branch must be large enough to contain pipes for all the leaves above this point in

the branch. The pipe model theory has been used extensively as the basis for determining

the girths of branches as a function of the number of leaves or child branches they support.

Holton [23] introduced astrand model, based on the pipe model. Strand elements sim-

ulate the tree’s internal vasculature and are responsible for branching angles, lengths and

girths of limbs. The tree model grows under the influences of gravity and light, and tropic

responses are approximated.

2.4.2 Branching angles

Two changes to orientation are made at branching points. Thedeviation angle θ is the angle

made by a lateral branch relative to its parent’s axis, as depicted in Figure 2.2. Thedivergence

10

r1

r2

r0

θ2
θ1

Figure 2.2: Deviation anglesθ1 andθ2 of lateral branches

angle φ specifies the position around the parent axis at which lateral growth occurs. In many

trees, this angleφ is the familiar 137.5◦ associated withspiral phyllotaxis [40]. Each new

terminal bud formed along a branch is produced at a rotation of 137.5◦ beyond the previous

bud, as in Figure 2.3.

Figure 2.3: Spiral phyllotaxis in newly produced buds

Some species of trees exhibit other forms of phyllotaxis. For example, decussate phyl-

lotaxis produces pairs of opposite buds with a divergence angle ofφ = 90◦ between pairs.

Much work has been done by Honda et al. [24] to create rules for branching in botani-

cal tree models based on measurements of real trees. These rules specify qualities such as

distance between branching points, number of new branches at each point, and branching

angles in relation to the parent branch and to gravity.

11

2.4.3 Fate of buds

Botanists refer to a section of branch grown during a single year as theyear’s growth in-

crement, shown in Figure 2.4. Within this increment, many buds are formed. The most

vigourous buds will become new shoots during the next year, and the rest will abort or re-

main dormant [53].

1 year old

2 years old

Figure 2.4: Yearly growth increment

Wilson [53] noted that, in temperate climates, the probability of a bud becoming a shoot

is higher for buds produced later during the year. As a result, the largest branches occur near

the top of each growth increment. He also noted that higher-order branches elongate more

slowly than the main trunk [53]. In general, the length of a shoot depends on thevigour, or

productivity, of its parent branch.

2.4.4 Tropisms

A tropism is a preferred direction of growth in a plant in response to environmental stimuli

[53]. Geotropism refers to oriented growth in reaction to gravity. In particular,negative

geotropism indicates the tendency of a new shoot to orient itself upwards, against the pull of

gravity.

12

2.4.5 Reaction wood

Reaction wood is a modified form of wood produced by leaning branches so as to regain their

desired direction of growth. Hart et al. investigated two aspects of reaction-wood modelling.

First, in a simulation of the statics of tree growth, they modelled uniformly increased girth at

branching points where reaction wood should be formed to resist a rotational force [21]. As

the authors noted, this uniform increase in girth is only a rough approximation of reaction

wood, because the cross-section of a branch producing reaction wood is not circular. In

another paper, the same authors modelled the shape of branching points with reaction wood

using implicit surfaces [20]. In this model, the branch cross-section is non-circular, and

the different location of reaction wood in broad-leafed trees and conifers is accounted for.

However, their careful modelling of reaction wood at branching points was not used in the

context of a physical simulation.

Chapter 3

L-systems

L-systems are well-suited to express the problem of biomechanical plant growth. Introduced

by Aristid Lindenmeyer, L-systems have been used extensively to model growing structures

such as plants [40]. An L-system represents a structure as a string ofmodules, or symbols,

which represent its component parts. At every derivation orrewriting step, each module is

transformed according to a matchingproduction rule. This process can be used to expand

the string of modules, resulting in the growth of the model when the modules are interpreted

visually.

Stochastic L-systems introduce randomness into the process of derivation, so that a mod-

ule may be rewritten differently each time the L-system simulation is performed. The varia-

tion in results produced thereby allows many different individuals to be generated from the

same L-system model. These individuals will have different appearance but be based on

similar developmental rules, simulating individuals of the same species.

In Parametric L-systems, each moduleM can contain parameterspi which store addi-

tional information about this part of the structure. A module with three parameters would be

expressed asM(p1, p2, p3). Originally, only real-valued parameters were allowed [40].

3.1 Context-sensitive L-systems

Context-sensitive L-systems make use of these parameterspi to communicate information

to neighbouring modules in the string. This context information can be used within a pro-

duction rule to affect the results of the rewriting step, as in Example 1. Context-sensitive

L-systems are often used to simulate interaction between neighbouring modules, or to prop-

agate a signal throughout a plant [40].

13

14

3.1.1 Example 1

The following production rule shows growth at the apex of a plant. The moduleI represents

an internode andA represents the apex. The symbol < indicates that the parameters of the

module to the left are being examined in rewriting the module to the right; in other words

thatleft context is being used.

Axiom: I(1) A(1);

production: I(pl) < A(pa) : {

produce I(pl + 1) A(pa + 1);

}

Only the module after the ’<’ symbol (thestrict predecessor) is rewritten by this produc-

tion; the module to the left is only used as context. Therefore, after one rewriting step, the

string given in the axiom above becomes:

I(1) I(2) A(2).

Used repeatedly, this production rule will grow a stem by continually appending new in-

ternodes just before the apex. Each internode’s parameter will describe its position in the

sequence of internodes.

3.1.2 Example 2

The production rule given in Example 1 demonstrates the use ofleft context, and can be used

to propagate a signal from left to right across the string of modules. The use ofright context

is indicated by the symbol ’>’, and is expressed as

production: I(p) > I(pr) : {

produce I(pr} ;

}

15

In this case, the leftmost module will be rewritten, and the module to the right is used as

context. Such a production can be used to propagate the signalpr from right to left along

the string of modules.

Using left or right context, two directions of information transfer are achieved, as de-

picted in Figure 3.1.

Figure 3.1: Two directions of information propagation

3.2 Branching structures

L-systems can gracefully handle the representation of branching structures.Bracketed L-

systems use stack operations to perform calculations on one branch at a time. At a branching

point, information from the parent segment’s module is pushed onto the stack before com-

putation proceeds along the first child branch. Before processing the second child branch,

the parent’s information is regained by popping it off the stack. As such, both children can

obtain context from the parent module, as depicted in Figure 3.2.

Figure 3.2: At a branching point, both children obtain context from the parent module.

16

3.3 Improvements in LPFG

The new L-system languageLPFG [28] introduces several changes to an L-system’s expres-

sion which increase the efficiency of complex simulations.

3.3.1 User-defined parameter types

Instead of using simple types such as real numbers for parameters to the modules as in Exam-

ples 1 and 2, LPFG allows user-defined types to be passed as parameters. As such, a single

parameter can store a long list of the module’s properties. User-defined types allow large

quantities of information to be made available as context, without the need for prohibitively

complex production headers.

3.3.2 Fast information transfer

According to the original definition of context-sensitive L-systems, the context in a produc-

tion comes from the state of the module at the previous derivation step. This information is,

by nature, one step out of date. Thus, to propagate a signal across a branch of lengthn would

requiren rewriting steps. This results in very slow signal propagation, as depicted in Figure

3.3.

The new L-system framework LPFG [29] now allows forfast information transfer, which

can propagate this same signal in a single rewriting step. Instead of using context from the

previous rewriting step, the simulation can access already-interpreted neighbour modules for

the current step to obtain up-to-date context information. Using thisnew context enables the

propagation of a signal across the entire branch, regardless of its length, in a single rewriting

step, as depicted in Figure 3.4. The use of new context in LPFG productions is indicated by

the symbols ’«’ or ’»’.

However, this new context can be obtained only in one direction, according to the order

in which the modules in the string are rewritten. Although in concept, all the modules in an

17

Figure 3.3: Signal propagation using old context

Figure 3.4: Signal propagation using new context

L-system are rewritten in parallel, computation in fact proceeds along the string by rewrit-

ing one module at a time. Using LPFG, the direction of rewriting can be set as left-to-right

(Forward) or right-to-left (Backward), thereby setting the direction from which new context

can be obtained. Thus signals can be propagated quickly in either direction across the string,

speeding up many simulations. In fact, interactive rates are obtained for the growth simula-

tions of all images presented in this thesis. Precise measures of simulation time are given in

Chapter 6.

The use of L-systems to express biomechanical models of tree growth is advantageous

as it allows rapid flow of information throughout a growing structure. However, because

L-systems can only propagate information forward and backward along branched structures

and not in 3 dimensions, the level of detail representable by the model is restricted. The

smallest unit of consideration in this model is the segment or internode; a more fine-grained

finite element representation considering three-dimensional components of a segment is not

18

possible using only L-systems. As such, some simplifications must be made in the biome-

chanical representation so that each segment of a tree stem can be treated as a unit. These

simplifications are justified by the visually pleasing results and interactive running times of

the simulations described in this thesis.

Chapter 4

Tree growth and resource allocation

A tree’s growth governs its resulting architecture. To produce realistic tree architectures for

use in biomechanical simulation, several aspects of tree growth are simulated.

The first aspect of the growth simulation to be described reproduces the yearly cycle of

seasons. As will be explained in Section 4.1, the division of growth into seasons affects the

results of the biomechanical simulation.

Secondly, a tree’s means of control over its architectural development is simulated. Ex-

amination of real trees shows that some portions of trees are more likely to grow vigourously

than others. Vigourous branches are more likely to grow longer and produce more child

branches than others of low vigour. Vigourous buds are more likely to produce shoots rather

than to abort.

Two approaches to controlling these aspects of architecture are presented in this chapter:

a descriptive approach based functions of positional information, and a model of resource

allocation symbolic of nutrient flow within a tree. These are presented in Sections 4.2 and

4.3 respectively.

4.1 Simulation of seasons

A tree’s growth, and consequently its resulting architecture, is tightly linked to the cycle

of seasons. In temperate climates, tree growth is a cyclical process of shoot elongation

(spring), bud formation (summer), a bud-cooling period during which there is no primary

growth (winter), and finally the shooting of some buds and aborting of others during the

following spring [53].

To produce more realistic tree shapes, a tree’s natural cycle of development is replicated

19

20

by incorporating this seasonal pattern into the simulation.

4.1.1 Seasons in the model

During the spring and summer seasons, both primary and secondary growth occur. Existing

apical meristems produce a sequence of internodes and nodes which include a bud, as well as

a leaf and possibly a fruit. Each newly created bud has the potential to become a shoot during

the following year. The leaves and fruit have mass, which adds to the supported weight of

the parent internode and thus affects the biomechanical simulation.

Secondary growth in the form of radial tree rings occurs as a result of the above-described

primary growth, according to the pipe model of Equation 2.2:

rP
parent = rP

lateral + rP
straight (4.1)

wherer is the cross-sectional radius andP is a positive constant, observed to be between

2.49 and 3 for most trees [34]. Equation 4.1 applies to the case of bifurcation in which a

parent segment has produced a lateral child at some deviation angle, as well as a straight

child which lies in the same direction as the parent.

Tree rings in nature can be produced only at a certain rate, so that not all of the ra-

dial growth demanded by the pipe model can occur at once. The pipe model calculation

determines the new goal for radial growthr ′goal, and during each step of growth a certain

percentage of that goal is achieved,

r ′parentgoal
= P

√
rP
straight + rP

lateral (4.2)

r ′parent = rparent + κ(r ′parentgoal
− rparent) (4.3)

whereκ ∈ [0,1] is the proportion of the required radial growth which may be accomplished

during the current time step.

The fact that rings do not form instantaneously in support of new distal branches actually

aids the process of branch deformation. Since radial growth is not immediate, branches

21

will sag under the new weight of added distal segments before radial growth reinforces their

existing shape [15]. The slower the rate of radial growth, the more deformation occurs in the

branches. This ring-production rateκ is a user-definable parameter in the model.

The fruit and leaves produced by the model also grow in size and mass throughout the

summer. When a fruit or leaf is created, it is given a goal massmf ruitgoal or mlea fgoal. This

goal is a stochastic value centered about a user-specified average mass for fruit or leaves.

Growth is accomplished by increasing the mass at each step according to the functions

m′
f ruit = mf ruit + κ(mf ruitgoal −mf ruit) (4.4)

m′
lea f = mlea f + κ(mlea fgoal −mlea f). (4.5)

The size of the fruit or leaf increases correspondingly, according to a user-specified density

value for each.κ is defined as it was in Equation 4.3.

Summer ends when all primary growth has been completed. Note that ifκ < 1, branches

will still be undergoing radial growth after summer ends.

At the end of summer, leaves and fruit are shed and the tree branches spring back up

slightly because of the reduced load. This effect is depicted in Figure 4.1.

Figure 4.1: A fruit tree shown in summer, bearing the load of fruit and leaves, and the
following winter under reduced load.

During winter, the production of radial rings is completed. This increase in girth adds to

22

a branch’s rigidity, reinforcing its existing shape. Another factor contributing to the rigidi-

fication of branches during winter is the aging of the wood, as will be described in Chapter

8.

After winter has ended, the fates of the previous year’s buds are decided. A bud either

shoots or aborts, depending on the results of the architecture control simulation. This simula-

tion also determines how many internodes the new shoot will have. In the following sections,

two methods of controlling architectural development are described.

4.2 Descriptive rules for architecture development

The first method of controlling architecture is descriptive; it specifies rules for tree growth

based on observations of natural trees. For example, Wilson has noted that higher-order

branches elongate more slowly than branches of lower order [53]. This phenomenon is

calledacrotony, and can be built into the model in the form of a stochastic rule governing

growth.

A number of such rules are created using L-studio’s graphically defined functions [28].

The functions allow for user control over features of tree architecture, and are based on

positional information in the model. The interface for the function editor in L-studio is

depicted in Figure 4.2.

The output of each function is used to set the value of an architectural element in the

model. In this manner, two or more architectural traits can be made to influence each other.

For instance, one possible representation of acrotony links internode length to branching

order. The model represents this rule as a functionf ,

internode length= ρ ∗ f (order) (4.6)

which the user can control graphically by moving control points. The valueρ is a random

number which ensures a stochastic outcome, so that many different individual trees can be

23

Figure 4.2: L-studio’s graphical function editor provides control points to be modified by the
user

created from the same tree species.

The acrotony that develops in the model tree from the use of this function is depicted in

Figure 4.3. The first image shows the buds in a year’s growth, with bud numbers increasing

distally. The second image shows the tree in the next year, after the buds have either formed

shoots or aborted. As seen in this image, the higher-numbered buds produce the longest

shoots. The third image shows the tree after several more years of development.

Many other functions such as the Equation 4.6 can be used to control different aspects

of tree architecture. Often, more than one parameter controls an outcome. For instance, the

fate of a bud depends on several factors:

bud shoots= ρ ∗ (f1 (height in year’s growth) ∗ f2(order) ∗ f3(parent length)) > 1)

(4.7)

24

Figure 4.3: Acrotony is achieved from a graphically-defined function

Manipulating the control points of a model’s graphical functions allows users to represent

different tree architectures without altering the L-system code. Figure 4.4 shows two trees

of different architectures created by modifying these functions.

4.3 Allocation of resources

Instead of creating descriptive rules to reproduce botanical observations, the second method

of architectural control emerges from a physiologically-based simulation of resource allo-

cation. This method is symbolically based on the flow of water and nutrients throughout a

growing tree, though it is much simplified.

In botanical trees, the allocation of resources such as carbohydrates and water plays a

role in determining which portions of the tree will become vigourous and which will be shed

[53]. In a developmental model, growth can be controlled by simulating resource propaga-

tion throughout a tree. Hart et al. [21] have simulated the allocation ofgrowth resources

25

Figure 4.4: Two trees of different architectures created by modifying graphical functions

throughout the tree, which control how much each limb will lengthen. Resources were allo-

cated according to the ratio of the computedgrowth rate of the particular branch as compared

to that of its subtree.

A more rigourous physiologically accurate simulation of resource allocation was pre-

sented in [2]. Allen et al. presented the L-PEACH model, a detailed physiological simulation

of carbon flow throughout a growing peach tree. This work simulated the effects of sources

and sinks, and distribution followed an analogy to electric circuits. Organs in the model were

shed if they did not receive enough nutrients.

The resource allocation model of Borchert and Honda (BH) [8] is a more simple simu-

lation of water and mineral flow in a growing tree. In this model, resources flowacropetally

from the base of the tree to the apices. At bifurcation points, the incoming resources are

divided in proportion to the number of apices supported in the subtree of each competing

branch. If the quantity of resources that arrive at a certain apex is larger than a threshold

value, another bifurcation occurs. Prusinkiewicz et al. extended the model of Borchert and

Honda to simulate root-shoot interactions in a growing plant, within the context of L-systems

[38].

26

The resources allocation model presented in this thesis is based on the model of Borchert

and Honda, as it is a simple strategy which will not greatly reduce the speed of the bio-

mechanical simulation. In my model, resources are distributed throughout the tree and are

used to determine which branches become vigourous. At non-branching points, a segment

receives the entire quantity of resources that has passed through the segment below it. At

branching points, the incoming resources are divided among child branches according to a

distribution heuristic described below.

A parent’s resources should be divided according to the relative sizes of each child’s

supported subtree. Borchert and Honda determined these sizes by counting the apices present

in each subtree. However, my simulation’s use of the pipe model to determine the girths of

branches allows a simpler approach. Recall from Chapter 2 that the girth of a branch is

determined as

rparent = P
√

rP
straight+ rP

lateral. (4.8)

Because Equation 4.8 essentially calculates the girth of a branch based on the size of the

subtree it supports, the relative girths of child branches may be used to determine the division

of resources at branching points, as depicted in Figure 4.5.

Figure 4.5: At branching points, resources are distributed according to relative girth.

27

A manipulation of Equation 4.8 yields

rP
straight

rP
parent

+
rP
lateral

rP
parent

= 1. (4.9)

Because their values sum to 1, the two terms
rP
straight

rP
parent

and
rP
lateral

rP
parent

can be used as proportions to

divide the parent’s resources between straight and lateral children:

Vstraight =
rP
straight

rP
parent

∗Vparent (4.10)

Vlateral =
rP
lateral

rP
parent

∗Vparent. (4.11)

This strategy conserves the amount of resources flowing through the tree because the equa-

tions perfectly divide incoming resources at every branching point. It also distributes re-

sources evenly among buds along a shoot, as will be explained in the next section.

The total amount of incoming resources in the model is also determined from the girth

of the base;

Vbase= (K rbase)d, (4.12)

whererbase is the cross-sectional radius of the base of the trunk,K andd are positive con-

stants which can be adjusted to obtain a more or less vigourous tree.K controls the vigour of

the tree at the beginning of its growth, andd controls growth in vigour as the tree develops.

4.3.1 Fate of buds

Whereas the BH model decides the fate of each bud at every simulation step, my model

simulates the natural cycle of seasons, producing a series of buds in summer and waiting

through winter until the following spring to determine the fate of these buds. Thus, when

spring arrives there are a number of buds along each shoot which must compete with each

other for available resources.

Acceptable distribution of resources among buds is very important to the shape of a

developed tree, because a bud’s vigour determines whether it will shoot or abort during

28

the next year. Though not all buds of real trees are equally likely to shoot, an equitable

distribution of resources to buds provides a good base for the model, from which deviations

may be made when modelling specific tree species.

Because the pipe model controls both cross-sectional radii and resource allocation, using

Equations 4.10 and 4.11 to distribute resources along the shoot will ensure that incoming

resources are distributed evenly among buds. All buds are defined to have the same girth,

but the girth of the main branch decreases acropetally along a shoot because of the pipe

model. Therefore, each successive distal bud along a shoot will obtain a largerproportion

of its parent’s resources, because the ratio
rP
lateral

rP
parent

increases distally along the shoot. At the

same time, the quantity of resources decreases along a shoot as portions are claimed by more

proximal buds. The result is that the amount of resources in any segment is always directly

proportional to its girth. As such the buds, being of equal girth, receive equal quantities of

resources.

In nature, not all buds are equally likely to shoot. Depending on the tree being modelled,

certain buds should be made more likely to shoot than others. To model effects such as

acrotony, the allocation of resources must be modulated based on the height of the bud in the

year’s growth. This can be done with a graphically-defined function,

Vlateral =
rP
lateral

rP
parent

∗ f (hlateral)∗Vparent (4.13)

Vstraight = Vparent−Vlateral, (4.14)

where f (hlateral) is a function of the position of the lateral bud in the year’s growth when

the buds are counted acropetally. Use of this function in Equation 4.13 alters the pipe model

distribution, so Equation 4.14 must explicitly calculate the remaining resources to ensure

that the quantity of resources is preserved.

To determine which buds shoot, computation proceeds along each shoot in the acropetal

direction. At each bud in turn, the quantity of resources to be allocated is computed according

to Equations 4.10 and 4.11 (or 4.13 and 4.14). If the result exceeds a threshold, the bud is

29

marked for shooting during the approaching summer. The number of internodes that this new

shoot will produce is also determined at this time, and is proportional to the bud’s assigned

resourcesV:

n = (f (V)) (4.15)

wheren is the number of internodes to be produced by the new shoot andf is a graphically

defined function modifiable by the user.

(a) (b)

Figure 4.6: Resources flowing to several buds. In (a), none of the buds are determined to
shoot. In (b), bud X is determined to shoot and becomes a sink for resources.

After a bud is marked for shooting, it becomes asink for resources, as depicted in Figure

4.6. This sink removes an even greater quantity of resources from the stream than the bud has

been assigned, in preparation for the production of a new shoot. The quantity of resources

claimed by the sink is proportional to the number of internodesn that will be in the shoot, as

determined from Equation 4.15,

Vparent = Vparent− (Vlateral ∗ ς n), (4.16)

whereς ∈ (0,1).

Because this sink has claimed such a great quantity of resources, buds further along the

current shoot will have fewer resources to be distributed among them and will be less likely to

30

shoot. In this way, competition between buds is simulated, although buds in more proximal

positions along the branch are clearly favoured. A more complex method which compares

the vigour of all buds simultaneously would result in a fairer competition between buds, but

for the purposes of this model the above simulation is adequate. This method allows the fate

of all buds to be determined in a single forward pass of an L-system simulation.

4.3.2 Shedding of unproductive branches

A branch is productive as long as it is undergoing primary growth somewhere in its supported

subtree. As in a real tree, branches in the model that are no longer productive are eventually

shed.

Productivity can be gauged by measuring secondary growth. If an internode is no longer

undergoing secondary growth, according to the pipe model it cannot be supporting any new

primary growth. A branch is shed it if does not produce secondary growth within a specified

number of years after having been marked as unproductive. The number of years before

shedding is a user-definable parameter of the model.

When an unproductive branch is shed, the resources it had previously claimed become

available for redistribution throughout the rest of the tree. Thus, a significant culling of

unproductive branches results in a surge in primary growth during the following year.

When branches are shed, strict adherence to Equation 4.2 would reduce the cross-sectional

radius of supporting branches. Such thinning of branch girth is not observed in nature and

must be avoided by the model. The equation for cross-sectional radius goal of an internode

(to replace Equation 4.2) is therefore

r ′parentgoal
= Max

(
P
√

rP
straight+ rP

lateral , rparentgoal

)
(4.17)

indicating that this goal cannot decrease from one iteration to the next.

31

4.3.3 Fairness of resource allocation

To demonstrate the effect of resource allocation on controlling tree architecture, the visual

results of my original resource-distribution algorithm will be compared with those of a mod-

ified strategy.

A fair distribution strategy will apportion resources at bifurcation points in proportion

to relative girth, as described in Equations 4.10 and 4.11. This policy can be altered so that

branches already favoured receive an even larger share of the resources in a winner-takes-all

manner. To shift toward such a strategy, the allocated resources are skewed using variable

z ∈ [0,1]:

σsmall = z ∗ σsmall (4.18)

σlarge = 1 − (z ∗ σsmall) (4.19)

whereσsmall andσlarge are the resources assigned by the fair strategy to child branches of

smaller and larger girth, respectively.

The model provides a slider which allows a user to modulate this valuez. Figure 4.7

depicts the difference between the fair (z = 1.0) and a winner-takes-all strategy (z = 0.2) on

otherwise identical models. The fair strategy results in a full tree with many small branches,

whereas the winner-takes-all strategy creates a tall tree with long, sparse branches.

Production rules for the model of resource allocation are given in the Appendix.

32

Figure 4.7: A tree model using two different resource allocation strategies, (a)z = 1 and (b)
z = 0.2.

Chapter 5

Elasticity Theory

This section provides an introduction to the theory of elasticity as it relates to biomechan-

ical tree models. In particular, we are interested in the application of elasticity theory to a

simulation of bending.

5.1 Load and stress

An object constructed from an elastic material bends or otherwise deforms temporarily in

response to aload, or applied force. Load is is measured inNewtons, N, where 1N =

1kg m s−2. An axial load acts along the long axis of an object, and alateral load acts parallel

to the cross-section. Any load can be divided into its axial and lateral components [35].

In elasticity theory, a structure can be classified according to the type of load it bears. A

rod bears axial load and responds by positive or negative elongation (tension or compression)

[1]. When a rod is bent, infinitesimal portions of it undergo elongation. Portions of the rod

above a bend experience tension, and portions underneath experience compression (Figure

5.1). Though infinitesimal portions elongate, the rod as a whole maintains a fixed length.

A rod experiences astress due to this load, of a magnitude inversely proportional to the

area being loaded:

σ =
F
A

, (5.1)

whereF represents the magnitude and direction of the load, andA is the area of the plane

being loaded. Stress is measured inPascals, or N m−2. In the general case,σ is a tensor,

as its value depends on the orientation of the plane undergoing loading and the direction of

the force causing load [9]. However, in the case of a rod, the orientation of the plane being

loaded is considered to be parallel to the cross-section. In cases where the orientation of the

33

34

Figure 5.1: A bending rod undergoing tensile stress above and compression stress below the
neutral axis, where no stress is experienced.

plane being loaded is known, Chou et al. note thatσ is reduced to a vector whose direction

is the same as that of the force causing load [9].

5.2 Young’s modulus and strain

Two objects of identical shape undergoing the same stress may react differently because

of the properties of the material from which they are made. Some materials bend more

easily than others, and this is reflected in their material stiffness constantE, calledYoung’s

modulus of elasticity. If a material isisotropic, E is constant in all directions of measurement.

For anisotropic materials, however, material properties such as Young’s modulus relate to a

specific direction of measurement. Wood is anisotropic, having different material properties

when measured along the grain, or perpendicular to the grain in directions radial or tangential

to the tree rings [35]. For purposes of simplicity, however, wood is assumed to be isotropic

in my model. This assumption is also made in [33].

Using the stress measurementσ and the value ofE for a material, one may predict how

far an object will deform. For clarity, consider the one-dimensional case of a slender rod

experiencing normal stressσ parallel to its long axis. Thestrain ε is then the deformation

35

per unit length:

ε =
∆l
l0

, (5.2)

wherel0 is the unstrained length of the rod.

There exists a linear relation between stress and strain, called Hooke’s Law:

ε =
σ

E
. (5.3)

This linear relationship is what defines elastic, orHookean, materials. In objects made from

elastic materials, stress from a load causes a linearly proportional deformation as in Figure

5.2. The bending depicted by my biomechanical model occurs within the elastic deformation

range; as soon as the load is removed, the object returns to its initial state.

When the applied force exceeds a certain limit, however, the material loses its elastic

properties and deforms permanently. Beyond this point, the relationship between stress and

strain is no longer linear: reducing stress may not reduce the deformation (Figure 5.2). The

point where the nonlinearity begins is called theyield point, and marks the beginning of the

material’splastic phase. The yield point is specific to the particular material and the type of

load acting on it.

Figure 5.2: Stress vs. strain graph showing the elastic and plastic phases of a material

With an even further increase in stress, the material will reach abreaking point at which

it fractures or fails (Figure 5.2). The stressσ at this point is called theultimate stress for the

36

material and type of load.

5.3 Strength

The strength of a material is the maximum stress that the material can withstand before

breaking (breaking strength) or becoming plastic (yield strength) [35]. A material’s strength

differs under each type of stress. Wood is weakest under compression; its compression

strength is half of its strength under tension [33]. Consequently, wood fails first under com-

pression on underside of a downward-bending branch [33]. Niklas provides an estimate of

0.1 GPa for tension strength of wood along its grain [35]. Therefore the compression strength

will be half this value, or 0.05 GPa.

5.4 Rigidity and moment of area

The rigidity ℜ of an object is its resistance to deformation, which depends on both the

material’s stiffness and the object’s shape. An object shows different resistance to different

types of deformations. In particular, resistance to bending, orflexural rigidity, differs greatly

from resistance to twist, ortorsional rigidity.

(a) (b)

Figure 5.3: Flexural and torsional rigidities

37

5.4.1 Flexural rigidity – resistance to bending

Flexural rigidity ℜ f is resistance to bending along the rod’s long axis, as in Figure 5.3(a).

The flexural stiffness is specified by its Young’s modulusE. For the purposes of calculation,

an object’s shape is described by itssecond moment of area I . This is a measure of the

distribution of material within an object with respect to its centroid axis, and is based on the

cross-sectional shape of the object and the direction of measurement [33]. In general, an

object’s resistance to bending depends on the direction in which force is applied. However,

for a rod with circular cross-section (so thatI is constant in any direction) composed of an

isotropic, homogeneous material (so thatE is constant), flexural rigidity reduces to a scalar.

Though the assumptions of constantE andI for a wood stem reduce the model’s fidelity to

nature, they simplify many calculations.

Figure 5.4: Distancex from the neutral axis, and radius of curvatureR.

Following the derivation in [35], the equation for flexural rigidityℜ f is formulated, be-

ginning with the observation that strainε experienced at any location along a bending rod

can also be defined as

ε =
x
R

, (5.4)

whereR is the radius of curvature andx is the distance from theneutral axis, the axis at

which there is no stress or strain as a result of bending (see Figure 5.4). Using Equation 5.3,

38

it follows that

σ =
Ex
R

, (5.5)

or

σ = κEx, (5.6)

if κ = 1
R. κ is called thecurvature of bending [35]. Making use of Equation 5.1 yields

F = σA = κExA. (5.7)

The magnitude of torque,M, caused by forceF acting across distancex, therefore equals

M = Fx = κEx2A. (5.8)

Equations 5.4 to 5.8 consider only one location along a bending rod. The total bending

momentM is found by integrating over the entire area of the cross-section,A:

M = κE
∫

A
x2dA= EIκ (5.9)

The first two terms in Equation 5.9 define the flexural rigidity of the rod,

ℜ = EI. (5.10)

Thus, Equation 5.9 can be rewritten as

M = ℜκ, (5.11)

which indicates that the same momentM causes different amounts of curvatureκ when

acting upon objects with different flexural rigiditiesℜ.

Values ofI for objects with common cross-sections are given in reference texts such as

[35]. For a circular cross-section,

Icircle =
π

4
r4, (5.12)

wherer is the cross-sectional radius. This equation holds for any axis of bending parallel to

the cross-section.

39

5.4.2 Torsional rigidity – resistance to twist

Torsional rigidityℜt is an object’s resistance to twist around its long axis, as in Figure 5.3(b).

It is defined using an equivalent derivation to that of flexural rigidity. The resulting equation

is similar, but uses the equivalent constants for the case of torsion:

ℜt = GJ, (5.13)

whereG is theshear modulus of the material andJ is thetorsional constant [35]. For circular

cross-sections, the torsional constant is the same as thepolar second moment of area, which

is simply the sum of the moments of area in two orthogonal directions along the cross-section

[35]. Thus, for a circular cross-section,

Jcircle = Icircle + Icircle =
π

2
r4. (5.14)

5.5 Bending stress

The biomechanical model presented in this thesis deals particularly with deformations due to

bending. Bending moment, or torque, causes bending stress, which appears as tensile stress

at the top of the bend and compressive stress on the underside, as illustrated in Figure 5.1.

For a rod, bending stress is quantified as

σB =
Mx
I

, (5.15)

whereM is the bending moment,I is determined by Equation 5.12 andx is the distance from

the neutral axis, in the plane of bending [33]. Thus bending stress increases with distance

from this axis, and is maximized at the edge of the cross-section. A branch being bent will

experience high compression stress on one side, which decreases to zero stress at the centroid

axis. On the other side of the axis, increasing tensile stress is maximized on the under side of

the bend. Thus, for a circular cross-section, Equation 5.15 is maximized when the distance

from the centroid axis is maximized – that is, whenx = r, the cross-sectional radius.

40

From Equation 5.15, and given a value of breaking strength, the bending momentM that

causes breakage can be calculated[33]. Breakage is discussed further in Section 8.6.

The stiffness of a material can be measured specifically for bending,EB. For example,

the stiffness of poplar wood under bending isEB = 10.9 GPa [16]. This measure includes

the effects of shearing [16].

5.6 Shear stress from torsion

The shear stress from torsion can be calculated by an equation equivalent to 5.15:

τ =
MTx

J
(5.16)

=
2MTx
πr4 for a circular cross-section. (5.17)

In this equation,MT is the torsional moment, or torque around the stem axis. Equation 5.17

is maximized whenx = r, the cross-sectional radius.

Chapter 6

Biomechanics

A tree’s final shape is greatly affected by interaction with its environment during growth,

because a change in shape at any stage affects the course of its future development. In this

chapter, a biomechanical simulation of tree growth is described.

The simulation process grows the tree by periodically adding longitudinal segments to the

tips of the branches, with their initial orientations taking into account the effects of negative

geotropism. The mass of each new segment increases the torque acting on previous branches.

More strength is required to handle this additional weight, so the existing branches must

build themselves up radially in order to support the extra load. This adds to their girth and

thus their stiffness, which affects the curvature of the branches. After the addition of each

new segment, the simulation performs a series of relaxation steps so as to converge to static

equilibrium for the current structure. Thus at any stage of growth, the equilibrium shape of

the tree may be observed.

In Section 6.1, Jirasek’s work on biomechanical modelling of unbranched plant axes

or stems is reviewed. In Section 6.2, an extension to her method is presented to correctly

simulate biomechanics at branching points, so that entire trees may be represented [51].

6.1 Biomechanical model of a single stem

Jirasek et al. conceptualized an individual plant axis as an elastic rod which can bend, but

not stretch [25]. She modeled the bending of a stem by rotating a set of joints between small

straight segments orlinks. This representation was inspired by the concept of amechanical

manipulator robot described by Craig [10], depicted in Figure 6.1. The model grows by

appending new segments to its free end.

41

42

By convention, the links are indexed asl i , with i from 0 ton; l0 is the root orproximal

link, and ln is thedistal link, which is the tip of the stem (Figure 6.1). Linki is called the

parent of link i +1. Each link’s position and orientation are specified in relation to its parent.

For simplicity, and because the segments are very small, the massmi of each segment is

assumed to be located at its distal end. Between each pair of segments is a rotational joint

with three degrees of freedom. These joints account for the bending of the stem.

.
..

j
l

l

l

l

j

j

j

0
0

1

1

2

2

n-1

n

Proximal
 Link

Distal
 Link

Figure 6.1: A mechanical manipulator with straight links and rotational joints.

To describe the relative properties of segments, a three-dimensional orthogonal reference

frame is assigned to each segment. This reference frame consists of the axesHead(~H), Le f t

(~L) andU p (~U) described in [41]. The long axis~l of each segment always lies along its~H

vector. Thus, the~H~L~U frame rotates along with the link.

Although the stem model is made up of discrete segments, each segment is small enough

that the entire stem can be conceptualized as a continuously curved rod [39]. Thus, instead

of defining angles of rotation between segments, the model uses a rate of rotation per unit

length,~Ω = d~θ
dl .

Because segments are assumed to be very short, joint rotations between segments are

therefore infinitesimal. These infinitesimal rotations can be expressed as vectors [1]. Conse-

quently, therates of these infinitesimal rotations can also be stored as vectors, as they will be

43

H

H

i-1

i

Ω i-1

Figure 6.2: New heading vector direction found by rotation around~Ω

used only in combination with small segment lengths. Thus~Ω can be expressed as a vector,

whose direction gives the axis of rotation for a joint, and whose magnitude gives the angle

of rotation, in radians per unit length of the segment.

Along a single axis, the child segment’s orientation~Hi is determined from the parent’s

orientation~Hi−1 using the rotational velocity vector~Ωi−1 of the parent link. Jirasek et al.

performed this rotation using the vector cross-product, as described in [41]:

~H ′
i = ~Hi−1 +~Ωi−1×~l i−1, (6.1)

where~l i−1 is the long axis of the segment. Using the cross-product was possible because the

authors represent the rotational velocity~Ωi−1 as a vector. My model will perform all rotations

using quaternions, so as to handle the non-infinitesimal rotations at branching points. The

details of this approach are described in Section 6.2.

Jirasek’s approach also defines a rest, or preferred, rotational velocity~Ω [39]. ~Ω is the

stem’s rate of rotation in theunloaded state, when it is not experiencing any torque due

to gravity. The vector~Ω is also used to account for the effects ofnegative geotropism in

Jirasek’s model. As defined in Section 2.4, negative geotropism is the tendency of a shoot

to grow in the direction opposed to gravity. Clearly, the effects of self-weight and negative

geotropism oppose each other: negative geotropism causes new growth to curve in an upward

direction, whereas gravity pulls the existing stem downward. These competing influences,

along with the branch’s radial growth, create the sigmoidal shape predicted by Fournier et

al. [15]. A stem under such conditions, produced by my model, is shown in Figure 6.7.

44

6.1.1 Torques due to negative geotropism and self-weight

The two effects of self-weight and negative geotropism are simulated by calculating the

torques they exert on each segment.Torque, or the moment of a force, is the tendency of the

force to cause a body to rotate about an axis [22]. It may be seen as the measure of rotational

force applied to a joint, and is caused by the application of a force across a distance:

~τ =~l ×~F , (6.2)

where vector~l represents the direction and distance across which~F acts.

Jirasek calculated the gravitational torque~τi acting on each segmenti due to the total

overhanging massMi it supports. This overhanging mass is equivalent to the accumulated

mass of all child segments,Mi = ∑n
j=i mj . It will be shown in Section 6.1.4 that~τi is equiv-

alent to the torque due to the accumulated mass at the child segment,Mi+1, plus the child’s

accumulated torque~τi+1 [25]:

~τi = (~l i+1)× (Mi+1~g) + ~τi+1. (6.3)

This torque causes a bend in the elastic rod by influencing the rotational velocity,~Ω. Its

influence depends on the rigidity of the rod:

~Ωnew= ∑~τ

ℜ
, (6.4)

whereℜ is the rigidity of the segment, as defined in Section 5.4. When dividing by rigidity

ℜ, as in Equation 6.4, a distinction must be made between flexural and torsional rigidities.

The ~H component is divided by the torsional rigidityℜt , to control the amount of twist

about the~H axis, and the~L and~U components are divided by the flexural rigidityℜ f . Thus

Equation 6.4 becomes:

Ωnew
H =

τH

ℜt
(6.5)

Ωnew
L =

τL

ℜ f
(6.6)

Ωnew
U =

τU

ℜ f
. (6.7)

45

The torque acting on jointi as a result of negative geotropism is determined using a force

vector, ~F tropic which indicates the direction (up) and the intensity of this tropism:

~τ tropic
i =~l i−1×~F tropic. (6.8)

This torque is used to initialize the rest rotational velocity~Ω of a new segment:

~Ω =
~τ tropic

i

ℜ
(6.9)

Distinguishing between flexion and torsion, Equation 6.9 becomes:

ΩH =
τ

tropic
iH

ℜt
(6.10)

ΩL =
τ

tropic
iL

ℜ f
(6.11)

ΩU =
τ

tropic
iU

ℜ f
(6.12)

6.1.2 Overview of the simulation

In summary, the biomechanical properties stored in each segment are:

• orientation relative to proximal neighbour,~H~L~U

• link vector~l

• massm and accumulated distal massM

• cross-sectional radiusr

• flexural and torsional rigiditiesℜ f andℜt

• accumulated torque due to distal segments~τ

• preferred rotational velocity~Ω

• acting rotational velocity~Ω

46

Some of these segment properties depend on values from neighbouring distal segments,

and some on values from proximal segments. For this reason, the model requires bothfor-

ward propagation (accumulating information toward the distal end of the stem) andbackward

propagation (toward the proximal end), to obtain information from both directions. Sections

6.1.3 and 6.1.4 examine each direction of propagation in detail. The model performs for-

ward and backward passes in alternation until equilibrium is reached. In this manner, values

calculated in one direction influence those in the other direction. When static equilibrium

is reached, growth is simulated by the addition of new segments to the model, as will be

described in Section 6.1.5.

6.1.3 Forward propagation

According to the model of the mechanical manipulator described in Section 6.1, the child

segment’s orientation is inherited from the parent with some adjustment due to forces in

the system. Specifically, the joint at which the child frame is located is rotated by the ro-

tational velocity~Ω of the parent link. This rotation is performed according to Equation 6.1

in Jirasek’s system. In Section 6.2 the use of quaternions to perform this rotation will be

described.

6.1.4 Backward propagation

Most of the physical information must be accumulated backward along the stem, from child

segment to parent segment. A segmenti has a gravitational torque~τi acting on it due to the

accumulated massesMi of all its child segments. Recall the torque equation

~τi−1 =~l i ×~Fi , (6.13)

where~l i is the distance across which~Fi acts. Also recall that masses are located at each joint,

represented by the circles in Figure 6.3. The simulation requires accumulation of torques

47

due to gravity acting on all distal mass points. Figure 6.3 depicts the torques that need to be

summed.

.
..

i i+1 i+2

n

i+3

ln
i

li

li

li
i+1

i+2

i+3

Figure 6.3: Accumulated torque due to distal segments

The accumulated torque acting on segmenti is described by the equation

~τi =
n

∑
j=i+1

(~l j
i+1× ~Fj), (6.14)

where~l j
i+1 is the vector from massi +1 to massj (note: this not necessarily a link) andFj

is the gravitational force acting on massj. Instead of calculating all of these torques at each

link, Jirasek derived an equivalent recursive formulation:

~τi =~l i+1× (Mi+1~g) + ~τi+1. (6.15)

In other words, an equivalent result can be obtained by adding the accumulated torque acting

on the immediate child to the torque on the parent due to the total weight supported by the

child [25]. Figure 6.4 helps to illustrate the derivation that follows.

Summation of vectors produces

~l j
i = ~l i+1

i + ~l j
i+1, (6.16)

which, when substituted into equation 6.14, gives

~τi =
n

∑
j=i+1

(~l i+1
i + ~l j

i+1)× ~Fj . (6.17)

48

.
..

i i+1
i+2

n

i+3

l

ln
i+1

li+3
i+1

li+2
i+1

i+1
i

Figure 6.4: Accumulated torques at child segment

The cross-product is distributive, so

~τi =
n

∑
j=i+1

(~l i+1
i × ~Fj)+

n

∑
j=i+1

(~l j
i+1× ~Fj), (6.18)

=
n

∑
j=i+1

(~l i+1
i × ~Fj)+~τi+1. (6.19)

Using Equation 6.16, this becomes

~τi = ~l i+1× (Mi+1 ~g) + ~τi+1, (6.20)

which is the desired result.

Equation 6.20 represents the accumulated torque acting on segmenti. This torque causes

a bend in the elastic rod by influencing the rotational velocity,~Ω. As described above,~Ω

is updated by the value of this accumulated torque divided by the rigidity of the rod. The

flexural rigidity valueℜ f is used to divide the~L and~U components of~Ω, and the torsional

rigidity valueℜt divides its~H component,

Ωnew
H =

τH

ℜt
(6.21)

Ωnew
L =

τL

ℜ f
(6.22)

Ωnew
U =

τU

ℜ f
. (6.23)

49

Because the model uses a relaxation method,~Ωnew does not directly replace~Ω. Rather,

the model uses~Ωnew along with the rest rotation rate~Ω to update the existing value, using

the following update formula:

~Ω′ = (1 − α)~Ω + α(~Ω + ~Ωnew). (6.24)

Here,~Ω is updated to include a linear combination of its old value and a new value, the rest

curvature~Ω plus displacement caused by torque.α controls the speed of convergence to the

new solution and may be reduced to prevent numerical instability.

The updated rotational velocity value~Ω′ is used as~Ω in the next forward pass to reorient

the child segment. This change in orientation affects the torque acting on the parent in the

next backward pass, and the relaxation cycle continues. In Jirasek’s model, convergence

to equilibrium was assumed to occur after a certain numberT of iterations. In contrast, I

assume that equilibrium has been achieved when the maximum change in curvature in any

segment in the model is below a user-defined threshold value.

Once equilibrium has been reached for the existing structure, a newtime step, or step

of growth, occurs. Primary growth is characterized by the addition of distal segments to the

model.

6.1.5 Adding a segment

Addition of a new distal segment affects previous segments in several ways. First, the weight

of the new segment increases the torque acting on all previous segments as in Equation 6.3.

Second, all previous segments must growradially, or in girth, according to the pipe model

of Equation 2.2.

Radial growth of a stem occurs by adding rings, or layers of wood, around the existing

rod [15]. These layers increase rigidity and also reinforce the current shape of the stem.

An older, bulkier stem is therefore less likely to change its curvature even if there were a

50

sudden change in the external forces in the system. This phenomenon is calledbranch shape

memory [14].

When new radial layers are added, the additional flexural rigidity of the ring is calculated

using the moment of area for a hollow beam with circular cross-section,

Iring = π
r4
out− r4

in

4
(6.25)

wherer in androut measure the distance from the center of the circle to the inner and outer

edges of the ring, respectively [33].

The torsional rigidity of the ring is based on the polar moment of area for the same ring

shape,

Jring = π
r4
out− r4

in

2
. (6.26)

The flexural and torsional rigiditiesℜring f andℜringt of the ring are therefore

ℜring f = E Iring (6.27)

ℜringt = G Jring. (6.28)

To calculate the new rest rotational velocity~Ω
′

for the thickened stem, the weighted

average of the~Ω values of the inner core and new outer ring is used [39]:

Ω′
H =

ℜ ΩH + ℜringt ΩringH

ℜ+ℜringt

(6.29)

Ω′
L =

ℜ ΩL + ℜring f ΩringL

ℜ+ℜring f

(6.30)

Ω′
U =

ℜ ΩU + ℜring f ΩringU

ℜ+ℜring f

(6.31)

where the torsional rigidity valueℜringt is used to calculate the~H component of~Ω
′
and the

flexural rigidity ℜring f is used for the~L and~U components of~Ω
′
, following the form of

Equations 6.10 - 6.12.

Because new radial growth reinforces the current shape of the stem, the rest curvature of

the outer ring~Ωring is assigned so as to reflect the existing curvature of the stem:

~Ωring = ~Ω. (6.32)

51

Figure 6.5: Lateral branching

Note that equation 6.32 is altered in Section 8.3 when reaction wood is simulated to actively

reorient the stem.

The stem’s new total rigidity becomes the combined rigidity of the inner core and outer

layer,

ℜ′
f = ℜ f +ℜring f (6.33)

ℜ′
t = ℜt +ℜringt . (6.34)

6.2 Lateral branching

The problem of representing a curved plant axis becomes even more interesting when one

considers lateral branching. As depicted in Figure 6.5, lateral branching introduces non-

52

infinitesimal rotations at branching points due to divergence and deviation angles. Proper

representation of biomechanics in the context of these non-infinitesimal rotations requires

changes to Jirasek’s implementation. This section provides a description of my extension to

Jirasek’s model which accurately represents biomechanics at branching points.

Lateral branching is accomplished by modifying frame orientations to account for diver-

gence and deviation angles. This orientation change is achieved by spiralling around the~H

axis by the divergence angleφ and then rotating by the deviation angleθ . These rotations

introduce a discontinuity in the curvature of the branch. Because these branching angles are

non-infinitesimal rotations, they cannot be represented as vectors [1]. Instead, all branching

rotations must be performed using quaternions.

The following pseudocode rotates a child’s~H~L~U frame by both the divergence and devi-

ation angles required for branching:

qDivergence = new Quaternion(~Hi−1,φ)

~N = qDivergence−1∗~Ui−1∗qDivergence

qDeviation = new Quaternion (~N,θ)

qBranching = (qDivergence∗qDeviation)

~Hi = qBranching−1∗ ~Hi−1∗qBranching
~Li = qBranching−1∗~Li−1∗qBranching
~Ui = qBranching−1∗~Ui−1∗qBranching

At branching points, rotations due to biomechanics must still be considered. In Equa-

tion 6.1, it was assumed that only infinitesimal rotations were being performed, and there-

fore the vector cross-product was used to perform rotations [39]. However, at branching

points, the simulation must compose these infinitesimal biomechanical rotations with the

53

above non-infinitesimal branching rotations. Therefore the rotation of Equation 6.1 must be

reimplemented using quaternions.

Recall from Section 6.1 that the rotational velocity~Ω specifies a rotation per unitlength.

For each unit length of the parent segment, a rotation is performed around axis
~Ω
‖~Ω‖

by angle

‖~Ω‖. Thus the total rotation along a parent segment of length| ~l i−1| is of angle‖~Ω‖ ∗ | ~l i−1|

around the same axis. This axis and angle are used to define a quaternionqBending.

Quaternion qBending(
~Ωi−1

‖~Ωi−1‖
, ‖~Ωi−1‖∗ | ~l i−1|)

Then, the reorientation due to the combined effects of branching and biomechanics becomes

Quaternion qComplete = (qBranching ∗ qBending)

~Hi = qComplete−1 ∗ ~Hi−1 ∗ qComplete
~Li = qComplete−1 ∗ ~Li−1 ∗ qComplete
~Ui = qComplete−1 ∗ ~Ui−1 ∗ qComplete

In the simulation’s backward pass, a parent branch just before a bifurcation must accumu-

late the mass, girth, and torque information from both child branches. This is accomplished

using the following formulae:

r i−1 = P
√

rL
i

P + rR
i

P
, (6.35)

Mi−1 = mi−1 +ML
i +MR

i , (6.36)

~τi−1 = ~τL
i +~τR

i , (6.37)

wheremi−1 is the mass of segmenti − 1 itself andP is the pipe model constant, usually

ranging between 2.49 for large trees to 3.0 for smaller trees [34]. SuperscriptsL and R

represent left and right children.

54

6.3 Buckling tests

One relevant way of assessing the accuracy of the biomechanical model is to subject it to

tests from elasticity theory. I have derived one such test from Euler’s buckling equations,

which determine when a long vertical column will bend under an axial load. The equations

given in [35] have been modified to deal with buckling from a column’s own weight only.

The length at which a vertical column will buckle under self-weight can be calculated

from Equation 6.38. First, consider a perfectly vertical column of lengthl having uniformly

distributed loadq for each unit length. In this case,q is due to self-weight under gravity, so

the incremental loadq is

q = ρ a g, (6.38)

whereρ is the density of the material,g = 9.81m
s2 is the magnitude of the gravity vector, and

a = πr2 is the area of the circular cross-section. Multiplication of this incremental loadq by

the lengthl of the column gives the total loadql. According to Euler, a column of this load

and length will buckle if

ql >= qlcr =
7.84EI

l2
. (6.39)

whereE is Young’s modulus of elasticity for the material (wood in this case) andI is the

moment of area which equalsπr4

4 for a cylinder of circular cross-section [35].

Equation 6.39 can be used to determine the lengthl at which the column will buckle. The

column must be perfectly straight and vertical, and be subjected to a small lateral force – a

push, for instance. If the column’s total load is less thanqlcr, it will regain its verticality as

soon as the lateral force is removed. However, if the buckling length is exceeded, the column

will remain bent when the lateral force is removed, and not return to vertical.

Although the column remains bent when the lateral force is removed, this form of buck-

ling is still an elastic phenomenon. If the axial load (here, the column’s self-weight) were

to be somehow reduced (by cutting off its top, for instance), the deflected column would

55

straighten completely.

The above equation is accurate for anideal column which has the following properties:

• the column is perfectly straight and has uniform cross-section throughout its length,

• the column is made from an isotropic material,

• the column is anchored at its based and free and its top,

• the stress due to loading cannot exceed the compression strength of the material [35].

Clearly, these criteria may not all be true of a tree branch or trunk. However, to test my

method I modelled such an ideal column, having uniform cross-section and initially standing

perfectly erect.

Buckling tests were simulated on this ideal column. Because the column model was

made from many individual segments which were to act as one, each segment was given a

small initial rotational velocity, simulating a small lateral push at the start of the simulation. I

then observed whether the column buckled under this push. If it did not buckle, but returned

to its vertical state, the length of the column was increased and the test repeated until elastic

buckling occurred.

The buckling lengths thus found conformed to the equation above, within a margin of

error of 0.1m. Until the value ofql exceeded the buckling limitqlcr as defined above, the

column righted itself. However, onceql > qlcr, the column buckled. In the tests, segments of

length 0.1m with radius 0.05m were used, and the length of the column was incremented by

adding new segments. The buckling test was performed on ideal columns simulating wood

of several species, using measured densities and Young’s moduli for these woods obtained

from [35]. Table 6.1 lists the values used and the resulting buckling lengths obtained from the

tests. The lengths at which buckling occurred in the models are compared with the buckling

lengths obtained from Equation 6.39.

56

Species E ρ model
buckling
length

predicted
buckling
length

ql at predicted
buckling length

qlcr at predicted
buckling length

Yellow Poplar 10.38 427 23.1 23.0 756.7 755.1
Apple 8.77 745 18.1 18.1 1038.9 1030.2
Black Willow 5.03 408 18.4 18.4 578.4 571.8
Black Oak 11.31 669 20.4 20.4 1051.5 1045.9
Yellow Birch 14.53 668 22.1 22.2 1142.6 1034.6
Silver Maple 6.22 506 18.3 18.4 717.3 707.0

Table 6.1: Table of buckling lengths for ideal columns made from various species of woods

Figure 6.6 compares the equilibrium states of the apple wood column at lengths 18.0m

and 18.1m. At length 18.0m, buckling length had not been reached and the column was able

to completely right itself. At length 18.1m, buckling occurred. This buckling length matches

the length predicted by Euler’s equation.

Figure 6.6: Equilibrium positions of simulated apple wood column at lengths (a) 18.0m and
(b) 18.1m, after buckling occurred.

The tests produced buckling lengths which were within 0.1m of the lengths predicted by

equation 6.39. The positive results of these tests validate the modelling approach in terms of

its fidelity to the laws of elasticity theory for an ideal column.

57

6.4 Results and discussion

Figure 6.7 shows the "S" shape predicted by Fournier et al. [15] which results when the

competing influences of torques due to gravity and negative geotropism act on a branch

undergoing radial growth.

Figure 6.7: "S" shape of a stem due to self-weight and negative geotropism

The simulations described in this thesis provides significant improvements to efficiency

when compared with the results of Jirasek et al. Although the running times for Jirasek’s

simulations were not recorded, they were estimated to take tens of minutes for simulations

of single axes [37]. Animations representing growth could not be viewed interactively, but

only by creating a video from captured frames. In contrast, the biomechanical simulation

presented in this thesis achieves interactive rates until the trees become quite complex. In-

cluding reaction wood and breakage simulations yet to be described, the simulation runs

at around 60 frames per second while the model contains less than 150 segments, above

30 frames per second until 800 segments, 20 frames per second until 1500 segments and

10 frames per second until 2500 segments. As such, interactive rates are maintained until

the tree becomes very large: all images produced for this thesis consist of less than 2500

segments.

58

The importance of biomechanics in determining tree shape is made evident in Figure 6.8.

Image(a) is a photograph providing the inspiration for the model. Image(b) shows the tree

model, and(c) shows the same model but with the biomechanics removed.

Production rules for the biomechanical model expressed in LPFG are given in the Ap-

pendix.

59

(a)

(b) (c)

Figure 6.8: Tree model: (a) inspiration from nature (b) the model with biomechanics (c) the
model without biomechanics.

Chapter 7

Case study: Crooked poplar tree

As a case study for the biomechanical simulation, I have modelled the "crooked" mutant of

Populus tremuloides, found uniquely in Hafford, Saskatchewan. This population of trees

has been the subject of several studies [43].Crooked poplar trees have curved and twisted

branches, which create a bush-like architecture, instead of a tall straight trunk (Figure 7.1).

The crookedness of this mutant’s branches is caused by severe bending of branches. When a

bending branch becomes pendulous, one or more of its upward-growing lateral shoots take

over as the dominant shoot. These so-calledrelay shoots usually occur at the middle of the

parent branch, emerging from its highest point before it becomes pendulous [43]. The relay

shoots grow quite long, claiming significant resources so that the pendulous portion of the

parent branch loses vigour. This pendulous portion is rarely productive and is eventually

shed. During the subsequent year, the vigorous relay shoots themselves bend in response to

gravity, and pass dominance to their own lateral relay shoots. A detailed description of this

mutant tree, including measurements, is given in [43].

The reasons for the increased bending in crooked poplar branches is unknown. There

are at least two possible hypotheses. Bending could occur passively, as a result of reduced

stiffness in the crooked mutant. Alternatively, bending could be active, so that branches

undergo differential growth which forces them to grow downward.

In this simulation I have investigated the first hypothesis, that the mutant produces more

supple wood than wild type poplar trees. Using the biomechanical model of Chapter 6 and

personal communication from Dr. William Remphrey in the Department of Plant Science at

the University of Manitoba, I have created a single model which can represent both the wild

type and the crooked poplar tree.

60

61

Figure 7.1: Populus tremuloides, (a) wild type and (b) crooked mutant. Taken with permis-
sion from [43].

7.1 Review of the biomechanical simulation

The biomechanical simulation is described in Chapter 6. The tree grows by extending exist-

ing branches at their distal ends. After every step of primary or secondary growth, the equi-

librium architecture of the model is determined. Rigidities and torques due to self-weight are

calculated according to Equations 5.10 and 6.20. Then, rotational velocities~Ω are updated

according to Equations 6.23 and 6.24. Orientations of segments are updated as a result of

these rotational velocity values, and then torques are recalculated for the new orientations.

This cycle continues until equilibrium has been reached for the current architecture, at which

time a new growth step can occur.

7.2 Modelling the crooked poplar

Because the model is simulating passive bending, the most important characteristic of the

crooked poplar model is its low wood stiffness valuesE andG. The suppleness of wood,

especially juvenile wood, allows the dramatic bending of branches in the model. To prevent

62

the righting of these branches, the mechanism for reaction wood production is removed by

settingα = 0 in Equation 8.25. Further, the simulation of negative geotropism is adjusted

so as to reduce its influence on internodes produced later in the summer season. Because

new internodes are appended distally, this means that tropisms are not as effective on the

pendulous portions of branches, as noted in [43].

7.2.1 Allocation of resources and fate of buds

A detailed description of the resource allocation strategy incorporated in this model is given

in Chapter 4. In the case of the crooked poplar, buds at the geometric top (the highest point

in space) of a bending parent shoot are most likely to become vigourous, particularly if the

buds have an initial orientation close to global up. As illustrated in Figure 7.1(b), these buds

are the most likely to become the next year’s relay shoots. The tendency of these topmost

buds to be most vigourous is further indicated by measurements in [43], depicted there in

Figures 11(b) and 13.

Therefore, I created a heuristic measure of the geometric height along the parent shoot

and the orientation of the bud, and used this measure to influence the distribution of resources

to favour topmost buds. Equation 4.10 is modulated by the following factor:

Φ = (
ybud−y0

ymax−y0
) (~Hbud · up) (7.1)

whereybud, y0 andymaxare the vertical heights of the bud, the beginning of the parent branch

and the highest point along the parent branch, respectively.ymax is calculated in the model

by determining the largesty value for each branch in an acropetal pass, then propagating

this maximum backward in a basipetal pass.Φ is used as a multiplier in Equation 4.10 to

bias the amount of resources granted to the lateral child. Equation 7.1 was designed so that

it could also be used to model acrotony in the wild-type poplar model. As such, the use of

Equation 7.1 to influence resource distribution produces either the relay shoot phenomenon

or a simulation of acrotony, depending on the shape of the parent branch. This allows the

63

appropriate resource allocation strategy to be an emergent property of a model which can

produce either the crooked or wild type poplar tree.

7.2.2 Shedding of unproductive branches

Observations of the crooked poplar indicate that branches are shed after they have been

unproductive for three years [42]. As described in Section 4.3.2, a branch in the model

is considered unproductive when it no longer undergoes secondary growth. When a branch

does not grow radially, it is flagged as unproductive. If it does not grow during the subsequent

three years, it is shed.

Because the vigourous relay shoots claim so much of the parent branch’s resources, the

pendulous portion of the parent branch often becomes unproductive and hence is shed. Fig-

ure 7.2 shows a photograph of a parent branch whose pendulous portion has been unpro-

ductive and will soon be shed. Figure 7.3 shows an unproductive pendulous portion in the

model.

Figure 7.2: Parent branch with two vigourous relay shoots. Beyond the relay shoots is the
unproductive pendulous portion of the parent branch which will soon be shed. Taken with
permission from [43].

64

Figure 7.3: Unproductive pendulous portion of a parent branch in the model.

7.2.3 Other characteristics of the crooked poplar

Another distinguishing feature of the crooked mutant is its unusually large divergence angles

as compared to the wild type poplar tree [43]. As seen in Figure 7.2, divergence angles in

the crooked poplar can often be close to 90 degrees, whereas the wild type divergence angles

average 56.23 degrees [43].

Measurements in [43] indicate that parent branches typically have between one and three

vigourous relay shoots. More recently, it has been noted that the tendency of these shoots

to become pendulous or remain upright can vary significantly, as seen in Figure 7.4. This

variability is modelled by using a random number drawn from a normal distribution when

assigning a juvenile stiffness value to each new shoot.

7.3 From wild type to crooked mutant

The model described in this chapter can simulate both the wild-typePopulus tremuloides and

the crooked mutant, allowing conversion between them by changing only a small number

of parameters. Because the main parameter changed in this conversion is wood stiffness,

the model demonstrates one possible cause for the mutant’s crooked architecture – that of

passive bending due to supple wood. Changes in a small number of the biomechanical

model’s parameters (listed below) results in a crooked tree, and as such the model provides

65

Figure 7.4: A crooked poplar tree displaying multiple upright shoots. Taken with permission
from [42].

some justification for the theory of passive bending.

In summary, the changes to the model involved in switching from wild type to crooked

type are as follows:

• reduce both juvenile and adultE by a factor of three,

• reduce the intensity of negative geotropism accordingly

• decrease the effect of negative geotropism during summer to simulate a shoot "giving

up" and becoming pendulous,

• remove the mechanism for reaction wood production, and

• double the average deviation angle.

The most significant change to the model is the reduction of stiffnessesE andG. This is

the main contributor to the crooked morphology of the mutant model, and accounts for the

66

curvature of its branches. Besides the changes listed above, all other differences in the two

tree architectures occur as emergent properties of the model.

7.4 Results and discussion

Crooked and wild type poplar models may be compared in Figures 7.5 and 7.6.

Figure 7.5: Crooked poplar model.

The most visually pleasing models have fewer relay branches per shoot on average than

measurements indicated in [43]. This reduction in average number of relay shoots is by no

means a requirement of the model, but the presence of large numbers of branches makes the

resulting architecture more difficult to interpret visually.

Tests have not yet been made on the crooked poplar to determine its wood’s stiffness

properties. As such, this model is an investigation of one possible reason for the mutant’s

crooked architecture and not a recreation from measured stiffness data. Though the model

produces convincing results, it does not constitute proof of the mutant tree’s reduced wood

stiffness.

67

Figure 7.6: Wild type poplar model.

Figure 7.7 shows the crooked poplar model from a different angle. Changes to the general

biomechanical model’s production rules, which allow for the representation of both crooked

and wild-type poplar trees, are presented in the Appendix.

68

Figure 7.7: Crooked poplar model.

Chapter 8

Wood properties, reaction wood and breakage

In this chapter, further enhancements to the biomechanical model’s biological realism are

described. Elasticity theory concepts from Chapter 5 are applied to the model in combination

with biomechanical findings relating specifically to wood and tree growth. Also described

in this chapter is a simulation of wood’s active reorientation due to reaction wood, and of

branch breakage due to high bending stress.

Tree branches are subject to static loading from self-weight, as well as dynamic loading

from other instantaneous forces. These lateral loads cause bending (and possibly breakage,

to be discussed in Section 8.6). Often, a tree’s growth is optimized so as to resist, or even

correct, excessive bending.

As described in Section 5.4.1, there are two ways to increase a stem’s resistance to bend-

ing. First, the stem can be made from a stiffer material, as evidenced by a higher Young’s

modulusE. Secondly, it can be composed of more material, so as to increase the moment

of areaI . Either approach will increase the stem’s rigidityℜ, according to Equation 5.10,

ℜ = E I. In the following subsections, methods of increasingI andE are discussed.

8.1 Increasing the moment of area, I

Increasing girth is an ideal way of strengthening support and resistance to bending. An

increase in the cross-sectional radius increases the area over which bending stresses are dis-

tributed. In trees, this increase in girth arises from the production of new secondary growth

rings. The cambium, located just under the bark and phloem at the outer edge of the cross-

section, is responsible for producing new wood cells which form these rings [53].

The impact on rigidity of adding a radial ring was described in Section 6.1.5. The rigidity

69

70

of the ringℜring is added to the rigidity of the existing branchℜ to obtain the total rigidity

ℜ′ of the thickened branch.

Thus far, all branches and rings have been assumed to be circular in cross-section. Sec-

tion 8.3 will examine ways in which the ring’s cross-sectional shape can change in order to

better resist a particular direction of bending.

8.2 Increasing Young’s modulus, E

Wood is not homogeneous; it is composed of various compounds with different material

properties. The stiffness of wood is due to its two component stiffening agents, cellulose and

lignin.

The cell walls of wood are made mostly of cellulose (43 percent), hemicellulose (28-30

percent), and lignin (7 percent) [31]. Being the largest component of cell wall structure,

cellulose is the basis for the overall properties of wood [27]. Cellulose is formed intomi-

crofibrils, or strands of molecules, oriented along the longitudinal axis of a stem. It has high

tensile strength [32].

In contrast, lignin has high compressive strength [32]. Although lignin makes up a rela-

tively small proportion of the cell wall structure, larger quantities of lignin are found in the

middle lamella region between cells [31]. Thus it still contributes greatly to the stiffness of

wood.

The combination of tensile and compressive strengths from cellulose and lignin produces

a very strong composite material. As cited in [31], Freudenberg likened this combination of

strengths in wood to that found in reinforced concrete:

The micelle series of cellulose may be compared with the iron rods, and the

lignin together with the hemicellulose with the concrete, in reinforced concrete.

It is astonishing to see how nature has here made use of two of the best principles

71

of rigidity which the human mind has independently discovered only in our own

time (cited in [31], page 18).

Because wood is a composite material, a value ofE for one particular material cannot

describe wood’s stiffness. Instead, thestructural Young’s modulus for wood is calculated as

the result of bending tests. Once rigidityℜ is measured, Young’s modulus can be determined

using Equation 5.10 [7]:

Estructural =
observed flexural rigidityℜ

I
. (8.1)

As well as being heterogeneous, wood is alsoanisotropic, having different strength and

stiffness when tested in different directions [35]. Wood’s anisotropy results from the align-

ment of its component substances [31]. As cellulose microfibrils are directed longitudinally,

the measurement of stiffnessE along the wood grain is significantly higher than its stiffness

the other directions [31].

However, to simplify calculations I assume that wood is isotropic, and thus thatE is

constant in any direction of bending. (Note that this does not include torsion, for which

wood’s shear modulusG is used.) Mattheck [32] also made this simplification, claiming that

the main flow of forces is directed along the grain of the wood .

8.2.1 Wood aging

As an approximation, one can assume that all wood exhibits the same mechanical proper-

ties, and use one value of Young’s modulusE uniformly in the model. However, a more

realistic simulation accounts for the stiffening of wood as it matures. Fournier described the

youngersapwood, which forms new rings under the bark, as being more prone to bending

than theheartwood at the centre of an older branch [14]. This behaviour ofjuvenile wood

as compared tomature wood is accomplished in nature by one of three approaches:

1. higher density, same E;

72

2. same density, lower E; or

3. higher density, lower E,

where density is defined as volume divided by mass.

I chose to implement approach 2 in the simulation, keeping density constant and reducing

theE value used for juvenile wood. When a new shoot is formed, the juvenile wood stiffness

E juv is used in rigidity Equation 5.10. As internal rings age, they undergo a gradual stiffening

as Young’s modulus approachesEadult. At every step of simulation time, the preexisting

wood’sE value is incremented based on the branch’s increase in age:

E′
core = E +(∆age∗

Eadult−E juv

ageadult
) (8.2)

whereageadult is the age at which wood is fully mature and stops stiffening.

The overall stiffness of the branch segment is determined by the combined stiffnesses of

all radial layers. Every time a new ring is added, its stiffness contributes to that of the entire

branch. Using the stiffness values and moments of area for this ring and the preexisting core

of the branch, the new rigidityℜ′ of the entire branch is determined, as in Equations 6.33

and 6.34:

ℜ′
f = Ecore Icore + Ering Iring (8.3)

ℜ′
t = Gcore Jcore + Gring Jring. (8.4)

The stiffness of the entire segment can be obtained by dividing this rigidity by the new

moment of area for the thickened segment:

E′ =
ℜ′

f

Icircle
(8.5)

G′ =
ℜ′

t

Jcircle
. (8.6)

Equations 8.5 and 8.6 define the structural Young’s modulus and shear modulus of the entire

segment, to be used as future values ofEcore andGcore when the next radial ring is added.

73

Figure 8.1: Branch segment with inner core of stiffnessEcore and new outer ring of stiffness
Ering.

As described above, branch segments in the model stiffen because of two factors: in-

crease in girth from the addition of radial rings, and stiffening due to aging of the segment’s

heartwood. Both of these effects reinforce the current shape of the branch, represented by

~Ω in the model. This implies a smaller range of motion in response to applied forces. This

phenomenon, described in Chapter 6, is called branch shape memory [15].

8.3 Reaction wood in nature

Any lean in a tree branch will intensify if new primary growth increases the torque it is

experiencing. To control the lean, trees could discourage the development of new branches

in locations which increase the torque felt by the leaning branch. This control over primary

growth is an approach taken by Hart et al. to produce a balanced tree [21].

In contrast, Fournier argued that this redirection of primary growth is not sufficient to

correct a lean. The portions of a tree undergoing primary growth account for only 15 to 30

percent of a tree’s weight, so a leaning trunk cannot be corrected by primary growth alone

[15]. Yet, straightening of leaning trunks is indeed observed, as shown in Figure 8.2. This

is in part due toreaction wood, or differentiated wood produced by real trees to reorient a

branch after deflection.

Reaction wood actively reorients an inclined branch by differentiating wood production

74

Figure 8.2: Photograph of a tree in which reaction wood has corrected a leaning trunk.

in the secondary growth. For simulation purposes, three phenomena evident in reaction wood

must be considered. First, reaction wood producesangular dissymmetry in the cross-section

by altering the growth speed in certain regions. This alters the shape of the cross-section,

and as a result changes theI andJ factors in the rigidity Equations 5.10 and 5.13. Secondly,

it alters the material properties of the new wood, changing theE and G values in these

equations. Finally, it introduces new growth strains which are directed against the lean. All

of these changes allow the branch to better resist, and even correct, bending.

8.3.1 Detection of a lean

Attempts have been made to identify the trigger of reaction-wood production. Studies have

shown that reaction wood forms when a growing shoot deviates too far from anequilibrium

position, EP. The existence of such an EP is a widely held belief [54, 35, 30], although it is

unclear how this position is determined mechanistically [35]. The three properties of reaction

75

wood described in the following sections act to reorient the branch back to its EP [35].

8.3.2 Differentiated shape

Reaction wood grows faster than regular wood, forming thicker portions of new rings on

the adaxial, or upper, surface of a downward-bending branch in angiosperms, and on the

abaxial, or underside, in conifers [33]. By thickening the appropriate angular section of the

branch’s new rings, reaction wood ovalizes the branch cross-section, as seen in Figure 8.3.

This localized accelerated growth causes a dissymmetry which shifts the geometric centre of

the branch (and therefore the zero-stress zone) according to Equation 5.15. It also increases

the area over which the load is applied, thus reducing the stress by definition.

Figure 8.3: Cross-section showing asymmetrical thickening of rings due to reaction wood.
The resulting elliptical cross-section aids to resist bending along the axis of thickening.
Taken with permission from [17].

Because the cross-section is no longer circular, the moment of areaI also changes. In

the direction of bending, the branch has thickened and soI has increased; thus the branch is

better able to resist further bending in this direction. In other directions, however, the branch

has not thickened and soI has not increased. Material has not been wasted in thickening the

branch in directions not currently subject to bending. Changes to the moment of areaI are

described in more detail in Section 8.4.2.

76

8.3.3 Differentiated material properties

As well as growing more quickly, reaction wood also exhibits different mechanical properties

than regular wood. It is optimized either for compression or for tension, depending on which

side of the stem it forms.

In angiosperms, reaction wood forms on the upper sides of stems and is optimized to

resist tension. Thistension wood acts by contracting, so as to resist the expansion of the

wood on the top of the downward-bending branch [35]. Tension wood is characterized by

gelatinous fibers in an inner cell wall layer which is almost without lignin [27]. As such it

contains much of the cellulose which provides tensile strength, and little of the lignin which

is strong under compression [32].

In conifers, reaction wood forms on the undersides of stems, and is optimized to resist

compression [33]. Thiscompression wood acts by expanding to resist the compression

caused by the downward bending of the branch [35]. Compression wood cells are round and

have large spaces between cells, whereas normal wood cells are closely packed polygons

[27]. Since lignin lies in this enlarged region between cells, such wood has a much higher

lignin content and is therefore strong under compression [27]. Compression wood has a

comparatively lower cellulose content, which explains its low tensile strength.

8.3.4 Growth strains

The above changes to wood production causegrowth strains in the stem. Reaction wood

forms where the stress due to bending is highest [33], and the differential growth produces

growth stresses to oppose these loading stresses [53]. The growth stresses lead togrowth

strains which counteract the existing strains due to loading [7]. These growth strains supply

the moment needed to correct a lean [35].

In tension wood, the wood’s contraction causes internal compressive growth stresses,

which oppose the existing tensile stresses on the top of the branch. In compression wood,

77

expansion creates tensile growth stresses to oppose the compression of the underside of the

branch. Both types of reaction wood act to correct a lean by opposing and attempting to

neutralize the bending stresses felt in the reaction wood region.

8.4 Reaction wood simulation

The approach to reaction-wood modelling taken in this thesis is based on this equilibrium-

position theory described in Section 8.3.1, and simulates the three characteristics of reaction

wood described above.

8.4.1 Detection of a lean

Reaction wood is simulated with several steps. First, a lean is detected when a segment’s

actual rotational velocity~Ω deviates sufficiently from its EP, as represented by the seg-

ment’s rest rotational velocity in the absence of loading,~Ω. If the deviation exceeds a

user-controllable thresholdξ , the production of reaction wood is triggered.

EP = ~Ω (8.7)

deviation from EP = ~Ω − ~Ω (8.8)

As in real trees, all changes to wood production to correct a lean must occur in new wood

rings formed after the detection of the lean. Therefore the preexisting core of the branch does

not change with the production of reaction wood; only newly forming rings exhibit different

properties when reaction wood is triggered.

8.4.2 Differentiated shape

As discussed above, reaction wood ovalizes the cross-section of the leaning branch. A model

which allows for reaction wood must store lengths for both semi-axes of the cross-section’s

78

ellipse,a andb. The larger semi-axis of the ellipse,a, lies in the direction of the lean.

Because bending in the model only occurs due to gravity, I assume that reaction wood

forms along the axis of the cross-section closest to vertical, as in Figure 8.4. Each segment

in the model keeps an orthogonal reference frame~H~L~U which rotates so as to keep the~U

axis as close as possible to vertical given the heading vector, and therefore in line with the

cross-section’s longer semi-axisa. After every reorientation of the segment, the frame is

rotated about its~H axis in the following way:

~U = ~H× ((0,1,0)× ~H)
~L = ~U × ~H

Given the heading vector~H, this method orients~U as closely as possible to the vertical

without compromising orthogonality of the reference frame, as in Figure 8.4.

Figure 8.4: Elliptical cross-section with semi-axesa andb, showing the model’s three or-
thogonal axes and the vector (0, 1, 0).

Because the cross-section is no longer circular, the moments of area now vary about each

axis of the segment. Rotation about the frame’s~L axis creates a bend in the direction of the

current lean which will be resisted by increased girth in this direction [33]:

79

IellipseLL
=

π

4
a3b. (8.9)

BecauseIellipseLL
depends so heavily on the longer semi-axisa, its value is large and therefore

the branch is better able to resist bending in the direction of the lean. Rotation about the

frame’s~U axis results in a bend along the cross-section’s narrower axis.IellipseUU is therefore

smaller as resistance to bending relies more heavily on the smaller semi-axisb:

IellipseUU
=

π

4
ab3. (8.10)

The torsional constantJ also changes to reflect the elliptical cross-section. The value of

J for an elliptical cross-section is [35]:

Jellipse=
πa3b3

a2 +b2 . (8.11)

Note that ifa = b, all moments of area equal those of a circular cross-section,Icircle = π

4 r4

and Jcircle = π

2 r4. Thus the ellipse equations may be used even for branches of circular

cross-section which are not producing reaction wood.

Whenever a new radial ring is produced, the deviation from EP is determined as in Equa-

tion 8.8. If the lean is too small for reaction wood to be triggered, a ring of constant thickness

is formed. Otherwise, the ring grows thicker in the direction of bending.

In keeping with the pipe model theory,the girth of the parent cross-section at a bifurcation

point is determined from the girths of both children. When allowing for reaction wood,

however, this calculation must be performed using the cross-sectional area of child segments,

instead of simply using radii as in Equation 2.2, because one or both of the children may have

elliptical cross-sections which require two semi-axes instead of a single radius.

When using area instead of radius in the pipe model computation, the exponentP from

the pipe model must be divided by two. The reason for this is made clear by considering the

case of circular cross-sections, in which area depends on the square of the radius. For now,

80

let N be the exponent:

areaparent = N
√

area1
N +area2

N (8.12)

πr2
parent = N

√
(π r1

2)N +(π r2
2)N (8.13)

πr2
parent = N

√
πN (r1

2N + r2
2N) (8.14)

r2
parent = N

√
r1

2N + r2
2N (8.15)

rparent = 2N
√

r1
2N + r2

2N. (8.16)

Murray’s observations of cross-section radius used in Equation 2.2 necessitate that 2N = P

. Thus, an exponent ofN = P
2 is used when performing the pipe model computation using

areas instead of radii.

areaparent =
P
2

√
areachild1

P
2 +areachild2

P
2 (8.17)

Because a parent segment may itself have accumulated reaction wood previously, its

cross-section may not be circular. Therefore, once the areaareaparent is determined from

Equation 2.2, it must be used to calculate lengths of ellipse semi-axesa andb:

areaparent = π a b (8.18)

One more constraint is needed to solve Equation 8.18 for the two unknownsa andb. This

constraint should maintain the existingshape of the ellipse, in other words, the ratio between

the lengths of the semi-axes. If the parent segment has never developed reaction wood, it will

remain circular and havea = b. If it has previously developed reaction wood, its current

elliptical proportions will be maintained even as its cross-sectional area increases according

to Equation 8.18. This is achieved by maintaining the existing ratioζ between the lengths

of the ellipse’s semi-axes:

b = ζ a (8.19)

Equations 8.18 and 8.19 form the system of equations needed to solve for the new semi-axis

lengthsa andb.

81

If reaction wood production has been triggered, the long semi-axisa is further lengthened

after the above calculations are performed:

a + = reaction wood increment (8.20)

The new reaction wood rings will be more elliptical than the preexisting inner core, which

corresponds to a ring cross-section like that of Figure 8.5.

Figure 8.5: Preexisting inner core with new elliptical reaction wood ring

The moments of areaI about the~L and~U axes for such a ring are

IringLL
=

π

4
(a3

outbout−a3
inbin) (8.21)

IringUU
=

π

4
(aoutb

3
out−ainb3

in). (8.22)

As explained above forIellipse, these equations are valid for all radial rings, whether or not

reaction wood is present. They are also valid whether or not the preexisting inner core was

itself elliptical. However, for simplicity the longer semi-axis of the inner coreain is assumed

to lie in the same direction asaout, as in Figure 8.5. In other words, the axis of bending in

the branch is assumed to remain constant while reaction wood is being produced.

82

8.4.3 Differentiated material properties

The optimization of reaction wood’s material properties is simulated by using a larger Young’s

modulusE in reaction wood than that which is used for regular secondary growth. However,

because the model does not consider angular portions of the cross-section separately, dif-

ferentE values cannot be assigned to the top and bottom of a stem. Therefore a segment’s

overall stiffness is computed as the average of its reaction wood (Erw) and non-reaction

wood (E juv) components, estimating from Figure 8.3 that about half of the new ring’s wood

is reaction wood.

Ering =
1
2

Erw +
1
2

E juv (8.23)

Because the angular portion of the cross-section that contains reaction wood is not identified

explicitly, both angiosperms and conifers can be modelled using the same technique.

ThisEring value is used to calculate the rigidity of the ringℜring f , according to Equation

6.27. The rigidity of the ringℜring is added to that of the inner core according to Equation

6.33, to obtain the flexural rigidity of the entire segment. An equivalent calculation is made

for torsional rigidity.

8.4.4 Growth strains

Alterations to the shape and stiffness of reaction wood can slow or even stop bending, but

they cannot actually reverse the direction of bending to correct a lean. The third aspect of

the reaction wood model simulates the growth strains which, in nature, provide a rotational

moment for righting a branch. This is done by adjusting the rest curvature~Ωring of the new

ring in the direction opposite to the lean.

The~Ω value of the inner core of the branch describes the curvature it would attain in

the absence of load (Section 6.1). The load causes the branch to lean away from its desired

curvature~Ω to an actual curvature~Ω. Usually, a newly created secondary growth ring uses

83

the actual curvature~Ω of the inner core as its rest curvature, as in Equation 6.32:

~Ωring = ~Ω. (8.24)

This reinforces the current shape of the branch, thereby accomplishing the simulation of

branch shape memory as described in Section 5.4.

However, when reaction wood is present, branch shape memory is not accomplished.

Instead of reinforcing the current shape of the branch, the new reaction wood ring acts to pull

or push the branch away from the direction of the lean. To accomplish this, the rest rotational

velocity ~Ωring of the new ring is adjusted in the direction of~Ω, which is the segment’s EP

(Equation 8.7):

~Ωring = ~Ω(1−β) + ~Ωβ . (8.25)

The higher the proportion of reaction woodβ set for the model, the more strongly~Ω affects

the rest curvature of the reaction wood ring. Equation 8.25 replaces Equation 6.32 for~Ωring

in Jirasek’s model. Note that if the user has specified no reaction wood in the model (β = 0),

the result is the same as that of Equation 6.32.

When the rest rotational velocity~Ω
′

of the thickened segment is calculated using the

weighted average of~Ω and~Ωring as in Equations 6.29 to 6.31, a reorientation of the thickened

segment in the direction away from the lean is accomplished. Because ring rigidityℜring is

large in reaction wood, the influence of the new ring on~Ω
′
is significant (see Equations 6.29

to 6.31).

Equation 8.25 is similar to Equation 6.24, which describes the influence of tropisms.

The growth strain aspect of reaction wood behaviour is implemented similarly to tropisms

in the model, except that it alters the rest rotational velocity value in the absence of load,~Ω,

instead of the existing rotational velocity~Ω. Also, growth strains caused by reaction wood

affect only newly created rings on preexisting segments, whereas tropisms influence newly

created segments.

84

8.5 Reaction wood results and discussion

Figure 8.6: A single stem (a) without reaction wood (b) with reaction wood.

Because reaction wood occurs only in new radial rings produced after the detection of

a lean, no reaction wood response occurs until new radial growth is produced. No growth

occurs in the model until equilibrium has been reached for the existing structure. Therefore,

a lean will not be corrected by reaction wood production until the process of leaning is

complete. However, radial rings containing reaction wood are produced before further distal

segments can be added to the branch. Therefore, reaction wood response occurs before the

increased torque from new segments can augment the lean.

Figure 8.6 shows the same leaning stem with and without reaction wood in the model.

In the absence of reaction wood production, the stem achieves the "S" shape predicted by

Fournier et al. [15] (Figure 8.6(a)). With reaction wood, the lean is resisted and new growth

resumes an upward direction (Figure 8.6(b)).

Figure 8.7 shows a tree before and after reaction wood production. Note that the lean

in the leftmost lateral branch as well as the trunk has been corrected. The increase in trunk

girth dictated by the pipe model results from reaction wood production in the branches.

85

Figure 8.7: A simple tree, before and after reaction wood is produced.

8.6 Breakage

The use of concepts from elasticity theory, realistic material properties and biomechanics

calculations allows the model to handle testing for branch breakage. Fracture of tree branches

usually begins with failures due to normal (tensile or compressive) stresses. Any failures due

to sheer stresses occur only afterwards [35]. For this reason, sheer stresses due to bending

can be ignored when determining failure.

To determine whether an object will break, the largest bending stress experienced in the

cross-section is compared to the breaking strength of the material. As defined in Section 5.5,

bending stress is:

σB =
Mr
I

, (8.26)

whereM is the bending moment,r is the distance from the centroid axis, andI is the moment

of area for the segment. Recall thatσB is a compression stress on the underside of a bending

86

branch and a tensile stress on the upper side.

When the stress due to bendingσB is below the material’s strength, the branch does not

break. Instead, its deformation causes storage of strain energy, which is converted to kinetic

energy and used to restore the original shape after the load is removed [35]. In the model,

this strain is represented by the difference between the desired, or rest, rotational velocity~Ω

and the actual value~Ω.

In contrast, if the stressσB exceeds the breaking strength, this strain energy is instead

used to cause breakage by propagating a crack. Before a crack initiates, wood typically

undergoes a compression failure. Because wood is weaker under compression, the first point

of failure occurs on the underside of the branch by the formation of a kink, when individual

fibres buckle. This compression failure is followed by a crack on the upper side which is

under tension [33]. The stored strain energy is then used to propagate the crack across the

entire cross-section [35].

The modulus of rupture, MOR, defines the stress required for fracture. Thus, breakage

occurs if

σB > MOR, (8.27)

whereσB is computed as in Equation 5.15. For example,MOR = 64 MPa for poplar wood

[35].

8.7 Simulation of breakage in a fruit tree

In most tree species, breakage due only to stresses from self-weight is unlikely. Trees are

often overbuilt in terms of support for static loads such as self-weight. However, in some fruit

trees branches do break because of the weight of large fruit. A simulation of a heavy-laden

fruit tree is used to illustrate breakage in the model.

At every simulation step, the maximum stress experienced by each branch segment is

computed, and breakage tests are performed according to Equation 8.27. If a segment’s

87

maximum stress exceeds the modulus of rupture, both the segment and its supported subtree

are removed from the tree. As a result of the breakage of a branch, the rest of the tree springs

up in response to the reduced load, as shown in Figure 8.8.

Figure 8.8: A simple tree, before and after the breakage of two branches A and B due to
stress from weight of fruit.

Stress due to bendingσB is at a maximum at the base of a branch, because this is where

the torque lever arm is longest [35]. This is why many trees developbranch collars at the

base of large branches, to increaseI by thickening this most-stressed portion of the branch

[35]. In the biomechanical model, a segment at the base of a branch may have been built

up radially before fruit produced distally created a large torque. In this case, the stress at

this segment is reduced according to Equation 5.15 and breakage is more likely to occur at a

thinner segment further from the branching point, as shown in Figure 8.8(b).

8.8 Breakage and reaction wood

Heavily leaning branches such as A and B in Figure 8.8 are likely to either break or produce

reaction wood, because both phenomena are triggered by related occurrences. Reaction

wood is produced if the bend exceeds the thresholdξ , and breakage occurs when stress

88

exceeds the thresholdMOR. Both large bends and large stresses are caused by a large torque,

such as is caused when a heavy fruit is produced on a slender new branch.

The occurrence of either reaction wood or breakage preempts the occurrence of the other.

Which phenomenon occurs first depends on the thresholdsξ and MOR. Often breakage

occurs immediately after a new shoot begins to produce a heavy fruit, because the stress due

to weight on the fragile new segment exceeds the breaking strength. If this stress exceeds

theMORbefore any new radial rings can be added, then reaction wood can have no effect,

as it is produced only in new radial rings. In this scenario, the branch breaks before reaction

wood can be produced.

However, if MOR is large enough that new radial rings are produced before breaking

stress is reached, then reaction wood may be produced in these rings. If deviation from EP

exceeds the thresholdξ , the production of reaction wood preempts breakage of the branch

by reducing stress as described in Section 8.3. If deviation from EP does not exceed theξ ,

reaction wood is not produced and the branch may break at the next step due to the increase

in weight of the fruit as it grows.

The breaking strength of branches in trees bearing heavy fruit has a significant impact on

the shape of a developed tree. A comparison of the same tree model with high and low break-

ing strengths is shown in Figure 8.9. In 8.9(a), there is less breakage due to higher breaking

strength, and so reaction wood has an opportunity to act in correcting leaning branches. In

8.9(b), breakage occurs before reaction wood can act.

L-system code for the reaction wood and breakage simulations is presented in the Ap-

pendix.

89

(a)

(b)

Figure 8.9: Comparison of the same model with (a) high and (b) low MOR thresholds for
breakage.

Chapter 9

Toward a model of tree branch dynamics

The solutions presented so far in this thesis concern the quasi-static problem of determining

a tree’s equilibrium shape during each stage in its growth. The current chapter investigates a

dynamics problem, working toward a model to represent oscillatory motion of tree branches

in response to external forces such as the tugging of a branch.

A tree model for dynamic simulation requires a structure that allows the representation of

oscillations of a curved shape. To fulfill this requirement and for coherence in this thesis, it is

convenient to use the spring-linked segment model described in Chapter 6 for the semi-static

case. When using the spring-linked segment model to represent dynamics, the motion of each

segmenti is described from the perspective of the end of the previous segmenti−1, instead

of being described from a fixed point in space. It is important to note that this reference point

can be moving; specifically, it may have a nonzero acceleration.

To describe motion from the perspective of a point that may itself be accelerating,non-

inertial systems are used. In this chapter, the use of non-inertial systems in several dynamics

models is described. Although the final goal is to represent the dynamics of tree branches, the

difficult concepts involved in non-inertial systems are introduced by first describing their use

in some simpler models. Each system to be presented in this chapter provides a step toward

the final goal, as each new system introduces characteristics present in the final model of

tree-branch dynamics.

First, a simple mass-spring system is described in which motion occurs along a line. This

system is represented in two ways: using first inertial and then non-inertial reference frames.

These approaches are compared so as to understand the distinction between them and verify

that both representations produce identical results. These systems are presented in Sections

90

91

9.2.1 and 9.2.2.

Next, two-dimensional rotational systems are described. Introduced separately into the

model are the forces from gravity (in Section 9.3) and rotational springs (in Section 9.4).

Finally, the system is extended to branching structures in Section 9.6. Limitations of the

system and directions for future work are described in Section 9.7.

9.1 Introduction to non-inertial systems

An object’s motion is always described with respect to a specific frame of reference. If this

frame of reference is fixed in space or moving at a constant velocity, the reference frame is

calledinertial [6]. Motion viewed from such a reference frame is said to be viewed from an

inertial perspective.

However, if the reference frame from which motion in viewed has a changing velocity (a

nonzero acceleration), it is referred to as anon-inertial reference frame, or accelerating frame

[6]. When viewing a moving object from such a frame, the perceived motion is partially due

to the acceleration of the reference frame. Therefore when describing an object’s motion

from such a perspective, one must account for the acceleration of the reference frame.

For example, the motion of a woman sitting in a car that is braking suddenly at a red

light can be described non-inertially, from the reference frame of the car itself. From the

non-inertial perspective of the car, it appears that the woman, previously at rest, is suddenly

moving forward in her seat. However, from an inertial perspective, an observer standing on

the street corner would note that the woman’s forward motion has actually slowed. Clearly,

the accelerations observed from these two perspectives are different. In fact, they are related

by the following equation:

corner~awoman = corner~acar + car~awoman, (9.1)

wherea is acceleration, and the leading superscript describes the reference frame from which

92

the acceleration is being observed. Addition of the acceleration of the car (in this case, a

deceleration) to the acceleration of the woman with respect to the car gives the woman’s

acceleration as it would be viewed from the street corner. In general, this equation can be

rewritten as

f ixed~aob ject = f ixed~aRF + RF~aob ject, (9.2)

whereRF is the reference frame [6].

Equation 9.1 can be manipulated to solve for the woman’s acceleration as viewed from

the accelerating car:

car~awoman = corner~awoman− corner~acar (9.3)

In general terms, the equation for acceleration viewed from a non-inertial reference frame

is

RF~aob ject = f ixed~aob ject − f ixed~aRF, (9.4)

whereRF~aob ject is the object’s acceleration viewed non-inertially (from the accelerating ref-

erence frame),f ixed~aob ject is the object’s acceleration viewed from an inertial perspective and

f ixed~aRF is the acceleration of the reference frame, also viewed inertially.

Using Newton’s second law of dynamics, Equation 9.4 can also be extended to describe

forces:

mob ject (RF~aob ject) = mob ject (f ixed~aob ject) − mob ject (f ixed~aRF), (9.5)

wheremob ject is the mass of the object.mob ject (f ixed~aRF) is a non-inertial force orfictitious

force [6], which results from the acceleration of the reference frame. Though this force

does not exist for the inertial observer, it is needed to describe the force observed from the

accelerating reference frame.

Note that when motion is viewed from a non-inertial frame, the object inherits the nega-

tion of the reference frame’s acceleration, or force. The reason for this negation is evident

from the example of the woman in a car. When the moving car stops suddenly (a deceleration

93

of the reference frame), the woman feels a force pushing her forward. This forward force

exists only as seen from the non-inertial reference frame of the moving car: as seen from the

inertial perspective of the observer on the street corner, there is no such forward force. The

forward force in the non-inertial system comes from the negation of the deceleration of the

reference frame. It is an example of a non-inertial force.

9.2 A one-dimensional mass-spring system

This chapter’s investigation of non-inertial systems begins with a simple one-dimensional

mass-spring simulation. To illustrate the implications of viewing motion from a non-inertial

perspective, the same system will be modelled from both inertial and non-inertial reference

frames.

The system is made up of a chain of point masses, or particles, linked by springs which

can be stretched or compressed along one direction, as depicted in Figure 9.1. The leftmost

spring is attached to a fixed point (such as a wall). The combination of a spring with a

particle at its distal end is called alink. Particle 0 is located at the distal end of link 0, the

first link. For convenience, links of lower index will be calledparents of the higher-index

links, orchildren.

9.2.1 The system expressed inertially

First, the inertial system will be described. In this model, the motion of all links is viewed

from a common fixed reference frame. For convenience, this reference frame is located on

the wall, at the point of attachment of the leftmost spring. This fixed reference frame is

labelledW.

The force exerted on particlei by springi is defined as

WFon i
springi

=−ki (l i − l i), (9.6)

94

Figure 9.1: Inertial reference frame W and non-inertial reference frames for a one-dimen-
sional mass-spring system.

wherel i is the current length of springi andl i is its rest length.

A force equal in magnitude but opposite in direction is exerted by springi on particle

i +1:

WFon i+1
springi

= ki (l i − l i). (9.7)

Each particle’s acceleration is influenced by its two surrounding springs. Particlei is

affected by forces from its two surrounding springsi andi +1. On particlei,

WFspringi = −ki (l i − l i) (9.8)

WFspringi+1 = ki+1 (l i+1− l i+1) (9.9)

WFsprings = WFspringi + WFspringi+1. (9.10)

A damping force is introduced, which is proportional to the velocity of the particle:

WFsprings = (WFspringi + WFspringi+1) − b (Wvi), (9.11)

whereb is a damping constant andWvi is the velocity of particlei as observed from the

inertial reference frameW.

Based on this force, particlei’s acceleration can be determined from Newton’s second

law,

Wai =
WFsprings

mi
, (9.12)

wheremi is the mass of particlei. Recall that the notationWai describes the acceleration of

particlei as observed from the reference frameW, in this case an inertial reference frame.

95

The inertially-viewed velocity of particlei, Wvi , can be obtained from the inertially-

viewed accelerationWai by using a numerical technique such as Euler’s method:

Wvt+1
i = Wvt

i + ∆t (Wat
i). (9.13)

The length of the spring is then determined from the distance between its two surrounding

particlesi − 1 and i. Euler’s method is used again, using the difference between the two

particles’ velocities as the derivative:

l t+1
i = l ti + ∆t (Wvt

i − Wvt
i−1). (9.14)

Using the above-described equations, the calculations for particlei at timet + 1 in the

inertial system are:

WF t+1
springi

= −ki (l ti − l
t
i)

WF t+1
springi+1

= ki+1 (l ti+1− l
t
i+1)

WF t+1
springs = (WF t+1

springi
+ WF t+1

springi+1
) − b (Wvt

i)

Wat+1
i =

WF t+1
springs

mi

Wvt+1
i = Wvt

i + ∆t (Wat
i)

l t+1
i = l ti + ∆t (Wvt

i − Wvt
i−1).

9.2.2 The system expressed non-inertially

An equivalent model to the one above may be created using non-inertial reference frames.

Instead of using a single fixed reference frame, the motion of each particlei may be observed

from the reference frame located at the previous particlei −1. These reference frames are

depicted in Figure 9.1. Because each particle may be accelerating, this system is non-inertial.

According to Equation 9.4, the acceleration of particlei viewed from the non-inertial

reference frame at particlei−1 is:

i−1ai = Wai − Wai−1, (9.15)

96

where the superscripti−1 indicates that the reference frame is located at particlei − 1.

Equivalently,

Wai = Wai−1 + i−1ai . (9.16)

However, the accelerationWai−1 as viewed from the inertial frame may be unknown. If

i > 1, the reference frame ati−1 is viewed from another particlei−2, which may itself be

accelerating.

Links are attached in series, so from an inertial perspective each particle inherits the

acceleration of its parent. Only link 0 is attached to a wall, so it does not inherit any ac-

celeration. Particle 0’s acceleration is already described inertially, as it is viewed from the

stationary reference frameW. Particle 1 has its own acceleration relative to particle 0, which

when added to particle 0’s acceleration gives the inertially-viewed acceleration for link 1, as

viewed fromW. To get particle 2’s inertially-viewed acceleration, its acceleration relative

to particle 1 is added to the inertially-viewed acceleration of particle 1. Thus, non-inertial

accelerations from the links of lower index (links 0 ..i −1) are accumulated to obtain the

inertially-viewed acceleration of particlei. Summation of these accelerations givesWai−1,

so Equation 9.15 becomes

i−1ai = Wai −
i−1

∑
j=0

j−1a j . (9.17)

The use of non-inertial systems changes several aspects of the equations given above.

According to Equation 9.5, to specify spring forces from a non-inertial reference frame re-

quires a fictitious forcemi (Wai−1) from the acceleration of the reference frame ati−1:

i−1Fsprings = (WFspringi + WFspringi+1) − b (Wvi) − mi (Wai−1). (9.18)

Also, Equation 9.14 for updating spring length no longer needs to access two velocities,

because

i−1vi = (Wvi − Wvi−1), (9.19)

97

as in Equation 9.4. So Equation 9.14 becomes simply

l t+1
i = l ti + ∆t (i−1vt

i). (9.20)

Finally, inertially-specified acceleration and velocities must be calculated according to Equa-

tion 9.17, for use in the fictitious force and damping terms of Equation 9.18. The final

calculations for particlei at timet +1 in the non-inertial system are:

WF t+1
springi

= −ki (l ti − l
t
i)

WF t+1
springi+1

= ki+1 (l ti+1− l
t
i+1)

i−1F t+1
springs = (WF t+1

springi
+ WF t+1

springi+1
) − b (Wvt

i) − mi (Wat
i−1)

i−1at+1
i =

i−1F t+1
springs

mi

i−1vt+1
i = i−1vt

i + ∆t (i−1at
i)

l t+1
i = l ti + ∆t (i−1vt

i)

Wat+1
i = Wat+1

i−1 + i−1at+1
i

Wvt+1
i = Wvt+1

i−1 + i−1vt+1
i .

As desired, tests of inertial and non-inertial mass-spring systems indicate that they produce

identical resulting motion.

9.3 A non-inertial system for rotation – multiply-linked pendula

The mass-spring system described in Section 9.2 models springs that stretch in one dimen-

sion. However, this stretching of a one-dimensional axis does not resemble the motion of

swaying a tree branch. To progress toward this goal, the model must better simulate the

structure and motion of a tree branch, which can arch and oscillate rotationally, but does not

stretch in its length. To achieve this aim, a rotational non-inertial system has been developed.

This system is comprised of a chain of straight weightless segments which cannot stretch or

98

compress in length. As in the one-dimensional model, a point mass is located at the distal

end of each segment. Rotations can occur at the joints between segments, and these joint

rotations account for the arching and oscillation of the chain.

A system consisting of such a chain of segments lying in the plane will be described.

In this system, all rotations occur around axes perpendicular to the plane. The first model,

described in Section 9.3.2, represents the motion of the system with only gravity acting on

the particles. This system is therefore one of linked pendula. In Section 9.4, rotational

springs located at the joints are added to the existing system. These springs act to maintain

a relative rest angle between two consecutive segments. Finally, the model is extended to

represent branching structures.

As in Section 9.2, non-inertial reference frames are used to describe motion in the system.

Particle 0’s motion is viewed from the inertial reference frame of the wall, but every other

particle i’s motion is observed from the reference frame located at the preceding particle

i−1. The system is no longer one-dimensional, so the orientation of these reference frames

is important. For simplicity, their orientations are defined to be identical to that of the inertial

frame: that is, the reference frames do not rotate along with the links. The orientation of each

link with respect to the reference frame is therefore defined by the angleα that its axis forms

with respect to the horizontal, as shown in Figure 9.2. Each link axisr i is a vector directed

from the centre of its reference frame (at particlei−1) to its own particle,i.

The equations required to represent the system of Figure 9.2 are described in Section

9.3.2. First, some concepts needed to derive these equations are introduced.

9.3.1 Radial and tangential components of forces

A force can be specified as a vector: it is defined by a direction and a magnitude. In the

discussion that follows, it is important to note that any vector~v can be decomposed into its

perpendicular and parallel components with respect to any other vector~w. In particular, a

99

Figure 9.2: Rotational system of three linked pendula.

force vector~F can be resolved into its parallel and perpendicular components~F‖ and~F⊥ with

respect to the axis~r i of the link upon which~F acts.

Figure 9.3: Decomposition of a force vector~F , with respect to a reference vector~r i .

Using vector notation, obtaining the parallel and perpendicular components of~F with

respect to~r i is equivalent to projecting~F onto the unit reference vector ˆr i = ~r i
‖~r i‖ and onto a

perpendicular unit vector, ˆr i⊥. These operations are defined as:

~F‖ = (r̂ i ·~F)∗ r̂ i (9.21)

~F⊥ = −((~F × r̂ i)× r̂ i). (9.22)

Decomposition of any force~F acting on link i into its perpendicular (tangential) and

parallel (radial) components with respect to the axis~r i of link i effectively separates forces

100

that cause rotation from forces that act along a link to stretch or compress it. As explained

below, purely tangential force can only cause rotation, and purely radial force can only cause

stretching.

Figure 9.4: Radial force component causes stretching and tangential component causes ro-
tation.

Because segments in this system are of fixed length, they cannot be stretched or com-

pressed no matter what force acts upon them. Therefore any stretching force~F acting on

link i has no effect on the link itself. The pushing or pulling that such a force~F causes may

result in linear motion of the whole link, but only as a result of~F causing the rotation of

another link earlier in the chain. Therefore, when computing the result of a force~F acting

on link i, we can disregard the radial component~F‖ with respect to~r i and consider only the

tangential (rotation-causing) component.

However, this unused radial component~F‖ must not be discarded altogether. It is an un-

used force in the system which could cause rotation of another differently-oriented segment

in the chain. It is important to remember that components of~F are taken with respect to a

particular link axis~r i . A force that is radial with respect to linki is not necessarily radial

with respect to linki−1. This force will have no rotational effect oni, but it will rotate link

i−1, as long as it is not parallel toi.

Figure 9.5 depicts force~F2, a force which acts on links of indexi < 2 as a result of

particle 2’s outward acceleration. Because link 1 is parallel to link 2,~F2 is entirely radial

with respect to link 1, and therefore has no effect on it. If link 0 were also parallel to the

101

Figure 9.5: Three links, the second two parallel, with components of force~F2 shown with
respect to each link~r i . Only ~F2⊥0

causes rotation, as it is the only nonzero tangential compo-

nent of~F2.

other two links,~F2 would have no effect on the system, as the segments cannot stretch and

the system is attached to a fixed point at link 0’s proximal end. However, in the scenario

depicted by this figure,~F2 causes a rotation at link 0, because it has a nonzero tangential

component ~F2⊥0
with respect to the axis~r0 of link 0. The result will be the pulling of the

entire chain in the direction of~F2, because child links 1 and 2 are attached to link 0 and so

will necessarily follow.

To model the effect of radial forces on segments of lower index, the unused radial com-

ponents of forces must not be discarded, but must be passed on to parent segments which

they might affect. At each linki, forces that can affect particlei are accumulated, and the

resulting total force is decomposed into tangential and radial components. The tangential

component is used immediately to cause rotation, and the unused radial component is passed

on to link i−1.

It is important to note that when the unused radial force is passed on to links of lower

102

index, it must be stored as a vector in the inertial frame. A non-inertially viewed vector

cannot be passed on for use in another non-inertial reference frame, because it assumes

a relationship to the reference frame that no longer holds. However, an inertially-viewed

vector can be used from any frame.

9.3.2 Overview of the equations for the rotational system

In this section, the equations for the rotational system are described. First, an overview of

the system’s equations is presented, and later the equations will be examined in detail.

First, all the forces acting on the particle at the end of linki are accumulated to obtain

the total force~F t+1
i acting on particlei at timet +1.

~F t+1
i = ∑

j

~f t+1
componentj (9.23)

Each of these force contributions~f t+1
componentj will be described in Section 9.3.3.

This total force~F t+1
i acts on the rotational system in two ways. First, its tangential

component~F t+1
i⊥

determines the rotational acceleration of linki, ~ε t+1
i . The value of~ε t+1

i

that accounts for the acceleration of previous links depends oni−1~F t+1
i⊥

, the tangential force

as viewed from the non-inertial reference frame located at linki−1, according to

i−1~ε t+1
i = ζ (i−1~F t+1

i⊥
), (9.24)

whereζ is a function to be detailed below.

Second, the radial component of~F t+1
i will be used to cause motion in the other links of

lower index. The portion of~F t+1
i‖

which affects these other links is computed by subtracting

the force that caused theradial acceleration of linki itself. Specifically, the force to be

inherited by linki−1 is

W~F t+1
toLe f ti

= W~F t+1
i‖

− (mi
W~at+1

i‖
) (9.25)

103

where(m W~at+1
i‖

) is the force used to cause the radial accelerationW~at+1
i‖

of link i. This accel-

eration is viewed inertially, so~F t+1
i‖

must be viewed from an inertial perspective, expressed

asW~F t+1
i‖

.

9.3.3 The rotational system’s equations in detail

The force contributions toW~F t+1
i are now examined in detail. These include the force from

gravity, forces left over from links further to the right, and damping force.

W~F t+1
i = W~f t+1

gravi
+ W~f t+1

f romRighti
+ W~f t+1

dampi
. (9.26)

Note that, according to Equation 9.5, all of these contributions must be stated as viewed from

an inertial frameW.

Gravity acts upon linki’s mass according to

W~f t+1
gravi

= mi ~g, (9.27)

where~g= (0,−9.8,0) ms−2 andmi is the mass at the distal end of linki. As desired,W~f t+1
gravi

is the force that would be observed from an inertial reference frame, because the vector~g is

described inertially.

Next, the effect on linki of unused radial forces from child linksi +1 ton is

W~f t+1
f romRighti

=
n

∑
k=i+1

W~f t+1
k , (9.28)

where eachW~f t+1
k represents the radial force acting on the mass at linkk, minus the force

required to cause theradial acceleration of all links betweenk andi,

W~f t+1
k = W~F t+1

k‖
−

k

∑
j=i+1

(mj
W~at+1

j‖
). (9.29)

The damping force,W~F t+1
dampi

, inhibits rotational acceleration of linki, and is approxi-

mated as

W~F t+1
dampi

= b W~ωi
t × ~r i

t , (9.30)

104

whereb is a user-controlled damping constant,W~ωi
t is the inertially specified rotational

velocity of link i during the previous time stept and~r i
t is the vector representing the long

axis of link i, also at timet. b W~ωi
t is the damping torque, and the cross-product results in a

damping force.

Making use of all these values, the resulting forceW~F t+1
i of link i is

W~F t+1
i = Wmi ~g +

n

∑
k=i+1

W~f t+1
k − mi b W~ωi

t ×~r i
t . (9.31)

The total force viewed from a non-inertial reference frame

If ~F t+1
i is viewed from a non-inertial reference frame, the acceleration of the reference frame

itself must be accounted for. This is done by subtracting a force~f t+1
RFi

obtained from the

acceleration of the reference frame, as described in Equation 9.5,

i−1~F t+1
i = W~F t+1

i − W~f t+1
RFi

. (9.32)

This force~f t+1
RFi

is

W~f t+1
RFi

= mi
W~at+1

i−1, (9.33)

whereW~at+1
i−1 is the inertially-viewed acceleration of the reference frame, located at the end

of link i−1.

i−1~F t+1
i from Equation 9.5 can be resolved into its radial and tangential components

i−1~F t+1
i‖

and i−1~F t+1
i⊥

with respect to the link direction~r i
t+1. These forces affect the system

in two ways, as outlined in Section 9.3.2.

First, the tangential forcei−1~F t+1
i⊥

directly produces a rotational acceleration for link i as

follows:

i−1~εi
t+1 =

(~r i
t × i−1~F t+1

i⊥
)

m|~r i
t |2

. (9.34)

This equation was derived as follows. An object’s rotational acceleration~ε resulting from a

torque~τ can be obtained by dividing by the object’s moment of inertiaI . For a weightless

bar with a mass at its distal end (a pendulum),I = m|~r|2 [52]. In the following derivation for

105

a pendulum, subscripts and superscripts are removed for clarity:

ε =
~τ

I
(9.35)

=
~τ

m|~r|2
(9.36)

=
(~r ×~F)
m|~r|2

. (9.37)

Because by definition the cross-product~r × ~F uses only the component of~F perpendic-

ular to~r, the total force~Fi can be used in Equation 9.37, instead of taking the perpendicular

component first:

i−1~εi
t+1 =

(~r i
t × i−1~F t+1

i)
m|~r1

t |2
. (9.38)

The above simplification produces the same result as Equation 9.34, and saves computation

time. The rotational accelerationi−1~εi
t+1 can be integrated to obtain the rotational velocity

i−1~ωi
t+1 and the current angle(αi

t+1).z of the segment relative to the horizontal. The nu-

merical method used to perform this integration will be discussed in Section 9.3.5. The link

axis~r i
t is then rotated by the angle(αi

t+1).z to obtain the updated link axis at timet + 1,

~r1
t+1.

Secondly, this forcei−1~F t+1
i affects links to the left. As the perpendicular component

i−1~F t+1
i⊥

has been used up entirely in causing rotation, only the parallel componenti−1~F t+1
i‖

is left to affect these links of lower index. However, before passingi−1~F t+1
i‖

to the left, the

effect of this force on linki itself must be subtracted.

From a non-inertial perspective,i−1~F t+1
i‖

does not appear to have any effect on linki: it

cannot causei’s rotation, nor can it stretch or compress the linki itself. Thus, if the motion

is viewed from the non-inertial reference frame at the end of linki −1, i−1~F t+1
i‖

does not

cause any acceleration at linki. However, from an inertial perspective linki may indeed be

accelerating as a result ofW~F t+1
i‖

. This force can cause rotation of a parent link, which will

result in an acceleration of linki when viewed inertially, as in Figure 9.5. To subtract the

effect of this acceleration,the radial calculations must be viewed from an inertial frame.

106

Before passing this forceW~F t+1
i‖

to the parent links, the portion of this force which caused

the acceleration of linki must be subtracted:

W~f t+1
toLe f t = W~F t+1

i‖
− (mi

W~at+1
i‖

). (9.39)

W~f t+1
toLe f t is entirely radial with respect to the current link, but when acting on linki − 1

it will be divided into components based on linki−1’s direction. As before, the tangential

component is used in rotation. If the system has more than two pendula, the radial component

is passed on to linki−2 after subtracting the force used to cause linki−1’s inertially-viewed

radial acceleration.

Figure 9.6: Accumulated radial forces from the right, taking perpendicular and parallel com-
ponents at each step.

All that remains is to determine the final linear acceleration of linki. From the non-

inertial perspective, both tangential and radial components of linear acceleration can be ob-

107

tained directly from the rotational values:

i−1~at+1
i‖

= i−1~ωi
t+1× (i−1~ωi

t+1×~r i
t+1) (9.40)

i−1~at+1
i⊥

= i−1~εi
t+1×~r i

t+1, (9.41)

where i−1~at+1
i⊥

is the linear acceleration in a direction tangent to the link, andi−1~at+1
i‖

is the centripetal acceleration of the distal point of linki. Centripetal acceleration is the

inward linear acceleration required to constrain the link’s acceleration to a circle – it results

simply from the rod being of fixed length while tangential acceleration is going on. Both

accelerations are depicted in Figure 9.7.

Figure 9.7: Centripetal and tangential accelerations.

To obtain the acceleration of linki as observed from an inertial perspective, the two

componentsi−1~at+1
i‖

andi−1~at+1
i⊥

are summed and added to the inertially-viewed acceleration

of the reference frame,W~at+1
i−1:

W~at+1
i = W~at+1

i−1 + i−1~ωi
t+1× (i−1~ωi

t+1×~r i
t+1) + i−1

ε
t+1
i ×~r i

t+1. (9.42)

108

9.3.4 Summary of the equations

In summary, the equations that have been developed for this system of linked pendula are:

W~f t+1
k = W~F t+1

k‖
−

k

∑
j=i+1

(mj
Wat+1

j‖
) (9.43)

W~F t+1
i = Wmi ~g +

n

∑
k=i+1

W~f t+1
k − mi b W~ωi

t ×~r i
t (9.44)

i−1~F t+1
i = W~F t+1

i − W~f t+1
RFi

(9.45)

i−1
ε

t+1
i =

(~r i
t × i−1~F t+1

i)
m|~r i

t |2
(9.46)

W~at+1
i = W~at+1

i−1 + i−1~ωi
t+1× (i−1~ωi

t+1×~r i
t+1) + i−1

ε
t+1
i ×~r i

t+1 (9.47)

W~f t+1
toLe f t = W~F t+1

i‖
− (mi

W~at+1
i‖

). (9.48)

9.3.5 Implementation

In this section, the use of Equations 9.43 to 9.48 in the L-system model is examined.

As described in Section 9.3.2, the unused component of the forceW~F t+1
i‖

from link i acts

on link i−1 and further lower-numbered links. However, is does not act on higher-numbered

links, because of the way dependency is set up in the model: linki−1 is influenced by link

i only by inheritingi’s acceleration. In contrast, any effect that linki feels from link i + 1

arises from its unused radial force. Thus, accelerations must be passed toward links of higher

index, and unused radial forces must be passed toward links of lower index.

A two-way flow of information can be accomplished using an L-system’s forward and

backward passes [28]. The equations developed in Section 9.3.2 can be divided into those

that require information from links of lower index (forward pass) and those that depend on

information from links of higher index (backward pass).

During the model’s forward pass, calculation proceeds from the leftmost link 0 to the

rightmost linkn. Link i inherits the acceleration of linki − 1 to obtain its own inertially-

viewed accelerationW~at+1
i . The inherited acceleration is also used to calculate the force

acting ati, viewed non-inertially. This forcei−1~F t+1
i is then used to obtain the rotational

109

accelerationi−1ε
t+1
i . The simplest integration technique, Euler’s method, is used to obtain

the valuesi−1~ωi
t+1 and i−1α

t+1
i from i−1ε

t+1
i . Consequences of the use of Euler’s method

are discussed in Section 9.7.

During the backward pass, calculation proceeds from the rightmost linkn to the leftmost

link 0. Link i obtains the unused radial portion of linki +1’s acceleration as a forceW~f t+1
k ,

W~f t+1
k = W~F t+1

k‖
−

k

∑
j=i+1

(mj
Wat+1

j‖
). (9.49)

Such unused radial components have been accumulated from links further to the right, and

at each link the tangential component of this accumulated force has been removed and used

to cause rotation. Thus, each link has used the portion that is tangential to its own axis of

all unused forces from the right, and has passed the unused radial portion to its parent as a

force. At link i, the accumulated unused forces from all the links to the right is therefore

W~f t+1
f romRighti

=
n

∑
k=i+1

W~f t+1
k . (9.50)

This force is added to the other force contributions acting on the current link.

The calculations required for the forward and backward passes of the simulation are

given below.

Forward pass: fori = 0 ton

i−1~F t+1
i = W~F t+1

i − (mi
W~at+1

i−1) (9.51)

i−1
ε

t+1
i =

(~r i
t × i−1~F t+1

i)
m|~r i

t |2
(9.52)

i−1~ωi
t+1 = i−1~ωi

t + i−1
ε

t
i ∆t (9.53)

α
t+1
i = α

t
i + i−1~ωi

t∆t (9.54)

~r i
t+1 = Rotate(~r i

t , (α t+1
i).z) (9.55)

W~at+1
i = W~at+1

i−1 + i−1~ωi
t+1× (i−1~ωi

t+1×~r i
t+1) + (i−1

ε
t+1
i ×~r i

t+1) (9.56)

110

Backward pass: fori = n down to 0

W~f t+1
f romRighti

= W~f t+1
f romLe f ti+1

(9.57)

W~F t+1
i = mi~g + W~f t+1

f romRighti
− (b W~ωi

t+1×~r i
t+1) (9.58)

W~f t+1
toLe f ti

= (W~F t+1
i − mi

W~at+1
i)‖ (9.59)

A single time step consists of one forward pass followed by one backward pass.

9.4 Addition of springs to the system

At equilibrium, the system of linked pendula described above will lie in a vertical chain of

links hanging down due to gravity below a fixed point. To better simulate a tree branch

that has a specific shape at equilibrium and oscillates when forces cause it to deviate from

this shape, rotational springs are introduced into the model. These springs introduce another

influence on each link – the torque created by the spring’s effort to maintain the rest angle of

a joint between two links.

Each joint has a rest angleθ describing the equilibrium shape of its part of the branch.

The spring’s action counteracts deviations fromθ . If θ is zero, the joint attempts to keep the

two links in a straight line. If it is nonzero, the spring will attempt to maintain this relative

angle. Once springs have been added to the system, its equilibrium state will be a balance

between the forces of gravity and the springs as in Figure 9.8.

The spring labelledspringi is located at the proximal end of linki; in other words, at the

joint between linki−1 and linki. springi creates a torque acting on each of its surrounding

links i−1 andi:

~τspringtoRight = −k(θ −θ) (9.60)

~τspringtoLe f t = k(θ −θ), (9.61)

(9.62)

111

Figure 9.8: Effects of a rotational spring located at particle 0 withθ = 0, as well as torques
due to gravity.

wherek is the spring’s stiffness constant andθ = (αi −αi−1) is the relative angle between

the two consecutive segments. This is the rotational version of Hooke’s law and is used to

compute the torque of the spring due to deviation from rest angleθ .

Thus, a linki in the centre of the chain will experience two torques due to its two sur-

rounding springsspringi andspringi+1:

~τle f tSpringi = −kspringi(θi −θi)

~τrightSpringi = kspringi+1(θi+1−θi+1)

~τspringsi = ~τle f tSpringi + ~τrightSpringi .

To add springs to the system, the spring torque~τspringsi must be incorporated into the equation

for total accelerationWat+1
i of the link; thus it must be expressed as an acceleration instead

of a torque. To obtain the acceleration that results from~τspringsi , a derivation similar to that

of Equations 9.35 - 9.37 is used:

~at+1
springsi

=
~τ t

springsi

I
×~r i

t . (9.63)

In Equation 9.63, rotational acceleration is derived from torque by dividing by the moment

of inertia I , whereI = m|~r|2, as described in Section 9.3.3. The corresponding tangential

linear acceleration is then obtained by taking the cross-product with the link vector~r i .

112

With the addition of the acceleration due to the spring, the equation for the total force

from link i becomes

W~F t+1
i = mi ~g + W~f t+1

f romRighti
− (b W~ωi

t+1×~r i
t+1) + (

~τ t
springsi

I
×~r i

t). (9.64)

9.5 Response to instantaneous forces

The effect of instantaneous external forces can be simulated by setting the initial force vector

for a particular segment at a particular moment in time. For instance, to simulate the sharp

tugging of a branch tip downward 10 seconds after the start of the simulation, I set the initial

forceW~f t
f romRighti

= (0,−100,0) for segmenti, at timet = 10.0 in the simulation.

9.6 Branching

Extension of this single chain of links into a branching system is straightforward. Instead of

having a single child, each link can now have one or more children, each of which inherits the

parent’s acceleration. Because L-systems are designed to gracefully handle branching, the

model’s forward pass does not change: each child still has a single parent which is used as

its left context. However, the backward pass must be altered, because a parent may now have

more than one child from which to obtain right context. Given two or more right neighbours,

the current link simply sums their values. The only values needed from the children are the

unused inertial radial forces and spring forces, so each parent sums the forces passed from

its children(i +1)R and(i +1)L:

W~f t+1
f romRighti

= W~f t+1
f romLe f ti+1L

+ W~f t+1
f romLe f ti+1R

. (9.65)

Equation 9.65 replaces Equation 9.57 at branching points in the model.

To model a branching structure such as a tree branch, nonzero branching angles must be

specified. This translates to nonzero rest anglesθ for joint springs.

113

Figure 9.9 depicts such a branching system in its initial state, and in its equilibrium state

as a result of torques due to gravity and spring forces.

Figure 9.9: Branching rotational system in (a) its initial position and (b) its equilibrium state.

The productions for the rotational dynamics model’s production rules in LPFG are given

in the Appendix.

9.7 State of the solution

The solution for the rotational system presented in this chapter is adequate for small branch-

ing systems such as that of Figure 9.9. Because of the use of Euler’s method for integration,

this solution is not appropriate for larger systems with many segments, varying weights,

larger spring constants, or initial configurations in which deviation angles differ greatly from

the rest angles. In such systems, forces acting on the segments can become very large and

change quickly, whereas other variables change slowly (such as the accelerations at the mo-

ment between the rise and fall of a pendulum). A system of equations is calledstiff when

large differences in magnitude exist between the independent variables in the system, causing

one quantity to move toward equilibrium much faster than another [36]. For stiff systems,

simple numerical methods such as Euler’s cannot represent the system’s behaviour unless

extremely small time steps are taken. To handle stiff systems, more complex numerical

114

methods are needed.

Future work on this problem would involve the examination of numerical methods appro-

priate to stiff systems, such as implicit methods or the Crank-Nicholson method, in applica-

tion to the dynamics equations given in this chapter. The next step would extend the system

to three dimensions using quaternions to represent the rotational values~ε, ~ω and~α and to

rotate the link axis~r. Finally, this rotational system should be incorporated into the biome-

chanical simulation described in Chapter 6 so that the trees produced by the biomechanical

simulation can also respond to instantaneous forces.

Chapter 10

Conclusions and future work

10.1 Conclusions

In this thesis, I have presented a biomechanical model of botanical trees which incorporates

simulations of several botanical phenomena. I have extended Jirasek’s biomechanical model

of plant axes to represent biomechanics at branching points, so as to model growing trees

under the influences of gravity and tropisms. The models were expressed using L-systems,

making use of the fast information transfer provided by LPFG [29] to achieve interactive

rates of simulation. Because complex and realistic models can be represented efficiently,

these results are made more relevant to the computer graphics community. The model’s fi-

delity to the principles of elasticity theory was tested using Euler’s equations for the buckling

length of a column, and good results were obtained.

Another contribution of this thesis is a botanically-based simulation of reaction wood.

The most important characteristics of reaction wood described by botanists [33, 53] were

incorporated in the model. This simulation can be used to increase resistance to bending in

a leaning branch in the model, and can even accomplish correction of the lean.

The use of concepts from elasticity theory, realistic material properties and biomechanics

calculations predisposes the model to handle testing for branch breakage. Branch breakage

in the models occurs as a result of excessive stresses from weight, such as is experienced by

some fruit trees.

Two approaches to controlling tree architecture were presented in this thesis. The function-

based approach to architecture control can be used to recreate observable phenomena such

as acrotony. The resource allocation strategy successfully controls which portions of the

115

116

tree will become vigourous. Used in combination with the breakage simulation, it causes

increased primary growth in the year following substantial branch breakage.

The result of these contributions is a controllable tree model which behaves realistically

on a biomechanical level and is based in botanical observations. By simulating the botanical

and biomechanical processes of the tree’s development, I produce branch shapes of similar

character to those seen in nature.

As a case study, the biomechanical model was used along with the resource allocation

simulation to model the crooked poplar tree. This tree demonstrates an unusually curved and

twisted architecture as a result of severe bending due to gravity. The model simulates both

the wild type poplar and the crooked mutant, allowing conversion between them by altering

a few parameter values. This simplicity of conversion between trees of very different archi-

tectures demonstrates the robustness of the model, as well as its ability to allow architectural

characteristics to occur as emergent properties of the simulation.

This thesis also produces steps toward a simulation of dynamics in tree branches. The

dynamics of small branching systems under the influences of gravity and instantaneous ex-

ternal forces are represented. The simulation produces believable motion for small branching

systems in two dimension.

10.2 Future work

Future work should extend the dynamics system to three dimensions and to larger systems.

In particular, to represent the dynamics of larger structures such as entire trees will require

the application of more stable numerical methods to this problem. Finally, the dynamics

solution should be incorporated into the existing biomechanical tree model. This would

create a powerful physically-based tree model which responds to external forces after it has

grown.

An appropriate interface could be designed by which to interact with the physical sim-

117

ulation. By means of this interface, the user could set the direction of tropisms and specify

which forces to apply to the branches.

It would also be interesting to investigate multi-resolution approaches relating to this tree

model. By scaling down the complexity of the model (reducing the number of segments that

represent a plant stem), the biomechanics calculations would be simplified automatically. A

chain of segments in the high-resolution model could be replaced by a single segment that

lies in the direction of the secant to the original chain. To move from low resolution to high

resolution, a single segment could be subdivided into several smaller segments using a com-

mon curvature. These transformations to lower or higher resolution could be accomplished

by production rules in the L-system. The ability to change between levels of detail quickly

would be very useful in practical applications, such as when the distance from the tree to the

viewer is changed.

Appendix A

Appendix: Code for the simulations

This Appendix provides LPFG code for the most important parts of the models described in

this thesis. In Section A.1 the production rules for the biomechanical model including sim-

ulations of resource allocation, reaction wood and breakage are given. Section A.2 presents

alterations to these production rules needed to simulate the crooked poplar tree. Section

A.3 shows how the function-based architecture control strategy is implemented. Finally, the

LPFG implementation of the dynamics solution is presented in Section A.4.

A.1 General biomechanical model

The following LPFG code is the complete implementation of the biomechanical model in-

cluding resource allocation, reaction wood and breakage simulations.

#include <memory.h>

#include <lpfgall.h>

#include <stdmods.h>

#include <math.h>

#include <stdio.h>

#include <string.h>

#include "vectorlib.h"

enum RotationType { QUATERNIONS, MATRICES };

RotationType rotType = QUATERNIONS;

enum Orientation { VERTICAL, DIAGONAL };

Orientation orient = VERTICAL;

#define RADTODEG 57.2957795786

#define LEAVES 1 /* whether there are leaves */

#define LEN0 0.055000 /* length of first internode */

#define RADIUS0 0.002000 /* cross-sectional radius of first internode */

#define TROP 0.000800 /* magnitude of negative geotropism */

#define GRAV -9.8 /* magnitude of gravity */

#define PIPE 2.000000 /* exponent for the pipe model */

#define SPIRAL 2.39998 /* angle for spiral phyllotaxis (137.5 in radians) */

#define MAXBUDS 21 /* maximum number of buds in a shoot's year's growth */

118

119

#define ALPHA 0.100000 /* controls speed of convergence to a solution */

#define REACT_ALPHA 0.300000

#define TRUNK_ONLY 0 /* whether reaction wood is present only on trunk, or in all branches */

#define RADIUS_GOAL 0.6 /* percentage of radius growth goal which is achieved at each timestep */

#define FRUIT_GOAL 0.9 /* percentage of fruit/leaf growth goal achieved every timestep */

#define DENSITY 77.900000 /* density of the wood */

#define LEAF_MASS 0.000002 /* mass of each leaf */

#define LEAF_DENSITY 0.095 /* density of a leaf, to determine its size from its mass */

#define FRUIT_MASS 0.010000 /* mass of a fruit */

#define FRUIT_DENSITY 300.0 /* density of a fruit */

#define FRUIT_PROB 0.270000 /* probability of producing a fruit with any bud */

#define BUDLENGTH 0.008000 /* length of internodes which are buds */

#define SUMMERLENGTH MAXBUDS /* length of summer season */

#define E_JUV 600000.015157 /* average Young's modulus for young wood */

#define E_ADULT 158700004.0 /* Young's modulus for adult wood */

#define E_REACTION(juv) (0.5*juv + 0.5*E_ADULT) /* reaction wood's E value */

#define G(e) (2.0*e) /* polar moment of area, G, as a function of current E value*/

#define GETS_ADULT 5 /* age, in months, at which wood begins to age -- E starts to increase */

#define ADULT 24 /* age, in months, at which wood has achieved adulthood */

/* an increment for wood stiffness, each month */

#define E_INCREMENT(juv) ((AGE_INCREMENT/12.0) * (E_ADULT - juv)/(ADULT-GETS_ADULT))

#define COLOUR 0 /* indicate wood age in colour of display */

#define TROP_DIR_X 0.000000 /* tropism direction vector (usually UP for negative geotropism) */

#define TROP_DIR_Y 1.000000

#define TROP_DIR_Z 0.000000

#define MOR 289999.986226 /* modulus of rupture for bending */

#define RW_INCREMENT 0.001 /* increment for the further ovalization of the branch due to reaction wood */

#define DEVIATION_FROM_EP 0.3 /* maximum acceptable deviation from "equilibrium position" before reaction wood production starts */

#define EQUILIBRIUM_EPSILON 0.1 /* threshhold for change in Omega at which we claim equilibrium is reached for current state */

#define EPSILON 0.00000001 /* threshhold for change in radius at which we claim radius stopped increasing */

#define TH1 0 /* deviation angle for first child (continuation of main branch) */

#define END_YEAR 10 /* stop simulation (both growth and shedding) at this year */

#define YEARS_TO_SHED 999993 /* if a branch has had low vigour for this many years (while young), shed it */

#define SHOOT_VIGOUR .03 /* amount of resources required to start a new shoot */

#define FAIRNESS 1.000000 /* 0 means unfair distribution of resources (winner takes all) 1 means fair (according to girth) */

#define SEED 1484127 /* seed for random number generator */

// -------- MACROS AND FUNCTIONS --

#define RAND(lo, hi) (lo + (float)(hi-lo)*((float)(rand() % 100) / 100.0))

#define CLAMP_PH(num) ((num>2*M_PI) ?(num-(2*M_PI)) : (num)) /* clamp phyllotactic angle */

inline double Iellipse_big(double rBig, double rSmall) {return M_PI*rSmall*pow(rBig,3)/4.0;}

inline double Iellipse_small(double rBig, double rSmall) {return M_PI*rBig*pow(rSmall,3)/4.0;}

inline double Jellipse(double rBig, double rSmall) {return M_PI*pow(rBig,3)*pow(rSmall,3) / (pow(rBig, 2) + pow(rSmall,2));}

inline double Iring_big(double rObig, double rOsmall, double rIbig, double rIsmall) \\

{return (M_PI* (rOsmall*pow(rObig,3)) - (rIsmall*pow(rIbig,3)))/4.0;}

120

inline double Iring_small(double rObig, double rOsmall, double rIbig, double rIsmall) \\

{return (M_PI* (rObig*pow(rOsmall,3)) - (rIbig*pow(rIsmall,3)))/4.0;}

inline double Jring(double rObig, double rOsmall, double rIbig, double rIsmall) \\

{return (M_PI * pow(rObig,3)*pow(rOsmall,3)) / (pow(rObig, 2) + pow(rOsmall,2)) \\

- (M_PI * pow(rIbig,3)*pow(rIsmall,3)) / (pow(rIbig, 2) + pow(rIsmall,2));}

/* increase in age, in months, every time 1ary/2dary growth occurs */

const float AGE_INCREMENT = (12.0/(2.8*(float)SUMMERLENGTH));

const V3f Gravity = V3f(0,GRAV,0);

const V3f up = V3f(0,1,0); /* world up vector */

V3f Tropism = TROP * Normalize(V3f(TROP_DIR_X, TROP_DIR_Y, TROP_DIR_Z));

int year = 0; /* for year display */

double boxsize; /* size of the bounding box */

int dir; /* scanning direction */

int noSecGrowth; /* if we are still determining equilibrium for the current state, do not do secondary growth */

bool summer = true; /* summer has primary and secondary growth, winter just has 2ndary (radial) */

bool switchSeasons = true; /* whether to switch seasons -- summer->winter->spring */

float vigMainBranch = 0; /* resources in main branch when determining fate of buds in spring */

int global_countSB = 0; /* count the number of start braces I removed, remove same number of end braces */

/* Determine whether equilibrium has been reached for current structure */

bool EquilibriumTest(float biggestChange)

{

return (biggestChange < EQUILIBRIUM_EPSILON);

}

/* Heuristic: calculate proportion of parent's resources that child2 gets. */

float VigourProportion(const V3f& hParent, const V3f& hChild, float areaParent, float areaChild, float height)

{

float Q = 1.0;

float orientation = 2*(1 - fabs(DotProd(hParent, up))) * DotProd(hChild, up);

float proportion = pow(areaChild, (float)PIPE/2.f) / pow(areaParent, (float)PIPE/2.f);

proportion *= height;

/* I have found "fair" proportion: now introduce unfairness.

* This is "winner takes all" way. fraction of fair for smaller proportion, 1-smallerproportion for larger proportion */

if(proportion > 0.5) proportion = (1.0 - FAIRNESS*(1-proportion));

else if(proportion < 0.5) proportion = FAIRNESS*proportion;

// Clamp at 1

if(proportion > 1) proportion = 1;

// Only distribute a certain percentage of resources this year (save some to extend to next year)

return proportion*Q;

}

/* Determine whether to make a bud into a shoot, based on resources only. */

bool BudShoots(float vigour)

121

{

if(vigour > SHOOT_VIGOUR) return true;

else return false;

}

/* Determine how many buds to give to the child shoot. Depends on amount of resources. */

int ChildNumBuds(float vigour)

{

int result = (func(NUMBUDS_VIGOUR, (vigour)) * MAXBUDS) ;

return (result>=1)? result : 1;

}

/* Reorient axis of child according to its branching angles th, ph.

* There are two hlu frames: phylloHlu takes care of phyllotaxis, hlu keeps hlu.U closest to up. */

void Reorient(TurtleVec& phylloHlu, TurtleVec& hlu, float th, float ph, V3f Omega, float length)

{

V3f N = phylloHlu.L;

switch(rotType) {

case(QUATERNIONS) :

{

//Spiral phyllotaxis: rotate around the H vector

Quaternion h = MakeQuaternion(phylloHlu.H, ph);

N = h * N;

// Now make a shoot off at angle th, and update both phylloHlu and other hlu.

Quaternion q = MakeQuaternion(N, th);

phylloHlu = q * phylloHlu;

break;

}

case(MATRICES):

{

// Spiral phyllotaxis: rotate around the H vector

N = VecRotate(N, phylloHlu.H, ph);

// Now make a shoot off at angle th, and update phylloHlu.

VecRotate(phylloHlu, N, th);

break;

}

default: break;

}

hlu.H = phylloHlu.H;

float angle = Magnitude(Omega) * length;

V3f Omega_unit = Normalize(Omega);

switch(rotType) {

case(QUATERNIONS) :

{

Quaternion q = MakeQuaternion(Omega_unit, angle);

hlu.H = q * hlu.H;

phylloHlu = q * phylloHlu;

122

break;

}

case(MATRICES) :

{

VecRotate(hlu.H, Omega_unit, angle);

VecRotate(phylloHlu, Omega_unit, angle);

break;

}

default: break;

}

/* Reorient the HLU frame so that U axis is also the semi-axis of the cross-section which lies in the direction of bending.

* (ie: the semi-axis to be lengthened if reaction wood is produced)

* Note: Assumes that plane of bending is always XZ (bending DOWN or UP only).

*/

V3f crossprod = V3f(0,1,0) % hlu.H;

if(Magnitude(crossprod) > 0.01)

{

if(DotProd(hlu.H % crossprod, hlu.U) > 0)

{

hlu.U = hlu.H % (crossprod);

}

else

{

// If dot product is negative, it means there will be a "twist" since H crossed over 010.

// So keep it from twisting.

hlu.U = -1.0 * (hlu.H % (crossprod));

}

hlu.U.Normalize();

hlu.L = hlu.U % hlu.H; //right hand rule

hlu.L.Normalize();

}

}

// ------ STRUCTURES --

/* Naming conventions for members: uppercase means Global, lowercase means local */

struct InternodeData

{

double mass; /* mass at the joint */

double sigmaMass; /* combined mass to the right of the joint */

double len; /* internode length */

double rSmall, rBig; /* smaller and larger semi-axes of the ellipse */

double goal_rBig, goal_rSmall; /* goal for radius of cross-section, according to pipe model.

* This goal will be reached assymptotically over time, simulating need for resources */

TurtleVec HLU; /* turtle heading, left, up */

TurtleVec phylloHLU; /* turtle used for phyllotaxis only, so it doesn't interfere with orientation of cross-section for reaction wood, rigidity, etc */

V3f Omega; /* incremental turtle rotation */

V3f Omega_e; /* rest angle at the joint */

V3f AccumTorque; /* accumulated torque for segments to right */

LocVec rigidity; /* flexural and torsional rigidities */

123

float phyllo; /* angle around H vector for phyllotaxis */

float mi; /* mass increment */

float changeInOmega; /* diff between current Omega and previous Omega; to see when we reach Equilibrium */

float ageMonth; /* rough age of this segment in MONTHS (heuristic, may not always be accurate to age in years), used to calculate E */

int ageYear; /* age in years, incremented in spring */

int order; /* order of branching (0 for trunk). Used if putting reaction wood on trunk */

float vigour; /* vigour (amount of resources) in this internode */

int lowVigStart; /* age when I started having low vigour. If stays low vigour for YEARS_TO_SHED years, shed me */

float height; /* height in year (as a percentage of numBuds), used in determining amount of resources to allocate*/

int count; /* which bud in year's growth? */

int which; /* main==1 or lateral==2 */

bool isBud; /* is it a bud? */

bool oneChild; /* has only one child -- so only child inherits all resources */

bool takesVigour; /* if this is a bud scar, take no resources */

float vig2; /* resources of my lateral child. Continuing main child will need to know it */

bool startOfBuddingBranch; /* Whether this internode is the start of a budding branch -- for fate of buds in spring */

V3f Pos; /* position in world space -- to stop growing when hits ground */

int juvE; /* stochastic value of juvenile wood's Young's modulus (varies with each shoot) */

bool isBase; /* is this the base of the tree -- only the base does equilibrium test in bkwd direction */

};

// ----- MODULES ---

module Internode(InternodeData); /* An internode */

module BranchAngle(float, int, float); /* Deviation angle before a lateral branch*/

module Apex(int, int, int); /* The apex */

module PotentialApex(bool, int); /* Might turn into an apex */

module Leaf(float, float, TurtleVec); /* Leaf, exists for only a year (falls off in winter) */

module Fruit(float, float); /* Fruit, as above */

module Box(); /* The bounding box */

module Scar(); /* The end of a pruned branch. Needed to trigger removal of any child internodes, leaves etc. */

// ----- GROUPS (use scanning direction) ------------------------------

#define FWD 1

#define BKWD 2

#define INCREMENT_YR 3

InternodeData nid, firstid; /* new internode data used for all new internodes, and first internode respectively */

// ----- INITIALIZATIONS ---

Start:

{

srand(SEED);

iset = 0; /* used in random number generation */

nid.ageMonth = nid.ageYear = 0;

nid.sigmaMass = 0;

nid.len = LEN0;

nid.rBig = nid.rSmall = nid.goal_rBig = nid.goal_rSmall = RADIUS0;

nid.mass = DENSITY*nid.len*M_PI*nid.rBig*nid.rSmall;

if(orient == VERTICAL)

124

{

/* Orientation of Tree */

nid.HLU.H = V3f(0, 1, 0);

nid.HLU.L = V3f(0, 0, -1);

nid.HLU.U = V3f(1, 0, 0);

}

else

{

/* Orientation of Branch */

nid.HLU.H = V3f(0.707,0.707,0);

nid.HLU.L = V3f(0,0,-1);

nid.HLU.U = V3f(-0.707,0.707,0);

nid.HLU = Normalize(nid.HLU);

}

nid.phylloHLU = nid.HLU;

nid.Omega = V3f(0,0,0);

nid.Omega_e = V3f(0,0,0);

nid.rigidity = LocVec(G(E_JUV)*Jellipse(nid.rBig, nid.rSmall),

E_JUV*Iellipse_small(nid.rBig, nid.rSmall),

E_JUV*Iellipse_big(nid.rBig, nid.rSmall)); //rigidity around each of local h,l,u axes

nid.AccumTorque = V3f(0,0,0);

nid.phyllo = 0;

nid.changeInOmega = 0;

nid.lowVigStart = -1;

nid.isBud = false;

nid.order = 0;

nid.takesVigour = true;

nid.oneChild = false;

nid.vig2 = 0;

nid.startOfBuddingBranch = false;

nid.Pos = V3f(0,0,0);

nid.juvE = E_JUV;

nid.isBase = false;

firstid = nid;

firstid.isBase = true;

firstid.startOfBuddingBranch = true;

firstid.Pos = nid.Pos + firstid.HLU.H*firstid.len;

Tropism = TROP * Normalize(V3f(TROP_DIR_X, TROP_DIR_Y, TROP_DIR_Z));

boxsize = 20*LEN0; /* size of bounding box for displaying */

year = 0;

summer = true;

dir = FWD;

Forward();

UseGroup(dir);

global_countSB = 0;

}

125

StartEach:

{

UseGroup(dir);

if(dir == BKWD) Backward();

else {

noSecGrowth=false;

Forward();

}

}

EndEach:

{

if(year > END_YEAR) dir = 0;

else if(switchSeasons && dir!= FWD)

{

if(dir==INCREMENT_YR) //spring

{

year++;

dir = FWD;

// will be summer next.

}

else if(summer)

{

summer = false;

dir = FWD;

}

else //winter

{

summer = true;

dir = INCREMENT_YR;

}

}

else

{

// Within a season, alternate between fwd and bkwd

dir = 3 - dir;

}

if(dir != BKWD) switchSeasons = true;

}

derivation length: 1;

// -------- PRODUCTIONS ---

Axiom: SB Box EB

SetColor(9)

StartGC() SetWidth(RADIUS0)

Internode(firstid)

Apex(0, MAXBUDS/2.0, 0) EndGC();

126

group INCREMENT_YR: //--

/* PotentialApex can turn into an apex at next year. Probability of doing so

* is based on amount of resources, which are propagated from base of tree, and modulated by height.

*/

Internode(idl) << BranchAngle(ph, which, th) Internode(id) PotentialApex(leafed, apexAge) :

{

id.ageYear++;

/* Determine vigour (amount of resources). Because of order of string interpretation, subtract from a global variable.

* Set global vigMainBranch if i am the start of the branch */

if(idl.startOfBuddingBranch)

vigMainBranch = idl.vigour;

id.vigour = vigMainBranch * VigourProportion(idl.HLU.H, id.HLU.H, M_PI*idl.goal_rBig*idl.goal_rSmall,

M_PI*id.goal_rBig*id.goal_rSmall, id.height);

/* If the bud shoots, create a sink which removes resources needed to shoot */

if(BudShoots(id.vigour))

{

float sinkFactor = ChildNumBuds(id.vigour)/4.0;

vigMainBranch -= id.vigour * sinkFactor;

/* Sanity check */

if(vigMainBranch < 0) vigMainBranch = 0;

id.isBud = false;

id.startOfBuddingBranch = true;

produce BranchAngle(ph, which, th) Internode(id)

Apex(0, ChildNumBuds(id.vigour), 0);

}

else

{

id.takesVigour = false;

produce BranchAngle(ph, which, th) Internode(id);

}

}

/* Reset count to 0 for the new year */

Apex(count, numBuds, age) :

{

count = 0;

produce Apex(count, numBuds, age);

}

Internode(id) :

{

id.ageYear++;

produce Internode(id);

}

group FWD: // ------------------ * Forward pass * ---

127

Internode(id) << Apex(count, numBuds, age) :

{

/* Apex produces a new internode once equilibrium is reached for the current structure. */

if (!EquilibriumTest(id.changeInOmega))

{

noSecGrowth = true;

switchSeasons = false; // Do not switch seasons if equilibrium not reached for current state

produce Apex(count, numBuds, age) ;

}

/* Do not go on unless equilibrium has been reached -- if so: In winter, make only secondary growth. In summer, produce a bifurcation.

* Branch at regular intervals phyllotactically, creating a continuation of main branch

* and a new bud which may or may not produce a shoot. */

else if(!noSecGrowth)

{

/* In winter, do not grow new segments, but still adjust */

if(!summer)

{

produce Apex(count, numBuds, age);

}

/* If I hit the ground, stop growing */

else if(id.Pos.y < BUDLENGTH)

{ produce Scar;

}

else

{

switchSeasons = false; // Do not switch seasons until all intended new buds have been formed

count++;

/* Pass on info from parent */

InternodeData id1 = nid, id2 = nid;

id1.phyllo = CLAMP_PH(id.phyllo + SPIRAL);

id2.phyllo = 0; // Restart phyllotaxis angle from zero if there is a new shoot

id1.HLU = id2.HLU = id.HLU;

id1.phylloHLU = id2.phylloHLU = id.phylloHLU;

id2.len = BUDLENGTH;

id2.isBud = true;

id1.order = id.order;

id2.order = id.order + 1;

id1.which = 1;

id2.which = 2;

/* height in year is used in determining vigour */

id1.height = id2.height = (float)count/(float)numBuds;

id1.count = id2.count = count;

/* Stochastically assign juvE value -- it varies a little in each shoot */

id1.juvE = id.juvE;

128

id2.juvE = nrand(E_JUV, E_JUV/6.0);

/* Angle of potential new shoot (smaller for wild type) */

float th2 = RAND(func(ANGLE2_MIN_HEIGHT, id2.height)*100.0/RADTODEG, func(ANGLE2_MAX_HEIGHT, id2.height)*100.0/RADTODEG);

/* Add tropism for each child branch. Affects only initial Omega_e, Omega.

* Before calculating, must reorient reference frame of children

* according to phyllotaxis and deviation angles. */

Reorient(id1.phylloHLU, id.HLU, TH1, id.phyllo, id1.Omega, id.len);

Reorient(id2.phylloHLU, id.HLU, th2, id.phyllo, id2.Omega, id.len);

V3f Torque = CrossProd(id1.HLU.H*id.len, Tropism);

// Make it local

LocVec locTorque = ToLocal(Torque, id1.HLU);

id1.Omega = id1.Omega_e = ToWorld(locTorque / id1.rigidity, id1.HLU);

Torque = CrossProd(id2.HLU.H*id.len, Tropism);

// Make it local

locTorque = ToLocal(Torque, id2.HLU);

id2.Omega = id2.Omega_e = ToWorld(locTorque / id2.rigidity, id2.HLU);

/* Update masses and lengths : mass = density * length * cross-sectional area */

id1.mass = id1.mi = DENSITY*id1.len*M_PI*id1.rBig*id1.rSmall;

id2.mass = id2.mi = DENSITY*id2.len*M_PI*id2.rBig*id2.rSmall;

id1.Pos = id.Pos + id1.HLU.H*id1.len;

id2.Pos = id.Pos + id2.HLU.H*id2.len;

if(count < numBuds) {

produce SB() // Right Branch -- small potential shoot

BranchAngle(id2.phyllo, 2, th2)

Internode(id2)

PotentialApex(false, 0) EB()

SB() // Continuation of main

BranchAngle(id1.phyllo, 1, TH1)

Internode(id1)

Apex(count, numBuds, age)

EB();

}

else /* The end of this year's main branch becomes a bud (potentially continues growing) for next year */

{

// Increment the age of this apex

age++;

produce SB() // Right Branch -- small potential shoot

BranchAngle(id2.phyllo, 2, th2)

Internode(id2)

PotentialApex(false, 0) EB()

SB() // Bud for potential continuation of main

BranchAngle(id1.phyllo, 1, TH1)

Internode(id1)

PotentialApex(false, age)

129

EB();

}

}

}

}

/* Buds may have leaves and possibly a fruit.*/

Internode(idl) BranchAngle(ph, which, th) Internode(id) << PotentialApex(leafed, apexAge) :

{

if(LEAVES)

{

if(!leafed)

{

float goal_leaf_mass = nrand(LEAF_MASS, LEAF_MASS/2.0);

// Fruit created probibilistically, leaves created every time (if leaves specified at all).

float fruit = RAND(0.0, 2.0*(MAXBUDS -id.count)/MAXBUDS);

if(fruit < FRUIT_PROB && id.count > 2)

{

float goal_fruit_mass = nrand(FRUIT_MASS, FRUIT_MASS/2.0);

produce PotentialApex(true, apexAge)

Leaf(goal_leaf_mass/3.0f, goal_leaf_mass, id.HLU)

Fruit(goal_fruit_mass/3.0f, goal_fruit_mass);

}

else

produce PotentialApex(true, apexAge)

Leaf(goal_leaf_mass/3.0f, goal_leaf_mass, id.HLU);

}

}

}

/* Branched front propagation */

Internode(idl) << BranchAngle(ph, which, th) Internode(id) :

{

// Start with left context's orientation

id.phylloHLU = idl.phylloHLU;

id.HLU = idl.HLU;

/* Apply branching angle first.

* Use deviation angle for appropriate child branch */

Reorient(id.phylloHLU, id.HLU, th, idl.phyllo, id.Omega, idl.len);

id.Pos = idl.Pos + id.HLU.H*id.len;

/* If I pass through the ground by bending, crop */

if(id.Pos.y < -1*BUDLENGTH)

produce Scar;

/* Determine portion of parent's resources that I get. If I'm a bud scar, don't take any and all goes to my sister.

* If I'm an only child, take all. Otherwise share. */

130

if(!id.takesVigour)

id.vigour = 0;

else if(idl.oneChild)

id.vigour = idl.vigour;

else

{

/* Give every bud in the year a roughly even amount of resources. To do so, use radii according to the pipe model.

* Ensure that resources of two children equals incoming resources. */

if(which==2) //bud

{

id.vigour = idl.vigour * VigourProportion(idl.HLU.H, id.HLU.H, M_PI*idl.goal_rBig*idl.goal_rSmall,

M_PI*id.goal_rBig*id.goal_rSmall, id.height);

}

else

{

/* First (continuation) child. Just take remaining resources. Use vig2 that was stored at parent in the last backward pass. */

id.vigour = idl.vigour - idl.vig2;

// Sanity check -- Clamp at 0 -- in case old vigour 2 was more than it currently is

if(id.vigour < 0) id.vigour = 0;

}

}

/* Shed a branch if it hasn't grow radially for too many years. */

if(id.goal_rBig - id.rBig < EPSILON)

{

// If this is new, start counting amount of time at low vigour

if(id.lowVigStart == -1) {

id.lowVigStart = id.ageYear;

}

else if(id.ageYear - id.lowVigStart >= YEARS_TO_SHED)

produce Scar;

}

// If vigour level is ok, reset the countdown to counteract any impending death

else id.lowVigStart = -1;

// Send biggest changeInOmega result (which was found in backpass) forward through chain

id.changeInOmega = idl.changeInOmega;

produce BranchAngle(ph, which, th) Internode(id);

}

/* The very first internode (the base of the tree trunk) */

Internode(baseId) :

{

/* Base of trunk decides the quantity of resources to propagate through entire tree -- determined by radius of base */

baseId.vigour = pow(baseId.rBig*800, 1.1);

if(!EquilibriumTest(baseId.changeInOmega))

{

noSecGrowth = true; // No more growth until I reach equilibrium

switchSeasons = false; // Do not switch seasons if equilibrium not reached for current state

}

131

produce Internode(baseId);

}

/* Count how many SBs I remove after each scar, so I can remove the same amount of EBs */

Scar() << SB() :

{

global_countSB++;

produce;

}

/* Eliminate all subsequent internodes after a scar */

Scar() << BranchAngle(ph, which, th) Internode(id) :

{ produce;

}

/* Eliminate PotentialApex after a scar */

Scar() << PotentialApex(leafed, apexAge):

{

produce;

}

/* Eliminate Leaf after a scar */

Scar() << Leaf(mass, goal_mass, hlu):

{

produce;

}

/* Eliminate Fruit after a scar */

Scar() << Fruit(mass, goal_mass):

{

produce;

}

/* Eliminate Apex after a scar */

Scar() << Apex(count, numBuds, age) :

{

produce;

}

/* Remove the same number of EBs as SBs that were removed */

Scar() << EB() :

{

if(global_countSB > 0)

{

global_countSB--;

produce;

}

}

Leaf(mass, goal_mass, hlu) :

{

/* Leaves only exist for one year, are shed in winter.

132

* Shed them slowly (stochastically) within winter, not all in same timestep. */

if(!summer && nrand(1.0, 0.8) < 1.0) produce;

}

Fruit(mass, goal_mass) :

{

/* Fruit only exists for one year, is shed in winter.

* Shed them slowly (stochastically) within winter, not all in same timestep. */

if(!summer && nrand(1.0, 0.5) < 1.0) produce;

}

group BKWD: // ---------------- * Backward pass * ---

/* Remove branch angle before a scar */

BranchAngle(a, b, c) >> Scar():

{

produce;

}

/* Remove scars, because they get in the way of matching other production rules */

Scar() :

{

produce;

}

/* Also get rid of the empty branches they leave */

SB() EB() :

{

produce;

}

/* Increase the mass of fruit every time equilibrium is reached */

Fruit(current_mass, goal_mass) :

{

if(!noSecGrowth)

produce Fruit(current_mass + (goal_mass - current_mass)*FRUIT_GOAL, goal_mass);

}

/* Increase the mass (and size) of leaves every time equilibrium is reached */

Leaf(current_mass, goal_mass, hlu):

{

if(!noSecGrowth)

produce Leaf(current_mass + (goal_mass - current_mass)*FRUIT_GOAL, goal_mass, hlu);

}

/* 2-Branched back-propagation. Note: Child 2 (the lateral bud or branch) is now first in the string. */

Internode(id) >> SB() BranchAngle(ph2, which2, th2) Internode(id2) /*...*/ EB()

SB() BranchAngle(ph1, which1, th1) Internode(id1) /*...*/ :

{

if(!id1.takesVigour || !id2.takesVigour)

id.oneChild = true;

id.vig2 = id2.vigour; // Store this because child1 will need to know it.

133

LocVec locOmega, locOmega_e, locNewOmega_e, newRigid;

/* change system parameters due to secondary growth */

if (!noSecGrowth) {

id.ageMonth += AGE_INCREMENT;

id.mi = id1.mi + id2.mi;

id.mass += id.mi;

// update 3 rigidity values of aging inner branch -- keep existing rigidity, but increment it

LocVec I_J_current = LocVec(Jellipse(id.rBig, id.rSmall), Iellipse_small(id.rBig, id.rSmall), Iellipse_big(id.rBig, id.rSmall));

LocVec E_G_current = id.rigidity / I_J_current;

// Increment the rigidity by the age increment, if I am not already as stiff as adult wood gets

if(E_G_current.l < E_ADULT)

E_G_current = E_G_current + LocVec(E_INCREMENT(id.juvE),E_INCREMENT(id.juvE),E_INCREMENT(id.juvE));

id.rigidity = E_G_current * I_J_current;

float oldRBig = id.rBig;

float oldRSmall = id.rSmall;

/* calculate new goals for ellipse semi-axes, keeping their existing length ratio constant.

* Do this by calculating area and then solving for each of rSmall, rBig using ratio. */

float ratio = id.rSmall/id.rBig;

/* Area cannot be reduced (even if a branch was shed further up), so use Max with current area */

float areaParent = Max(M_PI*id.rBig*id.rSmall, pow(pow(M_PI*id1.rBig*id1.rSmall, PIPE/2.0)

+ pow(M_PI*id2.rBig*id2.rSmall, PIPE/2.0) ,(1.f/(PIPE/2.0))));

// This comes from areaParent = M_PI*rBig*rSmall = M_PI*rBig*(ratio*rBig)

id.goal_rBig = sqrt(areaParent/(ratio*M_PI));

id.goal_rSmall = ratio*id.goal_rBig;

/* Check whether reaction wood is needed */

float E_ring = id.juvE; // this will change below if there is reaction wood

V3f Ring_omega_e = id.Omega; // new ring's rest angle -- if reaction wood, will be shifted away from current lean

if(REACT_ALPHA > 0.0 && (!TRUNK_ONLY || (TRUNK_ONLY && id.order == 0))

&& (Magnitude(id.Omega - id.Omega_e) > DEVIATION_FROM_EP))

{

id.goal_rBig+= RW_INCREMENT;

E_ring = E_REACTION(id.juvE);

Ring_omega_e = id.Omega*(1.0-REACT_ALPHA) + id.Omega_e*(REACT_ALPHA);

}

id.rBig += (id.goal_rBig - id.rBig)*RADIUS_GOAL;

id.rSmall += (id.goal_rSmall - id.rSmall)*RADIUS_GOAL;

/* Only add a new layer if r increased */

if(id.rBig - oldRBig > EPSILON/1.0)

{

134

// Winter should last until secondary growth has caught up

if(!summer) switchSeasons = false;

// rigidity of the newly added ring

newRigid = LocVec(G(E_ring) * Jring(id.rBig, id.rSmall, oldRBig, oldRSmall),

E_ring * Iring_small(id.rBig, id.rSmall, oldRBig, oldRSmall),

E_ring * Iring_big(id.rBig, id.rSmall, oldRBig, oldRSmall));

LocVec localomega_e = (id.rigidity * ToLocal(id.Omega_e, id.HLU) +

newRigid * ToLocal(Ring_omega_e, id.HLU)) / (id.rigidity + newRigid);

id.Omega_e = ToWorld(localomega_e, id.HLU);

// calculate new total rigidity

id.rigidity = id.rigidity + newRigid;

}

}

V3f Torque, Torque1, Torque2;

V3f NewOmega, OldOmega;

LocVec locAccumTorque;

/* accumulate mass and torque, and update joint angles */

id.sigmaMass = id1.sigmaMass + id2.sigmaMass + id.mass;

Torque1 = CrossProd(id1.HLU.H*id1.len, (Gravity * id1.sigmaMass));

Torque2 = CrossProd(id2.HLU.H*id2.len, (Gravity * id2.sigmaMass));

Torque = Torque1 + Torque2;

id.AccumTorque = id1.AccumTorque + id2.AccumTorque + Torque;

locAccumTorque = ToLocal(id.AccumTorque, id.HLU);

/* Test for breakage */

LocVec stress = locAccumTorque*id.rBig / (double)Iellipse_big(id.rBig, id.rSmall);

if(Magnitude(stress) > MOR)

{

// modulus of rupture exceeded: break here

produce Scar;

}

// calculate new Omega using update formula

NewOmega = ToWorld((locAccumTorque / id.rigidity), id.HLU);

OldOmega = id.Omega;

id.Omega = (id.Omega * (1.0-ALPHA)) + ((id.Omega_e + NewOmega) * ALPHA);

// Determine LARGEST change in Omega from me and all my children

id.changeInOmega = Max(Magnitude(id.Omega - OldOmega), id1.changeInOmega, id2.changeInOmega);

if(id.isBase && !EquilibriumTest(id.changeInOmega))

{

noSecGrowth = true;

switchSeasons = false;

}

produce Internode(id) ;

135

}

/* 1-Branched back-propagation : for instance, if a Scar was made (one of pre-existing children was shed because of low vigour) */

Internode(id) >> SB() BranchAngle(ph1, which1, th1) Internode(id1) :

{

/* Store the information that I only have one child, for resource distribution to all go to single child. */

id.oneChild = true;

id.vig2 = 0;

LocVec locOmega, locOmega_e, locNewOmega_e, newRigid;

/* Change system parameters due to secondary growth */

if (!noSecGrowth) {

id.ageMonth += AGE_INCREMENT;

id.mi = id1.mi;

id.mass += id.mi;

// update 3 rigidity values of aging inner branch -- keep existing rigidity, but increment it

LocVec I_J_current = LocVec(Jellipse(id.rBig, id.rSmall), Iellipse_small(id.rBig, id.rSmall), Iellipse_big(id.rBig, id.rSmall));

LocVec E_G_current = id.rigidity / I_J_current;

// Increment the rigidity by the age increment, if I am not already as stiff as adult wood gets

if(E_G_current.l < E_ADULT)

E_G_current = E_G_current + LocVec(E_INCREMENT(id.juvE),E_INCREMENT(id.juvE),E_INCREMENT(id.juvE));

id.rigidity = E_G_current * I_J_current;

float oldRBig = id.rBig;

float oldRSmall = id.rSmall;

/* Calculate new goals for ellipse semi-axes, keeping their existing length ratio constant.

* Do this by calculating area and then solving for each of rSmall, rBig using ratio. */

float ratio = id.rSmall/id.rBig;

/* Area cannot be reduced (even if a branch was shed further up), so use Max with current area */

float areaParent = Max(M_PI*id.rBig*id.rSmall, M_PI*id1.rBig*id1.rSmall);

// This comes from areaParent = M_PI*rBig*rSmall = M_PI*rBig*(ratio*rBig)

id.goal_rBig = sqrt(areaParent/(ratio*M_PI));

id.goal_rSmall = ratio*id.goal_rBig;

/* Check whether reaction wood is needed */

float E_ring = id.juvE; // this will change below if there is reaction wood

V3f Ring_omega_e = id.Omega; // new ring's rest angle -- if reaction wood, will be shifted away from current lean

if(REACT_ALPHA > 0.0 && (!TRUNK_ONLY || (TRUNK_ONLY && id.order == 0))

&& (Magnitude(id.Omega - id.Omega_e) > DEVIATION_FROM_EP))

{

id.goal_rBig+= RW_INCREMENT;

E_ring = E_REACTION(id.juvE);

Ring_omega_e = id.Omega*(1.0-REACT_ALPHA) + id.Omega_e*(REACT_ALPHA);

}

136

id.rBig += (id.goal_rBig - id.rBig)*RADIUS_GOAL;

id.rSmall += (id.goal_rSmall - id.rSmall)*RADIUS_GOAL;

/* Only add a new layer if r increased */

if(id.rBig - oldRBig > EPSILON/1.0)

{

// Winter should last until secondary growth has caught up

if(!summer) switchSeasons = false;

// rigidity of the newly added ring

newRigid = LocVec(G(E_ring) * Jring(id.rBig, id.rSmall, oldRBig, oldRSmall),

E_ring * Iring_small(id.rBig, id.rSmall, oldRBig, oldRSmall),

E_ring * Iring_big(id.rBig, id.rSmall, oldRBig, oldRSmall));

LocVec localomega_e = (id.rigidity * ToLocal(id.Omega_e, id.HLU) +

newRigid * ToLocal(Ring_omega_e, id.HLU)) / (id.rigidity + newRigid);

id.Omega_e = ToWorld(localomega_e, id.HLU);

// calculate new total rigidity

id.rigidity = id.rigidity + newRigid;

}

}

V3f Torque, Torque1;

V3f NewOmega, OldOmega;

LocVec locAccumTorque;

/* accumulate mass and torque, and update joint angles */

id.sigmaMass = id1.sigmaMass + id.mass;

Torque1 = CrossProd(id1.HLU.H*id1.len, (Gravity * id1.sigmaMass));

Torque = Torque1;

id.AccumTorque = id1.AccumTorque + Torque;

locAccumTorque = ToLocal(id.AccumTorque, id.HLU);

/* Test for breakage */

LocVec stress = locAccumTorque*id.rBig / (double)Iellipse_big(id.rBig, id.rSmall);

if(Magnitude(stress) > MOR)

{

// Modulus of rupture exceeded: break here

produce Scar;

}

// Calculate new Omega using update formula

NewOmega = ToWorld((locAccumTorque / id.rigidity), id.HLU);

OldOmega = id.Omega;

id.Omega = (id.Omega * (1.0-ALPHA)) + ((id.Omega_e + NewOmega) * ALPHA);

// Determine LARGEST change in Omega from me and all my children

id.changeInOmega = Max(Magnitude(id.Omega - OldOmega), id1.changeInOmega);

if(id.isBase && !EquilibriumTest(id.changeInOmega))

{

noSecGrowth = true;

137

switchSeasons = false;

}

produce Internode(id) ;

}

/* Internode with a leaf and a fruit*/

Internode(id) >> PotentialApex(leafed, apexAge) Leaf(leaf_mass, goal_leaf_mass, hlu) Fruit(fruit_mass, goal_fruit_mass):

{

if (!noSecGrowth) id.ageMonth += AGE_INCREMENT;

else id.mi = 0;

id.sigmaMass = id.mass + leaf_mass + fruit_mass;

id.changeInOmega = 0;

produce Internode(id);

}

/* Internode with a leaf */

Internode(id) >> PotentialApex(leafed, apexAge) Leaf(leaf_mass, goal_leaf_mass, hlu) :

{

if (!noSecGrowth) id.ageMonth += AGE_INCREMENT;

else id.mi = 0;

id.sigmaMass = id.mass + leaf_mass;

id.changeInOmega = 0;

produce Internode(id);

}

/* Internode with a potential apex */

Internode(id) >> PotentialApex(leafed, apexAge) :

{

if (!noSecGrowth) id.ageMonth += AGE_INCREMENT;

else id.mi = 0;

id.sigmaMass = id.mass;

id.changeInOmega = 0;

produce Internode(id);

}

Internode(id) >> Apex(count, numBuds, age) :

{

if (!noSecGrowth) id.ageMonth += AGE_INCREMENT;

else id.mi = 0;

id.sigmaMass = id.mass;

id.changeInOmega = 0;

produce Internode(id);

}

138

/* The last internode, end of a branch that will not grow any further (no Apex or PotentialApex)*/

Internode(id) :

{

if (!noSecGrowth) id.ageMonth += AGE_INCREMENT;

else id.mi = 0;

id.sigmaMass = id.mass;

id.changeInOmega = 0;

produce Internode(id);

}

group 0: // ==

interpretation:

Internode(id):

{

V3f delta;

delta.x = id.HLU.H.x*id.len, delta.y = id.HLU.H.y*id.len, delta.z = id.HLU.H.z*id.len;

int colour;

if(COLOUR) {

if(id.ageMonth > ADULT) colour = 1;

else if(id.ageMonth > GETS_ADULT) colour = 2;

else colour = 9;

} else {

colour = 10;

}

// Colour reaction wood black

if(id.rBig > id.rSmall)

colour = 12;

produce SetColor(colour)

//Scale the contour that is drawn according to HLU frame's L (small semi-axis) and U (long semi-axis) -- makes it an ellipse

SetHead(id.HLU.H.x, id.HLU.H.y, id.HLU.H.z,id.HLU.U.x, id.HLU.U.y, id.HLU.U.z)

ScaleContour(2*id.rSmall, 2*id.rBig)

F(id.len);

}

Box() :

{

produce f(2*boxsize);

}

Leaf(mass, goal_mass, hlu):

{

produce SetHead(hlu.H.x, hlu.H.y, hlu.H.z, hlu.U.x, hlu.U.y, hlu.U.z)

RollToVert()

SetColor(9) Surface(0, pow((mass/LEAF_DENSITY), 0.5));

}

139

Scar():

{

produce;

}

Fruit(mass, goal_mass):

{

produce SetColor(4) Sphere(pow((0.75/M_PI)*(mass/FRUIT_DENSITY), 0.3333));

}

YearLabel():

{

char* yearLabel = new char[15];

sprintf(yearLabel, "Year: %d", year);

produce f(.1) Label(yearLabel) f(.1);

}

Many of the model’s parameters, found in the#define section of the code above, can be

set by the user. Figure A.1 shows the Panels tab in L-studio, by which these parameters can

be altered.

Figure A.1: Panels allow user control over the L-system’s parameters

140

A.2 Crooked poplar

Several alterations are needed to the above model to represent the crooked and wild type

poplar tree. Most importantly, the stiffnessE of wood must vary between the crooked mutant

and the wild type:

#define CROOKED 0 /* whether I am modeling crooked or wild type */

#define E_JUV_BASE (CROOKED? E_JUV : 3*E_JUV) /* average Young's modulus for crooked vs. wild type juvenile wood*/

#define E_ADULT_BASE (CROOKED? E_ADULT : 3*E_ADULT) /* crooked vs. wild type adult wood */

#define REACT_ALPHA_BASE (CROOKED? 0.0 : REACT_ALPHA) /* percentage of reaction wood: none for crooked tree */

The amount of tropism is reduced accordingly for the crooked tree.

if(!CROOKED) Tropism *= 5;

The function used to calculate the amount of resources granted to a child branch, as

described in Equation 7.1, is:

/* Heuristic: calculate proportion of parent's resources that child2 gets. */

float VigourProportion(const V3f& hParent, const V3f& hChild, float rParent, float rChild, float yChild, float yStart, float yMax)

{

float Q = 1.0;

float favour = 0.0;

float heightFactor;

if(yMax == yStart) heightFactor = 0;

else heightFactor = (yChild - yStart)/(yMax - yStart);

if(heightFactor < 0) heightFactor = 0;

float orientFactor = DotProd(hChild, up);

favour = heightFactor * orientFactor;

float orientation = 2*(1 - fabs(DotProd(hParent, up))) * DotProd(hChild, up);

float proportion = pow(rChild, (float)(2.0*PIPE))/pow(rParent, (float)(2.0*PIPE));

proportion *= favour;

/* I have found "fair" proportion: now introduce unfairness.

* This is "winner takes all" way. fraction of fair for smaller proportion, 1-smallerproportion for larger proportion */

if(proportion > 0.5) proportion = (1.0 - FAIRNESS*(1-proportion));

else proportion = FAIRNESS*proportion;

// Sanity check: clamp at 1 and 0

if(proportion > 1) proportion = 1;

else if(proportion < 0) proportion = 0;

// Only distribute a certain percentage of resources this year (save some to extend to next year)

return proportion*Q;

}

141

The production rule to determine whether a bud (PotentialApex module) will become

a shoot (beginning with conversion to anApex module) is as follows:

/* PotentialApex can turn into an apex at next year. Probability of doing

so is based on amount of resources granted.

*/

Internode(idl) << BranchAngle(ph, which, th) Internode(id) PotentialApex(leafed, apexAge) :

{

id.ageYear++;

/* Determine amount of resources. Because of order of string interpretation, subtract from a global variable.

* Set global vigMainBranch if i am the start of the branch */

if(idl.startOfBuddingBranch)

{

vigMainBranch = idl.vigour;

}

id.vigour = vigMainBranch * VigourProportion(idl.HLU.H, id.HLU.H, idl.goal_r, id.goal_r, id.Pos.y, id.yStart, idl.yMax);

/* If the bud shoots, create a sink which removes resources needed to shoot */

if(BudShoots(id.vigour))

{

float sinkFactor = ChildNumBuds(id.vigour)/4.0;

vigMainBranch -= id.vigour * sinkFactor;

/* Sanity check */

if(vigMainBranch < 0) vigMainBranch = 0;

id.isBud = false;

id.startOfBuddingBranch = true;

id.numBudsThisShoot = ChildNumBuds(id.vigour);

id.yStart = id.Pos.y;

produce BranchAngle(ph, which, th) Internode(id)

Apex(0, id.numBudsThisShoot, 0);

}

else

{

id.takesVigour = false;

produce BranchAngle(ph, which, th) Internode(id);

}

}

In theApex production rule of a crooked poplar tree, the effect of tropism is reduced over

the course of the summer.

if(CROOKED)

{

/* Amount of tropism decreases from start of summer -- so later internodes are less affected */

float tropFactor = ((float)(3*numBuds - count)/(float)(numBuds));

142

// Clamp at 1

tropFactor = (tropFactor > 1)? 1 : tropFactor;

Tropism *= tropFactor;

}

The values ofyMaxandyStartare initialized in theApex production:

/* Store the start of this shoot's y position, and also make that the starting yMax, for resources distribution calculation */

id1.yStart = id2.yStart = id.yStart;

/* Straight child should inherit yMax, unless its y value exceeds it */

id1.yMax = Max(id.yMax, id1.Pos.y);

id2.yMax = Max(id.yStart, id2.Pos.y);

The maximum height value (yMax) for a particular branch is computed in a forward pass:

/* straight child only: inherit yMax, unless I can top it */

if(which == 1) id.yMax = Max(idl.yMax, id.Pos.y);

else id.yMax = Max(id.yStart, id.Pos.y);

// Send biggest changeInOmega result (which was found in backpass) forward through chain

id.changeInOmega = idl.changeInOmega;

produce BranchAngle(ph, which, th) Internode(id);

The computedyMaxvalue is propagated along the shoot in a backward pass:

/* Pass calculated yMax back along the shoot -- but only from straight child */

id.yMax = id1.yMax;

A.3 Architecture control via descriptive functions

This section lists the code changes needed to perform architecture control by using graphical

functions modifiable by the user. Functions are called using the conventionfunc(NAME_OF_FUNCTION).

Using the function-based strategy, all references to resource allocation and vigour are re-

moved from the model. To determine whether a bud becomes a shoot and how many new

internodes this shoot should have, the following procedures are used:

143

/* Determine whether to make a bud into a shoot */

bool BudShoots(int count, int order, float length)

{

if(func(BRANCH_PROB_COUNT, (float)count/(float)NUMBUDS) * func(BRANCH_PROB_ORDER, (float)order/10.0)

* func(BRANCH_PROB_LENGTH, length/1.0) > RAND(0.5, 0.65))

return true;

else

return false;

}

/* Determine number of internodes to give the child branch. */

float ChildNumBuds(float pLen, int count, int order)

{

int numBuds = func(LENGTH_COUNT, (float)count/(float)MAXBUDS)

* func(LENGTH_ORDER, (float)order/10.0)

* MAXBUDS

* RAND(0.8, 1.0);

return numBuds;

}

These procedures are called from thePotentialApex production rule:

/* PotentialApex can turn into an apex at next year. Probability of doing so

* is based on graphical functions set by user.

*/

Internode(idl) << BranchAngle(ph, which, th) Internode(id) PotentialApex(leafed, apexAge) :

{

id.ageYear++;

if(BudShoots(id.count, id.order, idl.len))

{

id.isBud = false;

id.startOfBuddingBranch = true;

int numBuds = ChildNumBuds(idl.len, id.count, id.order);

if(numBuds > 1)

produce BranchAngle(ph, which, th) Internode(id) Apex(0, ChildNumBuds(idl.len, id.count, id.order), 0);

else produce BranchAngle(ph, which, th) Internode(id);

}

else

{

produce BranchAngle(ph, which, th) Internode(id);

}

}

A.4 Dynamics

Given below is the entire LPFG code for the dynamics model described in Chapter 9.

144

#include <lpfgall.h>

#include <math.h>

#include "vectorlib.h"

#define dt 0.005

#define gravity 9.8

#define b 3.2

#define springK 300.0

#define WALL_K 300.0

#define DEG_TO_RAD 0.017453293

#define RAD_TO_DEG 57.29577951

V3d horizontal(1,0,0);

V3d zaxis(0,0,1);

V3d gravityv = V3d(0, -gravity, 0);

V3d v0(0,0,0);

// ----- GROUPS (use scanning direction) ------------------------------

#define FWD 1

#define BKWD 2

struct link {

V3d alpha; // orientation

V3d omega; // rotational velocity

V3d epsilon; // rotational acceleration

V3d r; // vector representation of the link's rod

V3d atv; // total acceleration of the link (tangential plus radial)

double m; // mass

V3d force; // force that acts on previous: from radial component of acceleration

V3d i_force; // inertial version of above.

V3d i_forceToLeft; // force left over to pass to left.

V3d i_forceFromR; // accumulated force from the link to the right.

int which; // for debugging: which link I am

double k; // spring constant for this spring

V3d rest_angle; // rest angle for the spring, between left link and me. For now, a vector :-(

V3d deltaAngleR1; // branch angle minus rest angle

V3d deltaAngleR2;

};

/* functions for initializing links */

link first_init()

{

link s;

s.alpha = V3d(0,0,0*DEG_TO_RAD);

s.omega = v0;

s.epsilon = v0;

s.r = 1*VecRotateZ(horizontal, s.alpha.z);

s.force = s.i_force = s.i_forceFromR = s.i_forceToLeft = s.atv = v0;

s.m = 1.0;

s.which = 0;

s.k = springK;

s.rest_angle = v0;

return s;

145

}

link second_init()

{

link s;

s.alpha = V3d(0,0,40*DEG_TO_RAD);

s.omega = v0;

s.epsilon = v0;

s.r = 1*VecRotateZ(horizontal, s.alpha.z);

s.force = s.i_force = s.i_forceFromR = s.i_forceToLeft = s.atv = v0;

s.m = 1.0;

s.which = 0;

s.k = springK;

s.rest_angle = V3d(0,0,40*DEG_TO_RAD);

return s;

}

link third_init()

{

link s;

s.alpha = V3d(0,0,-30*DEG_TO_RAD);

s.omega = v0;

s.epsilon = v0;

s.r = 1*VecRotateZ(horizontal, s.alpha.z);

s.force = s.i_force = s.i_forceFromR = s.i_forceToLeft = s.atv = v0;

s.m = 1.0;

s.which = 0;

s.k = springK;

s.rest_angle = V3d(0,0,-30*DEG_TO_RAD);

return s;

}

link fourth_init()

{

link s;

s.alpha = V3d(0,0,-60*DEG_TO_RAD);

s.omega = v0;

s.epsilon = v0;

s.r = 1*VecRotateZ(horizontal, s.alpha.z);

s.force = s.i_force = s.i_forceFromR = s.i_forceToLeft = s.atv = v0;

s.m = 1.0;

s.which = 0;

s.k = springK;

s.rest_angle = V3d(0,0,-60*DEG_TO_RAD);

return s;

}

link fifth_init()

{

link s;

s.alpha = V3d(0,0,60*DEG_TO_RAD);

s.omega = v0;

s.epsilon = v0;

s.r = 1*VecRotateZ(horizontal, s.alpha.z);

s.force = s.i_force = s.i_forceFromR = s.i_forceToLeft = s.atv = v0;

s.m = 1.0;

s.which = 0;

s.k = springK;

146

s.rest_angle = V3d(0,0,60*DEG_TO_RAD);

return s;

}

link tweak_init()

{

link s;

s.alpha = V3d(0,0,0*DEG_TO_RAD);

s.omega = v0;

s.epsilon = v0;

s.r = 1*VecRotateZ(horizontal, s.alpha.z);

s.force = s.i_force = s.i_forceFromR = s.i_forceToLeft = s.atv = v0;

s.m = 1.0;

s.which = -1;

s.k = springK;

s.rest_angle = V3d(0,0,0*DEG_TO_RAD);

return s;

}

/* global variables */

double Time;

link first_link_init;

link second_link_init;

link third_link_init;

link fourth_link_init;

link fifth_link_init;

link tweak_link_init;

module P(link); // straight link with a mass and a rotational spring at its distal end.

module BA(V3d); // branching angle

int dir;

Start: {Time=0;

first_link_init = first_init();

second_link_init = second_init();

third_link_init = third_init();

fourth_link_init = fourth_init();

fifth_link_init = fifth_init();

tweak_link_init = tweak_init();

dir=BKWD;

Backward();

UseGroup(dir);

}

StartEach: {Time+=dt;

UseGroup(dir);

if (dir==FWD)

Forward();

if (dir==BKWD)

Backward();

dir = 3-dir;

}

147

derivation length: 0;

Axiom: Right(90) P(first_link_init) BA(v0) P(first_link_init) BA(v0) P(first_link_init)

// Specify the branched structure

SB() BA(v0) P(second_link_init)

SB() BA(v0) P(fifth_link_init) BA(v0) P(first_link_init) BA(v0) P(first_link_init) EB()

SB() BA(v0) P(first_link_init) EB()

EB()

SB() BA(v0) P(first_link_init)

SB() BA(v0) P(first_link_init)

SB() BA(v0) P(first_link_init) EB()

SB() BA(v0) P(third_link_init) EB()

EB()

SB() BA(v0) P(fifth_link_init) BA(v0) P(tweak_link_init) EB()

EB();

group BKWD: //--

/* Two children, a branching point */

P(s) >> SB() BA(branch_angle1) P(sr1) /*...*/ EB()

SB() BA(branch_angle2) P(sr2) /*...*/ :

{

/* Accumulate the unused forces from the right, not including my own force. */

s.i_forceFromR = sr1.i_forceToLeft + sr2.i_forceToLeft;

/* Save the (branch angle - rest angle) to the right, to compute spring torque from R */

s.deltaAngleR1 = (branch_angle1 - sr1.rest_angle);

s.deltaAngleR2 = (branch_angle2 - sr2.rest_angle);

produce P(s);

}

/* One child */

P(s) >> BA(branch_angle) P(sr) :

{

/* accumulate the unused forces from the right, not including my own force. */

s.i_forceFromR = sr.i_forceToLeft;

/* Save the (branch angle - rest angle) to the right, for spring torque from R */

s.deltaAngleR1 = (branch_angle - sr.rest_angle);

s.deltaAngleR2 = v0; //There is no second child

produce P(s);

}

/* Rightmost link */

P(s) :

{

s.i_forceFromR = v0; //no right neighbour

if(s.which == -1 && ((Time >= 13 && Time < 13.05)

|| (Time >= 20 && Time < 20.05)

|| (Time >= 30 && Time < 30.05))

)

148

s.i_forceFromR = V3d(0, -400, 0);

/* Save the (branch angle - rest angle) to the right, for spring torque from R */

s.deltaAngleR1 = s.deltaAngleR2 = v0;

produce P(s);

}

group FWD: //--

/* Branching angle is updated at every step. For easier future integration with static model */

P(sl) << BA(branch_angle) > P(sr) :

{

branch_angle = sr.alpha - sl.alpha;

produce BA(branch_angle);

}

P(sl) BA(branch_angle) << P(s) :

{

/* Spring torques, based on relative angles between successive segments.

* Torques from R will be zero (since deltaAngle will be zero) if there are no corresponding right children. */

V3d torqueFromLeftSpring = -sl.k * (branch_angle - s.rest_angle);

V3d torqueFromRightSpring1 = s.k * s.deltaAngleR1;

V3d torqueFromRightSpring2 = s.k * s.deltaAngleR2;

V3d springTorque = torqueFromLeftSpring + torqueFromRightSpring1 + torqueFromRightSpring2;

double I = s.m*s.r.Length()*s.r.Length();

/* To get total force stretching the segment, take parallel components with respect to s.r of

* contributing accelerations. */

V3d ni_total_force = -1*s.m*sl.atv + s.m*gravityv + s.i_forceFromR + s.m*((springTorque/I) % s.r) - (b*s.omega % s.r) ;

s.epsilon = ((s.r % (ni_total_force/s.m)) / (s.r.Length()*s.r.Length()));

s.omega += s.epsilon*dt;

s.alpha += s.omega*dt;

s.r = s.r.Length()*VecRotate(horizontal, zaxis, s.alpha.z);

/* Make the inertial version of the force: using parallel component of RF's inertial acceleration */

s.i_force = s.m*sl.atv + ni_total_force;

/* Centripetal acceleration of distal point, and

* tangential acceleration which has been reduced by damping

*/

V3d av = s.omega % (s.omega % s.r);

V3d tv = (s.epsilon % s.r);

/* This is the inertial acceleration (accumulated from LHS) */

s.atv = av + tv + sl.atv;

/* Force left over to pass to left */

s.i_forceToLeft = ParallelComponent(s.i_force - s.m*s.atv, s.r);

produce P(s);

149

}

// Leftmost link

P(s) :

{

/* Spring torques, based on relative angles between successive segments.

* Torques from R will be zero (since deltaAngle will be zero) if there are no corresponding right children. */

V3d torqueFromLeftSpring = -1* WALL_K * (s.alpha);

V3d torqueFromRightSpring1 = s.k * s.deltaAngleR1;

V3d torqueFromRightSpring2 = s.k * s.deltaAngleR2;

V3d springTorque = torqueFromLeftSpring + torqueFromRightSpring1 + torqueFromRightSpring2;

double I = s.m*s.r.Length()*s.r.Length();

/* To get total force stretching the segment, take parallel components with respect to s.r of

* contributing accelerations.

*/

V3d ni_total_force = s.m*gravityv + s.i_forceFromR + s.m*((springTorque/I) % s.r) - (b*s.omega % s.r) ;

s.epsilon = ((s.r % (ni_total_force/s.m)) / (s.r.Length()*s.r.Length()));

s.omega += s.epsilon*dt;

s.alpha += s.omega*dt;

s.r = s.r.Length()*VecRotate(horizontal, zaxis, s.alpha.z);

s.i_force = ni_total_force;

/* Centripetal acceleration of distal point, and

* tangential acceleration which has been reduced by damping

*/

V3d av = s.omega % (s.omega % s.r);

V3d tv = (s.epsilon % s.r);

/* Leftmost link has no parent, so this is inertial acceleration */

s.atv = av + tv;

/* Force left over to pass to left */

s.i_forceToLeft = ParallelComponent(s.i_force - s.m*s.atv, s.r);

produce P(s);

}

group 0: //---

interpretation:

P(l) :

{

produce

SetColor(1) SetWidth(0.03) LineRel3d(l.r) SetColor(4) Sphere(0.1);

}

Bibliography

[1] L D Landau L P Pitaevskii A M Kosevich, E M Lifshitz.Theory of Elasticity : Volume

7 (Theoretical Physics, Vol 7). Reed Elsevier, 1986.

[2] Mitch Allen, Przemyslaw Prusinkiewicz, and Theodore DeJong. Using L-systems for

modelling source-sink interactions, architecture and physiology of growing trees: the

L-PEACH model.New Phytologist, 166:869 – 880, 2005.

[3] Tancréde Alméras, Joseph Gril, and Evelyne Costes. Bending of apricot tree branches

under the weight of axillary growth: test of a mechanical model with experimental data.

Trees: Structure and Function, 16(3):5–15, 2002.

[4] Ken-ichi Anjyo, Yoshiaki Usami, and Tsuneya Kurihara. A simple method for ex-

tracting the natural beauty of hair.SIGGRAPH ’92: Proceedings of the 19th annual

conference on Computer graphics and interactive techniques, pages 111–120, 1992.

[5] R. Archer. Springer Series in Wood Science, chapter Growth stresses and strains in

trees. Springer, 1986.

[6] Vernon Barger and Martin Olsson.Classical Mechanics: A Modern Perspective.

McGraw-Hill, 1995.

[7] Heike Beismann, Hiltrud Wilhelmi, Henri Baillères, Hanns-Christof Spatz, Arno Bo-

genrieder, and Thomas Speck. Brittleness of twig bases in the genusSalix: fracture

mechanics and ecological relevance.Journal of Experimental Botany, 51(344):617 –

633, March 2000.

[8] Rolf Borchert and Hisao Honda. Control of development in the bifurcating branch

system of tabebuia rosea: a computer simulation.Botanical Gazette, 145(2):184–195,

1984.

150

151

[9] P. C. Chou and N.J. Pagano.Elasticity: Tensor, Dyadic, and Engineering Approaches.

Dover, New York, 1992.

[10] J. Craig.Introduction to Robotics, Mechanics and Control. Addison-Wesley, 1989.

[11] Agnes Daldegan, Nadia Magnenat-Thalmann, Tsuneya Kurihara, and Daniel Thal-

mann. An integrated system for modelling, animating and rendering hair.Computer

Graphics Forum, 12(3):211–221, 1993.

[12] Oliver Deussen, Bernd Lintermann, and A. Dowden-Williams.Digital Design of Na-

ture : Computer Generated Plants and Organics. Springer, Berlin, 2005.

[13] T. Fourcaud and P. Lac. Numerical modelling of shape regulation and growth stresses

in trees.Trees - Structure and Function, 17:23–30, 2002.

[14] Meriem Fournier. Mécanique de l’arbre. maturation, poids propre, contraintes clima-

tiques.Thèse de Doctorat, Institut National Polytechnique de Lorraine, 1989.

[15] Meriem Fournier, Henri Bailleres, and Bernard Chanson. Tree biomechanics: Growth,

cumulative prestresses, and reorientations.Biomimetics, 2(3):229–251, 1994.

[16] D. W. Green. Wood: strength and stiffness.Encyclopedia of Materials: Science and

Technology, pages 9732 – 9736, 2001.

[17] Henri D. Grissino-Mayer, 2004. http://web.utk.edu/ grissino/gallery.htm.

[18] Sunil Hadap and Nadia Magnenat-Thalmann. Modeling dynamic hair as a continuum.

Eurographics, 20(3), 2001.

[19] David Halliday and Robert Resnick.Fundamentals of Physics. John Wiley and Sons,

Inc, 2nd edition edition, 1981.

152

[20] John Hart and Brent Baker. Implicit modeling of tree surfaces.Proceedings of the

1996 workshop on implicit surfaces, 1996.

[21] John Hart, Brent Baker, and Jeyprakash Michaelraj. Structural simulation of tree

growth and response.The Visual Computer, 19:151–163, 2003.

[22] R.C. Hibbeler.Statics and Mechanics of Materials. Macmillan Publishing, 1992.

[23] Matthew Holton. Strands, gravity and botanical tree imagery.Computer Graphics

Forum, 13(1), 1994.

[24] H. Honda, P. B. Tomlinson, and J. B. Fisher. Computer simulation of branch interaction

and regulation by uneven flow rates in botanical trees.American Journal of Botany,

68(4):569–585, 1981.

[25] Catherine Alena Jirasek. A biomechanical model of branch shape in plants expressed

using L-systems.Master’s Thesis, University of Calgary, 2000.

[26] Huw Jones and Matthew Aitken. Modelling the effect of wind blown trees.Euro-

graphics UK Chapter Annual Conference, pages 245–254, 1997.

[27] Wilfred A. Côté Jr. Wood Ultrastructure: An Atlas of Electron Micrographs. Univer-

sity of Washington Press, 1967.

[28] Radoslaw Karwowski. Improving the process of plant modelling: the L+C modelling

language.Ph.D. Dissertation, University of Calgary, 2002.

[29] Radoslaw Karwowski and Przemyslaw Prusinkiewicz. Design and implementation of

the l+c modelling language.Electronic Notes in Theoretical Computer Science, 86(2),

2003.

[30] C. H. A. Little. Some aspects of apical dominance inPinus Strobus. Ph.D. Disserta-

tion, 1967.

153

[31] Richard E. Mark.Cell Wall Mechanics of Tracheids. Yale University Press, 1967.

[32] C. Mattheck and H. Kubler.Wood: The Internal Optimization of Trees. Springer-

Verlag, 1997.

[33] Claus Mattheck.Design in Nature: Learning from Trees. Springer-Verlag, 1998.

[34] C. Murray. A relationship between circumference and weight in trees and its bearing

on branching angles.Journal of General Physiology, 10:725–729, 1927.

[35] Karl J. Niklas. Plant Biomechanics: An Engineering Approach to Plant Form and

Function. University of Chicago Press, 1992.

[36] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,

New York, NY, USA, 1992.

[37] Przemyslaw Prusinkiewicz, August, 2005. Personal communication.

[38] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomír Mech.Handbook

of Formal Languages, chapter Visual Models of Plant Development. Springer-Verlag,

1996.

[39] Przemyslaw Prusinkiewicz, Catherine Alena Jirasek, and B.Moulia. Integrating bio-

mechanics into developmental plant models expressed using L-systems.Plant biome-

chanics, 191:615–624, 1998.

[40] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.The Algorithmic Beauty of

Plants. Springer, 1996.

[41] Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, and Brendan

Lane. The use of positional information in the modelling of plants.Proceedings of

SIGGRAPH, pages 289–300, 2001.

154

[42] William Remphrey, May, 2005. Personal communication.

[43] William R. Remphrey and Linda P. Pearn. Crown development of a clone of populus

tremuloides exhibiting "crooked" architecture and a comparison with wild-type trees.

Canadian Journal of Botany, 81:345–359, 2003.

[44] J. P. Richter, editor.The Literary Works of Leonardo Da Vinci. Phaidon Publishers

Inc., 1970.

[45] Robert Rosenblum, Wayne Carlson, and Edwin Tripp. Simulating the structure and

dynamics of human hair: Modeling, rendering and animation.Journal of Visualzation

and Computer Animation, 2:141Ű148, 1991.

[46] T. Sakaguchi and J. Ohya. Modelling and animation of botanical trees for interactive

virtual environments.Proceedings of the ACM symposium on Virtual reality software

and technology, pages 139–146, 1999.

[47] K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira. A quantitative analysis of plant form

- the pipe theory model. i. basic analyses.Japanese Journal of Ecology, 14(3):97–105,

1964.

[48] M. Shinya and A. Fournier. Stochastic motion - motion under the influence of wind.

Proceedings of EUROGRAPHICS 1992, 11:C119–C128, 1992.

[49] Wendy Kuhn Silk. Kinematics and dynamics of primary growth.Biomimetics,

2(3):199–213, 1994.

[50] J. Stam. Stochastic dynamics: Simulating the effects of turbulence on flexible struc-

tures.Computer Graphics Forum, 16:159–164, August 1997.

[51] Julia Taylor-Hell. Incorporating biomechanics into architectural tree models.Proceed-

ings of the 18th Brazilian Symposium on Computer Graphics and Image Processing,

155

2005.

[52] Eric W. Weisstein, July, 2005. http://scienceworld.wolfram.com/physics/Pendulum.html.

[53] Brayton F. Wilson.The Growing Tree. University of Massachusetts Press, 1984.

[54] Brayton F. Wilson. Apical control of branch growth and angle in woody plants.Amer-

ican Journal of Botany, 87:601–607, 2000.

