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A new digital representation of pictures 
is proposed. The main feature of this 
representation is: Given a string of data 
Z representing a picture with full reso­
lution, various substrings of Z represent 
the same picture with appropriately 
lower resolution. This is analogous to a 
well-known property of holograms. The 
new representation is based on a partic­
ular picture traversal algorithm and 
uses overlapping sampling areas. The 
paper presents the principle of this rep­
resentation, analyzes its overhead, and 
provides examples of picture recon­
struction. An application of the holo­
gram-like representation to the trans­
mission of pictures with progressive res­
olution is indicated. 
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umerous methods for the trans­
mission of pictures have been studied in 
the past. In the simplest case, a picture is 
represented as an array of samples. Its 

transmission and display proceed along rows or 
columns, referred to as scan lines. If t

c 
is the 

time necessary to display the whole picture, in 
1/k · t

c 
time only one kth of the picture will be 

displayed. This part will be presented at full 
resolution. In some applications, for example 
slow transmission of visual information (vi­
deotex), or browsing through a database of sto­
red images (Hill and Walker 1983), it may be 
desirable for the resolution of a picture, rather 
then its visible area, to increase while the trans­
mission proceeds. To this end, methods of pro­
gressive transmission of pictures were developed 
(Pavlidis 1982). They use quad trees (Sloan and 
Tanimoto 1979) or binary trees (Knowlton 
1980) as underlying data structures. Con­
sequently, various initial substrings of the string 
of data representing the entire picture can be 
used for its reconstruction, with the resolution 
proportional to the length of the substring. 
However, non-initial substrings are meaning­
less. 
This paper describes a new representation of 
pictures suitable for their transmission with 
progressive resolution. The main feature of this 
representation is: Given a string of data Z rep­
resenting a picture with full resolution, various 
(not necessarily initial) substrings of Z represent 
the same picture with an appropriately lower 
resolution. This is analogous to the well-known 
feature of holograms: Any portion of a holo­
gram represents the same picture as the whole 
hologram, but with a lower resolution. The new 
representation is based on a traversal algorithm 
(i.e. the selection and ordering of sampling 
points) with the following key property: Given 
a string of sampling points, P=<Po

,P 1 ,P2
, ... ), 

various substrings of P consist of points uni­
formly distributed in the sampling region Q.
Hence the longer a substring of sampled values 
is, the better the resolution of the reconstruc­
tion of the original picture can be achieved. An 
earlier version of this traversal algorithm was 
described in (Prusinkiewicz 1984). 
This paper is organized as follows. In Sect. 2

the traversal algorithm is formally defined, and 
its essential properties are stated. A suitable 
sampling technique and the corresponding re­
construction method are described in Sect. 3. 
Section 4 provides an analysis of the overhead 
of the hologram-like representation. Section 5 
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generalizes the method to color pictures. A pos­
sible application is indicated in Sect. 6. The 
appendix contains proofs of the theorems. 

1. Picture traversal algorithm

Intuitively, the traversal algorithm is based on 
two observations (Fig. 1): 
- A translation of a set of sampling points

uniformly distributed in a region of a plane is
a set of uniformly distributed points;

- The union of appropriately translated sets of
uniformly distributed points is also a set of
uniformly distributed points, with a reduced
distance between the adjacent points.
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Fig. 1. Definition of the sequence of sampling points P
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The string (sequence) of sampling points is de­
fined recursively, by translating and concatenat­
ing previous strings. Consequently, various sub­
strings consist of points uniformly distributed in 
the plane. 
A formalization follows. 
Let P=<p

0
,p

1
,p

2
, •.. ) be a string of points in a 

plane. By P(n, h) we denote the following sub­
string of P: 

P(n, h) = <Ph. 4n, ph· 4n+ 1, .. ·, P(h+ 1)· 4n- 1> 

Furthermore, by S( <Po, Pi, ... , Pm), c) we denote 
translation of the substring <Po,Pi , ···,Pm

) by 
the vector c: 

S(<Po, ···,Pm ),c )=<Po+ c, ···,Pm +c) 
We will represent the translation vector c as 
e

x
t+ c

Y 
I

y
, where t and I

Y 
are the unit vectors 

in the directions of axes x and y, respectively. 

Definition 1. Let T > 0 denote the edge size of 
the square sampling region Q(T) (its vertices 
are: (0, 0), (0, T), (T, T), and (T, 0)). The string of 
sampling points is then defined as follows: 

P(0, 0) =<Po>= <T, T) 
P(n,l)=S(P(n,0), -r-2-n- 1 lJ 
P(n,2)=S(P(n,0), -r-2-n-1 ly)
P(n, 3) = S(P(n, 0), -T-2-n-l (t + ly)) 
P(n + 1, 0) = P(n, 0)o P(n, 1 )o P(n, 2)o P(n, 3) 
where o denotes concatenation of strings, and n

=0, 1,2, .... 

Theorem 1. Let the binary word 

represent index k of a sample point pk= (xk, h) in 
the pure binary number system: 

2n-1 

k= L r;2
;

i=O 

The coordinates of point pk are then equal to: 

( 
n-1 

) 
Y=T 1-'°'r 2-<i+l) 

k L, 2i+1 
i=O 

Proof in the Appendix. 



Theorem 1 provides an explicit (non-recurrent)
relationship between the index of a sampling
point and its coordinates. This relation can also
be used as a definition of sequence P (Prusin­
kiewicz 1984). It lacks, however, the intuitive
flavor of Definition 1. 
The central property of the string of sampling
points P is given by Theorem 2. It refers to
Definition 2 (Rosenfeld and Kak 1982), for­
malizing the notion of m x m points uniformly
distributed in the square Q(T). 

Definition 2. Given a sampling region Q(T), the
sampling lattice of m x m elements, with the ori­
gin in point (cx ,cy), is the set:

Mmxm(cx ,c)=

{ (cx +(i-1):, cy +U-1) :) : i,j= 1, 2 , ... ,m} 
Theorem 2. Let P(n, h) denote the (unordered)
set of elements of the substring P(n, h):

P(n, h) = {p,,. 4n, p,,. 4n+ 1' · · ·, P(h+ 1)· 4n- 1} 

For any n, h =0, 1, 2, ... , the set P(n, h) is a sam­
pling lattice in the region Q(T):

(\in, h =0, 1,2, ... ) (:i cx,c
yE [ 0, ;) )

P(n, h) = M zn X zn(Cx , c
y
)

Proof in the Appendix.

2. Sampling and reconstruction

The sampling method used for the hologram­
like transmission of pictures should make it
possible to reconstruct a picture f from any 
number of uniformly distributed samples, with
the resolution proportional to the number of
samples considered. 
The simplest sampling method - Shannon's 
sampling - does not meet this requirement.
Since the number of samples which will actually
be used to reconstruct picture f is not known
when sampling, it is not possible to adequately
filter out high frequency components off Con­
sequently, a reconstruction of f from a small

number of samples may be totally misleading,
due to aliasing (Rosenfeld and Kak 1982). 
Let us define the area sample zk in point Pk 

= (xk, yk) as the total amount of light which
falls in the rectangle (0, 0), (xk, 0), (xk, Yk), (0, Yk): 

Xk Yk 

zk
= J Jf(x,y)dxdy

0 0 

A reconstruction of f can be performed, given
area samples corresponding to any set of sam­
pling points P(n, h). Following Theorem 1, the
set P(n, h) forms the sampling matrix
Mmxm(cx ,cy) for some m,cx ,cy . Consequently,
each sampling point A can be expressed as:

(C +(i-1) r,c +(J-1) T) 
x m Y m 

where i,jE{l, 2, ... ,m}. We will use i and j as
indices, and write Pi,j instead of Pk · Similarly, if 
P;, -=pk, we will write z;,j instead of zk. By 
re/erring to the definition of the area sample,
we then obtain:

x· +I y·+L
2 i m i m m

y
2 J J f d (x,y)dx y

Xi Yi 

m2 

= �2 (2·+1 ·+1-Z·+1 .-z. ·+1+z .. )T ' ,1 ' .1 ,.1 ,,1 

where i,j = 1, 2, ... , m -1 (an extension to i = 0
and j = 0 is straightforward). The above equa­
tion is the basis of picture reconstruction. The
left side represents the average value of func­
tion f (average gray level) in the square Qi ,j
with vertices:

(x;,Y), (x;+L,Y), (x;+L,Yj+I.), (x;,Yj+ I)
m m m m 

This value (known as standard sample) can be
directly used as an approximation off in Q;,j· 
Due to averaging, the reconstruction off based 
on standard samples will be automatically anti­
aliased. 
Examples of the reconstruction of pictures from
their hologram-like representations are shown
in Figs. 2 and 3. These figures were obtained on
a laser printer, with an 8 x 8 dither matrix (Fo­
ley and van Dam 1982) used to simulate 64
gray levels. 
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0-15 16-31 32-47 48-63

0-63 64-127 128-191 192-255

..; �-

',j -
lila-'al 

0-255 256-511 512-767 7 68-1023 

0-1023 1024-2047 2048-3071 3072-4095 

0-4095

Fig. 2. Example of the hologram-like transmission of a picture. Numbers indicate indices of area samples zk used 
for reconstruction 
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0-4095 4096-8191 

8192-12287 12288-16383 

0-16383

Fig. 3. Example of the hologram-like transmission of a picture. Numbers indicate indices of area samples zk used 
for reconstruction 
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3. Analysis of overhead

Suppose that the original picture is sampled 
using a lattice of 2n x 2" points. Furthermore, 
suppose that the gray level function f takes 
values from the set {0,1, ... ,2d -1} (after quan­
tization). From the formula ( *) it follows that 
the area sample zi,j in point P;,j can take any 
value from O to i ·j · (2d -1). The number of bits 
necessary to represent this sample is equal to: 

where r X l denotes the ceiling function. Con­
sequently, the total length of the hologram-like 
representation off (in bits) is equal to: 

K
1 =4n d+ L L flog

2(i)+log
2 U)l 

i=l j=l 

Since the number of bits required to send 4n d­
bit samples is equal to 4" · d, the overhead relat­
ed to the hologram-like representation can be 
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Fig. 4. Overhead of the hologram-like representation of 
pictures. N indicates the total number of area samples 
taken (N2 ). D is the number of bits per area sample 
(pixel). Dashed lines correspond to the variable-length re­
presentation of samples (overhead 01

). Continuous lines 
correspond to the fixed-length representation (overhead 
02) 

190 

expressed as: 

Kl -4"-d 

4n .d 

Value K
1 

is calculated under the assumption 
that representations of area samples zi,j may 
have variable lengths. Decoding of the picture 
can actually be simplified if all samples are 
represented by words of equal length: d + 2 n. 
The length of the hologram-like representation 
is then equal to K

2 =4n ·(d+2n). The corre­
sponding overhead is equal to: 

K -4"-d n 
0 - 2 2-z- 4n .d d 

The overheads O 
1 

and O 
2 

calculated for various 
values of N = 2n and d are shown in Fig. 4. The 
overheads are approximately proportional to 
the logarithm of the number of samples n, and 
inversely proportional to the number of bits per 
standard sample d. The variable-length repre­
sentation of samples does not significantly re­
duce the overhead. 

4. Transmission of color pictures

While the hologram-like representation deals 
essentially with one-dimensional data, its gen­
eralizations to color pictures can be sought. Var­
ious color models and methods for mapping 
multidimensional color data to one-dimensional 
data stream can be assumed. Figure 5 shows an 
example of the hologram-like transmission 
based on the RGB color space. Each sample is 
a triplet of the corresponding RGB values. 
During reconstruction, the color planes are pro­
cessed separately and the results are blended 
together. Consequently, color interpolation in 
the RGB space occurs. 

5. Concluding remarks

A new method for the transmission of pictures 
has been proposed. The main property of this 
method is: given a data string Z representing a 
picture f with full resolution, various substrings 
of Z represent f with a resolution proportional 
to the length of the substring. Analysis of the 
overhead of the method is given. Examples of 



a d 

b e 

C 

Fig. Sa-f. Example of the hologram-like transmission of a picture. Reconstruction from samples: a 0-1023, b 1024-2047, 
c 2048-3071, d 3072-4095, e 0-4095, f 0-16383 (original picture) 
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the reconstruction of pictures from the holo­
gram-like representation are presented. 
The method is applicable, for example, to 
browsing through a set of pictures sent round 
robin over a communications channel (in a vid­
eotex system). Pictures can be quickly recon­
structed from a small number of samples, al­
lowing for previewing before the full resolution 
reconstruction of the selected picture proceeds. 
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Appendix: proofs of the theorems 

Proof of Theorem 1. 

Let L(R) denote the number represented by the 
binary word R in the pure binary number sys­
tem. Specifically, the numerical value of the em­
pty word A is zero: L(A) = 0. As usual, point (.) 
can be used to separate the fractional part of R 
from its integer part. Using this notation, Theo­
rem 1 can be restated as follows: 

Let the word b
n- 1 an- l ... b

0 
a

0 
represent index k

in the pure binary number system: k =L(b
11

_ 1 a
n-

l 

... b
0 

a
0). The point q

k 
with coordinates: 

x
k

= T(l-L(.a
0 . . .  

a
11 _ 1)) 

Yk = T(l -L(. b0 . • .  bn- 1))

coincides with point p
k 

specified by Definition 1. 
Proof by induction on n. 
- For n=0 the word bn_ 1 a

11
_ 1 ... b

0
a

0 
is emp­

ty. Consequently, k = L(A) = 0, x
0 
= T(l -L(A))

= T, and y
0

= T(l-L(A))= T Thus, q
0
=(T,T) is 

equal to p
0

. 

- Suppose the theorem true for n � 0. Thus, q
k 

= p
k 

for any k represented as b
11

_ 1 an- l ... b
0 

a
0

• 

For n + 1 four cases can be distinguished: b n a11 

=00,01,10 and 11. The case b,,a
,,
=00 is trivial

because it leads to a previously considered val­
ue of k. (The coordinates x

k 
and h are not

affected by trailing zeroes in their binary repre­
sentations.) In the next case (bn

a
n

= 0l) index
k'=L(0lb

11
_

1
a

11
_

1 
... b

0
a

0
) can be represented
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ask'= 4n + k, where k = L(b
11

_ 
1 
a

11
_ 

1 
... b

0
a

0). Point 
q

k
, has coordinates: 

x
k
' = T(l-L(.ao ... an

_ 
1 l))=x

k
-r-2-n- l 

yk, = T(l-L(.b0 •.. b
n-l 0))= Yk 

Or, q
k
, = q

k
-r-2-n- 1 t. On the other hand,

from the Definition 1 it follows that p
k' = Pk 

-r-2-n- 1 t. Since q
k

= p
k 

(by the inductive hy­
pothesis), q

k
, = p

k ' as well. In the remaining
cases (b11

+ 
1 

an+ 
1 
= 10 and 11) the equality q

k
, = Pk'

can be proved the analogous way. Thus, the
theorem is true for all n = 0, 1, 2, . . . . D 

Proof of Theorem 2. 
- Let us first consider the case h=0. Follow­
ing Theorem 1, the set P(n, 0) consists of all
points Pk 

with coordinates:

x
k

= T(l-L(.a0 . . .  
a

n_ 1)) 

h= T(l-L(. bo ... b11
_ 1)) 

It is known that the 2n numbers represented by 
the words . a

0 • • . 
a

n- 1 form the arithmetic se­
quence with the first element 0 and the differ­
ence 2- n. Naturally, the 2" numbers represented 
by the words . b

0 
... b,,_ 

1 
form the same se­

quence. Hence, 

P(n, 0)= {(T(l -i · 2-11), T(l -j · 2-n)):

i,j= 0, 1, ... , 2n-1} =M 2nx 2n(2-n, 2-n) 

- For h>0 index k' of any element of the set
P(n, h) can be expressed as k' = h · 4" + k, where
kE{0, 1, ... ,4n-l}. Consequently, the binary re­
presentation of k' can be written as:

where h= L(b8
_ 1 a5

_ 1 ..• b11
a

11
) and 

k = L(b11 _ 1 an-l ... b0
a0). 

As a result, the coordinates of point p
k
, can be 

expressed as: 

X
k
, = T(l -L(.a0 • • •  an-1))-T-2-n L(. a

n 
... a

8_ 1)

Yk' = T(l -L(. ho 
... b

n_ 1))-T- 2-n L(. bn 
... bs-1)

Thus, Pk· = p
k -ex t-eY 

I
y
, where ex 

and c
Y 

are
constants dependent only of h. Consequently, 
P(n, h) is a translation of the sampling lattice 
P(n, 0), or P(n, h) is also a simpling lattice. □
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