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Summary. In these notes we survey applications of L-systems to the modeling of
plants, with an emphasis on the results obtained since the comprehensive presenta-
tion of this area in The Algorithmic Beauty of Plants [99]. The new developments
include:

{ extensions to the L-system formalism that increase its expressive power as needed
for practical biological applications,

{ introduction of programming constructs that enhance the use of L-systems as
a language for describing developmental algorithms and as input for simulation
programs, and

{ new biological applications of L-systems.
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There is nothing so practical as a good theory.

Immanuel Kant (1724{1804)

1. Introduction

In 1968, Aristid Lindenmayer introduced a formalism for modeling and sim-

ulating the development of multicellular organisms [67], subsequently named

L-systems. This formalism was closely related to the theory of automata and

formal languages, and immediately attracted the interest of computer scien-

tists [114]. The vigorous development of the theory of L-systems [46, 113, 116]

was followed by its application to the modeling of plants (for example,

[28, 29, 30, 55, 74]). A series of position and survey papers by Linden-

mayer addressed methodological aspects of modeling using L-systems and

their role in biology [66, 70, 71, 72, 73, 75]. Concurrent advances in computer

graphics made it possible to visualize modeled structures in forms ranging

from schematic diagrams [30, 49] to realistic three-dimensional renderings

of abstract branching structures [91, 120, 121] and real plants [101]. Visu-

alizations have also revealed intriguing relationships between L-systems and
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fractals [19, 20, 90, 100, 122]. Graphical applications of L-systems devised

until 1990 were comprehensively presented in books [94] and [99].

In the present chapter we focus on recent results pertinent to the mod-

eling, simulation, and visualization of plant development using L-systems.

These include, in particular:

{ extensions to the L-system formalism that increase its expressive power as

needed for practical biological applications,

{ introduction of programming constructs that enhance the use of L-systems

as a language for describing developmental algorithms and as input for

simulation programs, and

{ new biological applications of L-systems,

The organization of this chapter mimics the general pattern of theory

construction in the natural sciences, where observed facts are distilled into a

mathematical abstraction, and the resulting predictions are compared with

reality to validate the theory [58]. First, we present modular plant architec-

ture as our domain of interest and show that the essential aspects of develop-

ment at the modular level can be viewed as rewriting processes (Section 2.).

In order to formally describe the architecture of plants, we introduce, af-

ter Lindenmayer, the bracketed string notation to express the topology of

branching structures, and we extend this notation with symbols and con-

structs based on turtle geometry to capture the shape (Section 3.). We then

present L-systems as a rewriting mechanism that simulates developmental

processes by operating on strings, and use biologically motivated examples

to illustrate the basic de�nitions (Section 4.). More involved constructs and

extensions of L-systems are introduced to simulate fragmentation and the

loss of modules (Section 6.), di�erent aspects of information ow within the

modeled structure (Section 7.), and interaction between plants and their en-

vironment (Section 8.). Finally, we characterize the role of L-systems in the

current practice of biological modeling, and point out selected open problems

(Section 9.).

Since the modeling and visualization of plant development is an interdis-

ciplinary area of research, we have attempted to make the results legible to

readers in various disciplines. Consequently, we have emphasized the motiva-

tions behind the theory, and avoided specialized notions of formal languages,

computer graphics, and biology.

2. Developmental models of plant architecture

2.1 The modular structure of plants

Mathematical models in botany correspond to various levels of plant organi-

zation (Figure 2.1). In this paper, we focus on the level of entire plants. We

regard a plant as a spatial con�guration of discrete constructional units or
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organelle

molecule

organ

cell

crop

plant

biome

ecosystem

Fig. 2.1. A hierarchy of levels of plant organization. One objective of modeling is
to predict and understand phenomena taking place at a given level on the basis of
models operating at lower levels. Adapted from [124, 131].

modules, which develop over time. Typically, modules represent repeating ba-

sic structural components of a plant, such as owers, leaves, and internodes,

or groupings of these components, such as metamers (single internodes with

an associated leaf and lateral bud) and branches (Figure 2.2) [5, 43, 128]).

(A di�erent meaning of the term \module" is also found in the litera-

ture [4, 38, 110].) The goal is to describe the development of a plant, and in

particular the emergence of plant shape, as the integration of the development

and functioning of individual modules.

apical meristem

bud (lateral)

apex

internode

leaf

inflorescence

flowers

metamer
or
shoot unit

branch

apical segment

Fig. 2.2. Selected modules and groups of modules (encircled with dashed lines)
used to describe plant structure.
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2.2 Plant development as a rewriting process

The essence of plant development can be described by a rewriting system

that repetitively replaces individual parent, mother, or ancestor modules by

con�gurations of child, daughter, or descendant modules.

Assuming that all modules belong to a �nite set of module types, the

behavior of an arbitrarily large con�guration of modules can be speci�ed

using a �nite set of rewriting rules or productions. A production speci�es how

to replace a single predecessor module by a con�guration of zero, one, or more

successor modules. A simple example of this process is shown in Figure 2.3.

An occurrence map ' transforms the predecessor of the production to the

mother modules; the same map is then applied to the successor in order to

determine the child modules [103].

parent children

production

occurrence
mapping

production
application

p

ϕ ϕ−1 ϕ

predecessor successor

Fig. 2.3. Illustration of the concept of rewriting applied to modules with geometric
interpretation. A parent module is replaced by child modules in a sequence of
transformations '�1

p'.

The replacement of modules in a structure may become di�cult when

there are signi�cant di�erences in the geometry of a parent and its children.

Several possibilities are illustrated in Figure 2.4. In case (a), modules located

at the extremities of a branching structure are replaced without a�ecting the

remainder of the structure. The production applications may be implemented

using the mechanism just discussed (Figure 2.3). In case (b), the production

that replaces internodes divides the rewritten structure into a lower part

(below the internode) and an upper part. The position of the upper part is

adjusted to accommodate the insertion of the child modules, but the shape
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a)

b)

c)

bud flower young fruit old fruit

Fig. 2.4. Examples of production speci�cation and application: (a) development
of a ower, (b) development of a branch, and (c) cell division.

and size of both the lower and upper part are not changed, and the children

remain de�ned entirely by the production. Finally, in case (c), the rewritten

structure is represented by a graph with cycles. The size and shape of the

production successor do not exactly match the size and shape of the prede-

cessor, thus the geometry of the successor, the embedding structure, or both

must be adjusted to accommodate the successor. The last case is the most

complex, since the application of a local rewriting rule may lead to a global

change of the structure's geometry. Developmental models of cellular layers

operating in this manner have been presented in [16, 17, 26, 99]. In this pa-

per we will limit our interest to branching structures. This limitation o�ers

a useful compromise between breadth and depth in the resulting theory of

development.

The di�erences between cases (a) and (b) are further discussed below.

Case (a) is similar to the basic method of fractal generation using Koch

construction, described by Mandelbrot as follows [81, page 39]:

One begins with two shapes , an initiator and a generator. The latter

is an oriented broken line made up of N equal sides of length r. Thus

each stage of the construction begins with a broken line and consists

in replacing each straight interval with a copy of the generator, re-

duced and displaced so as to have the same end points as those of

the interval being replaced.
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Mandelbrot introduced many extensions to this basic concept, including gen-

erators with lines of unequal length [81, pages 56{57] and with branching

topology [81, pages 71{73]. All these variants share one fundamental charac-

teristic, namely that the position, orientation, and scale of the interval being

replaced determine the position, orientation, and scale of the replacement (a

copy of the generator). In plants, however, the position and orientation of

each module is determined by the chain of modules beginning at the base of

the structure and extending to the module under consideration. For exam-

ple, when the internodes of a plant develop (as is the case in Figure 2.4b),

the subtended segment is moved upwards in response. Similarly, when the

internodes bend, the subtended branches do not become disconnected as im-

plied by the Koch construction (Figure 2.5a), but are rotated and displaced

a b

Fig. 2.5. A comparison of the Koch construction (a) with a rewriting system pre-
serving the branching topology of the modeled structure (b). The same production
is applied in both cases, but the rules for incorporating the successor into the struc-
ture are di�erent.

to maintain the connectivity of the structure (Figure 2.5b). The bracketed

string notation introduced by Lindenmayer [67, 68] inherently maintains the

branching topology of the modeled structures while their component modules

are rewritten. We describe it in detail in the next section.

3. Formal description of branching structures

3.1 Axial trees and bracketed strings

In order to consider plant architecture at an abstract level, we use the notion

of an axial tree (Figure 3.1) which complements the graph-theoretic notion

of a rooted tree [89] with the botanically motivated notion of branch axis [99,

101]. A rooted tree has edges that are labelled and directed, and form paths

from a speci�c node called the base to the terminal nodes. In the biological
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Terminal node

Tree root

Lateral 
  segment

Straight
  segment

Tree top Zero order (main) axis

Branch
  base Branch

  top

Second order    
  branch

First order 
  axis

Branching point

Apex

Internode

Fig. 3.1. An axial tree. From [101].

context, these edges are referred to as branch segments. For each nonterminal

node, we distinguish between the subtending segment (closer to the tree root)

and the subtended segments (further away). A segment followed by at least

one more segment in some path is called an internode. A terminal segment

(with no following edges) is called an apex.

An axial tree is a special type of rooted tree, in which we distinguish at

most one subtended straight segment at each of the nodes. All remaining

edges are called lateral or side segments. A sequence of segments is called an

axis, if:

{ the �rst segment in the sequence originates at the root of the tree or as a

lateral segment at some node,

{ each subsequent segment is a straight segment, and

{ the last segment is not followed by any straight segment in the tree.

Together with all its descendants, an axis constitutes a branch. A branch is

itself an axial (sub)tree. Axes and branches are ordered. The axis originating

at the base of the entire plant has order zero. An axis originating as a lateral

segment of a parent axis of order n has order n+1. The order of a branch is

equal to the order of its lowest-order axis. The terminal node of this axis is

called the branch top.
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3.2 The bracketed string notation

To represent axial trees, Lindenmayer introduced a bracketed string nota-

tion [67, 68], which we present here according to [98]. An axial tree with edge

labels from alphabet V is represented by a word (string of symbols or letters)

w over alphabet VE = V [ f[; ]g:

w = x1[�1]x2[�2] : : : xn[�n]xn+1: (3.1)

It is assumed that the subwords x1; x2; : : : ; xn+1 2 V
� do not contain

brackets, and the subwords �1; �2; : : : ; �n 2 V
�

E are well nested. The word

x1x2 : : : xnxn+1 represents the main (i.e., zero-order) axis of w, with intern-

odes x1; x2; : : : ; xn and apex xn+1. The words �1; �2; : : : ; �n represent the

�rst-order branches of w. Each branch �i can be decomposed in a manner

similar to w, yielding a �rst-order axis and, possibly, second-order branches.

This decomposition can be carried out recursively. It is known that the de-

composition of a well-nested word w is unique, thus all terms introduced

above are unambiguous [57].

k

a

b
c

d e

f

g

h

i
j

l

m

the axis

an internode

first−order
branches

first−order
branch

second−order
branch

the apex

Fig. 3.2. Example of a branching structure. From [98].

For example, the axial tree shown in Figure 3.2 is represented by the

string:

w =

x1z}|{
ab [cd]|{z}

[�1]

x2z}|{
ef [g[h]i]| {z }

[�2]

x3z}|{
j [k]|{z}

[�3]

x4z}|{
lm : (3.2)

The subword abefjlm is the main axis of w; x1 = ab, x2 = ef and x3 = j are

the internodes, and x4 = lm is the apex. The subwords �1 = cd, �2 = g[h]i

and �3 = k denote the lateral branches. �1 and �3 have only apices, whereas

�2 has an internode g, an apex i, and a (second-order) lateral branch h.

It is often useful to characterize plant modules (and the relationships

between them) in more detail than is possible or practical using the labels
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alone. This can be accomplished be associating one or more numerical param-

eters with the bracketed string symbols. A symbol (letter) with associated

parameters is called a parametric letter, and a string of parametric letters is

called a parametric word. A method for expressing the geometry of branching

structures using parametric words is discussed next.

3.3 The turtle interpretation of bracketed strings

Bracketed strings were introduced to represent branching structure topology

(connections between the modules). To express the form manifested by such

properties as the orientation of branches and the length of internodes, the

strings must be assigned a geometric interpretation. In simple cases, geomet-

ric information may be external to the string. For example, rules for drawing

two-dimensional tree-like structures may state that the branches are issued

at a constant angle in alternating directions, to the left and right, and all

segments have the same length [49]. The branching angles might also vary

as a function of branch order [30]. Unfortunately, such simple rules, oper-

ating uniformly on the entire string, are not su�ciently exible to express

the variety of branching forms found in nature. Consequently, more versatile

techniques have been developed, based on explicit incorporation of geometric

information into the strings. Selected symbols, which may appear with or

without associated parameters, are reserved to represent geometric proper-

ties of the described structure. The one-to-one correspondence between the

string symbols and the modules of the described structure is lost, but details

of structure geometry can now be expressed. Turtle interpretation, intro-

duced by Szilard and Quinton [122], and extended by Prusinkiewicz [90, 91]

and Hanan [41, 42], is representative of this approach. The summary below

is based on [54, 91, 99].

The interpreted string is scanned sequentially from left to right, and its

consecutive symbols are interpreted as commands that maneuver a LOGO-

style turtle [1, 88] in three dimensions. The turtle is represented by its state,

which consists of turtle position and orientation in the Cartesian coordinate

system, as well as additional attributes, such as current color and line width.

The position is de�ned by a vector P, and the orientation is de�ned by three

vectorsH, L, and U, indicating the turtle's heading and the directions to the

left and up (Figure 3.3). These vectors have unit length, are perpendicular to

each other, and satisfy the equation H� L = U. Consequently, rotations of

the turtle can be expressed by the equation:�
H

0
L

0
U

0
�
=
�
H L U

�
R; (3.3)

where R is a 3 � 3 rotation matrix [23]. Speci�cally, rotations by angle �

about vectors U , L and H are represented by the matrices:

RU(�) =

2
4

cos� sin� 0

� sin� cos� 0

0 0 1

3
5 ; (3.4)
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H\
→

/
L

−+

U
→

→

^

&

Fig. 3.3. Controlling the turtle in three dimensions. From [101].

RL(�) =

2
4

cos� 0 � sin�

0 1 0

sin� 0 cos�

3
5 ; (3.5)

RH(�) =

2
4

1 0 0

0 cos� � sin�

0 sin� cos�

3
5 : (3.6)

The turtle is initially located at the origin of a Cartesian coordinate system,

with the heading vector H pointing in the positive direction of the y axis,

and the left vector L pointing in the negative direction of the x axis. The

turtle's actions and changes to its state are caused by interpretation of spe-

ci�c symbols, each of which may be followed by parameters. If one or more

parameters are present, the value of the �rst parameter a�ects the turtle's

state. If the symbol is not followed by any parameter, default values speci�ed

outside the L-system are used. The following list speci�es the basic set of

symbols interpreted by the turtle.

Symbols that cause the turtle to move and draw.

F (s); G(s) Move forward a step of length s and draw a line segment from

the original to the new position of the turtle.

f(s); g(s) Move forward a step of length s without drawing a line.

@O(r) Draw a sphere of radius r at the current position.

Symbols that control turtle orientation in space (Figure 3.3).

+(�) Turn left by angle � around the U axis. The rotation matrix is

RU(�).

�(�) Turn right by angle � around the U axis. The rotation matrix is

RU(��).

&(�) Pitch down by angle � around the L axis. The rotation matrix is

RL(�).

^(�) Pitch up by angle � around the L axis. The rotation matrix is

RL(��).

=(�) Roll left by angle � around theH axis. The rotation matrix isRH(�).
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n(�) Roll right by angle � around the H axis. The rotation matrix is

RH(��).

j Turn 180� around theU axis. This is equivalent to +(180) or�(180).

Symbols for modeling structures with branches.

[ Push the current state of the turtle (position, orientation and draw-

ing attributes) onto a pushdown stack.

] Pop a state from the stack and make it the current state of the turtle.

No line is drawn, although in general the position and orientation

of the turtle are changed.

Symbols for creating and incorporating surfaces.

f Start saving the subsequent positions of the turtle as the vertices of

a polygon to be �lled.

g Fill the saved polygon.

� X(s) Draw the surface identi�ed by symbol X , scaled by s, at the turtle's

current location and orientation. Such a surface is usually de�ned

as a bicubic patch [41, 91].

Symbols that change the drawing attributes.

#(w) Set line width to w, or increase the value of the current line width

by the default width increment if no parameter is given.

!(w) Set line width to w, or decrease the value of the current line width

by the default width decrement if no parameter is given.

; (n) Set the index of the color map to n, or increase the value of the

current index by the default color increment if no parameter is given.

; (n) Set the index of the color map to n, or decrease the value of the

current index by the default color decrement if no parameter is

given.

A sample string and its interpretation are shown in Figure 3.4.

The bracketed string notation can be applied, for example, to record the

structure of observed plants (plant mapping, [14, 82]). Most of its applications

are related, however, to the modeling and simulation of plant development

using L-systems.

4. Fundamentals of modeling using L-systems

4.1 Parametric D0L-systems

The foundations of the theory of L-systems have been presented in many

survey papers [70, 72, 73, 75, 76, 77] and books [46, 94, 99, 113, 116]. Con-

sequently, we focus on parametric L-systems, which, according to our expe-

rience, are particularly convenient for modeling applications.
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F(2)[−F[−F]F]/(137.5)F(1.5)[−F]F

x

y

z

1 2 30

1

2

3

4

1

2

3

5

137.5°

Fig. 3.4. Example of the turtle interpretation of a string. The default length of
lines represented by symbols F without a parameter is 1, and the default magnitude
of the angles represented by symbols + and � is 45�.

Parametric L-systems extend the basic concept of parallel rewriting from

strings of symbols to parametric words. This extension was �rst implemented

as a programming rather than a theoretical construct in the original simulator

based on L-systems, called CELIA (an acronym for CEllular Linear Iterative

Array simulator) [3, 45]. Early models relying on the use of parameters were

described by Baker and Herman [3] and Lindenmayer [69] (see also [46, Chap-

ter 18]). More recently, de�nitions of L-systems operating on symbols with

parameters were proposed independently by Shebell [119] (who pointed out

their relationship to attribute grammars [60]), Chien and J�urgensen [11], and

Prusinkiewicz and Hanan [42, 96, 95, 99]. Our presentation follows this last

approach.

Whenever no ambiguity is introduced by the biological connotation of

the term \module", we will use it as a synonym for a \letter with associated

parameters." We assume that letters belong to an alphabet V , and the param-

eters belong to the set of real numbers <. A module with letter A 2 V and

parameters a1; a2; :::; an 2 < is denoted by A(a1; a2; :::; an). Every module

belongs to the set M = V � <�, where <� is the set of all �nite sequences

of parameters. The set of all strings of modules and the set of all nonempty

strings are denoted by M� = (V �<�)� and M
+ = (V �<�)+, respectively.

The real-valued actual parameters appearing in words have a counterpart

in the formal parameters, which may occur in the speci�cation of L-system

productions. If � is a set of formal parameters, then C(�) denotes a logical

expression with parameters from �, and E(�) is an arithmetic expression

with parameters from the same set. Both types of expressions consist of formal

parameters and numeric constants, combined using the arithmetic operators
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+, �, �, =; the exponentiation operator ^, the relational operators <, <=, >,

>=, ==; the logical operators !, &&, jj (not, and, or); and parentheses (). The

expressions can also include calls to standard mathematical functions, such

as natural logarithm, sine, oor, and functions returning random variables.

The operation symbols and the rules for constructing syntactically correct

expressions are the same as in the C programming language [59]. For clarity

of presentation, however, we sometimes use Greek letters and symbols with

subscripts in print. Relational and logical expressions evaluate to zero for

false and one for true. A logical statement speci�ed as the empty string is

assumed to have value one. The sets of all correctly constructed logical and

arithmetic expressions with parameters from � are noted C(�) and E(�).

A parametric 0L-system is an ordered quadruple G = hV;�; !; P i, where:

{ V is the alphabet of the system,

{ � is the set of formal parameters,

{ ! 2 (V �<�)+ is a nonempty parametric word called the axiom,

{ P � (V ��
�)� C(�)� (V � E(�)�)� is a �nite set of productions.

We use symbols : and ! to separate the three components of a production:

the predecessor, the condition and the successor. Thus, a production in a

0L-system has the format

pred : cond! succ: (4.1)

For example, a production with predecessor A(t), condition t > 5 and suc-

cessor B(t+ 1)CD(t ^ 0:5; t� 2) is written as

A(t) : t > 5! B(t+ 1)CD(t ^ 0:5; t� 2): (4.2)

The digit \0" in the term \0L-system" means that the context of the prede-

cessor is not considered (in contrast to the context-sensitive 1L-systems and

2L-systems, described in Section 7.).

A production matches a module in a parametric word if the following

conditions are met:

{ the letter in the module and the letter in the production predecessor are

the same,

{ the number of actual parameters in the module is equal to the number of

formal parameters in the production predecessor, and

{ the condition evaluates to true if the actual parameter values are substi-

tuted for the formal parameters in the production.

A matching production can be applied to the module, creating a string of

modules speci�ed by the production successor. The actual parameter values

are substituted for the formal parameters according to their position. For

example, production (4.2) above matches a module A(9), since the letter A

in the module is the same as in the production predecessor, there is one actual

parameter in the module A(9) and one formal parameter in the predecessor
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A(t), and the logical expression t > 5 is true for t equal to 9. The result of

production application in this case is the parametric word B(10)CD(3; 7).

If a module a produces a parametric word � as the result of a production

application in an L-system G, we write a 7! �. Given a parametric word

� = a1a2:::am, we say that the word � = �1�2:::�m is directly derived from (or

generated by) � and write � =) � if and only if ai 7! �i for all i = 1; 2; :::;m.

A parametric word � is generated by G in a derivation of length n if there

exists a sequence of words �0; �1; :::; �n such that �0 = !, �n = � and

�0 =) �1 =) ::: =) �n.

When no production explicitly listed as a member of the production set

P matches a module in the rewritten string, we assume that an appropriate

identity production belongs to P and replaces this module by itself. Under this

assumption, a parametric 0L-system G = hV;�; !; P i is called deterministic

(noted D0L) if and only if for each module A(t1; t2; : : : ; tn) 2 V � <� the

production set includes exactly one applicable production.

An example of a parametric D0L-system is given below. The words ob-

tained in the �rst few derivation steps are shown in Figure 4.1.

! : B(2)A(4; 4)

p1 : A(x; y) : y < 3 ! A(x � 2; x+ y)

p2 : A(x; y) : y >= 3 ! B(x)A(x=y; 0)

p3 : B(x) : x < 1 ! C

p4 : B(x) : x >= 1 ! B(x� 1)

(4.3)

µ0: B(2) A(4,4)

µ2: B(0) B(3) A(2,1)

µ3: C B(2) A(4,3)

µ4: C B(1) B(4)A(1.33,0)

µ1: B(1) B(4) A(1,0)

Fig. 4.1. The initial sequence of strings generated by the parametric L-system
speci�ed in equation (4.3)

There is no substantial di�erence between 0L-systems that operate on

strings with or without brackets. Due to the interpretation of the brackets as

delimiters of branches, however, productions involving brackets are restricted

to the following forms:
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{ pred : cond ! succ, where pred 2 V � �
�, cond 2 C(�), succ 2 ((V �

E(�)� [ f[; ]g)�, and succ is well nested;

{ [! [ , or

{ ] ! ] .

The above restrictions reect, in particular, a biologically motivated as-

sumption that branches can be initiated only by individual parent modules

(c.f. [67, 68]).

4.2 Examples of parametric D0L-system models

This section presents selected examples that illustrate the operation of L-

systems with turtle interpretation and their application to the modeling of

plants. Many other examples are included in [42, 95, 99].

4.2.1 Fractal generation. Fractal curves provide a convenient means for

illustrating the basic principle of L-system operation [90, 94, 99, 100].

For example, the following L-system generates the well-known snowake

curve [81, 127].

! : F (1)� (120)F (1)� (120)F (1)

p1 : F (s)! F (s=3) + (60)F (s=3)� (120)F (s=3) + (60)F (s=3)
(4.4)

The axiom F (1) � (120)F (1) � (120)F (1) draws an equilateral triangle,

with edges of unit length. Production p1 replaces each line segment with a

polygonal shape, as shown at the top of Figure 4.2. Productions for symbols

+ and � are not listed, which means that the corresponding modules will

be replaced by themselves during the derivation. The same e�ect could have

been obtained by explicit inclusion of productions:

p2 : +(a)! +(a)

p3 : �(a)! �(a)
(4.5)

The axiom and the �gures obtained in the �rst three derivation steps are

shown at the bottom of Figure 4.2.

4.2.2 Simulation of development. The next L-system generates the de-

velopmental sequence of the stylized compound leaf model presented in Fig-

ure 4.3.

! : !(1)F (1; 1)

p1 : F (s) ! G(s)[�!(1)F (s)][+!(1)F (s)]G(s)!(1)F (s)

p2 : G(s) ! G(2 � s)

p3 : !(w) ! !(3)

(4.6)

The structure is built from two module types, apices F (represented by thin

lines) and internodesG (thick lines). In both cases the parameter s determines

the length of the line representing the module. An apex yields a structure
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�!

n = 0 n = 1 n = 2 n = 3

Fig. 4.2. Visual interpretation of the production for the snowake curve, and the
curve after n = 0, 1, 2, and 3 derivation steps

that consists of two internodes, two lateral apices, and a replica of the main

apex (production p1). An internode elongates by a constant scaling factor

(production p2). Production p3 is used to make the lines representing the

internodes wider (3 units of width) than the lines representing the apices (1

unit of width). The branching angle associated with symbols + and � is set

to 45� by a global variable outside the L-system.

This example shows that parallel rewriting, inherent in L-systems, cap-

tures simultaneous changes that take place in di�erent parts of an organism.

A derivation step corresponds to the progress of time over some interval. The

developmental sequence of structures obtained in consecutive derivation steps

can be considered the result of a discrete-time simulation of development.

Fig. 4.3. The productions and a developmental sequence illustrating the operation
of a compound leaf model
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4.2.3 Exploration of parameter space. Parametric L-systems provide a

convenient mathematical framework for exploring the range of forms that can

be captured by the same structural model with varying attributes (constants

in the productions). Such parameter space explorations motivated some of

the earliest computer simulations of biological structures: the models of sea

shells devised by Raup and Michelson [104, 105] and the models of trees

proposed by Honda [50] to study factors that determine overall tree shape.

(An L-system reproduction of Honda's results is presented in [99, Chapter

2].) Parameter space exploration may reveal an unexpected richness of forms

that can be produced by even the simplest models. For example, Figure 4.4

shows nine branching structures selected from a continuum generated by the

following parametric D0L-system:

! : A(100; w0)

p1 : A(s; w) : s >= min ! !(w)F (s)

[+(�1)=('1)A(s � r1; w � q ^ e)]

[+(�2)=('2)A(s � r2; w � (1� q) ^ e)]

(4.7)

The single non-identity production p1 replaces apex A by an internode F and

two new apices A. The angle values �1, �2, '1, and '2 determine the orien-

tation of these apices with respect to the subtending internode. Parameters s

and w specify internode length and width. The constants r1 and r2 determine

the gradual decrease in internode length that occurs while traversing the tree

from its base towards the apices. The constants w0, q, and e control the width

of branches. The initial stem width is speci�ed by w0 in the second parameter

of the axiom module A. For e = 0:5, the combined area of the descendant

branches is equal to the area of the mother branch, as postulated by Leonardo

da Vinci [81, page 156] (see also [80, pages 131{135]). The value q speci�es

the di�erences in width between descendant branches originating at the same

vertex. Finally, the condition prevents formation of branches with length less

then the threshold value min. The values of constants corresponding to each

structure are collected in Table 4.1. The �nal column headed n indicates the

number of derivation steps.

Table 4.1. The values of constants used to generate Figure 4.4

Figure r1 r2 �1 �2 '1 '2 w0 q e min n

a .75 .77 35 -35 0 0 30 .50 .40 0.0 10
b .65 .71 27 -68 0 0 20 .53 .50 1.7 12
c .50 .85 25 -15 180 0 20 .45 .50 0.5 9
d .60 .85 25 -15 180 180 20 .45 .50 0.0 10
e .58 .83 30 15 0 180 20 .40 .50 1.0 11
f .92 .37 0 60 180 0 2 .50 .00 0.5 15
g .80 .80 30 -30 137 137 30 .50 .50 0.0 10
h .95 .75 5 -30 -90 90 40 .60 .45 25.0 12
i .55 .95 -5 30 137 137 5 .40 .00 5.0 12
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a b c

d e f

g h i

Fig. 4.4. Sample structures generated by a parametric D0L-system with di�erent
values of constants
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4.2.4 Modeling mesotonic and acrotonic structures. In spite of their

apparent diversity, the structures generated by L-system (4.7) share a com-

mon developmental pattern: in each derivation step, every apex gives rise to

an internode terminated by a pair of new apices. This is a simple instance

of subapical branching, a common developmental pattern in plants, in which

new branches can be initiated only near the apices of the existing axes. As

a consequence of this pattern, the lower branches, being created �rst, have

more time to develop than the branches further up, and a basitonic structure

(more developed near the base than near the top) results (Figure 4.5a). In

a b c

Fig. 4.5. Schematic representation of a basitonic (a), mesotonic (b), and acrotonic
(c) branching pattern. From [98].

nature, however, one also �nds mesotonic and acrotonic structures, in which

the most developed branches are located near the middle or the top of the

mother branch (Figures 4.5 b and c). As observed by Frijters and Linden-

mayer [31], and formalized by Prusinkiewicz and Kari [98], arbitrarily large

mesotonic and acrotonic structures cannot be generated by non-parametric

deterministic 0L-systems with subapical branching. In contrast, parametric

D0L-systems can generate such structures, as demonstrated by the following

model, proposed by L�uck, L�uck, and Bakkali [79].

! : �(�1=2)=(180)F (1; 0; v0)

p1 : F (s; k; v) : v > 0! G(s)[+(�2)F (s � r2; 0; k)]

=(180) + (�1)F (s � r1; k + 1; v � 1)

(4.8)

Like L-system (4.6), L-system (4.8) operates on two types of segments: apices

F and internodes G. Their length is controlled by parameter s. The segments

created in consecutive derivation steps are shortened by factors r1 and r2 with

respect to their parents, as in L-system (4.7). The remaining two parameters

of the apices specify:

{ the current number k of segments in the axis to which the apex belongs,

and

{ the growth potential or vigor v of the apex, de�ned as the number of

straight segments that can be appended to the current axis (if the deriva-

tion is su�ciently long).
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Except for the apex of the main axis, which has an initial vigor v0 determined

by the axiom !, the vigor of the apices is determined by production p1. Specif-

ically, a new lateral apex is assigned an initial vigor value v equal to the or-

dering number k of its supporting segment in the mother axis. Consequently,

lateral branches positioned further away from the base of their mother axis

have relatively larger initial values of v, and may develop more extensively

than those close to the base. Two examples of the resulting structures are

shown in Figure 4.6. In case (a), the upper branches are still developing, and

a b

Fig. 4.6. A juvenile mesotonic structure (a) and a mature acrotonic structure (b)
generated using L-system (4.8)

the resulting structure is mesotonic. In case (b), all branches have already

reached their full growth potential, and the resulting structure is acrotonic.

The values of the constants corresponding to each structure are collected in

Table 4.2. For better appearance, additional rules, not shown in L-system

(4.8), were used to de�ne the width of segments and to capture their curving

near branching points.

Table 4.2. The values of constants used to generate Figure 4.6

Figure r1 r2 �1 �2 v0 n

a .98 .80 8 35 11 10
b .98 .80 8 35 6 21
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5. Random factors in development

5.1 The role of randomness in the description of development

In the previous section, developmental processes were regarded as determin-

istic phenomena and captured by L-systems that always produce the same

developmental sequence. However, random factors often intervene in the con-

struction of plant models. Two cases can be distinguished:

{ Details of the mechanisms that control the development and resulting ar-

chitecture are not known, and only statistical data are available for model

construction. For example, such data may express the distribution of in-

ternode lengths and branching angles, probability of branching, or cor-

relation between bud position on a branch and its developmental fate.

Statistical descriptions of this nature are widely reported in the botani-

cal literature and provide essential input for some modeling methods (for

instance, see [7, 53, 18, 106, 130]).

{ Physiological mechanisms responsible for the control of developmental pro-

cesses are known or have been postulated, but it is convenient to capture

their average outcome rather than the details of operation in models con-

structed at a high level of abstraction. For example, several plausible mech-

anisms for preventing the overcrowding of branches in a tree have been

described in the literature [8, 51], yet a statistical model that captures

the density of branches without simulating the controlling processes is also

useful (Sections 5.3 and 8.3.2).

Several stochastic extensions of L-systems have been proposed in the lit-

erature [21, 56, 87, 133] and applied to express developmental plant mod-

els [87, 91, 94]. The de�nition given below extends previous concepts to

parametric L-systems.

5.2 Stochastic 0L-systems

A parametric stochastic 0L-system is an ordered quintuplet:

G� = hV;�; !; P; �i: (5.1)

The alphabet V , set of formal parameters �, axiom ! and set of productions

P are de�ned as for parametric D0L-systems (Section 4.1). Function � : P !

E(�), assigns an arithmetic expression returning a nonnegative number called

the probability factor to each production in P . A production in a stochastic

L-system is written as

pred : cond! succ : prob; (5.2)

where pred, cond and succ play the same role as in D0L-systems (Equa-

tion 4.1), and prob is an expression returning the probability factor.
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If P̂ � P is the set of productions matching a given module A(t1; t2; : : : ; tn)

in the rewritten string, then the probability prob(pk) of applying a particular

production pk 2 P̂ to this module is equal to:

prob(pk) =
�(pk)P
pi2P̂

�(pi)
(5.3)

In general, this probability is not a constant associated with a production,

but may depend on the parameter values in the rewritten module.

We will call the derivation � =) � a stochastic derivation in G� if for

each occurrence of a module a in the word � the probability of applying

production pk with the predecessor a is given by Equation (5.3).

According to this de�nition, di�erent productions with the same prede-

cessor may be applied to di�erent occurrences of the same module in one

derivation step.

An example of a stochastic L-system is given below.

! : A(1)B(3)A(5)

p1 : A(x)! A(x+ 1) : 2

p2 : A(x)! B(x� 1) : 3

p3 : A(x) : x > 3! C(x) : x

p4 : B(x)! B(2 � x)A(x) : 1

(5.4)

Productions p1, p2, and p3 replace module A(x) by A(x + 1), B(x � 1), or

C(x). If the value of parameter x is less then or equal to 3, only the �rst two

productions match A(x). The probabilities of applying each production are:

prob(p1) = 2=(2+3) = 0:4, and prob(p2) = 3=(2+3) = 0:6. If parameter x is

greater then 3, production p3 also matches the module A(x), and the prob-

ability of applying each production depends on the value of x. For example,

if x is equal to 5, these probabilities are: prob(p1) = 2=(2 + 3 + 5) = 0:2,

prob(p2) = 3=(2 + 3 + 5) = 0:3, and prob(p3) = 5=(2 + 3+ 5) = 0:5. Produc-

tion p4 replaces a module B(x) by the pair of modules B(2 � x)A(x). Taking

all these factors into account, the �rst derivation step in L-system (5.4) may

have the form:

A(1)B(3)A(5) =) A(2)B(6)A(3)C(5) (5.5)

where production p1 was applied to the module A(1), and production p3 to

the module A(5) as a result of random choice.

5.3 A stochastic tree model

Many simple models of branching structures, for example those discussed

in Sections 4.2.3 and 4.2.2, produce an exponentially increasing number of

branch segments. Using morphometric data of young cottonwood (Populus

deltoides) and observations of the tropical tree Tabebuia rosea, Borchert and

Slade [9] showed that in reality this exponential increase is not sustained
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beyond the early stages of tree development. As soon as a tree surpasses

a certain, relatively small size, the rate of branching decreases. Below we

present a stochastic model of a hypothetical tree, based on the analysis by

Borchert and Slade. The material in this section includes an edited version

of [97].

The model is constructed to meet the following botanically justi�able

postulates:

{ The development begins in season k = 1 with the formation of a single

nonbranching shoot (branch segment bearing leaves).

{ In each subsequent growth season, new shoots grow from the buds situated

near the distal ends of last year's segments. There is a constant, bmax > 1,

that determines the maximum bifurcation ratio (i.e., the maximum number

of shoots originating at the mother branch).

{ All branch segments have approximately the same length l, independent of

their position and the age of the tree, and reach out forming a hemispherical

crown.

{ Leaves are produced on the terminal (current year) branch segments, thus

forming a hemispherical layer of leaves near the perimeter of the crown.

There is a constant, �min, that determines the minimum area of leaves

that must be exposed to light coming from the outside in order to create

a viable shoot.

According to these postulates, the radius of a tree crown after k � 1 growth

seasons is limited byRk = lk. A hemispherical crown of this radius has surface

area Sk = 2�R2
k = 2�l2k2, and this value determines the upper bound on

the crown area exposed to direct light. The number Nk+1 of branch segments

added to the tree in year k+1 is limited, on the one hand, by the number of

last year's segments Nk multiplied by the maximum bifurcation ratio bmax,

and on the other hand, by the maximum number of shoots vk+1 = Sk+1=�min

that may be produced without excessively obscuring each other. Thus,

Nk+1 = minfbmaxNk; vk+1g = minfbmaxNk;
2�l2

�min

(k + 1)2g: (5.6)

Let us assume that the minimum leaf area exposed to light per shoot is small

compared to the crown area, �min � 2�l2. In a young tree (during the �rst

few growth seasons), the maximum number of new shoots does not su�ce to

cover the available crown surface (bmaxNk < vk+1), and the number of new

shoots will increase exponentially with the age of the tree: Nk+1 = bmaxNk =

b
k
max. Since the crown area is proportional only to the square of the age of the

tree, at some age t the potential number of new shoots will exceed the number

that can be su�ciently exposed to direct light: bmaxNt � vt. From then on,

branching will be limited by the crown area, with the average bifurcation

ratio bk at age k � t equal to:

bk =
Nk+1

Nk

=
2�l2(k + 1)2=�min

2�l2k2=�min

= 1 +
2k + 1

k2
: (5.7)
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Di�erent branching patterns may satisfy this general formula. For example,

if each segment from the previous year gives rise to either one or two new

shoots, the fraction of segments supporting two shoots will be equal to:

Nk+1 �Nk

Nk

=
2k + 1

k2
: (5.8)

The stochastic L-system below has been constructed to satisfy this equa-

tion.

! : FA(1)

p1 : A(k)! =(')[+(�)FA(k + 1)]� (�)FA(k + 1) :

minf1; (2k + 1)=k2g

p2 : A(k)! =(')B � (�)FA(k + 1) :

maxf0; 1� (2k + 1)=k2g

(5.9)

Generation of the tree begins with a single internode F terminated by apex

A(1). The parameter of the apex acts as a counter of derivation steps. Pro-

duction p1 describes the creation of two new branches, while production p2

describes the production of a branch segment and a dormant bud B. Proba-

bilities of these events are equal to p = minf1; (2k + 1)=k2g, and q = 1� p,

respectively. This corresponds to the assumption that the departure from

exponential bifurcation occurs in step k = 3, and in subsequent steps the

probability of bifurcation is determined by Equation (5.8). Figure 5.1 shows

Fig. 5.1. Sample tree structures generated using the stochastic L-system (5.9).
From [97].

side views of three sample trees after 18 derivation steps. The branching an-

gles, equal to ' = 90�; � = 32�, and � = 20�, yield a sympodial branching

structure (new shoots do not continue the growth direction of the preceding

segments). This structure is a representative of Leeuwenberg's model of tree

architecture identi�ed by Hall�e et al. [39], although no attempt to capture a

particular tree species was made.
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6. Life, death, and reproduction

The L-systems considered so far were of the propagating type. Each mod-

ule, once created, continued to exist inde�nitely or gave rise to one or more

children, but never disappeared without a trace. The natural processes of

plant development, however, often involve the programmed death of selected

modules and their removal from the resulting structures. We consider these

phenomena in the present section.

6.1 Non-propagating L-systems

The original approach to simulating module death was to use non-propagating

L-systems, which incorporate erasing productions [46]. In the context-free

case these productions have the form A ! ", where " denotes the empty

string. Intuitively, module A is replaced by \nothing" and is removed from

the structure. Erasing productions can faithfully simulate the disappearance

of individual modules placed at the extremities of the branching structure

(that is, not followed by other modules). For example, in the developmental

sequence shown in Figure 6.1 (described in detail in [93]), erasing productions

have been used to model the fall of petals.

Fig. 6.1. Simulated development of a bluebell ower (Campanula rapunculoides).
From [93].

6.2 L-systems with a cut symbol

The modeling task becomes more di�cult when an entire structure, such as

a branch, is shed by a plant. The plant can control this process by abscission,

that is, the development of a pithy layer of cells that weakens the stem of

a branch at its base. Obviously, abscission is represented more faithfully by

cutting a branch o� than by simultaneously erasing all of its modules. In
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order to simulate shedding, Hanan [42] extended the formalism of L-systems

with the \cut symbol" %, which causes the removal of the remainder of the

branch that follows it. For example, in the absence of other productions, the

derivation step given below takes place:

a[b%[cd]e[%f ]]g[h[%i]j]k =) a[b]g[h[]j]k (6.1)

A simple example of an L-system incorporating the cut symbol is given below:

! : A

p1 : A ! F (1)[�X(3)B][+X(3)B]A

p2 : B ! F (1)B

p3 : X(d) : d > 0 ! X(d� 1)

p4 : X(d) : d == 0 ! U%

p5 : U ! F (0:3)

(6.2)

According to production p1, in each derivation step the apex of the main axis

A produces an internode F of unit length and a pair of lateral apices B. Each

apex B extends a branch by forming a succession of internodes F (production

p2). After three steps from branch initiation (controlled by production p3),

production p4 inserts the cut symbol % and an auxiliary symbol U at the base

of the branch. In the next step, the cut symbol removes the branch, while

symbol U inserts a marker F (0:3) indicating a \scar" left by the removed

branch. The resulting developmental sequence is shown in Figure 6.2. The

Fig. 6.2. A developmental sequence generated by the L-system speci�ed in Equa-
tion 6.2. The images shown represent derivation steps 2 through 9.

initial steps capture the growth of a basitonic structure (developed most

extensively at the base). Beginning at derivation step 6, the oldest branches

are shed, creating an impression of a tree crown of constant shape and size

moving upwards. The crown is in a state of dynamic equilibrium: the addition

of new branches and internodes at the apices is compensated by the loss of

branches further down.
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Fig. 6.3. A model of the date palm (Phoenix dactylifera). This image was created
using an L-system with the general structure speci�ed in Equation 6.2.
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The state of dynamic equilibrium can be easily observed in the develop-

ment of palms, where new leaves are created at the apex of the trunk while

old leaves are shed at the base of the crown (Figure 6.3). Since both processes

take place at the same rate, an adult palm carries an approximately constant

number of leaves. This phenomenon has an interesting physiological explana-

tion: palms are unable to gradually increase the diameter of their trunk over

time, thus the ow of water and nutrients through the trunk can support

only a crown of constant size.

6.3 Fragmentation

In the case of falling leaves and branches, the parts separated from the main

structure die. Separation of modules can also lead to the asexual reproduction

of plants. This phenomenon takes place, for example, when plants propagate

through rhizomes, or stems that grow horizontally below the ground and bear

buds which produce vertical shoots. The rhizome segments (internodes) have

a �nite life span, and rot progressively from the oldest end, thus dividing the

original plant into independent organisms.

A model of the propagation of rhizomes in Alpinia specioza, a plant of the

ginger family, was proposed by Bell, Roberts, and Smith [7]. A simulation

carried out using an L-system reimplementation of this model is shown in

Figure 6.4. All rhizome segments are assumed to have the same length. Each

year (one derivation step in the simulation), an apex produces one or two

daughter segments. The decision mechanism is expressed using stochastic

productions. The segments persist for seven years from their creation, then

die o�, thereby dividing the plant.

In the model shown in Figure 6.4, the death of segments has been captured

using productions of type F ! f , which replace \old" segments F by invisible

links (turtle movements) f (c.f. Section 3.3). This replacement guarantees

that the separated organisms will maintain their relative positions. Although

the e�ect is visually correct, maintaining any type of connection between

the separated plants is arti�cial and of limited practical use. For instance,

it is inappropriate for expressing such phenomena as the parting of free-

oating water plants after separation [107]. An alternative solution may be

to modify the notion of L-systems so that they operate on sets of words, each

representing an individual plant. A separation of structures could be then

expressed as a division of a word into two or more independent subwords. The

notion of L-systems with fragmentation, de�ned by Rozenberg, Ruohonen,

and Salomaa for strings without brackets [112, 115] (see also [113, pages 78{

82]) may o�er a starting point for a future extension applicable to branching

structures as well.
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Fig. 6.4. Development of the rhizomatous system of Alpinia speciosa. The images
show consecutive stages of simulation generated in 6 to 13 derivation steps. Line
width indicates the age of the rhizome segments. Each segment dies and disappears
seven steps after its creation.

7. Development controlled by endogenous mechanisms

7.1 Information ow in growing plants

Communication between modules plays a crucial role in the control of devel-

opmental processes in plants. Lindenmayer distinguished two forms of com-

munication: lineage (also called cellular descent), which represents informa-

tion transfer from a parent module to its children, and interaction, which

represents information transfer between coexisting modules [67, 73]. In the

latter case, the information exchange may be endogenous (between adjacent

modules of the structure, as de�ned by its topology), or exogenous (through

the space embedding the structure) [92]. The ow of water, hormones, or

nutrients through the vascular system of a plant are examples of endoge-

nous information transfer, whereas the shading of lower branches by upper

ones is a form of exogenous transfer. Referring speci�cally to the initiation

of branches, Bell [6] further clari�ed these distinctions as follows:

{ In blind patterns, based on lineage, branch initiation is controlled by the

parent module independent of the remainder of the structure and the en-

vironment in which this structure develops;

{ In self-regulatory patterns, based on endogenous interaction, branch ini-

tiation is controlled potentially by the whole developing structure, using

communication via the existing components of this structure;
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{ In sighted patterns, based on exogenous interaction, the initiation of a new

branch is inuenced by factors detected by its parent in the immediate

geometric neighborhood, such as proximity of other organisms or parts of

the same organism.

Productions in 0L-systems are context-free (applicable irrespective of the

context in which the predecessor appears), and therefore can only express de-

velopmental mechanisms controlled by lineage. However, by making produc-

tion application depend on the predecessor's context, endogenous interaction

can be captured as well. The conceptual elegance and expressive power of the

resulting context-sensitive L-systems are among the most important assets of

L-systems in plant modeling applications.

7.2 Context-sensitive L-systems

Various context-sensitive extensions of L-systems have been proposed and

thoroughly studied in the past (for example, see [46, 78, 116]). Below we

focus on bracketed context-sensitive L-systems, which operate on strings of

modules describing branching structures [42, 95, 99]. In the non-stochastic

case, their productions have the format:

lc < pred > rc : cond! succ; (7.1)

where symbols < and > separate the three components of the predecessor: a

string of modules without brackets lc called the left context, a module pred

called the strict predecessor, and a well-nested bracketed string of modules

rc called the right context. The remaining components of the production are

the condition cond and the successor succ, de�ned as for (bracketed) D0L-

systems.

The key new mechanism introduced in context-sensitive L-systems is the

process of matching the predecessor of a production to a given module in

the rewritten string. We will describe this process in terms of axial trees

(c.f. Section 3.), assuming initially that modules (letters) have no associated

parameters. As shown in Figure 7.1a, the strict predecessor of a production

is a segment situated between a path speci�ed by the left context, and an

axial tree speci�ed by the right context. When no parameters are present, a

production p matches a given occurrence of segment S in an axial tree T if

the following conditions are met:

{ the strict predecessor pred is the symbol S,

{ the left context lc represents a path in T terminating at the beginning of

S, and

{ the right context rc represents a subtree of T originating at the end of S.

A matching production can be applied by replacing S with the axial tree

speci�ed as the production successor (Figure 7.1b).
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Fig. 7.1. The predecessor of a context-sensitive tree production (a) matches edge
S in a tree T (b). From [101]

When a bracketed string representation is used to express the produc-

tions and rewritten structure, the process of matching predecessors to mod-

ules in bracketed context-sensitive L-systems cannot be reduced to simple

string matching, because the bracketed string representation of axial trees

does not preserve segment neighborhood. Consequently, the context match-

ing procedure may need to skip over symbols representing branches or branch

portions. For example, Figure 7.1 indicates that a production with the pre-

decessor BC < S > G[H ]M can be applied to symbol S in the string

ABC[DE][SG[HI [JK]L]MNO]; (7.2)

which involves skipping over symbols [DE] in the search for left context, and

I [JK]L in the search for right context.

In the parametric case, a production that matches an occurrence of the

module S in a rewritten structure must satisfy additional conditions, similar

to those de�ned for parametric 0L-systems:

{ the number of formal parameters in each module in the predecessor (i.e.,

in the strict predecessor and the contexts) is the same as the number of

actual parameters in the corresponding modules of the tree T , and

{ the condition evaluates to true if the actual parameter values are substi-

tuted for the formal parameters in the production.

For example, the parametric context-sensitive production:

A(x) < B(y) > C[D(z)]F : x+y+z > 10! U((x+y)=2)[V ((y+z)=2)] (7.3)
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can be applied to the module B(5) appearing in a parametric word

� � �A(4)B(5)C[D(6)E]F � � � (7.4)

because the letters and the numbers of parameters in all modules involved

in comparisons coincide, and the condition 4 + 5 + 6 > 10 is true. As a

result of the production application, the module B(5) will be replaced by

the branching structure U(4:5)[V (5:5)]. Naturally, the remaining modules of

the rewritten string may also be replaced (by other productions) in the same

derivation step.

Productions in 2L-systems use context on both sides of the strict prede-

cessor. 1L-systems are a special case of 2L-systems in which context appears

only on one side of the productions. (Consistent with this convention, no

context is considered in 0L-systems.) Using biological terminology, the left

context expresses acropetal information ow (from the base of a branching

structure up towards the apices) whereas the right context expresses basipetal

ow (from the apices down towards the root). For example, the following 1L-

system simulates propagation of an acropetal signal in a branching structure

that does not grow:

ignore : +�

! : Fb[+Fa]Fa[�Fa]Fa[+Fa]Fa
p1 : Fb < Fa ! Fb

(7.5)

Symbol Fb represents a segment already reached by the signal, while Fa

represents a segment that has not yet been reached. The \ignore" statement

indicates that the geometric symbols + and � should be considered as non-

existent while context matching. Images representing consecutive stages of

signal propagation (corresponding to consecutive words generated by the L-

system under consideration) are shown in Figure 7.2a.

The propagation of a basipetal signal can be simulated in a similar way

(Figure 7.2b), using the following L-system:

ignore : +�

! : Fa[+Fa]Fa[�Fa]Fa[+Fa]Fb
p1 : Fa > Fb ! Fb

(7.6)

The asymmetry between acropetal signal propagation (where the signal

enters the lateral branches) and basipetal propagation (where it does not

enter these branches), apparent in Figure 7.2, is a consequence of segment

orientation in rooted trees. According to this orientation, there exists a di-

rected path from the root to any of the apices, but there is no directed path

from one apex to another (Section 3.1).
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Fig. 7.2. Signal propagation in a branching structure: (a) acropetal, (b) basipetal.
From [101].

7.3 Examples

Developmental processes based on endogenous information ow can be ana-

lyzed, modeled, and categorized in terms of the following features.

{ Direction of information ow. As described above, the two basic cases are

acropetal and basipetal ow. Information may also be exchanged between

neighboring modules in a symmetric fashion (without a preferred direc-

tion), for example when the substances carrying the information are trans-

ported by di�usion. One model may include several signals, propagating in

the same or di�erent directions simultaneously or one after another.

{ The processes taking place at branching points. A branching point can be

likened to a communications hub, where the information coming from sev-

eral sources is combined, processed, and redistributed in particular direc-

tions. Di�erent variants of these processes may occur.

{ Granularity of information. The information exchanged between the mod-

ules may represent discrete signals (for example, the presence of a hormone

triggering the transformation of a bud to a ower), or quanti�able values

(for example, the concentration of photosynthates produced by leaves).

Several possibilities are illustrated by the models given below. We begin

with a simple model in which a directional (acrotonic) signal is uniformly

distributed at each branching point towards all supported segments.
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7.3.1 Development of a mesotonic structure. As outlined in Sec-

tion 4.2.4, arbitrarily large mesotonic and acrotonic structures cannot be

generated using deterministic 0L-systems without parameters [98]. The pro-

posed mechanisms for modeling these structures can be divided into two cat-

egories: those using parameters to characterize the growth potential or vigor

of individual apices, such as L-system (4.8), and those postulating control of

development by signals [30, 55]. The following L-system simulates the devel-

opment of the mesotonic structure shown in Figure 7.3 using an acropetal

(upward moving) signal.

Fig. 7.3. Development of a mesotonic branching structure controlled by an
acropetal signal. Wide lines indicate the internodes reached by the signal. The
stages shown correspond to derivation lengths 12, 24, 36, 48, and 60.

#de�ne m 3 = � plastochron of the main axis � =

#de�ne n 4 = � plastochron of the branch � =

#de�ne u 4 = � signal propagation rate in the main axis � =

#de�ne v 2 = � signal propagation rate in the branch � =

ignore : +�=

! : S(0)F (1; 0)A(0)

p1 : A(i) : i < m� 1! A(i+ 1)

p2 : A(i) : i == m� 1! [+(60)F (1; 1)B(0)]F (1; 0)=(180)A(0)

p3 : B(i) : i < n� 1! B(i+ 1)

p4 : B(i) : i == n� 1! F (1; 1)B(0)

p5 : S(i) : i < u+ v ! S(i+ 1)

p6 : S(i) : i == u+ v ! "

p7 : S(i) < F (l; o) : (o == 0)&&(i == u� 1)! #F (l; o)!S(0)

p8 : S(i) < F (l; o) : (o == 1)&&(i == v � 1)! #F (l; o)!S(0)

p9 : S(i) < B(j)! "

(7.7)



Visual models of plant development 35

L-system (7.7) operates under the assumption that the context-sensitive pro-

duction p9 takes priority over p3 or p4. The axiom ! describes the initial

structure as an internode F terminated by an apex A. A signal S is placed

at the base of this structure. According to productions p1 and p2, the apex

A periodically produces a lateral branch and adds an internode to the main

axis. The period (called the plastochron of the main axis) is controlled by the

constant m. Productions p3 and p4 describe the development of the lateral

branches, where new segments F are added with plastochron n. Productions

p5 to p8 describe the propagation of the signal through the structure. The

signal propagation rate is u in the main axis, and v in the branches. Produc-

tion p9 removes the apex B when the signal reaches it, thus terminating the

development of the corresponding lateral branch. Figure 7.3 shows that, for

the values of plastochrons and signal propagation rates speci�ed be the #de-

�ne statements, the lower branches have less time to grow than the higher

branches, and a mesotonic structure develops as a result.

A similar mechanism, based on the pursuit of apices by acropetal signals,

has been proposed to model basipetal owering sequences [55, 74, 99]. These

sequences are characterized by the appearance of the �rst ower near the top

of a plant, and a subsequent downward propagation of the owering zone.

7.3.2 Attack of a plant by an insect. More complex information ow

is considered in the next example. A hypothetical insect explores a growing

branching structure and feeds on its apices. The insect always moves along

the branches (i.e., it does not jump or drop from one branch to another)

and therefore can be treated as an endogenous signal. The insect's behavior

at a branching point depends on its direction of motion and the state of the

branching point, as explained in Figure 7.4. In a nutshell, the insect attempts

to traverse the entire developing structure using the depth-�rst strategy. A

a b c d

U

UD

DL L R R

Fig. 7.4. Insect's behavior at a branching point. An upward-moving insect U that
approaches a branching point marked L is directed to the left daughter branch (a).
A downward moving insect D that approaches a branching point marked L changes
this marking to R, returns to state U , and enters the right branch (b and c). A
downward moving insect D approaching a branching point marked R continues its
downward motion (d).
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context-sensitive L-system that integrates plant growth with the behavior of

the insect is given below.

#de�ne lL 3 /* length of the left branch */

#de�ne lR 5 /* length of the right branch */

#de�ne d 5 /* plastochron */

#de�ne w 40 /* delay */

! : W (w)FA(lL; d)

p1 : F < A(n;m) : m > 0 ! A(n;m� 1)

p2 : F < A(n;m) : n > 0 && m == 0 ! FA(n� 1; d)

p3 : F < A(n;m) : n == 0 && m == 0

! L[+FA(lL; d)][�FA(lR; d)]

p4 : W (t) : t > 0 ! W (t� 1)

p5 : W (t) : t == 0 ! U

p6 : U < F ! FU

p7 : U ! "

p8 : UL < + ! +U

p9 : U < A(n;m) ! D

p10 : F > D ! DF

p11 : D ! "

p12 : L > [+D] ! UR

p13 : UR < � ! �U

p14 : R > [ ][�D] ! D

(7.8)

Productions p1 to p3 describe the development of a simple branching struc-

ture. Starting with a single axis speci�ed by axiom !, the apex A appends a

sequence of branch segments F to the current axis (productions p1 and p2),

then initiates a pair of new lateral apices (production p3) that recursively

repeat the same pattern. Parameter m is used to count the derivation steps

between the creation of consecutive segments F . Parameter n determines the

remaining number of segments to be produced before the next branching oc-

curs. The total number of segments in an axis is de�ned by constants lL (for

the main axis and the branches issued to the left) and lR (for the branches

issued to the right). A newly created branching point is marked by symbol

L (production p3).

After a delay of w steps introduced by production p4, production p5 places

an insect U at the base of the branching structure. This insect moves upwards,

one branch segment per derivation step (productions p6 and p7), until it en-

counters the branching point marker L. The insect is then directed to the

left daughter branch (production p8). After crossing a number of segments

and, possibly, further branching points, the insect eventually reaches an apex

A. As speci�ed by production p9, this apex is then removed from the struc-

ture, thus stopping further growth of its axis, and the state of the insect is

changed from U (moving upwards) to D (moving downwards). The downward
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Fig. 7.5. Simulation of the development of a plant attacked by an insect
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movement is simulated by productions p10 and p11. Returning to a branching

point marked L, the insect changes this marking to R to indicate that the

left branch has been already explored, reverts its own state to U , and enters

the right branch (productions p12 and p13). Coming back from that branch,

the insect continues its downward movement (production p14) until it reaches

another branching point marked L and enters an unexplored right branch, or

until it completes the traversal of the entire structure at its base.

A sequence of images obtained using a straightforward extension of L-

system (7.8) is shown in Figure 7.5. In this case, the insect feeds on the

apices of a three-dimensional structure, and a branch that no longer carries

any apices wilts.

Similar models can be constructed assuming di�erent traversing and feed-

ing strategies for one or many insects (which may interact with each other).

Prospective applications of such models include simulation studies of insects

used for weed control and of the impact of insects on crop plants [109, 110].

7.3.3 Development controlled by resource allocation. In the previous

examples, discrete information was transferred between the modules of a de-

veloping structure. A signal (or insect) was either present or absent at any

particular point, and a�ected the structure in an \all-or-nothing" manner, by

removing the apices at the ends of branches. In nature, however, developmen-

tal processes are often controlled in a more modulated way, by the quantity

of substances (resources) exchanged between the modules. For example, the

growth of plants depends on the amount of water and minerals absorbed

by the roots and carried acropetally, and by the amount of photosynthates

produced by the leaves and transported basipetally. An early developmental

model of branching structures making use of quantitative information ow

was proposed by Borchert and Honda [8]. Below we restate the essence of

this model using the formalism of L-systems, then we extend it to simulate

interactions between the shoot and the roots in a growing plant.

Borchert and Honda postulated that the development of a branching

structure is controlled by a ow or ux of substances, which propagate from

the base of the structure towards the apices and supply them with materi-

als needed for growth. When the ux reaching an apex exceeds a prede�ned

threshold value, the apex bifurcates and initiates a lateral branch; otherwise

it remains inactive. At branching points the ux is distributed according to

the types of the supported internodes (straight or lateral) and the numbers

of apices in the corresponding branches. These numbers are accumulated by

messages that originate at the apices and propagate towards the base of the

plant. Thus, development is controlled by a cycle of alternating acropetal and

basipetal information ow.

An L-system that implements these mechanisms is given below.
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#de�ne �1 10 /* branching angle - straight segment */

#de�ne �2 32 /* branching angle - lateral segment */

#de�ne �0 17 /* initial ux */

#de�ne � 0:89 /* controls input ux changes */

#de�ne � 0:7 /* ux distribution factor */

#de�ne vth 5:0 /* threshold ux for branching */

ignore: +�=

! : N(1)I(0; 2; 0; 1)A

p1 : N(k) < I(b;m; v; c) : b == 0 && m == 2

! I(b; 1; �0 � 2 ^ (k � 1) � (� ^ k); c)

p2 : N(k) > I(b;m; v; c) : b == 0 && m == 2! N(k + 1)

p3 : I(b;m; v; c) < A : m == 1 && v > vth

! =(180)[�(�2)I(2; 2; v � (1� �); 1)A]

+(�1)I(1; 2; v � �; 1)A

p4 : I(b;m; v; c) > A : m == 1 && v <= vth ! I(b; 2; v; c)

p5 : I(bl;ml; vl; cl) < I(b;m; v; c) : ml == 1 && b == 1

! I(b;ml; vl � vl � (1� �) � ((cl � c)=c); c)

p6 : I(bl;ml; vl; cl) < I(b;m; v; c) : ml == 1 && b == 2

! I(b;ml; vl � (1� �) � (c=(cl � c)); c)

p7 : I(b;m; v; c) > [I(b2;m2; v2; c2)]I(b1;m1; v1; c1) :

m == 0 && m1 == 2 && m2 == 2

! I(b; 2; v; c1 + c2)

p8 : I(b;m; v; c) : m == 1! I(b; 0; v; c)

p9 : I(bl;ml; vl; cl) < I(b;m; v; c) : ml == 2 && m == 2

! I(b; 0; v; c)

(7.9)

This L-system operates on three types of modules: apices A, internodes I ,

and an auxiliary module N . The internodes are visualized as lines of unit

length. Each internode has four parameters:

{ segment type b, where 0 denotes base of the tree, 1 { a straight segment,

and 2 { a lateral segment;

{ message type m, where 0 denotes no message currently carried by the

internode, 1 { an acropetal message (ux), and 2 { a basipetal message

(apex count);

{ ux value v, and

{ apex count c.

All internodes are visualized as lines of unit length.

At the beginning of a developmental cycle, indicated by the presence of

a basipetal message (m = 2) in the basal internode (b = 0), production p1

calculates an input ux value. The expression used for this purpose, v =

�02
(k�1)�k , was introduced by Borchert and Honda to simulate a sigmoid
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increase of ux penetrating the base of a plant over time. The progress of

time is captured by production p2, which increments parameter k of the

module N , representing the current cycle number.

Productions p3 and p4 simulate acropetal ux propagation and distribute

it between the straight segment and the lateral segment. If both the straight

and lateral branch support the same number of apices, the straight segment

will obtain a prede�ned fraction � of the ux vl reaching the branching point;

the lateral segment will obtain the remainder, (1 � �)vl. If a lateral branch

supports c apices and its sister straight branch supports cs apices, the ux

reaching the lateral branch is further multiplied by the ratio c=cs. The number

cs is not directly available to the lateral branch, but it can be calculated as

the di�erence between the number of apices supported by this branch and

its mother, cs = cl � c. In total, the ux directed towards the lateral branch

is equal to vl(1 � �)(c=(cl � c) (production p3). The remaining ux reaches

the straight segment. The parameter c denotes, in this case, the number of

apices supported by the straight segment, and the resulting expression is

vl � vl(1� �)((cl � c)=c) (production p4).

Productions p5 and p6 control the addition of new segments to the struc-

ture. According to production p5, if the internode preceding an apexA reaches

a su�cient ux v > vth, the apex will create two new internodes I terminated

by apices A. The new segments are assigned an initial message type m = 2,

which triggers the basipetal signal propagation needed to update the count

of apices supported by each segment. Alternatively, if the ux reaching an

apex is not su�cient for bifurcation (v � vth), the supporting internode itself

starts the propagation of the basipetal signal (production p6).

Production p7 adds the number of apices supported by the daughter

branches (c1 and c2), and propagates the result to the mother internode.
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Fig. 7.6. The structure generated by L-system (7.9) at completion of the �fth
developmental cycle. The numbers indicate the ow values v rounded to the nearest
integer (a), and the numbers of apices c in the branches supported by each internode
(b).
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Both input numbers must be available (m1 = 2 and m2 = 2) before basipetal

message propagation takes place.

The remaining productions reset the message value m to zero, after the

ux values have been transferred acropetally (p8) or the apex count has been

passed basipetally (p9).

The initial state of the model is determined by the axiom !. The value of

the parameter to module N sets the current cycle number to 1. The initial

structure consists of a single internode I terminated by an apex A. The mes-

sage type indicates the presence of a basipetal message (m = 2) which triggers

the application of productions p1 and p2, initiating the �rst full developmen-

tal cycle. The state of the structure after 35 derivation steps (completion of

the �fth developmental cycle) is shown in Figure 7.6.

A remarkable feature of Borchert and Honda's model is its ability to sim-

ulate the response of a plant to its environment. Speci�cally, after a branch

has been pruned, the model redirects the uxes to the remaining branches

and accelerates their growth to compensate for the loss. A sequence of struc-

tures that illustrates this phenomenon is shown in Figure 7.7. In accordance

with [8], the L-system used in this case extends L-system (7.9) with param-

eters and productions needed to capture the e�ect of aging. Consequently, a

branch that was unable to grow for a given number of developmental cycles

dies: it loses the ability to develop further and stops taking any uxes.

a b c

*

d e

Fig. 7.7. Development of a branching structure simulated using an L-system im-
plementation of the model by Borchert and Honda. (a) Development not a�ected
by pruning; (b, c) the structure immediately before and after pruning; (d, e) the
subsequent development of the pruned structure. Based on [8].

Similar behavior is shown in Figure 7.8. In this case, two structures rep-

resenting the shoot and the root of a plant are generated simultaneously. The

ux penetrating the root at the beginning of a developmental cycle is assumed

to be proportional to the number of apices in the shoot; reciprocally, the ux
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penetrating the shoot is proportional to the number of apices in the root.

These assumptions form a crude approximation of plant physiology, whereby
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Fig. 7.8. Application of the Borchert and Honda's model to the simulation of a
complete plant, showing development una�ected by pruning (top row), a�ected
by pruning during the third cycle of development (middle row), and a�ected by
pruning during the �fth cycle of development (bottom row). The numbers of live
apices in the shoot and root are indicated above and below the ground level. The
numbers at the base of the �gure indicate the number of completed developmental
cycles.

the photosynthates produced by the shoot fuel the development of the root,

and water and mineral compounds gathered by the root are required for the

development of the shoot. The model also captures an increase of internode

width over time, and a gradual assumption of the position of a straight seg-

ment by its sister lateral segment, after the straight segment has been lost.

The developmental sequence shown in the top row of Figure 7.8 is una�ected
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by pruning. The shoot and the root develop in concert. The next two rows

illustrate development a�ected by a loss of branches. The removal of a shoot

branch slows down the development of the root; on the other hand, the large

size of the root, compared to the remaining shoot, fuels a fast re-growth of

the shoot. Eventually, the plant is able to redress the balance between the

size of the shoot and the root. Damage occurring at an early stage of plant

development (middle row) had a less pronounced e�ect than the loss of a

branch at a later stage (bottom row).

The last two examples leave open the question of incorporating envi-

ronmental factors such as pruning into L-system models. We consider this

question in the next section.

8. Development controlled by exogenous mechanisms

8.1 Plants and their environment

The environment is a key factor a�ecting life cycles of plants and plant com-

munities. Consequently, the role of the environment in plant development is

an important area of study for both theoretical and practical reasons (such as

the maximization of crop yield and landscape design). In general, descriptions

of plant interactions with the environment may take the following forms:

{ Plant is a�ected by global properties of the environment, such as day

length, temperature, or air pollution;

{ Plant is a�ected by local properties of the environment, such as support

for climbing plants, mechanical obstacles, soil composition, and access to

light during colonizing growth;

{ Plant interacts with the environment in a feedback loop, which includes

bi-directional information ow to and from the environment. Examples

include competition for light between branches of a tree (where the upper

branches change the amount of light available to the lower branches) and

interaction of roots with the soil (taking into account the impact of roots

on the transport of nutrients and water in the soil).

Although some phenomena belong quite naturally to one of these groups, the

classi�cation of others may depend on the level of abstraction. For example,

an approximate model may consider temperature as a global property of

the environment, a more detailed one may express temperature locally as a

function of distance from the ground, and a yet more detailed model may

take into account the changes of temperature determined by the distribution

of radiative energy between plant parts. Thus, the above classi�cation is

useful primarily from the modeling perspective, since di�erent techniques are

required to capture phenomena in each class.
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Within the L-system theory, plants were originally regarded as closed cy-

bernetic systems, capable of controlling their development without communi-

cating with the environment. This assumption made it possible to character-

ize some developmental processes in the form of a mathematical (deductive)

theory, with clearly stated assumptions, theorems, and proofs. Unfortunately,

the abstraction from environmental factors reduced the scope of this theory,

because the environment has a signi�cant impact on many developmental

processes. In the �rst step towards the inclusion of environmental factors,

Rozenberg de�ned table L-systems, which allow for changing the production

set from one derivation step to another [111] (see also [46, 113]). Table L-

systems were applied, for example, to capture the switch from the production

of leaves to the production of owers by an apex of a owering plant, due to

a change in day length [27, 29, 30]. Parametric L-systems make it possible

to introduce a variant of this technique, where the environment a�ects se-

lected numerical values used in productions. In a case study illustrating this

approach, weather data containing daily minimum and maximum tempera-

tures control a developmental model of bean [40].

Table L-systems and their extensions can only capture the impact of

global environmental characteristics on plant development. The generated

strings are not interpreted geometrically until the derivation is completed,

thus no information regarding position and orientation of individual modules

is available during the rewriting process. Below we describe the environmen-

tally-sensitive extension of L-systems, which makes this information available

in each derivation step. Therefore, it is possible to model the inuence of lo-

cal environmental factors on a growing plant. Our presentation closely follows

the paper [97].

8.2 Environmentally-sensitive L-systems

In environmentally-sensitive L-systems, the generated string is interpreted

after each derivation step, and turtle attributes found during the interpre-

tation are returned as parameters to reserved query modules in the string.

Each derivation step is performed as in parametric L-systems, except that

the parameters associated with the query modules remain unde�ned. During

interpretation, these modules are assigned values that depend on the turtle's

position and orientation in space. Syntactically, the query modules have the

form ?X(x; y; z), where X = P;H;U; or L. Depending on the actual symbol

X , the values of parameters x, y, and z represent a position or an orientation

vector. In the two-dimensional case, the coordinate z may be omitted.

The operation of the query module is illustrated by a simple environmen-

tally-sensitive L-system, given below.

! : A

p1 : A ! F (1)?P (x; y)�A

p2 : F (k) ! F (k + 1)

(8.1)
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The following strings are produced during the �rst three derivation steps.

�
0

0 : A

�0 : A

�
0

1 : F (1)?P (?; ?)�A

�1 : F (1)?P (0; 1)�A

�
0

2 : F (2)?P (?; ?)� F (1)?P (?; ?)�A

�2 : F (2)?P (0; 2)� F (1)?P (1; 2)�A

�
0

3 : F (3)?P (?; ?)� F (2)?P (?; ?)� F (1)?P (?; ?)�A

�3 : F (3)?P (0; 3)� F (2)?P (2; 3)� F (1)?P (2; 2)�A

(8.2)

Strings �00, �
0

1, �
0

2, and �
0

3 represent the axiom and the results of production

application before the interpretation steps. Symbol ? indicates an unde�ned

parameter value in a query module. Strings �1, �2, and �3 represent the

corresponding strings after interpretation. It has been assumed that the turtle

is initially placed at the origin of the coordinate system, vector H is aligned

with the y axis, vector L points in the negative direction of the x axis, and the

angle of rotation associated with module \�" is equal to 90�. Parameters of

the query modules have values representing the positions of the turtle shown

in Figure 8.1.
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Fig. 8.1. Assignment of values to query modules. From [97].

The above example illustrates the notion of derivation in an environmen-

tally-sensitive L-system, but it is otherwise contrived, since the information

returned by the query modules is not further used. An example of an abstract

developmental process inuenced by the environment is given below.

! : A

p1 : A ! [+B][�B]F ?P (x; y)A

p2 : B ! F ?P (x; y)@OB

p3 : ?P (x; y) : 4x2 + (y � 10)2 > 102

! [+(2y)F ][�(2y)F ]%

(8.3)

Module F represents a line of unit length, and modules + and � without

parameters represent left and right turns of 60�. The development begins
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Fig. 8.2. A branching structure pruned to an ellipse. From [97].

with module A, which creates a sequence of opposite branches [+B][�B]

separated by internodes (branch segments) F (production p1). The branches

elongate by addition of segments F , delimited by markers @O (production

p2). Both the main apex A and the lateral apices B create query modules

?P (x; y), which return the corresponding turtle positions. If a query module

is placed beyond the ellipse 4x2 + (y � 10)2 = 102, production p3 creates

a pair of \tentacles," represented by the substring [+(2y)F ][�(2y)F ]. The

angle 4y between these tentacles depends on the vertical position y of the

query module. Production p3 also inserts cutting symbol %, which terminates

branch growth by removing its apex. In summary, L-system 8.3 produces

a branching structure con�ned to an ellipse, with tentacles placed at the

boundary of the structure, and the angle between the tentacles depending on

the turtle's position in space, as shown in Figure 8.2.

8.3 Examples

8.3.1 A deterministic model of plant response to pruning. As de-

scribed, for example, by Hall�e et al. [39, Chapter 4] and Bell [5, page 298],

during the normal development of a tree many buds do not produce new

branches and remain dormant. These buds may be subsequently activated

by the removal of leading buds from the branch system (traumatic reiter-

ation), which results in an environmentally-adjusted tree architecture. The

following L-system represents the extreme case of this process, where buds

are activated only as a result of pruning.
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! : FA?P (x; y)

p1 : A > ?P (x; y) : !prune(x; y)! @OF=(180)A

p2 : A > ?P (x; y) : prune(x; y)! T%

p3 : F > T ! S

p4 : F > S ! SF

p5 : S ! "

p6 : @O > S ! [+FA?P (x; y)]

(8.4)

The user-de�ned function

prune(x; y) = (x < �L=2)k(x > L=2)k(y < 0)k(y > L); (8.5)

speci�es a square clipping box of dimensions L� L that bounds the growing

structure. According to axiom !, the development begins with an internode

F supporting apex A and query module ?P (x; y). The initial development of

the structure is described by production p1. In each step, the apex A creates

a dormant bud @O and an internode F . The module =(180) rotates the tur-

tle around its own axis (the heading vector H), thus laying a foundation for

an alternating branching pattern. The query module ?P (x; y), placed by the

axiom, is the right context for production p1 and returns the current position

of apex A. When a branch extends beyond the clipping box, production p2

removes apex A, cuts o� the query module ?P (x; y) using the symbol %, and

generates the pruning signal T . In the presence of this signal, production p3

removes the last internode of the branch that extends beyond the clipping

box and creates bud-activating signal S. Productions p4 and p5 propagate

this signal basipetally (downwards), until it reaches a dormant bud @O. Pro-

duction p6 induces this bud to initiate a lateral branch consisting of internode

F and apex A followed by query module ?P (x; y). According to production

p1, this branch develops in the same manner as the main axis. When its apex

extends beyond the clipping box, it is removed by production p2, and signal

S is generated again. This process may continue until all dormant buds have

been activated.

Selected phases of the described developmental sequence are illustrated

in Figure 8.3. In derivation step 6 the apex of the main axis grows out of the

clipping box. In step 7 this apex and the last internode are removed from the

structure, and the bud-activating signal S is generated. As a result of bud

activation, a lateral branch is created in step 8. As it also extends beyond

the bounding box, it is removed in step 9 (not shown). Signal S is generated

again, and in step 10 it reaches a dormant bud. The subsequent development

of the lateral branches, shown in the middle and bottom rows of Figure 8.3,

follows a similar pattern.

8.3.2 A stochastic model of tree response to pruning. L-system (8.4)

simulates plant response to pruning using a schematic branching structure.

Below we incorporate a similar mechanism into the more realistic stochastic

tree model by Borchert and Slade, discussed in Section 5.3.
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Fig. 8.3. A simple model of a tree's response to pruning. Top row: derivation steps
6,7,8, and 10; middle row: steps 12, 13, 14, and 17; bottom row: steps 20, 40, 75,
and 94. Small black circles indicate dormant buds, the larger circles indicate the
position of signal S. From [97].

! : FA(1)?P (x; y; z)

p1 : A(k) > ?P (x; y; z) : !prune(x; y; z)!

=(�)[+(�)FA(k + 1)?P (x; y; z)]� (�)FA(k + 1) :

minf1; (2k + 1)=k2g

p2 : A(k) > ?P (x; y; z) : !prune(x; y; z)!

=(�)B(k + 1; k + 1)� (�)FA(k + 1) :

maxf0; 1� (2k + 1)=k2g

p3 : A(k) > ?P (x; y; z) : prune(x; y; z)! T%

p4 : F > T ! S

p5 : F > S ! SF

p6 : S ! �

p7 : B(m;n) > S ! [+(�)FA(am+ bn+ c)?P (x; y; z)]

p8 : B(m;n) > F ! B(m+ 1; n)

(8.6)

According to axiom !, the development begins with a single internode

F supporting apex A and query module ?P (x; y; z). Productions p1 and p2

describe the spontaneous growth of the tree within the volume characterized

by a user-de�ned clipping function prune(x; y; z). Productions p3 to p7 specify

the mechanism of the tree's response to pruning. Speci�cally, production p3

removes the apex A after it has crossed the clipping surface, cuts o� the query

module ?P (x; y; z), and creates pruning signal T . Next, p4 removes the last

internode of the pruned branch and initiates bud-activating signal S, which is

propagated basipetally by productions p5 and p6. When S reaches a dormant

bud B, production p7 transforms it into a branch consisting of an internode

F , apex A, and query module ?P(x,y,z).
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Fig. 8.4. Simulation of tree response to pruning. The structures shown have been
generated in 3, 6, 9, 13, 21, and 27 steps. From [97].
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The parameter value assigned by production p7 to apex A is derived

as follows. According to production p2, both parameters associated with a

newly created bud B are set to the age of the tree at the time of bud creation

(expressed as the the number of derivation steps). Production p8 updates

the value of the �rst parameter (m), so that it always indicates the actual

age of the tree. The second parameter (n) remains unchanged. The initial

biological age [5, page 315] of the activated apex A in production p7 is a

linear combination of parameters m and n, calculated using the expression

am+ bn+ c. Since rule p1 is more likely to be applied for young apices (for

small values of parameter k), by manipulating constants a, b, and c it is

possible to control the bifurcation frequency of branches created as a result

of traumatic reiteration. This is an important feature of the model, because

in nature the reiterated branches tend to be more juvenile and vigorous than

the remainder of the tree [5, page 298].

The operation of this model is illustrated in Figure 8.4. The clipping form

is a cube with an edge length 12 times longer than the internode length. The

constant values used in production p7 are a = 0, b = 1, and c = �5.

Fig. 8.5. Trees pruned to a spiral shape. From [97].

By changing the clipping function, one can shape plant models to a variety

of arti�cial forms. For example, the trees shown in Figure 8.5 were pruned to

a spiral shape. Figure 8.6 combines trees pruned to a variety of shapes into

a synthetic image of a topiary garden, inspired by the Levens Hall garden in

England [13, pages 52{57]. For other models of topiary trees see [97].
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Fig. 8.6. A model of the topiary garden at Levens Hall, England
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8.3.3 Plant climbing. Another example of environmental inuences on

plant development is presented in Figure 8.7. Here, a hypothetical climbing

(twining) plant detects the presence of a supporting pole and winds around it.

In contrast to the earlier models of plants growing around obstacles [2, 33, 34],

the L-system model captures the nutation, or spiraling movement, of the free

stem tip searching for support [44].

Fig. 8.7. A simple model of a climbing plant

8.3.4 Directional cues in development. In the previous examples, the

development of plant was inuenced by the position of query modules associ-

ated with plant apices in space. The formalism of environmentally-sensitive

L-systems makes it also possible to query the orientation of the turtle at

speci�c points, as illustrated by the simple L-system below.

! : X

p1 : X ! [A?H(x; y; z)] + (10)X

p2 : A > ?H(x; y; z)! F (1 + 0:5 � y)

(8.7)

Beginning with the axiom X , production p1 generates a sequence of apices

A that spread radially from the origin of the coordinate system. Each apex

is followed by a query module ?H returning the orientation of the turtle's

heading vector (Section 8.2). Production p2 uses the vertical component of

this vector, represented by parameter y, to determine the length of the branch

F created by its apex A. The vector H is normalized (c.f. Section 3.3), thus

the branch length returned by the expression 1 + 0:5 � y in production p1

decreases from 1.5 for branches pointing up to 0.5 for branches pointing

down. A resulting structure, generated in 37 derivation steps, is shown in

Figure 8.8.

As the structure generated in this example is very simple, the orientation

of each branch could also have been determined directly from the form of

productions, without using query modules. In the case of three-dimensional
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Fig. 8.8. A structure with the length of branches determined by their orientation
in space

branching structures, however, determining the turtle's orientation without

queries would be much more di�cult.

An example of a three-dimensional model making use of directional in-

formation is presented next. It extends L-system (4.7), generating simple

branching structures discussed in Section 4.2.3, by modifying the length of

internodes according to their orientation. This extension is justi�ed by the

description of tree architectures presented by Ward [129, Chapter VI] (see

also [132, Chapter 4]), who pointed out that considerable di�erences in tree

form may result from \throwing the energy of growth" either towards the

inward or outward growing branches.

! : A(100; w0)?H(0; 0; 0)

p1 : A(s; w) > ?H(x; y; z) ! !(w)F (s � (a� b � y))

[+(�1)=('1)A(s � r1; w � q ^ e)?H(x1; y1; z1)]

[+(�2)=('2)A(s � r2; w � (1� q) ^ e)?H(x2; y2; z2)]

(8.8)

According to production p1, the default length s of an internode F pro-

duced by an apex A is multiplied by the expression a� b � y, which modi�es

the internode length according to the orientation of the apex. As a result, for

b > 0, the internodes growing upwards are shorter than those growing hori-

zontally or downwards. Figure 8.9 illustrates the impact of this modi�cation

on the appearance of the �nal structure using values a = 1:5 and b = 0:7 (left)

or 1:0 (right). The remaining constants are speci�ed in Table 8.1. The turtle

Table 8.1. The values of constants used to generate Figure 8.9

r1 r2 �1 �2 '1 '2 w0 q e n

.60 .85 25 -10 90 -90 20 .50 .30 14
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Fig. 8.9. Two branching structures generated by L-system (8.8). The internodes
pointing up are shortened with respect to the horizontal and drooping ones to a
lesser (left) and larger (right) extent.

orientation is biased downwards (i.e., the turtle's heading vector is slightly

turned downwards at each node of the branching structure) to simulate the

weeping habit of the modeled trees. Details of this technique are described

under the general name of tropisms in [94, 99, 101].

9. Conclusions

Plants can be modeled using the frameworks o�ered by di�erent branches of

science. For instance, biomechanical models emphasize physical entities, such

as force, mass, and stress (c.f. [25, 84, 86]), genetic models are inherently

rooted in organic chemistry, and many architectural models are based on

statistical analysis of observational data [7, 53, 18, 106]. In this context,

L-system models, which emphasize the role of information ow in growing

structures, represent an approach rooted in computer science [35, 36].

L-system models integrate local processes, taking place at the level of indi-

vidual modules, into developmental patterns and structures of entire plants.

Consequently, they address the central problem of morphogenesis: the de-

scription and understanding of mechanisms through which living organisms

acquire their form. This aspect of modeling motivated the original biological

applications of L-systems investigated by Lindenmayer and his collaborators,

is the main thread of the examples included in this chapter, and plays an

important role in current biological research using L-systems. The organisms

that have been studied by various researchers range from algae and fungi

(see [15, 32, 64, 65, 83, 117, 118, 125] for recent results) to herbaceous plants

and trees.
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In addition to theoretical studies, L-systems are being introduced to ap-

plied plant science. As pointed out by Thornely and Johnson [124, page viii],

\it is only a matter of time before morphological features are included more

explicitly in plant and crop models." Integration of L-system models with

crop models has been addressed by Guzy [37] and Hanan [40]. A faster accep-

tance of L-system models is impeded by the di�culties in acquiring the large

amounts of architectural data needed to construct models precise enough for

practical applications [110]. Nevertheless, several digital instruments facili-

tating the measurement of plants exist [85, 108], and the process of model

construction according to measurements is being worked out [62, 102].

Fig. 9.1. Continuous-time development of a planar structure visualized as an ob-
ject in three-dimensional space-time. Intersections of the object shown with planes
parallel to the front surface represent developmental stages of a pinnate (green ash)
leaf. As the plane is swept from the back to the front, consecutive pairs of leaets
separate one after another from the leaf axis and grow until the mature leaf form
is reached. Based on data in [102].

At present, the primary use of L-systems in biological applications is as a

foundation for simulation languages and software. This role can be compared

to the manner in which Chomsky grammars provide a theoretical foundation

for sequential programming languages. The strong link between L-systems

and simulation was indicated in Lindenmayer's original paper [67], and led

to several simulation programs dating back to CELIA [3]. In many imple-

mentations the syntax of the modeling language is similar to that used in
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this chapter. Alternatives include the speci�cation of models in program-

ming languages such as Simula [47], C [96], and C++ [37], implementation

of L-systems in Mathematica [52], and design of a special-purpose object-

oriented language [10]. Other comprehensive implementations of L-system-

based modeling programs have been reported in [61, 63]. At a conceptual

level, Hogeweg explored L-systems as a paradigm for discrete-event simula-

tion [47, 48], and Prusinkiewicz et al. transformed it into a combined discrete-

continuous paradigm by including di�erential equations as a part of L-system

models (di�erential L-systems [93]). An example of a simulation carried out

in continuous time using a di�erential L-system is presented in Figure 9.1.

Applications of L-systems have inspired many more extensions to the basic

formalism, such as table mechanism, fragmentation, and the introduction of

environmental sensitivity. One extension requiring further research is the bi-

directional ow of information between a plant and its environment. There

are many phenomena that rely on such a ow. For example, the development

of roots is a�ected by the availability of water and nutrients in the soil, but

roots also a�ect this distribution by absorbing the needed substances from

the soil [12]. Similarly, the local availability of light a�ects the development of

tree crowns, but the crown also a�ects this distribution as the upper branches

cast shadow on the lower ones [123]. Figure 9.2 illustrates work in progress

on an L-system tree model that can be placed in an environment simulating

light propagation from the sun towards the leaves. Branches in the shade

grow more slowly and eventually die o�. Related results concerning the e�ect

of apex temperature have been described by Fournier [24].

In principle, the mathematical formulation of L-systems should make it

possible to address biologically relevant questions in the form of a deductive

theory of plant development. The results of this theory could be potentially

more general than simulations, which are inherently limited to case studies

(c.f. [126]). Unfortunately, construction of such a theory still seems quite

remote. One reason is the lack of a precise mathematical description of plant

form. This is not of crucial importance in simulations, where the results

are evaluated visually, but impedes the formulation of theorems and proofs.

Another di�culty is the discrepancy between studies on the theory of L-

systems and the needs of biological modeling. Most theoretical results are

pertinent to non-parametric 0L-systems operating on non-branching strings

without geometric interpretation (for examples, see [113]). In contrast, (as

illustrated in this chapter) L-system models of biological phenomena often

involve parameters, endogenous and exogenous interactions, and geometric

features of the modeled structures. We hope that the further development of

L-system theory will bridge this gap. For a recent study see [98].

L-systems provide a powerful framework for expressing, simulating, vi-

sualizing, and formally reasoning about biological mechanisms that control

plant development. Ultimately, however, the place of L-systems in biology

will be determined by the soundness of the data and hypotheses that consti-



Visual models of plant development 57

Fig. 9.2. A tree model sensitive to the local light environment
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tute the foundation for speci�c models, and their predictive value [22]. We

believe that in the near future we will witness the formulation of models that

provide solutions to mainstream questions of plant development with both

conceptual and practical value.
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