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Abstract 

In this dissertation, parametric L-systems are presented as the foundation of a 

computer graphics tool for simulating and visualizing the development of plants. 

L-systems were introduced in 1968 by Aristid Lindenmayer as a mathematical 

model of multicellular organisms. They employ a parallel string-rewriting mechanism 

to describe the development of branching structures. The resulting strings can be 

interpreted geometrically and visualized using computer graphics techniques to create 

both realistic and schematic images of the modelled structures. The formalism can 

be applied for a variety of scientific, educational, and commercial purposes. 

Parametric L-systems extend the original concept of L-systems by associating 

numerical parameters with the symbols representing plant components. This allows 

easy quantification of geometric attributes of a model, and provides a simple means 

for the expression of continuous processes, such as diffusion of hormones and the 

resulting distribution of concentrations. Formal definitions are proposed for context- 

free and context-sensitive parametric L-systems with either deterministic or stochastic 

application of production rules. 

The practical value of parametric L-systems is demonstrated in this dissertation 

by examples that include models of plants ranging from algae to trees. Model de- 

velopment is controlled by lineage mechanisms, with information passed from parent 

to child module. This mechanism is combined in some models with endogenous in- 

teraction, where information flows through a growing structure. Selected models are 

suitable for simulating time-lapse photography through computer animation. 

Extensions to the formalism of parametric L-systems incorporate useful features of 

other programming languages and provide techniques for creating hierarchical models. 
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Chapter One 

INTRODUCTION 


The beauty of the patterns observed in nature has attracted the attention of re- 

searchers for many years. Computer simulation, and computer graphics in particular, 

can play an important role in the understanding of the formation and structure of 

these pat terns. The research presented in this dissertation focuses on the modelling 

and visualization of plants. The proposed formalism is designed to capture impor- 

t ant aspects of t he development a1 process in a computer model. The resulting images 

may be either schematic, abstracting from irrelevant details, or realistic, reflecting 

the beauty which inspired the research in the first place. These representations can 

have both scientific and aesthetic value, as discussed in the following section. 

1.1 Motivation for plant modelling 

Plant modelling and the visualizations that result can be applied for a variety 

of purposes. In the area of biology, a researcher can make hypotheses about the 

mechanisms controlling the flowering sequences of plants and can then use a computer 

to visualize the models as a part of their validation. While discovery of a mechanism 

that will simulate the desired effects does not guarantee that an analogous mechanism 

is used in nature, it may suggest a possibility worth exploring either experimentally 

or theoretically. In addition, it may be easier to estimate the values of parameters 

through simulation than to measure them in the real world. 

The modelling process can provide the opportunity to obtain valuable insights 



into the nature of the object being studied. The researcher conceptualizes a model 

based on previous research and observation, then collects data that are considered 

important. As the model is built, inaccuracies revealed by the visualization may 

indicate invalid assumptions or previously overlooked factors that should be included 

in an improved model. A succession of improvements may follow, until the model 

produces satisfactory results. 

Valid models can be used as tools in many areas. Exploration of the parameter 

space of a model can help in the basic understanding of developmental mechanisms 

and their effect on plant morphology [13]. The models may be applied for teach- 

ing and research in taxonomy; for instance, computer simulations have been used in 

paleobiology to study evolutionary trends in plant architecture [110]. Models may 

also provide a vehicle for making predictions involving real plants. The incorporation 

of information such as seed production and viability may lead to models suitable 

for evaluating various cropping possibilities; these models can also be used to ex- 

plore measures of plant fitness for research in natural selection [138]. In the domain 

of remote sensing, plant models have been used to study the transport of light in 

vegetative canopies [19, 561. Applications can also be found in ecology, where the 

interaction between plants and their environment is the focus of interest [131]. 

Animations based on developmental models may simulate time-lapse photography 

of plant growth, revealing and clarifying important processes. For example, computer 

modelling makes it possible to abstract from unwanted phenomena; these can range 

from events of a disruptive nature, such as unforeseen plant sickness or death, to 

daily changes in leaf position which may obscure long-term developmental processes. 

Animations can also reveal otherwise invisible or difficult to observe phenomena, such 

as the flow of hormones in a growing plant structure, or the complete life cycle of an 

oak tree in a compressed time scale. This is useful for educational as well as research 

purposes. 

The realism of synthetic images has an important role to play. In research appli- 

cations, an image can be difficult to interpret if it contains artifacts introduced by the 

underlying modelling technique. For instance, if a model of leaf venation is defined 

on a grid, the privileged directions imposed on the lines drawn in the resulting image 



by the grid's structure may obscure the relationship between the model and the real 

object. The more realistic the visualization, the more confidence the researcher can 

have that his understanding and assumptions regarding the underlying model are 

valid. The images themselves may also be important; for instance, in a simulation of 

pruning effects, the resulting tree shapes may be the primary goal of a horticulturalist. 

Realism can also be an end in itself, with plant images incorporated in animations 

used for commercial or entertainment purposes. Gardens and forests can be used in 

flight simulators and other virtual worlds 187, 1091. Landscape architects can produce 

realistic embodiments of their plans, allowing prospective clients to walk through the 

gardens and preview their design in different seasons. 

Applications such as these will eventually demand that computer models be built 

for more members of the plant kingdom. Many have been developed to date. For 

reviews, see Waller and Steingraeber [152], Fisher [39], Bell [13], and Lindenmayer 

and Prusinkiewicz [94]. 

1.2 Models of branching structures 

The focus of my research on the visualization of the branching structure of plants 

places an emphasis on those models described as spatial by Waller and Steingrae- 

ber [152]. These models provide the topological and geometric information necessary 

to produce an image. In contrast, non-spatial models concentrate on global charac- 

teristics, such as total biomass or number of flowers. 

A categorization of spatial computer models is proposed in Figure 1.1. Note 

that this discussion is limited to plant models, and does not include other generative 

models used in computer graphics, such as shape grammars [55, 1401. The term 

impressionistic is used to describe models that abstract from the details of plant 

structure and seek to create a graphical impression of the plant being modelled (c f .  

Fournier [46]). Architectural models, on the other hand, attempt to recreate the 

structure of the plant. They often exhibit the property of data base amplification [136], 

meaning that the overall structure of a plant is captured by a relatively small set of 

rules applied repetitively. 



Spatial 

Impressionistic Architecturalel c 

I 

Developmental 
Non-developmental 

Controlled by lineage 

Controlled by interaction 
 I -

o Endogenous 
o Exogenous 

Figure 1.1:A categorization of computer models of branching structures 

Architectural models can be further categorized as developmental or non-develop- 

mental. Non-development a1 models attempt to capture the essence of a plant's struc- 

ture in a static way, while developmental models use generative techniques to simulate 

the growth processes at work in the building blocks, or modules, of a plant. This usage 

of the term "module" conforms to Harper's broad definition [63]: "a repeated unit of 

multicellular structure, normally arranged in a branch system." In any given model, 

the modules to be used are chosen for convenience, depending on the desired level of 

abstraction. 

The developmental category, on which this dissertation focuses, may be further 

characterized by the type of information flow that controls the branching process in 

the model. Lineage mechanisms are employed where an individual module determines 

its own fate using information passed from parent to child module. An interactive 



mechanism is at work when development is controlled using information that comes 

from outside the module. The information flow may be either endogenous, with in- 

formation being passed between adjacent modules within the structure, or exogenous, 

with information being transferred through the medium or environment in which the 

structure is growing. The simulation of the flow of hormones in a plant is an example 

of an endogenous mechanism, whereas the reaction of a plant model to self-shadowing 

is an example of an exogenous mechanism. The distinction between structure and 

medium is not always obvious. For instance, in a model of a venation pattern in 

a growing leaf, information passed through the veins would definitely be considered 

endogenous. On the other hand, information passed through the remaining leaf tissue 

could be considered either endogenous or exogenous, depending on whether the blade 

is considered as a part of the structure being modelled or as the growth medium. Note 

that this usage of the terms endogenous and exogenous is different from the usual 

biological sense of the words, but follows their usage in the computer simulation 

literature [8]. 

.Several control mechanisms may operate concurrently in a particular plant model. 

For example, a lineage mechanism may capture the vegetative growth of a herbaceous 

plant, while an endogenous mechanism determines the flowering sequence. In the fol- 

lowing review, spatial plant models previously described in the literature are classified 

according to their dominant features. 

1.2.1 Impressionistic models 

Plant models in this category are useful as features of large-scale terrain repre- 

sentations which need to be drawn quickly, as in flight simulators. In the approach 

proposed by Gardner [54],quadric surfaces were placed at the desired locations in a 

landscape and then texture mapped to create the impression of trees. Fournier and 

Grindal [47] used stochastic texturing on convex polyhedra for the same purpose. 



1.2.2 Non-developmental architectural models 

Non-developmental architectural models are exemplified by the iterated function 

systems presented by Demko e t  a1 [32], and Barnsley [9]. This approach exploits self- 

similar patterns in the modelled structures, recreating them by repeated application 

of the corresponding affine geometric transformations. In another approach, intended 

to produce quick renderings of trees and forests, Marshall e t  a1 [99] encapsulated the 

structural details of a variety of tree species in procedures with parameters, such as 

leaf shape and density, that could be manipulated by the user. Marshall's technique, 

and many other models in this category, rely on a recursive definition of branching 

structures. Further examples include the two-dimensional branching structures of 

Wyvill [157], the models of plant-like forms described by Kawaguchi [86], the particle 

system models of trees and grass by Reeves and Blau [125], and the highly realistic 
' 

model of a maple tree by Bloomenthal [16]. The recursive models of Eyrolles [38] 

and Viennot e t  a1 [I471 were based on a Horton-Strahler analysis of branching struc- 

tures. Recursive techniques were also used to generate models expressed in terms of 

fractal geometry, as introduced by Mandelbrot [98]. These include models by Oppen- 

heimer [112, 1131, Kaandorp [84], and Berger [15]. 

The models discussed to this point were inspired by a desire to recreate natural 

patterns on a computer screen. Biologists pursued a parallel line of research, focusing 

on the use of simulation to achieve a better understanding of natural forms. Early 

work in this area was conducted by Honda [74], who created generic tree models 

in order to study the impact of branching angle and branch length on the shape of 

trees. His later work with Fisher and Tomlinson produced simulations of selected 

tree species [40, 781 and employed the resulting models in studies of optimal leaf 

distribution [41, 75, 761. Aono and Kunii [3] applied Honda's results for computer 

graphics purposes, by introducing new geometric models and producing images which 

simulated the effects of wind and gravity. Waite [I511 incorporated a generalization 

of these recursive branching models into an interactive system. 



1.2.3 	 Developmental models controlled by lineage mecha- 

nisms 

During plant development, some control is exercised within a plant module; infor- 

mation is passed directly from parent to child module as the plant grows. This lineage 

mechanism can be thought of as direct "genetic" control of development. In 1968, 

Lindenmayer [88] developed a mathematical formalism based on language-theoretic 

principles for modelling developmental processes in multicellular organisms. The 

version which employs strictly lineage mechanisms is known as zero-interaction Lin- 

denmayer systems or OL-systems [89]. Building on the modelling work of Frijters [49] 

and Rozenberg and Lindenmayer [132], Frijters and Lindenmayer [53] employed this 

formalism to characterize and simulate compound development in branching struc- 

tures. Pursuing a geometric interpretation of OL-systems first proposed by Szilard 

and Quinton [142], Prusinkiewicz [I161 developed L-systems with turtle interpreta- 

tion and presented examples of plant-like structures generated for computer graphics 

purposes. OL-systems have also been employed in a variety of plant simulations, for 

example, Nishida [Ill]applied stochastic OL-systems to model variation in Japanese 

cypress, Morelli et a1 [I081 studied speciation in the red algal genus Dipterosiphonia, 

and Corbit and Garbary [26] modelled the morphology and development of several 

species of the red algal genus Antithamnion. Liick and Liick [96] proposed the use of a 

model closely related to OL-systems as a possible aid for formalizing plant taxonomy. 

Shebell [I351 developed a generalized set of productions for a stochastic OL-system, 

incorporating specific attributes for modelling the 23 tree architectures described by 

Hall6 et a1 [59]. In independent research that parallels my own, but is restricted 

to deterministic OL-systems, Chien and Jiirgensen [22, 231 proposed an alternative 

approach for associating numerical values with OL-system symbols, and provided a 

corresponding formal definition of graphical interpretation. 

In contrast to the mainly deterministic modelling pursued above, other researchers 

have focused on stochastic methods of simulating lineage mechanisms. This approach 

often serves as an abstraction from the more complex interactive mechanisms de- 

scribed later, and is most suitable for representing plants that have a high degree of 



variability in both topology and geometric attributes such as module length. The 

random elements also add an important measure of realism to the images synthe- 

sized from the models, particularly if a number of plants of the same species are to 

be included in the same image. Bell [ll]developed a stochastic model to simulate 

the growth of rhizomatous plant populations by careful examination of the probable 

actions of the meristem. This work was later extended to a variety of species and 

presented as a basis for further study in plant population ecology by Bell e t  a1 [14] 

and Harper and Bell 1641. Cochrane and Ford [24] used a more complex stochastic 

process based on annual growth increments to model Sitka spruce, while Henderson 

and Renshaw [67] modelled the root systems of the same tree. In the case of root sys- 

tems, growth processes were inferred from data obtained at a single point in the tree's 

life. This was necessitated by the difficulty in obtaining data over time, since the root 

systems had to be excavated in order to be measured. Further improvements of the 

root models were reported by Henderson e t  a1 [65, 661 and Renshaw[l30]. Remphrey 

and Powell 1127, 1281 also employed stochastic models in their studies of tamarack. 

De Reffye took a similar approach, using the coffee plant as an example [29, 301. 

Subsequent work with various co-workers (for example, [27, 34, 821) led to the devel- 

opment of a computer system which has been successful in modelling a wide range of 

tree architectures [31]. 

1.2.4 	 Developmental models controlled by endogenous in- 

t eract ion 

Lineage mechanisms alone cannot describe all phenomena observed in the devel- 

opment of plants. Some features require the assumption of endogenous  information 

flow, corresponding to the movement of hormones or other chemicals of a regulatory 

nature from module to module within the plant structure. 

Interactive Lindenmayer systems (IL-systems) 1881 were developed as a discrete 

formalization of endogenous processes. Early simulations include that of the inhibitor 

controlled development of blue-green algae by Baker and Herman [6], in which the 



modelled topology was displayed as a list of cell states. In 1974, Hogeweg and Hes- 

per [73] employed a computer to explore the range of branching structures produced 

by a set of simple IL-systems, while Frijters and Lindenmayer 1521 modelled the 

growth and flowering of asters using this formalism. Subsequent models of inflores- 

cences based on IL-systems were investigated by Frijters [50, 511 and Janssen and 

Lindenmayer [83]. Inspired by the work of Hogeweg and Hesper, Smith 1136, 1371 

demonstrated the potential of L-systems for realistic image synthesis using computer 

graphics techniques. This potential was tapped by Prusinkiewicz [116, 1171 leading 

to the creation of realistic developmental sequences for various plants which employ 

endogenous control, as presented by Prusinkiewicz et a1 [I231 and Hanan [61]. 

Building on their earlier models, Honda et a1 [77] incorporated a "growth flux" 

as an endogenous mechanism determining the growth potential of sibling branches. 

Borchert and Honda [17], and Borchert and Tomlinson 1181 applied this technique to 

model a specific tropical tree, Tabebuia rosea. 

On a more detailed level, Ford and Ford [44] described a simulator for growth 

of Pinaceae branches, based on carbon balance and the availability of photosynthate 

in the branch. Subsequent simulations by Ford et a1 [43] were used to analyse the 

contribution of a branch to the accumulation of biomass in the remainder of a tree's 

structure. 

Low level models of endogenous information transfer were first studied by Tur- 

ing [144], who applied continuous mathematics to model the diffusion and reaction of 

two chemicals in a homogeneous, ring-shaped environment and found that stationary 

wave patterns could be formed by the resulting concentrations. Meinhardt [102, page 

321 proposed the use of this approach at the cellular level to describe phyllotaxis in 

branching structures, while Brikre and Buis [21] applied a similar technique to cre- 

ate an activation-inhibition model of branching growth in a moss. These continuous 

methods can be computationally expensive for large structures, and their formulation 

can be difficult if a non-homogeneous system is modelled [91]. 



1.2.5 	 Development a1 models controlled by exogenous inter- 

act ion 

Exogenous control of development occurs in models where information is trans- 

ferred through the environment in which the branching structure is embedded. This 

information may represent regulatory chemicals that flow through a growth medium, 

physical interactions due to crowding, or the availability of resources such as sun- 

light and nutrients. One of the most difficult problems for simulation of these control 

mechanisms is selecting a represent ation for the environment which minimizes the 

computational complexity of a given modelling problem. In general, the environment 

can either be treated as a continuous geometric space, or discretized and represented 

by a grid. 

Early work in the continuous domain was carried out by Cohen [25], who modi- 

fied growth direction and controlled branching of apices based on a two-dimensional 

"density field". This field was determined by sampling the space around an apex and 

calculating the density of branches in the neighbourhood using distance measures 

to the existing pattern. Many other models employ similar geometric approaches to 

simulate a variety of environmental factors. Honda e t  a1 [77] extended their models to 

include environmental control attributed to physical branch interactions and shading. 

The fate of a branching point was determined based on information about the vigour 

of neighbouring branches. Bell used a count of branching points in a neighbourhood 

for the same purpose [12] and considered shading effects on the production of the 

photosynthate used to control meristem growth via an endogenous mechanism [13]. 

Shading effects were also considered by McConnell [100], who created an interac- 

tive plant modelling tool using parallel graph grammars that incorporated specific 

attributes for geometry, age, and the availability of light. A reduction in branch 

initiation caused by crowding was simulated using branch intersection testing in the 

stochastic model of bear-berry developed by Remphrey et a1 [126, 1291, as well as 

in an extension of the primarily endogenous model of Pinaceae branch growth due 

to Ford et a1 [43]. A similar approach was taken by Kaandorp [85] in his models 

of the radiate accretive growth of sponges. Additionally, his models incorporated 



comparisons with existing local components to determine the direction and length of 

new growth. Gottlieb [57] modelled the development of vascular networks in growing 

tissue by testing whether cells in the tissue were outside of a minimum distance from 

vessels in the net; if so the closest point to the cell on the net was considered to have 

received a sufficient concentration of growth factor to sprout a new vessel. 

In the exogenous models described to this point, simple geometric notions were ap- 

plied to capture t he information coming from t he environment. However, when chem- 

ical flow and interaction in the growth medium are considered, modelling becomes 

more complicated. Reaction-diffusion equations were employed by Meinhardt [I021 

to control the branching growth of venation patterns in leaves. The equations were 

discretized over a grid representing the leaf to make the computations more tractable. 

In this case, the venation pattern was the object being modelled, and the leaf blade 

was considered the environment in which it grew. 

In contrast to the discretization of a continuous process, the cellular automata ap- 

proach suggested by Ulam and elaborated by von Neumann [I501 employed a strictly 

discrete mechanism. Space was represented as a grid of cells, each being in one of a 

finite number of states. A uniform set of rules which take into account the state of 

neighbouring cells was applied to determine the fate of each cell in the space. A variety 

of complex branching patterns were produced using very simple rules [145, 1461. 

Eden [35] proposed an approach that employs probabilities to determine growth 

on a grid. In his model, the next cell to appear was picked at random from those 

on the periphery of the growing structure. Meakin [ l o l l  combined this idea with the 

diffusion limited aggregation models introduced by Witten and Sander [154]. The 

resulting diffusion limited growth models of branching structures produced new cells 

using probabilities that depended on the local concentration of a nutrient diffusing 

through the environment from an external source. 

The plant models of Arvo and Kirk [4] extended the particle system approach to 

create environment-sensitive automata, suitable for modelling clinging vines and sim- 

ulating effects such as heliotropism. Each particle was able to estimate the availability 

of light and the the distance to other objects in the environment, and determined its 

actions using this information. In order to provide a simple means of self-intersection 



testing and to increase rendering efficiency, Greene [58]extended this approach by 

having the particles move through a discrete voxel space. In his models, possible 

directions for new growth were generated stochastically and the "best" position was 

chosen using rules based on both local detection of obstacles and sampling of light 

conditions. 

1.3 Motivation and scope of work 

As a major stream in plant modelling research, L-systems have proven to be suc- 

cessful from a practical perspective. The L-system formalism provides a notation 

in which models utilizing both lineage and endogenous control mechanisms can be 

specified and then used as input data for modelling programs. As a result, these 

programs do not have to be recompiled each time a new plant is simulated. The con- 

cept of turtle interpretation provides a straightforward means for including geometric 

information in the string. The interpretation process can provide either schematic 

or realistic images of the modelled structures. The formalism also provides a clear 

sequence of time steps in which development occurs. By interpreting the model after 

each step, a sequence of images illustrating the plant's growth can be produced. 

Building on these strengths, I propose parametric L-systems with turtle inter- 

pretation as a tool for scientific visualization of development in modular branching 

organisms. This extension of the L-system formalism provides a convenient means for 

incorporating real-valued parameters into L-system based models, creating a system 

capable of mixed discrete-continuous simulation. For instance, at the cellular level the 

genomic state can be modelled using the discrete properties of the formalism, while 

continuous concentrations of developmentally important chemicals can be captured 

using parameter values. Details of growth functions can be expressed using algebraic 

expressions, avoiding the convoluted approximation of a particular growth function 

using standard L-systems [122, Section 1.91. A number of examples are presented 

to document the usefulness of parametric L-systems for these and other practical 

modelling purposes. 



My research builds on the experience I gained in the development of the Plant- 

works software system [61] and through its usage for plant modelling [119, 1231. The 

central contribution of the research reported in this dissertation is the formal def- 

inition of parametric L-systems, developed in collaboration with Dr. Lindenmayer 

and Dr. Prusinkiewicz, and first presented in 1990 along with examples revealing its 

modelling power [120]. Based on this concept, I designed and implemented a program 

called the continuous plant and fractal generator or cpfg. This program was used to 

illustrate the practical usefulness of the concept of parametric L-systems on a wide 

range of applications. Most of them were described in The Algorithmic Beauty of 

Plants [122], where parametric L-systems served as a notation for expressing ideas as 

well as a tool for creating images. Based on this experience, the need and potential 

for further extensions was found; some were previously outlined [62, 1211, others are 

described here for the first time. 

1.4 Organization of the dissertation 

This section describes the organization of the remainder of this dissertation. For- 

mal definitions of L-systems and details of turtle interpretation are reviewed in Chap- 

ters 2 and 3, respectively. Chapter 4 provides motivation for the extension to para- 

metric L-systems and defines them formally. A variety of applications, presented in 

Chapter 5, illustrate the usefulness of the proposed formalism. Further extensions, 

based on a view of L-systems as a mini-language for plant modelling, are included in 

Chapter 6. Chapter 7 summarizes the results of my research and presents problems 

open for further study. Appendix A describes the plant modelling program cpfg 

from a user's perspective. Appendix B provides a bridge between theory and practice 

by giving an overview of implementation considerations. Finally, colour plates are 

collected in Appendix C. 



Chapter Two 

L-SYSTEMS 


Lindenmayer systems were conceived as a theoretical framework within which 

the development of multicellular organisms, such as plants, could be modelled [88]. 

Particular emphasis was given to the mechanisms controlling that development. A 

plant is composed of a variety of modules, from single cells to plant organs such as 

leaves or flowers, as defined in Section 1.2 on page 4. In an L-system, each plant 

module is represented by a letter, different letters being used for modules of different 

types or in different states. A sequence of letters forms a word which represents the 

entire plant. 

Development is simulated by a process of rewriting; a rewriting rule or production 

is applied to a letter, resulting in its replacement by a new letter if the state of 

the module is to be changed, or by a group of letters if the module divides. Lineage 

mechanisms are modelled by considering only the current state of a module in choosing 

the production to be applied, while endogenous control mechanisms are simulated by 

considering the state of neighbouring cells as well [91]. The productions are applied 

in parallel, simultaneously replacing all letters in the current word. This reflects the 

biological motivation of L-systems; many cell divisions may occur at the same time 

in a plant. The total effect of these changes over time represents the development of 

the plant. 



This section presents the simplest class of L-systems, in which only lineage mech- 

anisms are used to control development. Since no flow of information between coex- 

isting cells is considered, this class is called context-free, interactionless, or zero-sided 

L-systems, and is noted OL-systems 1891. Formal definitions describing OL-systems 

and their operation are given below, following the presentation in [70, 1331. 

Definition 2.1 Let V denote an alphabet, V* the set of all words over V, and V+ 

the set of all nonempty words over V. A OL-system is an ordered triplet G = (V,w, P) 

where V is the alphabet of the system, w E VS is a nonempty word called the axiom 

and P c V x V* is a finite set of productions. A production (a, X) E P is usually 

written as a + X. The letter a and the word x are called the predecessor and the 

successor of this production, respectively. It is assumed that for any letter a E V 

there is at least one word x E V* such that a -+ X. If no production is explicitly 

specified for a given predecessor a E V, the identity production a + a is assumed to 

belong to the set of productions P. 

Definition 2.2 A OL-system is deterministic (noted DOL-system) if and only if for 

each a E V there is exactly one x E V* such that a +X. 

Definition 2.3 Let p = ala2 . . . a, be an arbitrary word over V. A production 

p : a + x matches a letter a;, 1 5 i 5 m, if a = a;. The matching production p can 

be applied to the letter a;, producing the word X. If a letter a; produces a word x as a 

result of a production application, it is noted a; H X. The word v = X I . .  .X, E V* 

is directly derived from (or generated by) p, noted p + v, if and only if a; H Xi 

for all i = 1, .  . . ,m. A word v is generated by G in a derivation of length n if there 

exists a developmental sequence of words pg, p l y . .  . ,pn such that po = w, pn = v and 

PO* * . . . * pn. 

The following example provides an illustration of the operation of DOL-systems. 

The formalism is used to simulate the development of a vegetative fragment of a 

multicellular filament such as that found in the blue-green alga Anabaena catenula 



Figure 2.1: Development of a filament of Anabaena catenala, simulated using a DOL-system 

and various other algae 128, 91, 1071. The symbols a and b represent cytological 

states of the cells (their size and readiness to divide). The arrows above the symbols 

indicate cell polarity, specifying the positions in which daughter cells of type a and b 

will be produced. The development is described by the following L-system: 



+ 
Starting from a single cell a (the axiom), the following sequence of words is 

generated: 
+ 
a 
++ 
a b  
+++ 
b a a  

a a b a b  
++++++++ 
b a b a a b a a  

Under a microscope, the filaments appear as a sequence of cylinders of various 

lengths, with a-type cells longer than b-type cells. By interpreting the letters in the 

words in a similar fashion, a sequence of images representing a developing filament 

can be created as shown in Figure 2.1. 

In the L-system formalism, endogenous control of development is modelled us- 

ing the context of a letter to determine the applicable production, thus simulating 

interaction between neighbouring cells. Various types of context-sensitive L-systems 

have been proposed and studied thoroughly in the past 170, 88, 95, 1341. 2L-systems 

use productions of the form a1 < a > a, + X,where the letter a (called the strict 

predecessor) can produce word x if and only if a is preceded by letter a1 and followed 

by a,. Thus, letters a1 and a, are called the left and the right context of a in this 

production. Productions in 1L-systems have one-sided context only; consequently, 

they are either of the form a1 < a -+ x or a > a, -+ X. OL-systems, IL-systems and 

2L-systems belong to a wider class of IL-systems, also called (my n)L-systems. In an 

(m,n)  L-system, the left context is a word of length m and the right context is a 

word of length n. For standard definitions, see Chapter 6 in the book by Herman 

and Rozenberg [70] or Chapter 6 in the book by Rozenberg and Salomaa [133]. A 

strict adherence to these formal definitions leads to long lists of productions, as every 

combination of letters of length m or n must be specified as a possible context for each 

letter in the alphabet. For simulation and image generation purposes it is convenient 



to generalize the standard definition of IL-systems by allowing contexts of different 

lengths to coexist in the same L-system. I will note these as I'L-systems, and they 

are defined as follows. 

Definition 2.4 An I'L-system is an ordered triplet G = (V,w,P), where V is 

the alphabet of the system, w E V+ is a nonempty word called the axiom, and 

P C (V* x V x V*) x V* is a finite set of productions. A production (ql, a,  q,, X) 
is represented as 71 < a > q, + X. The triplet (ql, a,  7,) and the word x are called 

the predecessor and the successor of this production, respectively. 

The above notation indicates that the strict predecessor a can be substituted by x if 
and only if a is preceded by the word qr and followed by the word q,. Consequently, the 

words ql and q, are called the left context and the right context of a in the production 

pi. A production with an empty left context can be written as a > q, + X. An 

analogous notation applies if the right context is empty. 

Definition 2.5 Production ql < a > q, -+ x matches word p = al ... a, at position 

s ,  15 s 5 m, if and only if the word p can be represented as 

where I' and r' denote the lengths of the words ql and q,, respectively. If no production 

is found to match p at position s ,  an identity production a --t a, where a = a,, is 

assumed to match. 

An I'L-system is deterministic if and only if no two productions can match the 

same letter in a string. Since there is no length restriction on the context strings in 

an I'L-system, two productions with different contexts may match the same letter. 

This is the case in the following I'L-system: 

w : ABA 

p l :  A > B A  + C 

p 2 :  A > B  + D 



Both productions pl and p2 match the first A in the axiom w.  For practical purposes, 

this form of non-determinism can be avoided by ordering the productions and defining 

a match in such a way that the first production meeting the appropriate conditions 

will be chosen, as in the following definition of deterministic I'L-systems. 

Definition 2.6 A DI'L-system is an ordered triplet G = (V,w, P), where the al- 

phabet V and the axiom w are defined as in Definition 2.4, and P : (1,.. . ,N )  -+ 

(V* x V x V*) x V* is a finite, ordered set of productions. A production pi will match 

a letter in a string if the conditions of Definition 2.5 apply and there is no production 

pj E P with j < i that also meets these conditions. 

The definition of derivation for I'L-systems is the same as Definition 2.3 for OL-

systems. The following sample 1L-system makes use of context to simulate signal 

propagation through a string: 

w : BAAAA 

p l :  B <  A + B 

P2 : B > A  + A  

P3 : B + C  

The axiom and the first five words generated by this L-system are given below: 

BAAAA 


ABAAA 


AABAA 


AAABA 


AAAAB 


AAAAC 


The letter B represents information that moves from the left side to the right side 

of the string. Note that in the first four derivation steps, production p2 is chosen to 

match the module B in the word, since it appears in the list before production p3, 

which would also match by Definition 2.5. In the last step, p2 no longer matches the 

module B and production p3 is applied. 



2.3 Stochastic L-systems 

All plants generated by the same deterministic L-system are identical. This pre- 

dictability is one of the properties that makes L-systems a useful modelling tool. The 

user knows that changes in the visualization are a direct result of changes made in 

the model rather than some random fluctuation, which simplifies the analysis of a 

particular parameter's contribution to morphogenesis. However, it may not always 

be desirable or possible to discern an underlying deterministic mechanism of growth. 

The use of stochastic techniques can provide a convenient abstraction. Data can be 

collected from a number of specimens and analysed st atistically to determine the 

appropriate probabilities for branching and growth processes. This may also be of 

great value for image synthesis purposes, where an attempt to combine identical plant 

models in the same picture can produce a striking, artificial regularity. In order to 

prevent this effect, it is necessary to introduce specimen-to-specimen variation that 

will preserve the general aspects of a plant, but will modify its details. 

Variation can be achieved by randomizing the interpretation, the L-system, or 

both. Randomization of the interpretation alone has a limited effect. While the 

geometric aspects of a plant - such as the stem lengths and branching angles -

vary in a random way, the underlying topology remains unchanged. In contrast, 

stochastic application of productions may affect both the topology and the geometry 

of the plant. The following definition of stochastic I'L-systems is based on the defini- 

tions of stochastic OL-systems presented by Prusinkiewicz [117], Yokomori [158], and 

Eichhorst and Savitch [36]. 

Definition 2.7 A stochastic I'L-system is an ordered quadruplet G, = (V,w,P,n). 
The alphabet V, the axiom w and the set of productions P are defined as in an I'L- 

system (Definition 2.4 on page 18). Function n : P + 92 maps the set of productions 

into a set of non-negative real numbers called probability factors. 

Definition 2.8 Let @(p,s) c P denote the subset of productions from P which 

match word p at position s. If no production in P matches at a given position, then 

@(p, s) is assumed to contain an identity production for the letter at position s with 



probability factor 1. The derivation p + v is a stochastic derivation in G, if for each 

position s in the word p the probability of applying production pi E $(p, s)  is equal 

An important consequence of this definition is that different productions with the 

same strict predecessor can be applied to various occurrences of the same letter in 

one derivation step. Also note that static specification of production probabilities 

would not be sufficient, since the set of matching productions found for a letter at a 

given position in the word is not only dependent on the strict predecessor but also 

on the context. Thus, the number of productions that match a given letter may vary 

from position to position in the string. A simple example of a stochastic I'L-system 

is given below. 
w : ABC 

p l :  A <  B + A : 1  

P2 : B > C  + BB : 2  

The production probability factors must be listed following a colon at the end of 

each production. In the first and all subsequent derivation steps, the letters A and 

C will be replaced by themselves using identity productions, as no other productions 

match. In the first derivation step, both productions match the letter B at position 

s = 2. Production pl will be selected with the probability 1/(1 + 2) = 113, while 

production p2 will be selected with the probability 2/(1 + 2) = 213. If production 

pl is selected, the resulting string will be AAC, and no further changes will occur. If 

production pa is selected, the resulting string will be ABBC. In the next derivation 

step, the B at position s = 2 is only matched by production pl which will be applied 

with probability 111= 1. Similarly, the B at position s = 3 will only be matched by 

production p2, which will be applied with probability 212 = 1. The resulting string 

will be AABBC. 



2.4 Modelling branching structures 

The formalism presented to this point can only capture models of organisms with 

a non-branching architecture, since the letters in a word are arranged in a strictly 

linear fashion. In the second part of his 1968 paper [88], Lindenmayer introduced the 

notion of bracketed strings to describe the branching structure of plants. Left and 

right brackets, "[" and "]", are added to the alphabet of an L-system. In a correctly 

formed bracketed string, left and right brackets must occur in matching pairs in the 

same way as parentheses are used in an arithmetic expression. By considering the 

brackets as delimiters of branches, the bracketed strings can be interpreted as branch- 

ing structures. Specifically, a left bracket indicates the node of the mother branch 

to which the daughter branch is to be attached, while the matching right bracket 

terminates branch specification. The brackets may be nested, indicating higher-order 

branches. If more than one branch occurs at a site, the bracketed substrings rep- 

resenting each one are listed consecutively in an arbitrary order. An example of a 

bracketed string and a corresponding tree structure are shown in Figure 2.2. 

In context-free L-systems, the introduction of brackets has no effect on the deriva- 

tion process; the brackets are simply rewritten into themselves. However, in bracketed 

I'L-systems, there may be pairs of letters that cannot communicate with each other 

directly, since the brackets impose a branching topology on the string. All those let- 

ters that can communicate with a particular letter are distinguished as its complete 

context. 

The left and right contexts have slightly different properties, as illustrated in 

Figure 2.2. The complete left context represents all modules that are "below" the 

current module in the branching structure, thus it is a sequence of all letters to 

the left of a given letter, possibly interrupted by one or more substrings enclosed 

in matching brackets. In the figure, the string ABC is the complete left context of 

the letter F. On the other hand, the complete right context represents all modules 

which are "above" the current module, thus it can be a bracketed string representing 

a branching structure. In the figure, the string G[HI[JK]L]MNOis the complete right 

context of the letter F. In general, the complete right context of a letter is defined as 



Complete 
Right Context 

Complete 
Left Context 

Figure 2.2: A bracketed string and a corresponding tree structure. The complete contexts for the 
letter F are marked. 

all letters to its right that are encountered before an unmatched right bracket or the 

end of the string. 

As a consequence of the asymmetry between the definitions of the left and right 

contexts, they are matched using different procedures. The left context matching 

procedure presented on page 24 is controlled by an outer while loop that stops when 

a mismatch has been found or if the end of the string or context has been reached. In 

the case where a; == ' I J ,  the procedure skips over intervening substrings representing 

branches that are found in the string. In the case where a; == '[',the procedure has 

found a left bracket and skips over it. Otherwise, the current string and context 



- - - 

Procedure 	  MatchLeft Context 
Purpose 	  This procedure attempts to match the substring alaz ... a,-1 with 

the left context ql = clcz ... ca, where 1' denotes the length of the 
word ql. The boolean variable match will have value TRUE if the 
left context matches the string, FALSE otherwise. 

Let i = s - 1  /* initialize string index */ 
Let j = 1' /* initialize context index */ 
Let match = TRUE /* initialize matching flag */ 

While match and i > 0 and j > 0 
/* Check for symbols to be skipped */ 
DoCase 

/* Skip substrings representing branches */ 
Case ai == 'I' 

/* move the index i to point at the first character 
to the left of the matching left bracket */ 

i = SkipLeft(i) 

End Case 

/* Skip left brackets */ 

Case ai == '[' 


i = i - 1 

End Case 

/* Nothing to be skipped, check for match */ 

0therwise 


If ai == cj 
/* OK so far; keep scanning the string and coiltext */ 
i = i - 1/* move left in the string */ 
j = j - 1 /* move left in the context */ 

Else 

/* Mismatch */ 

match = FALSE 


End If 
End Otherwise 


End DoCase 

If i ==0 and j> 0 


/* the string index is past the left end and 
there's still context to match */ 

match = FALSE 
End If 

End While 



Procedure 	 MatchRight Context 
Purpose 	 This procedure attempts to match the substring a,+l ... a ,  with 

the right context 7, = cl ...c,~,where r' denotes the length of the 
word 7,. The boolean variable match will have value TRUE if the 
right context matches the string, FALSE otherwise. 

Let i = s + l  /* initialize string index */ 
Let j = 1 /* initialize context index */ 
Let match=TRUE /* initialize matching flag */ 
While match and i <= m and j <= r' 

DoCase 

/* Check for substrings representing branches that 


have no match in the context */ 

Case aj == '[' and cj != '[' 


/* move the index i to point at the first character 

to the right of the matching right bracket */ 


i = SkipRightPastBranch(i) 

End Case 

/* Check for branch end in the context */ 

Case cj == 'I' 


/* move the index i to point at the first character to the right 
of the next unmatched right bracket in the string. */ 

i = SkipRightPastEnd(i) 
j = j + 1 /* move right in the context */ 

End Case 

/* Check for mismatch */ 

Otherwise 


If i <= m and aj == cj 
/* OI< so far; keep scanning the string and context */ 
i = i + 1 /* move right in the string */ 
j = j + 1 /* move right in the context */ 

Else 

match = FALSE 


End If 

End Otherwise 


End DoCase 

I f i > m a n d  j < r l 


/* the string index is past the right end and 
there's still context to match */ 

match = FALSE 
End If 

End While 



symbols are compared. The use of the DoCase construct ensures that all intervening 

branches or left brackets are found and skipped before a comparison occurs between a 

string and a context symbol. In the example presented in Figure 2.2, the left context 

BC matches the string BC[DE][,with the symbols [DE] and [ being skipped. 

The right context matching procedure presented on page 25 is controlled by an 

outer while loop which stops when a mismatch has been found or if the end of the 

string or context has been reached. In the case where a; == '[' and c j  != '[', the 

procedure has found a substring enclosed in matching brackets in the string that is 

not in the context. The substring and matching brackets are skipped and the next 

symbol considered in the string is the first one after the closing bracket. In the case 

where cj  =='Iy,  the procedure has found a right bracket in the context. Symbols are 

skipped by moving the context pointer to the first symbol after the next unmatched 

right bracket in the string. Otherwise, if neither of these cases apply, the string and 

context symbols are compared and the appropriate action taken. In the example, the 

right context G[H]M matches the string G[HI[JK]][L]M. The symbols I[JK] and [L] are 

skipped over. 

Note that the bracketed string notation imposes an ordering on multiple branches 

that originate after the same module. For example, the strings 

ABC[DE] [FG[HI[JK]L]MNO]Pand 

ABC[FG[HI [JK]L]MNO] [DE]P 

represent the same structure, as the same two "branches" [FG[HI[JK]L]MNO] and [DE] 

appear immediately after the symbol C in both strings. If context from a specific 

branch is required, it is the responsibility of the user to keep track-of this order. In 

addition, this notation does not provide a simple mechanism for collecting information 

from an arbitrary number of branches at a given location. 

Figure 2.3 gives examples of the use of IL-systems to simulate propagation of 

signals in a branching structure that does not grow. The letter B represents a segment 

already reached by the signal, while A represents a segment that has not yet been 

reached. The left context can be used to simulate control signals that propagate 

acropetally, from the root or basal leaves towards the apices of the modelled plant, 

while the right context represents signals that propagate basipetally, from the apices 



Figure 2.3: Signal propagation in a branching structure: (a) acropetal, (b) basipetal 

towards the root. The images represent consecutive stages of signal propagation 

corresponding to consecutive words generated by the L-system under consideration. 

2.5 Symbols not included in context 

In order to create a visualization of the plants modelled using L-systems, it is 

convenient to incorporate symbols carrying information about model geometry into 



the bracketed string (see Chapter 3 for more details). These symbols typically oc- 

cur throughout the string and thus have to be dealt with while context match- 

ing. For example, the axiom of the L-system in Figure 2.3a might be changed to 

B CGAIA CGAIA [GA] A, where symbol G carries information about branching angles. The 

application of production pl would now result in only the main-stem letters A being 

converted to B's. The G's at the beginning of each branch would prevent the B's in 

the main stem from being matched as the left context of the A's in the branches. 

One solution to this problem would be to add productions passing the signal 

past each geometric attribute symbol. This may increase the number of productions 

dramatically, and causes modelling difficulties as the time taken to pass the signal 

through the string will be proportional to the total number of letters in the string, 

rather than to the number of letters representing the structure. A better solution, 

which ensures correct propagation of information regardless of these symbols, is to 

partition the L-system alphabet into two sets, those considered during context mat ch- 

ing and those that are ignored. Using this approach, G is specified as the letter to 

be ignored and the signal will be passed into the branches in the same way as in the 

original example. 



Chapter Three 

TURTLE INTERPRETATION 


Initially, the models expressed in terms of L-systems were illustrated by listing 

the consecutive words generated during a derivation. Further visualization relied on 

human interpretation of the letters as different modules, either in the mind's eye or in 

the form of hand-drawn images. As an example of this approach, consider the simple 

geometric interpret ation of strings that was applied to create the schematic images 

of Anabaena catenula in Figure 2.1 on page 16. Letters of the L-system alphabet 

were represented graphically as shorter or longer rectangles with rounded corners. 

The generated structures were one-dimensional chains of rectangles, reflecting the 

sequence of symbols in each of the underlying strings. However, there is nothing in 

the model that restricts the filament to a straight line, so the draftsperson is free 

to  create a curved representation, such as that seen in Figure 3.1, which matches 

microscopic images of the real organism more closely. 

In order to model and visualize complex branching plants, a more sophisticated 

graphical interpretation of L-systems is needed. The first results in this direction were 

published in 1974 by Hogeweg and Hesper [73], and Frijters and Lindenmayer [52]. In 

both cases, bracketed L-systems were used to determine the branching topology of the 

modelled plants. Geometric aspects, such as branching angles, were added in a post- 

processing phase. The results of Hogeweg and Hesper were subsequently extended 

by Smith [136, 1371, who demonstrated the potential of L-systems for realistic image 

synthesis using state-of-the-art computer graphics techniques. In the resulting graftal 

formalism, geometry was added to the topological model in a separate interpretation 



Figure 3.1: Two-dimensional representation of Anabaena ca-lenula 

step. 

In 1979, Szilard and Quinton [I421 proposed a different approach, in which each 

letter of the L-system alphabet was assigned an interpretation as a sequence of com- 

mands to a plotter pen, effectively making the geometry internal to the L-system. 

They showed that strikingly simple DOL-systems could generate the convoluted curves 

known today as fractals [98]. Noting the similarity of their approach to LOGO tur- 

tle geometry [I, 1141, Prusinkiewicz incorporated the geometric commands directly 

within L-systems, and extended this turtle interpretation to include bracketed IL- 

systems [I161 and three-dimensional models [117]. This is the approach I followed in 

my research. 

In the original concept of LOGO turtle geometry [114], images are created by a 

pen-carrying "turtleyy as it crawls around on a two-dimensional surface. The turtle 

responds to commands which originate from the user, such as pen up, pen down, turn 

right, and move forward. The path of the turtle in the "pen down" state is traced on 

paper or a computer screen. 

In turtle interpret ation of L-systems, the turtle builds ,a structure of line segments 



as it moves around in a three-dimensional world. Its actions are controlled by the 

sequence of commands obtained by reading the L-system-generated string from left 

to right. For example, the commands may cause the turtle to change its orientation 

in space, move forward, or add a new line segment. Finally, an image is created by 

rendering a particular view of the turtle's world using standard computer graphics 

techniques. 

The following discussion of turtle interpretation is derived from the presentations 

of Prusinkiewicz et a1 [I221 and Hanan [61]. 

3.1 Turtle state 

The turtle interpreting a string is represented by a set of attributes that constitute 

its state. The major components of the turtle's state are its position, represented by 

three Cartesian coordinates x, y ,  and z ,  and its orientation in space, represented by 

three vectors indicating the turtle's heading ( g ) ,  lefl (E),and up (c)directions. These 

vectors have unit length, are perpendicular to each other and satisfy the equation 

I? x e = a. Using this notation, rotations of the turtle are expressed by the formula: 

where R is a 3 x 3 rotation matrix [42]. Specifically, rotations by angle a about 
-3 -. 

vectors H, L and are represented by the following matrices. 

cos a sin a 0 

""(a)= c0;a[-,":] 
cos a 0 - s ina  ]R L ( L ) = [  0 1 0 

sina 0 cos a 

0 0 

R H ( ~ ) =  0 cosa - s ina[1  sina cosa 



Figure 3.2: Correction o of segment heading I? due to tropism ? 

The remaining elements of the turtle state are its drawing attributes. The colour 

index specifies the colour of segments drawn by the turtle. The images are created 

using the colour map technique [42, page 1321, therefore the colour represented by 

a particular index depends on the contents of the map. The line width attribute 

specifies the width of the segments being drawn. The final drawing attribute is 

called the elasticity factor and is used to model the bending of a plant's branches 

towards a source of light (phototropism), down due to gravity, or sideways due to 

wind. These effects are simulated by slightly rotating the turtle in the direction of 

a predefined tropism vector !? after drawing each segment. Figure 3.2 illustrates the 

two-dimensional case. The orientation adjustment angle cx is calculated from the 
+ -# 

formula a = elH x TI, where the elasticity factor e is a parameter capturing axis 

susceptibility to bending. This heuristic formula has a physical motivation; if 5? is 

interpreted as a force applied to the endpoint of segment I?, and I? can rotate around 

its starting point, the torque is equal to I? x f'.In the three-dimensional case, similar 

heuristics are applied to rotate the turtle, first around its left axis and then around 

its up axis, thus re-aligning the turtle's heading toward the tropism direction. The 

effect of tropism on a branching structure is illustrated in Figure 3.3. 



Figure 3.3: Modelling tropism. The tropism vector ?points up. The coefficients e used to generate 
structures a-c satisfy the relation eb > e, > 0 > e,. 

3.2 Basic commands 

As the turtle scans the L-system string from left to right, it encounters specific 

letters that have been assigned an interpretation. Typically, these command letters 

result in a modification of the turtle's state. The interpretation of a single symbol 

causes the appropriate state attribute to be changed by an amount specified by pa- 

rameters making up the turtle's drawing environment. The step size d specifies the 

distance the turtle moves in the direction of its heading vector. The angle increment 

S controls the size of the angle that the turtle is rotated. The colour index increment, 

line width increment, and elasticity increment specify the amount by which the re- 

spective state attribute is increased or decreased. The tropism vector f ,described in 

the previous section, is the final parameter. 



Figure 3.4: Controlling the turtle in three dilne~lsions 

Given this drawing environment, the turtle responds to a basic set of commands 

that can be divided into the following categories: 

Moving and drawing commands 

F Move forward a step of length d. The position of the turtle changes to 
-. -, 	 -. 

(XI,y', z'), where x' = x + dH,, y' = y + dH,, and z' = z + dH,. A line 

segment is drawn between points (x, y , z) and (XI,  y', 2'). 

f Move forward a step of length d without drawing a line. 

Orientation modifying commands (Figure 3.4) 

+ Turn left by angle 6. The rotation matrix is equal to Ru(6). 

-	 Turn right by angle 6.The rotation matrix is equal to RU(-6). 

& Pitch down by angle 6. The rotation matrix is equal to RL(6). 

A Pitch up by angle 6. The rotation matrix is equal to RL(-6). 

\ Roll left by angle 6. The rotation matrix is equal to RH(6). 

/ Roll right by angle 6. The rotation matrix is equal to RH(-6). 

Turn around. The rotation matrix is equal to RU(1800). I 



Figure 3.5: Turtle interpretation of a bracketed string 

Branch modelling commands (Figure 3.5) 

[ Push the current state of the turtle onto a pushdown stack. 

] Popastatefromthestackandmakei t thecurrents ta teof thetur t le .  

No line is drawn, although in general the position of the turtle changes. 

Commands changing drawing attributes 

, 	 Increase the value of the current index into the colour map by the colour 

increment. 

; 	 Decrease the value of the current index into the colour map by the 

colour increment. 

# 	 Increase the value of the current line width by the line width increment. 

! 	 Decrease the value of the current line width by the line width increment. 

If Increase the value of the current elasticity factor by the elasticity incre- 

ment. 

I Decrease the value of the current elasticity factor by the elasticity in- 

crement. 

3.3 Surface modelling 

The turtle interpretation commands presented to this point only allow the cre- 

ation of structures composed of line segments. However, plants have many com- 

ponents, such as leaves and petals, that are more naturally modelled as surfaces. 



Figure 3.6: Surface specification 

Two approaches to surface modelling using turtle interpretation are presented in this 

section. 

3.3.1 Predefined surfaces 

A standard computer graphics method for defining surfaces makes use of para-

metric bicubic patches [lo, 421. This technique is well suited for interactive design 

of arbitrary surface shapes. The control points that define an individual patch can 

be modified using a graphical interface [61, Section 4.21, and several patches can be 

combined to create a more complex surface [61, Section 3.51. The resulting surface 

definition can then be stored in a file for use during turtle interpretation. Further 

details of the file format can be found in Section A.3.4 on page 164. 

Predefined surfaces are incorporated into a plant model by extending the L-system 

alphabet. When the turtle encounters a symbol representing a surface preceded by a 

tilde (N ) ,  the corresponding surface is drawn. The exact position and orientation of 

a predefined surface S is determined using the user-defined contact point Ps, heading 

vector as,and up  vector cs as references (Figure 3.6). The surface is translated 

in such a way that its contact point matches the current position of the turtle, and 

is rotated to align its heading and up vectors with the corresponding vectors of the 

turtle. If a surface represents an internal part of a plant's structure, the turtle is 



Figure 3.7: Apple blossom and interactive surface editor 

positioned at a user-defined end point once the surface has been drawn. 

The following L-system produces the apple blossom shown on the left side of 

Figure 3.7 in two derivation steps, given an angle increment of 18'. 

w : FFFFFB 

Pl : B + [~////S////S////S////S] 

P2 : S + [WC] [--PI [A A F[-F] [SF]] 

The F's in the axiom represent the blossom's stem, while the B represents a bud. 

In the first derivation step, production pl replaces the symbol B by five segments S 

separated by / symbols. In the second derivation step, production p ~ :creates the 

three components of each segment, a calyx leaf [NC], a petal [NP], and a stamen 

[A A F[-F][+F]]. During turtle interpretation, the predefined surfaces C, representing 

the leaf, and P, representing the petal, will be incorporated into the image. These 

surfaces were designed using the interactive surface editor shown on the right in 

Figure 3.7. 



Figure 3.8: A model of a fern frond with polygonal leaflets 

3.3.2 Developmental surfaces 

Predefined surfaces do not "grow"; if a developmental sequence is required, sur- 

faces representing individual stages of surface growth must be separately defined and 

incorporated into the model. An alternate approach is to allow the turtle to create 

polygons directly. The opening brace "{" and the closing brace "1" are introduced 

as commands that delimit the substring which determines the boundary of a polygon 

to be filled. When an opening brace is encountered during interpretation, an empty 

list of vertices representing the current polygon is created. Subsequently, whenever 

an F or f is interpreted, the resulting turtle position is appended as a vertex on the 

list. Interpretation of the closing brace causes the current polygon to be filled. Using 

this approach, L-system productions can be employed in a number of different ways 

to change the size and shape of a polygon over time. 

The first possibility is to trace surface boundaries using the turtle and fill the 

resulting polygons, as in the L-system given below: 



{[++++G .][++GG . ][+GGG . ][GGGGG . I[-GGG .I[--GG . I[----G . I} 
1 2 3 4 5 6 7 

Figure 3.9: Surface specification using a branching structure as a framework. The numbers corre- 
spond to the order of vertex specification by the turtle. 

Production pl defines leaf L as a closed planar polygon. Production p2 increases the 

lengths of its edges linearly. This technique was used to model the leaflets on the 

fern branch in Figure 3.8. Leaflets appear in order of age with the youngest at the 

top. The branch exhibits a "phase effect" [I431 in which a series of stages in a plant 

component's growth appear in the structure at the same time. 

In practice, the tracing of polygon boundaries only produces acceptable effects for 

small, flat surfaces. In other cases it is more convenient to use a tree structure as 

a framework for a polygon. Vertices are specified by a sequence of turtle positions 

marked by the dot symbol ( .). An example is given in Figure 3.9. The letter G has 

been used instead of F to indicate that the segments enclosed between the braces 

should not be interpreted as the edges of the constructed polygon. The numbers 

correspond to the order in which the turtle specifies the vertices. 

In the techniques discussed so far, the turtle specifies the vertices of one polygon, 

then moves on to the next. Further flexibility in surface definition can be achieved 

by interleaving vertex specifications for different polygons. In order to accomplish 

this, the interpretation of braces is redefined as follows. A string containing nested 

braces is evaluated using two data structures, the list of vertices representing the 



7 

[{+ .G . { .&G . { .&G . I[-G[&G[&G. I .  ) . I .  ) .)I 
1 2 3  4 5  6 7 8 9 10 11 

Figure 3.10: Surface specification using stacked polygons. The numbers correspond to the order of 
vertex specification by the turtle. 

current polygon and a polygon stack. At the beginning of string interpretation, both 

structures are empty. The interpretation of an opening brace "{" initializes a new 

polygon list and pushes it onto the polygon stack. When the turtle encounters a 

closing brace (0"it pops the current polygon from the top of the stack and draws the 

polygon specified by its list of vertices. An example of string interpretation involving 

nested braces is given in Figure 3.10. This surface cannot be described using a single 

pair of braces, since methods for filling non-planar polygons are not well defined. 

Therefore, the figure is decomposed into three polygons connecting the following sets 

of vertices: {1,2,11), {3,4,9, lo ) ,  and {5,6,7,8). Note that it is necessary to have 

separate stacks for polygons and branches, as they operate independently. In this 

case, all three polygons start in one branch and are completed in another. 

3.3.3 Surface specificat ion commands 

The turtle interpretation commands involved in surface creation can be summa- 

rized as follows. 

Draw the surface identified by the letter immediately following the 

symbol at the current location of the turtle and with its orientation. 

{ Create an empty current polygon and push it on the polygon stack. 



F 	 Move forward a step of length d and draw a line, then append the 


turtle's position to the current polygon. 


f 	 Move forward a step of length d without drawing a line, then append 


the turtle's position to the current polygon. 


G 	 Move forward a step of length d and draw a line, but do not append a 


vertex to the current polygon. 


g 	 Move forward a step of length d without drawing a line, but do not 


append a vertex to the current polygon. 


. 	 Append the turtle's position to  the current polygon. 

) 	 Pop the current polygon from the stack and draw it using the specified 


vertices. 


3.4 Special-purpose interpretation routines 

Aside from the standard set of commands, it is often desirable to have the turtle 

perform special-purpose interpretation routines, which may be experimental in na- 

ture. These routines are compiled into the plant modelling program, and are typically 

used to increase the functionality of turtle interpretation. In order to facilitate this 

task, a "black-box" interface routine [61, Section 3.61 provides the link between the 

turtle and the new action, while isolating the user from the details of string handling 

and the remainder of the interpretation code. 

The user specifies a new action by supplying code that performs the desired oper- 

ations, along with a unique one- or two-letter identifier. In order to avoid ambiguities, 

one identifier cannot be a prefix of another. The turtle state attributes and drawing 

environment parameters are available for use and modification by the special purpose 

interpret ation routines. 

During interpretation, the black-box interface routine is called when an @ symbol 

is encountered in the string. The routine scans the string starting immediately after 

the @ and tests whether it matches any user-supplied identifier. If so, the appropriate 



code is executed; if not, an error is reported. The black-box interface then returns 

control to the standard interpretation routines, where scanning is resumed at the first 

letter after those used to identify the black-box action. Examples of useful black-box 

functions are listed below. 

@C draws a circle with radius equal to the turtle's linewidth at the turtle's 

current location, in the plane perpendicular to the viewing vector. 

@S draws a sphere with radius equal to the turtle's linewidth at the current 

location of the turtle. 

@LF decreases the line length attribute by a constant factor. 

@V rotates the turtle around its heading vector so that the left vector is hori-

zontal and the y component of the up vector is positive. 

Functions @C and @ S  extend the set of drawing primitives, while @LF modifies the 

drawing environment and @V modifies the turtle state. 



Chapter Four 

PARAMETRIC L-SYSTEMS 


L-systems with turtle interpretation make it possible to generate a variety of 

objects, from abstract fractals to realistic images of flowering plants [61, 123, 1191. 

However, the discrete nature of the formalism imposes limitations on the user. One 

major problem can be traced to the restriction that all lines drawn by the turtle must 

be integer multiples of the unit segment. As a result, even such a simple figure as an 

isosceles right triangle 

cannot be traced exactly, since the ratio of its hypotenuse length to the length of 

a side is the irrational number z/Z. Rational approximation of this line provides a 

limited solution, but requires the use of a large number of F commands, since the unit 

step must be the smallest common denominator of all line lengths in the modelled 

structure. This requirement can be of even greater consequence when modelling plant 

structures, which often exhibit a wide range of sizes, from tree trunk to tiny twig, and 

a large number of components in the entire organism. A similar argument applies for 

angles. 

The constant length of the turtle step is also a problem when simulating the ex- 

pansion of a structure over time. Since line segments are represented by sequences 

of F symbols, this expansion is modelled by the increase in their number from one 



derivation step to the next. A function fG(n) associating the derivation step n with 

the number of symbols in a string is called a growth function. Rozenberg and Sa- 

lomaa [133, pages 30-381 show that the growth function fG(n) of any DOL-system 

G = (V,w ,P) is a combination of polynomial and exponential functions: 

S 

fG(n) = C P ; ( n ) p l  for n 2 no, (4.1) 
i=l 

where P;(n) denotes a polynomial with integer coefficients, p; is a nonnegative integer, 

and no is the total number of letters in the alphabet of G. Unfortunately, many 

growth processes observed in nature cannot be described by equation (4.1). The use 

of interactive L-systems extends the range of expressible growth functions, but still 

does not allow the specification of slower than logarithmic growth [148]. In addition, 

the IL-systems may require message passing schemes not found in real plants. It 

would be convenient for the user to be able to abstract from the details of modelling 

a particular growth function by simply specifying it mathematically. This form of 

expression could also be useful for a higher level plant design system. 

Many processes that occur during plant development are continuous in nature. 

Examples include chemical reactions, diffusion of hormones, and the resulting distri- 

bution of concentrations. Generally, it is difficult to capture such phenomena using 

L-systems, since the obvious technique of discretizing continuous values may require 

a large number of quantization levels, yielding L-systems with hundreds of symbols 

and productions. To reduce this number, Lindenmayer proposed the association of 

numerical parameters with L-system symbols [go]. He illustrated this idea by refer- 

ring to the continuous development of branching structures [52] and to the diffusion 

of chemical compounds in a nonbranching filament of Anabaena catenula. Both prob- 

lems were revisited in later papers [28, 51, 50, 831. 

These concepts inspired Baker, Herman, and Liu to develop a cellular iterative 

array simulator called CELIA [6, 7, 69, 711. They took an ad hoc approach, in which 

ordinary productions were specified in a data file, while those with parameters were 

coded in a FORTRAN subroutine that had to be compiled and linked with the pro- 

gram. No formal definition was given describing the integration of the two techniques. 



As a result, the data file specification was incomplete and could not serve as docu- 

ment ation of the underlying development a1 processes. 

The definitions for parametric L-systems with turtle interpretation found in the 

remainder of this chapter are based on the seminal ideas of Lindenmayer and are 

derived from the original formulation by Prusinkiewicz and Hanan [120]. They provide 

a practical basis for the modelling and visualization of a wide variety of organisms. 

4.1 Parametric OL-systems 

Parametric L-systems operate on parametric words, which are strings of modules 

consisting of letters with associated parameters. The letters belong to an alphabet 

V, and the parameters belong to the set of real numbers 8. A module with letter 

A E V and parameters al, a2, ...,a, E 8 is denoted by A(al, a2, ...,a,). Every module 

belongs to the set V x P,where Pis the set of all finite sequences of parameters. 

The real-valued actual parameters appearing in the words correspond to formal 

parameters represented by names of variables in the specification of L-system produc- 

tions. A letter with an associated sequence of formal parameters is called a formal 

module, and a sequence of formal modules is called a formal parametric word. If C is a 

set of formal parameters, then C(C) denotes a logical expression with parameters from 

C, and E(C) is an arithmetic expression with parameters from the same set. Both 

types of expressions consist of formal parameters and numeric constants, combined 

using the operators listed in Table 4.1 and parentheses, "(" and ")", for grouping. 

Standard rules for constructing syntactically correct expressions are observed, using 

the operator precedence and associativity presented in the table. Relational and 

logical expressions evaluate to zero for false and one for true. A logical statement 

specified as the empty string is assumed to have value one. The expressions can 

include calls to predefined functions from the following list: sine, cosine, tangent, 

arccos, arcsin, arctan, floor, ceiling, truncate to integer, absolute value, exponential, 

natural logarithm, and random. This choice of functions is dictated by their use- 

fulness in applications. The sets of all correctly constructed logical and arithmetic 

expressions with parameters from C are noted C(C) and &(C). 



Table 4.1: Operator precedence and associativity. Operators on the same line have the same prece-
dence and the rows are in order of decreasing precedence. 

Operator 

f() 
- I 

A 

* / % 

+ -
< <= > >= 

---- != 
&& 
I I 

In order to model structures in which development is only controlled using lineage 

mechanisms, parameters can be incorporated into context-free L-systems, as in the 

following definition. 

Definition 4.1 A parametric OL-system is defined as an ordered quadruplet G = 

(V,C, w, P), where 

Description 
function call 
unary minus and logical 
negation 
exponentiation 
multiplication, division, and 
remainder 
addition and subtraction 
less than, less than or equal to, 
greater than, greater than or 
equal to 
equality and inequality 
logical and 
logical o r  

V is a nonempty set of letters called the alphabet of the system, 

Associativity 
left to right 
right to left 

right to left 
left to right 

left to right 
left to right 

left to right 
left to right 
left to right 

C is the set of formal parameters, 

w E (V x %*)+ is a nonempty parametric word called the axiom, and 

P c (V x C*) x C(C) x (V x I@)*)*is a finite set ofproductions. 

A production, (cz, C,-X) is usually noted as g : C -+ x where the formal module 

a E V x C* is called the predecessor, the logical expression C E C(C) is called the-

condition, and the formal parametric word -x E (V x E(C)*)* is called the successor. 

If the condition is empty, the production can be noted a -+ -X. For a given produc-

tion, it is assumed that a formal parameter can appear no more than once in the 



predecessor, and all formal parameters in the condition and successor must appear in 

the predecessor. 

An example of a production is given below 

It has predecessor ~ ( t ) ,condition t > 5 and successor ~ ( t+ I.)cD(~A 0.5,t - 2). 

Definition 4.2 A production pi matches  a module in a parametric word if the fol-

lowing conditions are met: 

the letter in the module and the letter in the production predecessor are the 

same, 

the number of actual parameters in the module is equal to the number of formal 

parameters in the production predecessor, and 

the condition evaluates to t rue  if the actual parameter values are substituted 

for (or bound to) the formal parameters according to their relative position in 

the module and predecessor. 

A matching production can be applied to the module, creating a string of modules 

specified by the production successor with expressions being evaluated to produce 

actual parameters. If no production p E P matches a given module from the string, 

then the module is replaced by itself. 

For example, production (4.2) matches the module ~ ( 9 ) )since the letter A in the 

module is the same as in the production predecessor, there is one actual parameter 

in the module ~ ( 9 )and one formal parameter in the predecessor ~ ( t ) ,and the logical 

expression t > 5 is true for t equal to 9. The result of the application of this 

production is the parametric word B ( I O ) C D ( ~ ,  7). 

A parametric OL-system is deterministic if and only if no two productions can 

match the same module in a string. This requirement will be satisfied if for ev-

ery group of productions that have predecessors with the same letter and the same 



Figure 4.1: The initial sequence of strings generated by the parametric L-system specified in equa- 
tion (4.3) 

number of formal parameters, no two conditions evaluate to true, for every possible 

combination of parameter values. In practice it is often convenient to enforce deter- 

ministic operation of an L-system by ordering the set of productions and by applying 

the first matching production in the list, as in the following definition. 

Definition 4.3 A parametric DOL-system is defined as an ordered quadruplet G = 

(V, C,w ,P), where the alphabet V, the formal parameters C, and the axiom w are 

defined as in Definition 4.1, and P : {1,2, ...,N )  c (V x C*) x C(C) x (V x I@)*)*is 

a finite, ordered set of productions. A production p; will match a module in a string, 

if the conditions of Definition 4.2 apply and there is no production pj E P with j < i 
that also meets those conditions. 

A derivation in a parametric L-system is defined below, in the same manner as 

for standard L-systems. 

Definition 4.4 If a module a produces a parametric word x as the result of a pro- 

duction application in a parametric L-system G, we write a ++ X. Given a parametric 

word p = ala2...a,, we say that the word v = is directly derived from (or X~X~. . .X ,  

generated by) p, and write p =$ v, if and only if ai H xi for all i = 1,2, ...,rn. A 

parametric word v is generated by G in a derivation of length n if there exists a se- 

quence of words po, p1, ...,p, such that po =w, pn = v and po p1 *... =$ p,. 



An example of a parametric DOL-system is given below. 

The words obtained in the first few derivation steps are shown in Figure 4.1. 

4.2 Parametric IL-systems 

Productions in parametric DOL-systems are context-free and provide a mecha-

nism for the simulation of information flow controlled by lineage. In order to model 

endogenous control of development, parameters are incorporated into non-bracketed 

interactive L-systems. In the non-parametric case, two types of interactive L-systems 

were distinguished: IL-systems, where the left and right contexts were of constant 

lengths, and I'L-systems, where no such restriction applied. In the parametric case, 

this distinction is not made. The more convenient term IL-system is used to represent 

the general case, where contexts of different lengths coexist in the same parametric 

L-system. 

Definition 4.5 A parametric IL-system is an ordered quadruplet G = (V,C, w ,  P), 

where 

V is a nonempty set of letters called the alphabet of the system, 

C is the set of formal parameters, 

w E (V x %*)+ is a nonempty parametric word called the axiom, and 

P c (V x C*)*x (V x C*) x (V x C*)*x C(C) x (V x E(C)*)* is a finite set of 

productions. 

A production (ql,g,-qr, C,X)is usually noted -ql < g >-q, :C -+ -x where 



the formal module a E V x C* is called the strict predecessor 

the formal parametric words -7l E (V x C*)* and -7, E (V x C*)" are called the 

left context and the right context, respectively, 

the triplet (yl,g,- -7,) is called the predecessor, 

the logical expression C E C(C) is called the condition, and 

the formal parametric word -x E (V x E(C)*)*is called the successor. 

As in the context free case, a formal parameter can appear no more than once in the 

predecessor of any production, and all formal parameters appearing in the condition 

and successor must appear in the predecessor. 

A production with its left context empty can be written as a > -7, :C 4 -X ;similarly, 

a production with its right context empty can be written as -71 < : C -+ X. A 

production with an empty condition can be written as -vl < a > -7, +-X. Analogous 

notations apply for any combination of an empty condition and empty contexts. 

Definition 4.6 A context-sensitive production p; : -7l < a > rl, : C -+ -x matches a 

module at position s in a parametric word p if the following conditions are met: 

the letters and numbers of parameters in the sequence of modules -71,a,-7, form-

ing the predecessor are the same as the letters and numbers of parameters in 

the modules of p at positions s - I' to s + T', where I' is the length of -71 and r' 

is the length of -qT,and 

the condition C evaluates to true if the actual parameter values are substituted 

for the formal parameters according to their relative positions in the modules 

of p and in the predecessor. 

A matching production can be applied to the module at position s, creating a string 

of modules specified by the production successor with expressions being evaluated 

to  produce actual parameters. If no production p E P matches a given module at 

position s in the string, then the module is replaced by itself. 



An example of a context-sensitive production is given below: 

It can be applied to the module ~ ( 5 )that appears in a parametric word 

since the sequence of letters A, B, C in this word and in the production are the same, the 

numbers of formal parameters and actual parameters in the corresponding modules 

coincide, and the condition 4 + 5 + 6 > 10 is true. As a result of the production 

application, the module ~ ( 5 )will be replaced by a pair of modules ~ ( 4 . 5 ) ~ ( 5 . 5 ) .  

Naturally, the modules A(3,4) and ~ ( 6 )will be replaced by other productions in the 

same derivation step. 

For the same practical reasons as outlined in the discussion preceding Defini-

tion 4.3 on page 48, the productions are ordered in the following definition of para-

metric deterministic IL-systems. 

Definition 4.7 A parametric DIL-system is defined as an ordered quadruplet G = 

(V, C, W ,  P),where 

the alphabet V, the formal parameters C, and the axiom w are defined as in 

Definition 4.5, and 

P : {1,2, ...,N )  -+ (V x C*)*x (V x C*) x (V x C*)*x C(C) x (V x E(C)*)*  is 

a finite, ordered set of productions. 

A production p; will match a module in a string, if the conditions of Definition 4.6 

apply and there is no production pj c P with j < i that also meets these conditions. 

A derivation in a parametric IL-system proceeds in the same manner as for para-

metric OL-systems (Definition 4.4). An example of a parametric DIL-system is given 

below. 
w : B(I)A(I,0) 

pl : B(W)< A(X,Y) : w <= I -+ B(X)A(X+y, y + I) 

P2 : ~ ( x )  : x < l  - + C  
(4.5) 

P3 : B(x) -+ B(X - 1) 



Figure 4.2: The initial sequence of strings generated by parametric DIL-system (4.5) 

The words obtained in the first few derivation steps are shown in Figure 4.2. In the 

first derivation step, the module ~ ( 1 )  is matched by production p2, and not by ps, as 

a consequence of the ordering of the productions. Production pl is applied whenever 

a module with letter A has a module B to its left with a parameter value less than 

or equal to 1. Note that identity productions are applied to all modules C and to 

modules A when their left context does not match ~ ( w )  with w <= 1. 

4.3 Stochastic parametric IL-systems 

The introduction of stochastic capabilities to parametric IL-systems is useful for 

the same reasons as discussed for L-systems without parameters in Section 2.3 on 

page 20. Probability factors can be specified as expressions combining constants and 

formal parameters. This allows the probability distributions to change over time. 

Definition 4.8 A stochastic parametric IL-system is an ordered quadruplet G = 

(V, C, w, P), where the alphabet V, the set of formal parameters C, and the axiom 

w are defined as for a parametric IL-system (Definition 4.5) and the finite set of 

productions is described as P c (V x C*)*x (V x C*) x (V x C*)* x C(C) x (V x 

E(C)*)*x E(C). If a sextuple - - ql < a >(ql,a,qT,C,X,$J)is a production, it is noted -

q, :C +-x :4,where:-



the predecessor (vl,g,- -vT),the condition C,and the successor x are defined as-
in the non-stochastic case (Definition 4.5), and 

$ CI &(C) is called the probability factor expression. 

Within a given production, a formal parameter can appear no more than once in 

the predecessor, and all formal parameters appearing in the condition, successor, and 

probability factor expression must appear in the predecessor. A production p; will 

match  a module in a string under the same conditions as in Definition 4.6. 

Definition 4.9 Let F(p,  s)  c P denote the subset of productions from P which 

match word p at position s .  If no production in P matches p at a given position, then 

the module at position s is replaced by itself. Otherwise, let the probability factor 

pi,p, S) 2 0 be the value of the probability factor expression $ in a production 

pi E ~ ( p ,s), assuming that the actual parameter values from the matched string 

have been substituted for the formal parameters in the predecessor. The derivation 

p + v is a stochastic derivation in G if for each position s in the word p the probability 

of applying production p; E F(p,  s) is equal to 

assuming that at least one probability factor ~ ( p ; ,p, s)  is greater than zero. A simple 

example of a stochastic parametric L-system is given below. 

In the first derivation step only production p2 matches the module ~ ( 1 )in the axiom. 

It will be selected with probability one, resulting in the string B A ( ~ ) .In the next and 

all subsequent steps, the B modules will be replaced by themselves using an implied 

identity production. The modules with letter A will continue to match production p;! 

and be replaced as above, until production pa has been applied three times. At this 



point the string will be BBBA(~) .  In the next step both productions pl and p2 will 

match the module ~ ( 4 ) .  The probabilities of production selection will be 2/(2+1) = 

213 for pl and 1/(2+1) = 113 for p2. If production pl is selected, the resulting string 

will be BBBBB, and no more changes will occur. If production p2 is selected again, 

the resulting string will be BBBBA(~).  In the next step the probability of applying 

production pl will be 2.5/(2.5+1) = 517 and the probability of applying production 

p2 will be 1/(2.5+1) = 217. As the derivation proceeds, the probability of selecting 

production pl will increase steadily until pl is finally applied. No more changes will 

take place after this, as there will only be B modules in the string. 

4.4 Modelling branching structures 

Lindenmayer's notion of bracketed strings can be applied to parametric words in a 

straightforward way. The formalism of parametric L-systems is extended to branching 

structures using the branch delimiters "[" and "1" as in non-parametric bracketed L-

systems (Section 2.4). During the derivation process, the procedures established in 

Sections 2.4 and 2.5 are applied to search for context. For example, production 

matches module ~ ( 1 ~ 2 )  [ ~ ( i ,  Thein the parametric string AB(o.~)[c(I)] 2 ) [ ~ ( 3 ) ] ~ ( 4 ) ] ~ .  

letters and number of parameters in the left context of the production match those 

in the string AB(o .~ ) [c (~ ) ] [  being skipped. The letters and with the substring [ ~ ( i ) ] [  

number of parameters in the right context of the production match those in the string 

[ ~ ( 3 ) ] ~ ( 4 )  being skipped. The condition w +x <= z is true with the substring [ ~ ( 3 ) ]  

when the formal parameters are assigned the values w = 0.4, x = 1, y = 2, and z = 4. 

Application of the production will result in the parametric word ~ ( 0 . 4 )  [~(1.8)].  

4.5 Turtle interpretation of parametric words 

The basic concept of turtle interpretation as presented in Chapter 3 is not changed 

by the introduction of parameters, but the turtle can be manipulated much more 

flexibly. In general, the value of the first parameter quantifies the extent to which 



the appropriate turtle state attribute is changed. If a symbol is not followed by any 

parameter, default values specified in the drawing environment are used as in the 

non-parametric case. The symbols interpreted by the turtle that are affected by the 

introduction of parameters are listed below. 

~ ( a ) 	  Move forward a step of length a. The position of the turtle changes to 
-+ -. 	 -. 

(XI, y', z'), where x' = x + aH,, y' = y + aH, and z' = z + aH,. A line 

segment is drawn between points (x, y, z )  and (x', y', 2'). If a polygon is 

open, append the resulting position as a vertex of the current polygon. 

f (a ) 	  Move forward a step of length a without drawing a line, then append the 

turtle's current position to the current polygon. 

~ ( a ) 	  Move forward a step of length a and draw a line, but do not append a vertex 

to the current polygon. 

g(a) 	 Move forward a step of length a without drawing a line, but do not append 

a vertex to the current polygon. 

+(a) 	 Rotate around G by an angle of a degrees. If a is positive, the turtle is 

turned to the left. 

-(a) 	 Rotate around G by an angle of a degrees. If a is positive, the turtle is 

turned to the right. 

&(a) 	 Rotate around iby an angle of a degrees. If a is positive, the turtle is 

pitched down. 

A(a) 	 Rotate around by an angle of a degrees. If a is positive, the turtle is 

pitched up. 

/(a) 	 Rotate around I? by an angle of a degrees. If a is positive, the turtle is 

rolled to the right. 

\(a) 	 Rotate around I? by an angle of a degrees. If a is positive, the turtle is 

rolled to the left. 



,(a )  Increase the value of the current index into the colour map by a. 

;(a )  Decrease the value of the current index into the colour map by a. 

#(a)  Increase the value of the current line width by a. 

! (a )  Decrease the value of the current line width by a. 

" (a )  Increase the value of the current elasticity factor by a. 

' ( a )  

N 

Decrease the value of the current elasticity factor by a. 

Draw the surface identified by the module immediately following the - at 

the turtle's current location and orientation. The first parameter of the 

identifying module is interpreted as a scaling factor if it is present, otherwise 

no scaling is applied. 

@ Pass the string to the black-box interface routine. Modules identifying the 

desired function are read from the string and the appropriate special-purpose 

routine is executed. The routines may use parameters in any way. For the 

circle @c(T) and sphere @s(T) ,  the parameter T is interpreted as the radius. 

Symbols from Chapter 3 not listed above are interpreted as outlined in that chapter; 

parameters have no effect on their interpretation. It should be noted that symbols 

+, -, A, and / are used both as letters of the alphabet V and as operators in logical 

and arithmetic expressions. Their meaning depends on the context in which they are 

found. 

The introduction of parameters increases the range of images that can be visual- 

ized easily using turtle interpret ation. The simple problem of drawing the isosceles 

right triangle, proposed at the beginning of this chapter, can now be solved. The 

isosceles triangle on page 43 can be recreated, to the limit of machine precision, by 

interpretation of the parametric string resulting from one derivation of the following 

L-system. 



Chapter Five 

APPLICATIONS 

This chapter presents a number of examples that illustrate the utility of paramet-

ric L-systems for the visualization of processes and structures in botany. They are 

organized to provide a progression of ideas, revealing the advantages of the parametric 

extension over the standard L-system formalism. These advantages include: 

the ability to express a range of precise lengths and angles, not restricted to 

multiples of a discrete base unit, 

the ability to use arithmetic expressions to capture arbitrary growth functions, 

the ability to capture the branching structure of trees, extending the range of 

L-system applications, 

the specification of parameters facilitating interactive manipulation of the mod-

els, 

the presence of numeric parameters capturing module attributes may be more 

intuitive than encoding them as states represented by letters, 

the ability to control the extent of changes from one derivation step to the next, 

producing smooth animations that simulate time lapse photography, , 

the ability to model continuous phenomena such as diffusion, and 

the applicability of the parametric L-system formalism to standard computa-

tional problems, and as a model of parallel computation. 



Each example starts from an exposition of the problem, followed by a presentation 

of the L-system and a discussion of the role of parameters in the model. The L-systems 

are specified using the notation introduced in Chapter 4, with the addition of three 

statements: #define statements assign values to constants, #include statements list 

identifiers of the bicubic surfaces to be incorporated into the model, and #ignore 

statements list modules to be ignored while context matching. Symbols /* and */ 
enclose comments. 

The #define statements clearly identify key parameters of the model, which can 

therefore be accessed and modified easily using a text editor or through a graphical 

interface such as a control panel [103].The ability to manipulate parameters interac- 

tively and receive immediate visual feedback is one of the primary advantages for users 

of parametric L-systems. For example, consider a situation in which the user wishes 

to change a branching angle in a model. In order to effect such a change in a stan- 

dard L-system, it would be necessary to modify one or more productions by adding 

or removing letters representing rotational commands. In parametric L-systems, on 

the other hand, the numeric parameter associated with a rotational command module 

provides a continuum of values from which to choose. The interactive manipulation 

of L-systems greatly enhances their usefulness as an exploratory tool. 

5.1 Anabaena catenula 

In this section, a model describing the vegetative growth of Anabaena catenula is 

presented. This example illustrates the use of parameters for geometric interpretation, 

and the model simplification that may be achieved by using parameters to encode 

module differences. By translating the model presented in Equation 2.1 on page 16 



Figure 5.1: A simple visualization of the parametric Alaabael~amodel 

into a parametric L-system, the following L-system is obtained. 

L-system 1: A parametr ic  model of Anabaena catenula 


#def ine  A 1 /* Cel l  type  A */ 

#def ine  B 2 /* C e l l  type  B */ 

#def ine  W .5 /* Width of both c e l l  t ypes  */ 

#def ine  AS 2 /* Size  of c e l l  type  A */ 

#def ine  BS 1 /* Size  of c e l l  t ype  B */ 

#def ine  R 1 /* Orien ta t ion  t o  t h e  r i g h t  */ 

#def ine  L -1 /* Orien ta t ion  t o  t h e  l e f t  */ 

w : !(w)F(Bs,B,R) 


pl : F(S,t,0) : t == A && o == R + F(AS,A, L)F(BS, B, R) 


p2 : F(S, t,0) : t == A && o == L + F(BS,B, L)F(AS, A, R) 


p3 : F(S, t,0) : t == B && o == R + F(AS,A, R) 


pq : F(S,t,0) : t == B && o == L + F(AS,A,L) 


This L-system contains all the geometric information necessary to create a visual- 

ization of the development of a filament. The axiom sets the width of the cells using 



the !(w)module. A single cell is represented by the module ~ ( s ,  t ,o) where the three 

parameters represent the length, type, and orientation of the cell, respectively. Note 

that the length must be the first parameter for correct turtle interpretation of the 

line-drawing command F. The ordering of the remaining parameters is arbitrary, but 

must be consistent throughout the production set. The constant values assigned to 

the type and orientation are defined for convenience, while the length and width are 

tuned to produce the desired visualization. 

The axiom incorporates a single cell of type B oriented to the right, represented 

by the module F(BS, B, R) where BS = 1,B = 2, and R = 1. The following sequence of 

parametric words is generated. 

In the first time step, production p3 increases the module's length from BS = I to 

AS = 2 and changes its type to A = I, while maintaining the module's orientation. 

In the second time step, production pl divides the cell into a cell F (2,1,  -1) of type 

A and a cell F (1,2,1) of type B. An analogous life cycle can be seen for a cell of 

type B with the opposite orientation. A visualization of this sequence can be seen in 

Figure 5.1, where the gaps between cells were modelled by the addition of a module 

f (.25) between the two F modules in both pl and pa. Dark coloured cells are oriented 

to the left, light coloured cells to the right. 

The distinction between type A and B cells reflects their size difference. With 

parametric E-systems, we can consider both cells as differing only in age. Cells of 

type B are younger, and therefore shorter, versions of type A cells. The following 



simplified L-system results. 

L-system 2: A ref ined model of Anabaena catenula 

#define W .5 /* Width of c e l l s  */ 
#define AS 2 /* Size of c e l l  type A */ 
#define BS I /* Size of c e l l  type B */ 
#define R I /* Orientation t o  t h e  r igh t  */ 
#define L -1 /* Orientation t o  t h e  l e f t  */ 
w : !(w)F(Bs,R) 


pl : F(S, 0) : s == AS && o == R -+ F(AS,L)F(BS, R) 


pz : F(S, 0) : s == AS && o == L + F(BS,L)F(AS, R) 


p3 : F(S,O) : s == BS -+ F(AS,0) 


A module representing a cell now only has parameters for length and orientation. 

The cell type is encoded in the length parameter; a cell of length BS is a type B cell 

and a cell of length AS is a type A cell. Note that productions ps and p4 from the 

original L-system have been replaced by a single production p3 that increases the 

length parameter from BS to AS. The module's orientation is maintained using the 

formal parameter o. 

Starting from the axiom !(W)F(BS,R), the following sequence of parametric words 

is generated: 

The arrangement of cell lengths and orientations corresponds to the previous develop- 

mental sequence. This example has shown how geometric information and cell states 

can be captured using parameters and how careful encoding of information can serve 

to reduce model complexity. 



Figure 5.2: Model of phyllotaxis on the surface of a cylinder 

5.2 Spiral phyllot axis 

The term phyllotaxis literally means leaf arrangement, but it is used in a broader 

sense to denote the regular arrangement of any lateral organs in plants [37]. Paramet-

ric L-systems make it possible to generate these patterns without resorting to special- 

purpose programs, such as those previously used by Fowler e t  a1 [48]. Parameters are 

used to capture the precise values of constants required in both the cylindrical and 

planar models presented in this section. In addition, the planar model illustrates the 

use of mathematical expressions modifying the values of parameters over time. 

5.2.1 The cylindrical model 

Spiral phyllotactic patterns evident in elongated organs can be described by mod- 

els which position components along a helix on the surface of a cylinder. These 



patterns are generally characterized by the following formulae: 

where: 

n is the ordering number of a component, counting from the bottom of the 

cylinder, 

4, r and H are the cylindrical coordinates of component n ,  

a is a constant divergence angle between the position vectors of two consecutive 

components, and 

h is the vertical displacement between two consecutive components, measured 

along the main axis of the cylinder. 

An extensive mathematical theory developed by van Iterson [81] and Erickson [37] 

describes the relationships between the values of r, a, and h corresponding to  various 

classes of phyllotactic patterns. For example, the values incorporated in L-system 3 

result in the pattern of disk-shaped components shown in Figure 5.2. 

L-system 3: A cy l ind r i ca l  model of phyl lo tax is  

#define a 137.5 /* Divergence angle */ 
#define h 35.3 /* Ver t ica l  displacement */ 
#define r 500 /* Component o f f s e t  from t h e  main ax i s  */ 
# d e f i n e s  50 / * S c a l i n g f a c t o r * /  

#include D /* Disk shape spec i f ica t ion  */ 
w :  A 

PI : A -+ [&(90)f(r)-D(s)]f ( h ) / ( a ) ~  

The operation of this L-system simulates the natural process of subapical devel-

opmen t  characterized by sequential production of consecutive plant modules by the 

growing tip or apex of the plant or organ. The apex A produces internodes f (h) along 

the main axis of the modeled structure. Associated with each internode is a disk 

ND(s) placed at a distance r from the axis. This offset is achieved by moving the disk 



Figure 5.3: Spruce cones 01990  D. R. Fowler and J. I-Ianan 

away from the axis using the module f(r), positioned at a right angle with respect 

to the axis by module &(go). The spiral distribution of disks is due to the module 

/(a), which rotates the apex around its own axis by the divergence angle a in each 

derivation step. 

The model of a spruce branch shown in Figure 5.3 and Plate C. l  displays spiral 

patterns in both the cones and the arrangement of the needles. 

5.2.2 The planar model 

The cylindrical model for phyllotaxis does not apply to flat structures, for example 

those found in many composite inflorescences. In order to describe them, Vogel [I491 

proposed a planar phyllotaxis model expressed by the formulae: 



Figure 5.4: Generating phyllotactic patterns on a disk. These three patterns differ only by the value 
of the divergence angle a, equal to (a) 137.3', (b) 137.5' (the correct value), and (c) 137.6'. 

where n is the ordering number of a component, counting outward from the structure's 

center (the reverse order of floret age in a real plant), q3 and r are the polar coordinates 

of component n ,  a! is a constant divergence angle between the position vectors of two 

consecutive components (usually equal to 137.5"), and c is a scaling factor. This 

layout of components can be obtained in a straightforward way using the following 

L-system: 

L-system 4: A planar  model of phyl lo tax is 


#define a 137.5 /* divergence angle */ 

#define s 50 /* sca l ing  f a c t o r  */ 

#include D /* disk  shape spec i f i ca t ion  */ 

w : ~ ( 0 ) 


pl : ~ ( n )-+ + ( a ) [ f ( n ~o .~ ) - JD( s ) ]A(~+1) 


Vogel's model is very sensitive to the value of the divergence angle a, as shown in  

Figure 5.4. 



Figure 5.5: Model of a sunflower head 

An example of the application of Vogel's model to image synthesis is given in 

Figure 5.5 and Plate C.2. The following L-system models the sunflower head. 

L-system 5: Sunflower head 


#include S /* Seed shape */ 

#include R /* Ray f l o r e t  shape */ 

#include M N 0 /* Pe ta l  shapes */ 

w : A(O) 

Pl : ~ ( n )  + +(137.5)[f (n A 0.5)C(n)]A(n+ 1) 

p2 : ~ ( n ): n <= 440 1; (l)--sl+ 

p3 : ~ ( n ): 440 < n && n <= 565 + [; (2)--R] 


pq : ~ ( n ): 565 < n && n <= 580 --+ [; (3)--M] 


ps : ~ ( n ): 580 < n && n <= 595 + [; ( ~ ) N N ] 

p6 : ~ ( n ): 595 < n [; (6)wOI
+ 

The layout of components is specified by production p l ,  similar to that of L-system 

4. Productions p2 to p6 determine colours and shapes of the components as a function 

of the parameter of the module C which counts the derivation step number. The entire 

structure shown in Figure 5.5 was generated in 630 steps. 



Figure 5.6: Sunflower field 01990  D. R. Fowler, N. Fuller, J. Hanan, and A. Snider 

Other extensions to the basic model consist of varying organ orientation in space 

and changing their altitude from the plane of the head as a function of n. For example, 
I 

the sunflower plants in Figure 5.6 and Plate C.3 have flowers in four developmental 
I stages: buds, young flowers starting to open, open flowers and older flowers with 

drooping petals. The shape and orientation of the surfaces representing petals vary 

from one stage to another. This ray-traced image contains approximately 400 plants, 

each with 15 flowers. A flower has 21 petals, each modeled using 600 triangles, and 

300 seeds, each modeled using 400 triangles. Counting leaves and buds, the entire 

scene contains about 800,000,000 triangles. 



Figure 5.7: Specification of tree geometry according to Honda [74] 

5.3 Trees 

is that the structure of trees, particularly in moderate climates, is strongly dependent 

on environmental factors, which are not directly captured by L-systems. In addition, 

even approximate models of tree architecture require precisely chosen branch growth 

rates and branching angles, which are difficult to express using standard L-systems. 

With the addition of parameters, however, L-systems become a convenient tool for 

specifying non-developmental architectural models of trees similar to those described 

in Section 1.2.2 on page 6. An example is given below. 

One of the earliest presentations of computer simulation for the modelling of trees 

was by Honda [74], who studied the contribution of tree branching angle and relative 

branch length to the overall form of trees. His model made the following assumptions 

(Figure 5.7). 

Tree segments are straight and their girth is not considered. 

A mother segment produces two daughter segments through one branching pro-

cess. 



The lengths of the two daughter segments are shortened by constant ratios, rl 

and r z ,  with respect to the mother segment. 

The mother segment and its two daughter segments are contained in the same 

branch plane. The daughter segments form constant branching angles, a1 and 

a2, with respect to the mother branch. 

The branch plane is oriented so as to be closest to a horizontal plane. More 

formally, the line perpendicular to the mother segment and lying in the branch 

plane is horizontal. An exception is made for branches attached to the main 

trunk. In this case, a constant divergence angle a! between consecutively issued 

lateral segments is maintained (cf. Section 5.2.2). 

Honda's models can be captured using parametric L-systems with turtle inter-

pretation. For example, the following L-system implements those tree models of 

Honda [74] in which one of the branching angles is equal to  0, yielding structures 

with clearly delineated main and lateral axes. The model has been extended to con-

sider relative branch widths. 

Honda's model f o r  t r e e s  

0.9 /* Contraction r a t i o  f o r  t h e  t runk */ 
0.6 /* Contraction r a t i o  f o r  branches */ 

45 /* Branching angle from t h e  t runk */ 
45 /* Branching angle f o r  l a t e r a l  axes */ 
137.5 /* Divergence angle */ 
0.707 /* Width contract ion r a t i o  */ 

-+ !(w)F(s)[&(~o)B(s* r2, w * wr)] / (d)~(s* rl,w * w r )  

+ !(w)F(s)[-(~~)@vc(s* r2,  w * wr)]c(s* rl,w * w r )  

+ !(w)F(s)[+(~~)@vB(s* r2,  w * w r ) ] ~ ( s* rl,w * w r )  

According to production pl, the apex of the main axis A produces an internode F 

and a lateral apex B in each derivation step, and modifies its own parameters in 

preparation for the next step. Constants rl and r 2  specify contraction ratios for 



Figure 5.8: Examples of the tree-like structures by Honda [74], generated using L-systems 

the straight and lateral segments, a0 and a2 are the branching angles and d is the 

divergence angle. The length of the internode F is determined by the value of the first 

parameter of A, and decreases by the values ri and r2between mother and daughter 

internodes. Module !(w) sets the line width to w, the value of the second parameter 

of A. The width contraction ratio, w r  = 0.707, is consistent with a postulate by 

Leonardo da Vinci (as reported by Mandelbrot [98, page 156]), stating that "all the 

branches of a tree at every stage of its height when put together are equal in thickness 

to the trunk below them." In the case where a mother branch of diameter wl gives 

rise to two daughter branches of equal diameter w2, this postulate yields the equation 

w: = 221122, with a solution w2/wl = l /f i  0.707. A general discussion of the 

relationships between the diameters of the mother and daughter branches is included 



in a book by Macdonald [97, pages 131-1351. 

Productions p2 and p3 describe subsequent development of the lateral branches. In 

each derivation step, the straight apex (either B or C) issues a next-order lateral apex 

at angle a2 or -a2 with respect to the mother axis. Two productions are employed to 

create lateral apices alternately to the left and right. The modules @Vroll the turtle 

around its own axis so that the turtle's left vector is brought to a horizontal position. 

Consequently, the branch plane is "closest to a horizontal plane", as required by 

Honda's model. From a technical point of view, @V is a black-box procedure that 

modifies the turtle's orientation in space according to the formulae 

P x i i
L = and d = l ? x i ,IBx ril 

-. -. 
where vectors H, L, and d are the heading, left, and up vectors associated with the 

turtle, ? is the direction opposite to gravity, and 1A1 denotes the length of vector 

A. The tree-like structures shown in Figure 5.8 were generated using the values of 

constants listed in the following table and coincide with the structures presented by 

Honda. 

Figure I 1-2 a0 a2 

a 0.9 0.6 45 45 

b 0.9 0.9 45 45 

c 0.9 0.8 45 45 

d 0.9 0.7 30 -30 

A related L-system incorporating productions to specify leaves was used to generate 

the trees and bushes in Figure 5.9 and Plate C.7. While no detailed models of 

particular species have been developed, these examples demonstrate that trees are 

within the range of models expressible using parametric L-systems. 



Figure 5.9: Water-lilies 01990  D. R. Fowler, J. Hanail, P. Prusinkiewicz, and N. Fuller 



5.4 Compound leaves 

Herman, Lindenmayer, and Rozenberg [68] pointed out that "in the case of a 

compound leaf [. . . ]  some of the lobes (or leaflets), which are parts of a leaf at an 

advanced stage, have the same shape as the whole leaf at an earlier stage." This 

observation emphasizes the self-similar nature of compound leaves. Development of 

these structures is heavily dependent on delays occurring between the initiation and 

expansion of lateral apices. In a non-parametric L-system, delays are specified using 

a sequence of states, as in the following model of compound leaves. 

L-system 7: A non-parametric model of compound leaves 

w :  A 

pl : A -+ F[+D][-D]FA 


PI  : D -+ C 


p 3 :  C -+ B 


p 4 :  B -+ A 


p5 : F -+ FF 


In this model, the main apex produces an internode and two lateral apices D in each 

step, according to production pl . The development of the letter representing a lateral 

apex is delayed by 3 derivation steps, as the letter progresses through the sequence 

D H C H B H A. In the meantime, production p5 models the doubling of internode 

length in each step. Any increase in the delay would require the addition of a new 

production for every extra step of delay. 

Wood [155, 1561 considered delay mechanisms important enough that he intro- 

duced a special formalism called t ime-delayed L-sys tems  to implement them. For the 

same purpose, Hanan [61, Section 2.51 presented a technique for automatic incre- 

menting and decrementing of numeric subscripts within standard L-systems. Using 

parametric L-systems, the delay mechanism and growth rates can be controlled by 

parameter values, as in the following parametric model of compound leaf develop- 

ment. Rather than having to add new state symbols and associated productions in 

order to create a longer delay, the user simply has to increase the value of the delay 

const ant. 



Figure 5.10: Examples of co~npoundleaves 



L-system 8: A model of compound leaves 


#define Delay 3 /* Delay f o r  l a t e r a l  apices */ 


#define Rate 1.5 /* Internode elongation r a t e  */ 

w : A(O) 


pl : A(d) : d > 0 + ~ ( d- 1) 


p2 : A(d) : d == 0 --+ F(l)[+A(~elay)][-A(D~~~~)]F(I)A(O) 


P3 : F(a) ~ ( a
+ * ate) 

According to production p2, in each derivation step the apex ~ ( d )  produces two seg- 

ments F(I) and a pair of daughter branches. Production pl delays the development 

of the daughter branches by Delay steps with respect to the mother branch. This 

branching pattern is repeated in the daughter branches. Production p3 gradually 

elongates the internodes, and in this way establishes proportions between leaf parts. 

Sample leaves generated by the above L-system are shown in Figure 5.10. The corre- 

sponding parameter values are collected in the following table. 

Figure Delay Rate Derivation length 

a 0 2.00 10 

b 1 1.50 16 

c 2 1.36 21 

d 4 1.23 3 0 

e 7 1.17 45 

The model is very sensitive to the growth rate value -a change of 0.01 visibly alters 

the spacing between leaf components. 

5.5 Simple leaves 

Although bracketed L-systems serve primarily as a method for generating branch- 

ing structures, they can also be applied to model surfaces such as leaf blades. One 

technique, previously described in Section 3.3.2, uses polygons to build leaf surfaces. 

The boundary of a polygon is composed of segments of an underlying branching struc- 

ture and extra edges which connect terminal nodes. The leaf shapes depend strongly 



on relative growth rates and may change as the segments elongate over time. By 

encoding the growth rates using parameters, the user can control them easily and 

accurately. An L-system modelling a class of simple leaves using this approach is 

given below. 

L-system 9: A model of simple leaves 


#define LA 5 /* i n i t i a l  length - main segment */ 

#define RA I /* growth r a t e  - main segment */ 

#define LB 1 /* i n i t i a l  length - l a t e r a l  segment */ 

#define RB I /* growth r a t e  - l a t e r a l  segment */ 

#define PD 0 /* growth po ten t i a l  decrement */ 

w : {.A(o)) 

pl : A ( t )  + G ( L A , R A ) [ - B ( t ) . ] [ ~ ( t +  l )][+B(t) . ] 


p , :  ~ ( t )  : t > o  + G ( L B , R B ) B ( ~ - P D ) 


p3 : G(s,r) += G(S * r , r )  

According to production pl ,in each derivation step the apex ~ ( t )  extends the main 

leaf axis by segment F(LA,RA), and creates a pair of lateral apices ~ ( t ) .New lateral 

segments are added by production pz. The parameter t, assigned to the apices ~ ( t )  

by production pl, is decremented by the value of the constant PD. The production 

of new lateral segments stops when t reaches 0. Intuitively, the initial value of the 

parameter t plays the role of growth potential of the branches; the larger the value of 

t, the longer the branch will grow. Segment elongation is captured by production ps. 

It is convenient to consider a leaf modelled by L-system 9 in two parts: a basal area 

and an apical area. In the basal area, the number of lateral segments is determined 

by the initial value of growth potential t and the parameter PD. Since the growth 

potential increases towards the leaf apex, the consecutive branches contain more and 

more segments. In contrast, branches in the apical area exist for too short a time to 

reach their full length. The actual number of segments in this area is proportional 

to the time a branch has to grow, and gradually decreases towards the apex. As a 

result of these opposite tendencies, a leaf reaches its maximum width near the middle 

of the blade. For a given derivation length, the exact position of the branch with 

the largest number of segments is determined by the value of the parameter PD. The 



Figure 5.11: Examples of simple leaves 

following table collects parameter values corresponding to the leaf models shown in 

Figure 5.11. 

Figure LA RA LB RB PD 

a 5 1.0 1.0 1.00 0.00 

b 5 1.0 1.0 1.00 1.00 

c 5 1.0 0.6 1.06 .25 

d 5 1.2 10.0 1.00 0.50 

e 5 1.2 4.0 1.10 0.25 

f 5 1.1 1.0 1.20 1.00 

If the parameter PD is equal to 0, all lateral branches have an unlimited growth 

potential, and the basal part of the leaf does not exist (a). If PD is equal to 1, the 

basal and apical parts contain equal numbers of lateral branches (b and f). Finer 

details of the leaf shape result from the growth rates. If the main axis segments and 

the lateral segments have the same growth rates (RA= RB), the edges of the apical 

part of the leaf are straight (a and b). If RA < RB, the segments along the main 

axis elongate at a slower rate than the lateral segments, resulting in a negative edge 

curvature of the apical part of the leaf (c). In the opposite case, with RA > RB, these 

edges have positive curvature (d, e and f). The curvature of the basal edges can be 

analyzed in a similar way. 



5.6 Developmental bicubic surfaces 

As described in Section 3.3.2, L-systems can be used to model the development 

of plant organs, such as leaves and petals, using polygons which are modified over 

time. However, bicubic surfaces provide a more convenient method for modelling 

smooth curved surfaces; a very complex L-system would be required to produce a 

polygonal surface as smooth as a bicubic patch. Developmental bicubic surfaces can 

be incorporated into a model using the following set of black-box routines, which 

allow the specification of a Bezier-form bicubic surface [ lo ,  42, 611. 

@ P S ( ~ )initializes the four rows and columns of control points for surface i to 

(o,o, 0). 

@PC(i,r,c) assigns the current position of the turtle to the control point of 

surface i in row r and column c. 

@PD(~ ,s,  t) draws the surface defined by the control points of surface i using s 

lines along the rows and t along the columns. 

The first step in creating a developmental model of a plant organ is to define the 

initial and final shapes in the sequence. When using an interactive surface editor, 

the user works with 16 control points for each surface patch. The manipulation of 

a three-dimensional control point using a two-dimensional input device, such as a 

mouse, is not necessarily straightforward. In addition, the creation of the symmetric 

shapes common in plant components often requires the concerted readjustment of 

several control points, which can be a tedious task using a standard interactive editor. 

Parametric L-systems can be used to implement a more intuitive set of parameters 

defining a particular class of surface shapes. The following L-system allows the user 

to manipulate parameters for petal width, length, and bending angles in order to 

model members of a family of petals. It is a simple hierarchical model of one possible 



control point layout. 

L-system 10: B i c u b i c  s u r f  ace p e t a l s 


# d e f i n e  CL 100 /* C e n t r a l  l e n g t h  */ 

# d e f i n e  BW 3 5  /* Base w id th  */ 

# d e f i n e  TW 3 5  /* T i p  w id th  */ 

# d e f i n e  BA 0 /* Base  a n g l e  */ 


# d e f i n e  TA 0 /* T i p  angle */ 

w :  P 

P l :  FJ + [S~~l[r lB~Ll~RlDl 


p2 : S @ P S ( O ) ~
-+ (30) 


p, : B 4 A ( B A ) ~(CL) A (TA) 


p4 : D + ;(IOO)@PD(O,4 ,4 ) 


p5 : 1 +(9O)f (BW)@PC(O, 0 ,0)  + (90 + at~ ~ ( c L / B w ) ) 

[If(cL/~)@Pc(o,I, 0) - (go) A ( B A ) ~ 	  I, I)](BW* ~ / ~ ) @ P c ( o ,  

[f(50)@PC(0, 0 , l ) l  

p 	 : r 4 -(90)f (BW)@PC(O,0 ,3 )  - (90 + a t~ ~ ( c L / B w ) )  

[If(cL/~)@Pc(o ,I,3)+ (go) A ( B A ) ~(BWt ~ / ~ ) @ P c ( o ,1 ,2 ) ]  

[f(50)@PC(O ,0,211 

p7 : L 4 +(90)f (TW)@PC(O, 3 , 0 )  + (90 - a t a n ( 5 0 / ~ ~ ) )  

[f(cL/~))@Pc(o,  2, 0) + (90) A ( T A ) ~  2, I)](TW* ~ / ~ ) @ P c ( o ,  

[If(3O)@PC(O, 3,I)] 

p, : R + -(90)f (TW)@PC(O,3,3)- (90 - a t a n ( 5 0 / T ~ ) )  

[f(cL/~)@Pc(o,  2 ,3)  - (go) A ( T A ) ~  2,2)](TWJF ~ / ~ ) @ P c ( o ,  

[lf(3O)@PC(O, 3,2)1 

According to production pl a petal is composed of the start segment S, left 

and right halves of the leaf base 1 and r, the body B, left and right halves of the leaf 

tip L and R, and the drawing segment D. Production p2 issues the patch initialization 

command @PS(O). The f (30) module moves the turtle so that the edge of the surface 

will go through the turtle's initial position. The petal is modelled as two laterally 

symmetric halves, each consisting of a base and tip portion. Productions ps and p6 

define the leaf base by producing mirror-image responses in the turtle with respect 



Figure 5.12: Petal control structure. Control points are labelled by row and column. 



Figure 5.13: Petal shapes 

to the central axis. Productions p7 and pg do the same for the leaf tip. Production 

p3 defines the central length and relative angles of the base and tip. Production pd 

specifies the colour command ;(100) and the patch drawing command @PD(O, 4,4). 

As illustrated in Figure 5.12, the base of the leaf is defined by the first two rows of 

control points in the bicubic patch, while the tip is defined by the last two rows. This 

L-system allows the user to control a petal's shape in terms of its central length CL, 

its tip and base width, TW and BW, and the angles between base and center line, BA, 

and between center line and tip, TA. The remainder of the angles and lengths are 

defined by the family of surfaces to be modelled and the geometry of a Bezier patch. 

For instance, in order to maintain first order continuity of the edge passing through 

a control point at a corner of the patch, the control point and its neighbours in the 

outside row and column must be collinear. 

Interactive manipulation of the parameters in the #define statements produced 

the petal shapes in Figure 5.13, which correspond to the values in the following table. 

Figure CL BW TW BA TA 

a 150 5 5 25 50 

b 150 15 5 0 50 

c 120 20 25 12 -40 

d 100 10 15 25 0 

e 50 15 10 12 40 



Once the initial and final shapes have been chosen, an L-system must be designed 

to  interpolate between the two shapes. For example, the following L-system interpo- 

lates between shapes e and c in Figure 5.13. 

L-system 11: Developmental b icub ic  su r f ace  p e t a l 


#def ine  N 10 /* Number of s t ep s  */ 

#def ine  ICL 50 /* I n i t i a l  c e n t r a l  l eng th  */ 

#def ine  FCL 150 /* Fina l  c e n t r a l  l eng th  */ 

#def ine  IBW 15 /* I n i t i a l  base  width */ 

#def ine  FBW 15 /* Fina l  base width */ 

#def ine  ITW 10 /* I n i t i a l  t i p  width */ 

#defineFTW 5 / * F i n a l  t i p  w id th* / 


#def ine  I B A  15 /* I n i t i a l  base  angle */ 

#def ine  FBA 0 /* F i n a l  base  angle */ 

#def ine  ITA 35 /* I n i t i a l  t i p  angle */ 

#def ine  FTA 50 /* Fina l  t i p  angle */ 

w :  P 


Pl : P + [S[ll[rlB~Ll[~lDl 


p, : S -+ @ P S ( O ) ~ ( ~ O ) 


p, : B -+ A(IBA, FBA, (FBA- I B A ) / N ) ~(ICL, FCL, (FCL - ICL)/N) 


A(ITA, FTA, (FTA - ITA)/N) 

pq : D + ; ( I O O ) @ P D ( O , ~ ,4) 

p, : 1 -+ +(90)f (IBW, FBW,(FBW- IBW)/N)@PC(O, O,0) + (90 + ~ ~ ~ ~ ( I c L / I B w ) ,  

90 + ~ ~ ~ ~ ( F c L / F B w ) ,(atan(FCL/FBW)- ~ ~ ~ ~ ( I c L / I B w ) ) / N ) 


[If( I C L / ~ ,F C L / ~ ,(FCL- ICL) /~ /N)@PC(O,  1 ,0)- (90) 


A(IBA, FBA, (FBA- I B A ) / N ) ~(IBW * 213, FBW * 213,213 * (FBW- IBW)/N) 


@PC(O,I, l)][f (50)@PC(O,O, I)] 


p 	 : r -+ -(90)f (IBW, FBW,(FBW- IBW)/N)@PC(O, 0,3) - (90 $ ~ ~ ~ ~ ( I c L / I B w ) ,  

90 + ~ ~ ~ ~ ( F c L / F B w ) ,(atan(FCL/FBW)- ~ ~ ~ ~ ( I c L / I B w ) ) / N )  

[If( I cL/~ ,  ICL) /~ /N)@PC(O,I,3)+ (90)FCL/3, (FCL -

A(IBA, FBA, (FBA- I B A ) / N ) ~(IBW * 213, FBW * 213,213 * (FBW- IBW)/N) 

@PC(O,I, 2)] [f (~o)@Pc(o ,0,2)] 



Figure 5.14: Development of a petal 

L-system 11: Developmental b i c u b i c  s u r f a c e  p e t a l  - con t inued  

P7: L + +(~o)~(Tw)@Pc(o,~,o)+(~o- atan(50/TW)) 

[f(ICL/3), FCL/3, (FCL - I C L ) / ~ / N ) @ P C ( O ,  2 ,0)  + (90) 

A(ITA, FTA, (FTA - I T A ) / N ) ~(ITW* 2/3, FTW * 2/3, 

213 * (FTW- 3, I)]ITW)/N)@PC(O,2, I ) ] [ ~ ~ ( ~ o ) @ P c ( o ,  
+ -(90)f (TW)@PC(O,3,3)- (90 - atan(50lTW)) 

[f( I C L / ~ ,F C L / ~ ,(FCL - ICL) /~ /N)@PC(O,  2 ,3)  - (90) 

A(ITA, FTA, (FTA - I T A ) / N ) ~(ITW* 2/3, FTW * 2/3, 

2/3 * (FTW- ITW)/N)@PC(O,2, ~ ) ] [ I ~ ( ~ o ) @ P c ( o ,  3,2)] 

pg : f ( v , V , i ) : v < ~  -+ f ( v + i , ~ , i ) 


plo : +(v, V, i): v < V + +(v + i,V, i) 


pll : -(v, V, i):v < V + -(v + i,V, i) 


p12 : A(v, V, i):v < V + A(V + i,V, i) 


The turtle interpret ation commands with values to be interpolated have three param- 

eters: v representing the current value, V representing the limit or final value, and 

i representing the increment to be applied in each step. Productions pl to pg are 

the same as before, except that modules representing commands with parameters to 

be interpolated have the appropriate initial values included. Productions pg to pl2 

control the linear interpolation of lengths and angles. This L-system produces the 

sequence of images presented in Figure 5.14. The sequence of flower heads shown 



Figure 5.15: Development of a rose campion flower 01991  P. Prusillkiewicz and M. Hainmel 

in Figure 5.15 and Plate C.4 come from an animation of rose campion development 

produced by Prusinkiewicz and Hammel [I181using a similar technique. 

The presence of parameters allows the specification of control points by row and 

column number in the black-box routines. A less intuitive symbolic identification of 

the black-box routines would have been required for standard L-systems. 

5.7 Animation of development 

A developmental plant model expressed using an L-system presents consecutive 

stages of the plant's growth as time progresses in discrete steps. The resulting images 

can be displayed in a sequence, simulating time-lapse photography of the modelled 

organism. In order to create a smooth animation of development, the modelling sys- 

tem must provide two capabilities. First, the user must be able to express arbitrary 



sizes in the model, which was one of the main motivations for the creation of para- 

metric L-systems. Second, the user must be able to control the extent of changes in 

the model from one derivation step to the next. By making these changes sufficiently 

small, the illusion of a continuous process is created. 

A conceptually elegant approach to the latter problem is to  decouple model devel- 

opment, defined in continuous time, from model observation, taking place at discrete 

time intervals. For context-free models this has been achieved in the formalism of 

timed DOL-systems developed by Prusinkiewicz [122, Chapter 61. Following a similar 

line of reasoning, this section presents a method for creating animations using the 

formalism of parametric L-systems. 

A user-defined parameter d t ,  called the time step, is introduced to control the 

progress of time. An age parameter is associated with each module in the string, 

and is advanced by d t  in each derivation step. Production application is determined 

by comparison of the age, or some function of age, to a threshold value. Geomet-

ric parameters are expressed using growth functions associated with the age of the 

module. These growth functions must be selected so that no sudden changes occur 

when modules divide, using continuity criteria to be discussed later. Note that this 

usage of the term growth function is different from the non-parametric case, where it 

referred to the number of characters in the string. 

As an example, consider the parametric model for the vegetative growth of An- 

abaena catenula presented in L-system 2 on page 61. The growth of a module is tightly 

coupled with the derivation step; in a single step the module grows from length BS 

to AS, in the next it divides into two modules with total length AS + BS. In order to 

control development using a finer time step d t ,  age is introduced as a parameter of 

the modules. When a new cell is created it has an initial age a, incremented by d t  in 

each derivation step. The cell exists until it reaches a terminal age P ,  at which time 

it divides. Note that a given increment d t  may consist of two parts at the time of 

cell division: d t l  needed to reach the terminal age, and d t2  which advances the age 

of the newly created cells. In the following L-system, the terminal age is represented 

by the age threshold T and the growth function is not yet specified. 



L-system 12: An age-controlled model of Anabaena catenula 

#define d t  1 /* Time s t e p  */ 
#define W .25 /* Width of c e l l s  */ 
#define T 1.2 /* Age threshold f o r  d iv i s ion  */ 
#define AA 1.0 /* Age decrement f o r  c e l l  type A */ 
#define BA 1.2 /* Age decrement f o r  c e l l  type B */ 
#define R 1 /* Orientat ion t o  t h e  r i g h t  */ 
#define L -1 /* Orientat ion t o  t h e  l e f t  */ 
#define g (a) ???? /* Unspecified growth func t ion  */ 
w : !(w)F (~ (T- BA) ,R, T - BA) 

p l :  F(l ,o ,a)  : a + d t > = T & & o = = ~  -+ 

F(g(a +d t  -AA), L, a + d t  -AA)F(g(a+ d t  - BA), R, a + d t  - BA) 

pz : F(1, o,a) : a +  d t  >= T&& o == L + 

~ ( ~ ( a+ d t  - BA), L, a + d t  - B A ) F ( ~ ( ~+ d t  - AA), R, a + d t  - AA) 

p3 : F(l,  o,a) : a +  d t  < T -4 F(g(a +dt ) ,  0, a +d t )  

A single cell is represented by a module ~ ( 1 ,o, a), where the parameter 1captures 

the cell's length, o captures its orientation, and a captures its age. The axiom sets 

the width of the filament using the !(w) module, and incorporates a single cell of type 

B oriented to the right, represented by the module F ( ~ ( T- BA), R, T - BA). In order 

to ensure consistency in the model, the starting age is specified by subtracting the 

age decrement BA from the cell division threshold T, and the cell's length is specified 

using the value of the growth function g(a) at that age. Production pl simulates the 

division of a cell oriented to the right when its age reaches or exceeds the threshold 

T, producing an older cell represented by F(g(a + d t  - AA), L, a + d t  - AA) and a 

younger cell represented by F(g(a + d t  - BA), R, a + d t  - BA). The mechanism for 

specifying the new ages of the modules based on a decrement from the age plus the 

time step d t  ensures that the d t2  portion of the time step is incorporated into the 

age of the new modules. Application of this production to the module ~ ( 2 ,  I, 1.4) 

with d t  = -1,1.1)~(1,0.7 would result in the string ~ ( 2 ,  I, .I), where the "excess" 

age has been distributed into the new modules. Production pz performs an analogous 



function for a cell oriented to the left. In each derivation step that pl or p2 does not 

apply, production p3 increments the age of a module and updates its length. 

Note that this L-system only works properly for dt less than or equal to the 

smallest amount of time between any two state transitions, which in this case is equal 

to AA = 1. For instance, application of production pl to the module ~ ( 2 ,  I, 1.6) with 

dt = 1.6 would result in the string F(2, -1,2.2)~(1,I, 1.2)~in which the first module 

should have been replaced by production p2 already. If the L-system is being used 

for animation purposes, keeping dt below this threshold is not a problem; a small dt 

ensures small changes from frame to frame. In the timed L-system formalism, the 

notion of derivation is modified to allow the use of an arbitrarily large dt without 

increasing the number of productions; however, this approach is fundamentally limited 

to context-free models. In parametric L-systems on the other hand, larger time steps 

can be accommodated by providing productions that carry out the equivalent of 

multiple derivations in a single step. In conjunction with ply the following production 

would handle any value of dt up to 2. 

This is equivalent to applying pz to the first module in the successor of pl, and p3 to 

the second. Similar productions would have to be added for p2 and ps. If larger time 

steps were required, more productions would have to be added. 

In order to produce a smooth animation with this L-system, the growth func- 

tion g(a), which determines the length of the modules based on their age, must be 

specified. Potentially, observations of real organisms can be used to estimate growth 

functions [79, 801. If detailed information is unavailable, growth functions can be 

determined based on the desired degree of smoothness in the animation. According 

to Mitchison and Wilcox [107], both the cells resulting from a division in Anabaena 

reach the same size before dividing again, with the smaller cell taking an average of 

twenty percent more time to do so. Maintaining the assumption that the smaller cell 

is just a younger version of the larger, their observation can be incorporated into the 



model by assuming a terminal age of P = 1.2, and having the smaller cell's age start 

at a = 0 while the larger starts at a = 0.2. In determining the growth function for 

this model, the basic continuity requirements are defined by general physical prop- 

erties of biological systems: the length of each cell is a continuous function of time, 

and the length of a cell before subdivision is equal to the sum of the lengths of the 

daughter cells. In the context of an age-controlled parametric L-system model of a 

non-branching organism, these requirements can be considered as follows: 

R1. The growth function gl(a, T), which specifies the value of parameter I for module 

a as a function of the age parameter T, must be a continuous function of T in 

the domain [amin,P],where age aminis the minimum of the initial age values 

assigned to a by the axiom w or by some production in P. 

R2. For each production in P, where module a produces modules bl bz . . .bn at time 

threshold P specified in the condition, the following equality holds: 

where t(bi, P)  represents the age assigned to module bi if the production is 

applied at time P. 

In practice, requirement R1 is used to select the class of growth functions under 

consideration, and the equations resulting from requirement R2 are used to determine 

the parameters in growth function definitions. For example, in the case of the age- 

controlled L-system specified in L-system 12 on page 86, requirement R1 can be 

satisfied using a linear growth function 

Requirement R2 can be reduced to the form 

By substituting equation (5.3) into (5.4), we obtain 



Figure 5.16: Diagrammatic representation of the development of Anabaena  catenula, with ( a ) linear 
and (b) exponential growth of cells 

Therefore, the desired continuity of development is provided by all linear growth 

functions where A = B. This can be specified by replacing the definition of g(a) in 

L-system 12 as follows, where A = B = 30. 

#define g(a)  30 * (a) + 30 /* Linear growth function */ 

In this case the growth function is simple enough that its recalculation whenever a 

new age is assigned to a module will not affect the time taken to derive a new string 

to a great degree. If very complex growth functions are required, forward differencing 

can be applied to make the calculations more efficient. 

Figure 5.16a illustrates the developmental process for A = B = 30. The diagram 

was obtained by plotting the cells in the filament as horizontal line segments on the 

screen. The image was created in 325 derivation steps with time step d t  = .01. 

The slopes of the right hand edges of the diagram represent growth rates of the 

entire structure. Notice that they remain constant in the periods between cell di- 

visions, then change. This effect is disconcerting in animation, since the rate of 

organism growth suddenly increases with each cell division. In order to prevent this, 

it is necessary to extend requirements R1 and R2 to a higher order of continuity N. 

Specifically, equation (5.2) takes the form 

n 

g ( k ) ( a , ~ )= Cg(k)(bi,ai) O , l , .  (5.6)for h = . . ,N,  
i=l 

where g(k)(a, T)  is the hth derivative of the growth function g(a,T) with respect to age 



In the case of Anabaena, an attempt to achieve first-order continuity assuming 

linear growth functions yields an uninteresting solution, g (F , r )  = 0. Thus, more 

complex growth functions must be considered. Sigmoidal growth, represented by 

functions with a plot in the shape of a letter S, is commonly found in biological 

processes [141]. The initial part of a sigmoidal curve describes the growth of a young 

organism, and can be approximated by an exponential function: 

The objective is to find values of parameters A and B that satisfy equation (5.6) for 

k = 0, l .  By substituting equation (5.7) into (5.6), we obtain 

which implies that any solution of this equation yields continuity of infinite order. 

Solution of equation (5.8) for any value of k yields B m 0.632. Parameter A is a 

scaling factor and can be chosen arbitrarily. L-system 12 can be modified to use this 

growth function with A = 30 by changing the definition of g(a) as follows: 

#define g(a)  30*exp (0.632*a) /* Exponential growth funct ion */ 

The corresponding diagrammatic representation of development is shown in Fig- 

ure 5.16b. The right hand edge of the diagram, representing the growth rate of 

the whole structure, is a smooth exponential curve. 

This method for creating smooth animations using parametric L-systems can be 

extended to context-free branching models by applying continuity criteria along each 

branching axis. Further research is required to determine its applicability in the 

context-sensitive case. For instance, in a diffusion-based model, the calculation of the 

exact moment within a given time step that the concentration exceeds a threshold, 

triggering the application of a production, can be difficult, but is necessary to ensure 

that newly created modules are assigned the appropriate age. 



5.8 Diffusion in Anabaena catenula 

In the simple model of the vegetative growth of Anabaena presented in Equation 

2.1 on page 16, the vegetative cells divide and produce two daughter vegetative cells. 

In reality, however, some of these cells differentiate into heterocysts, non-reproductive 

cells hypothesized to produce growth regulating substances. The distribution of hete- 

rocysts in the filament forms a pattern characterized by a relatively constant number 

of vegetative cells separating consecutive heterocysts. How the organism maintains 

the constant spacing of heterocysts while growing is a question that has been ad- 

dressed by a number of researchers [6, 20, 28, 1071. In this section, the formalism of 

parametric L-systems is used to express the mathematical model of this phenomena 

proposed by De Koster and Lindenmayer [28]. 

The model is based on a biologically well-motivated hypothesis that the hetero- 

cyst distribution is regulated by nitrogen compounds produced by the heterocyst s, 

transported from cell to cell across the filament, and decaying in the vegetative cells. 

The concentration c of the compounds in a cell is assumed to be uniform within the 

cell and to vary according to the formula 

where D is the diffusion constant, 1 is the concentration in the cell to the left, r is 

the concentration in the cell to the right, and k is the decay constant. By discretizing 

this equation, and assuming that D = k = K, the change in c in a unit of time can 

be expressed as 

Ac = K(1+ r - 3c). 

If the compound concentration in a young vegetative cell falls below a specific thresh- 

old, the cell differentiates into a heterocyst. This endogenous control mechanism is 

captured by the parametric L-system given below. By tuning the model parameters 

until a realistic growth sequence is created, a researcher can obtain estimates of the 

corresponding physical const ants, even though they are not directly observable. 



L-system 13: A model of heterocyst  development i n  Anabaena 

#define CH 900 /* High concentration */ 
#define CT 0.4 /* Concentration threshold */ 
#define ST 3.9 /* Segment s i z e  th reshold  */ 
#define K 0.25 /* Diffusion/decay constant */ 
#include H /* Heterocyst shape spec i f i ca t ion  */ 
#ignore f N H 

w : -(90)F(0,OYC H ) F ( ~ ,~,CH)F(O,O,CH) 


pl : t,c) : t = I && s >= 6 -+ I, c)
~ ( s ,  F(s/3 * 2,2, c)f ( l ) ~ ( s / 3 ,  

p2 : ~ ( s ,t,c) : t = 2 && s >= 6 -+ F(s/3,2, c)f(l)F(s/3 * 2,1, c)  

p 3 :  F ( h , i , l ) < ~ ( s , t , c ) > ~ ( o , p , r ): c > C T I I s > S T  -+ 

F(s + . l , t , c $ K *  (1+ r - 3 * c)) 

p4 : t ,c) > ~ ( o ,  : !(c > CT I I s > ST) -+ F(O, 0, CH)--~(1)F(h, i,1)< ~ ( s ,  p, r )  

P5 : H ( s )  : s < 3  -4 H(s * 1.I) 

Cells are represented by modules F(s, t ,c), where s stands for cell length, t is 

cell type (0 -heterocyst, i and 2 -vegetative types oriented to the left and right, 

respectively), and c represents the concentration of nitrogen compounds. Produc-

tions pl and p2 describe divisions of the vegetative cells into two daughter cells of 

unequal length, with the ordering of the longer and shorter daughter cells depend- 

ing on the parent's orientation. The f(1) module provides spacing between the cells 

for visualization purposes. Production p3 captures the processes of transportation 

and decay of the nitrogen compounds. Their concentration c is related to the con- 

centration in the neighbouring cells, 1and r, and changes according to the formula 

c' = K * (1+ r - 3 * c) + c where K = 0.25. Production pa describes differentiation 

of a vegetative cell into a heterocyst. The condition specifies that this process occurs 

when the concentration of nitrogen compounds falls below the threshold value CT = .4 

in a cell that is young enough, as indicated by its length being below the threshold 

value ST = 3.9. Production p5 describes the subsequent growth of the heterocyst in 

size. 



Figure 5.17: Developmental sequence of Anabaena catenula with heterocysts 

Snapshots of the developmental sequence of Anabaena are given in Figure 5.17. 

The vegetative cells are- shown as rectangles, coloured according to their concentra- 

tion of nitrogen compounds; the higher the concentration, the darker the cell. The 

heterocysts are represented as disks. The values of parameters K, CH,CT and ST were 

selected to provide correct distribution of the heterocysts, and correspond closely to 

the values reported in [28]. The diffusion and decay process has been conveniently 

captured by the parametric L-system formalism. 

5.9 Development of an inflorescence -Mycelis muralis 

The study of compound flowering structures or inflorescences has played a par- 

ticularly visible role among the applications of L-systems [50, 51, 52, 53, 83, 921. 

L-systems with turtle interpretation are a proven tool for realistic image synthesis of 

inflorescences [61, 119, 1231, due to their ability to simulate a variety of lineage and 



endogenous control mechanisms. Nevertheless, models expressed using standard L-

systems are sometimes convoluted and may not lend themselves to clear presentation. 

The addition of parameters to the formalism makes it much easier to express com- 

plex models, such as the developmental model of the inflorescence of Mycelis muralis 

discussed below. 

The development of Mycelis is difficult to model for two reasons. First, the plant 

exhibits a basipetal flowering sequence, which means that flowering starts at the top 

of the plant and proceeds downwards. Secondly, at some developmental stages the 

plant has an acrotonic structure, where the upper branches are more developed than 

the lower ones. Both phenomena are in a sense counter-intuitive, since it would 

seem that the older branches situated near the plant base should start growing and 

producing flowers before the younger ones at the plant top. To explain these effects, 

several models were proposed and formally analyzed by Janssen and Lindenmayer 

[83]. Their Model 11is restated in the following parametric L-system. 

L-system 14: Mycelis muralis - Model I1 

#include 0 /* flower shape spec i f ica t ion  */ 
#ignore / + 0N 

w : I ( ~ O ) F A ( O ) 


pl : S < A ( t )  -+ T(O)NO 


P2 : A(t) : t > O  + ~ ( t - 1 )  

P3 A(t) : t == 0 + [ + ( 3 0 ) ~ ] ~ / ( 1 8 0 ) ~ ( 2 )  

P4 : S <  F + FS 

PS : F > T(C) + T(C + ~ ) F U ( C- I) 

ps : U(c) < G + I ( c )FA(~)  

p7 : I(c) : c > o  + ~ ( c - 1 )  

PS : I(c] : C = = o  -+ s 
P9 : s + € 

Pl0 : T(c) + E 

The axiom consists of three components. Modules F and A(O) represent the initial 

segment and the apex of the main axis. Module 1(20) is the source of a signal 

representing florigen, a hypothesized hormone controlling the development of flowers. 



In this case, florigen is sent towards the apex by leaves located at the plant base, 

which is not included in the model. 

The developmental process along the main axis consists of two phases, which are 

repeated in branches of higher orders. First, the main axis is formed in a process of 

subapical growth specified by production p3. The apex produces consecutive segments 

F at the rate of one segment every three derivation steps (the delay is controlled by 

production p2), and initiates branches G positioned at an angle of 30" with respect 

to the main axis. At this stage, the branches do not develop further, simulating the 

effect of apical dominance, which is the inhibition of branch development during the 

active production of new branches by the apex. 

After a delay of 20 derivation steps, counted by production p7, an acropetal flower- 

inducing signal S is sent by production ps. Production p4 transports S across the 

segments at the rate of one internode per step. Since new internodes are produced 

by the apex at a three times slower rate, the signal eventually reaches the apex. 

At this point, the second developmental phase begins. Production pl transforms 

apex ~ ( t )  Further branch production is stopped and a signal ~ ( c )  into a bud NO.  

is sent towards the base in order to enable the development of lateral branches. 

Parameter c is incremented each time signal ~ ( c )  traverses an internode, according 

to production ps. Subsequently, production p6 introduces the value of parameter c 

into the corresponding branches, using module ~ ( c )  as a carrier. The successor of 

production p6 has the same format as the axiom, thus module ~ ( c )  determines the 

delay between the initiation of branch development and the time that signal S is sent 

to terminate further internode creation. This delay c is smallest for the top branches 

and increases towards the plant base. Consequently, parameter c can be interpreted 

as the growth potential of the branches, allowing lower branches to grow longer than 

the higher ones. On the other hand, the development of the upper branches starts 

sooner, thus in some stages they will be more developed than the lower ones, and the 

flowering sequence will progress downwards, corresponding to observations of the real 

plant [83]. 

A diagrammatic development a1 sequence of Mycelis muralis simulated using this 

L-system is shown in Figure 5.18. Initially, the segments are shown as thin black 



Figure 5.18: Development of Mycelis muralis 



Figure 5.19: A three-dimensional rendering of the Mycelis model 01987 P. Prusinkiewicz and J. 
Hanan 

lines. The passage of florigen S thickens them and turns them grey, and the lifting of 

apical dominance darkens the thick lines. 

The L-system describing the three-dimensional structure shown in Figure 5.19 

and Plate C.5 differs from the two-dimensional model only in details. The angle 

value associated with the module "1" in production p3 has been changed to 137.5', 

resulting in a spiral arrangement of lateral branches around the mother axis. The 

leaves subtending branches have been included in the model, and the flowers have 

been assumed to undergo a series of changes from bud to open flower to fruit. 



Another developmental model of Mycelis, referred to as Model 111by Prusinkiewicz 

and Lindenmayer [122], is captured by the following parametric L-system. 

L-system 15: Mycelis muralis  - Model I11 

#include 0 /* Flower shape spec i f i ca t i on  */ 
#ignore / + 0 FN 

w : I ( ~ O ) F A ( O )  

pl : S < A ( t )  + TVwO 

p~ : V < A ( t )  + TV-0 

P3 : ~ ( t ): t > 0 + ~ ( t- I) 

P4 : ~ ( t ): t == 0 + ~ [ + ( 3 0 ) ~ ] ~ / ( 1 8 0 ) ~ ( 2 )  

p 5 :  S <  M + S 

P6 : S > T  + T 

p 7 :  T <  G + FA(^) 

p s :  V <  M + S 

p9 : T > V  + W 

Pl0 : W + v 
Pll : I(t) : t > O  4 ~ ( t - I )  

P12 : ~ ( t ): t == 0 + S 

The initial phases of development are the same as in model 11. First, apex A creates 

the main axis and initiates lateral branches (productions p3 and p4). Symbol M in 

the successor of production p4 marks consecutive branching points. After a delay of 

20 steps, established in the axiom w and counted by production pll, flowering signal 

S is generated at the inflorescence base (pI2) and sent up along the main axis (p5). 

Upon reaching the apex, S induces its transformation into a terminal flower NO, and 

initiates two basipetal signals T and V (pl). The basipetal signals also can be initiated 

by production pg, which is necessary for proper timing in the development of the 

topmost lateral branch. Signal T propagates basipetally at the rate of one internode 

per derivation step (p6) and lifts apical dominance, thus allowing the lateral branches 

to grow ( P ~ ) .The presence of the second basipetal signal V is the distinctive feature 

of model 111. Its role is to enable the formation of flowers on the lateral branches 

by generating the flowering signal S at their bases (ps). Since signal V propagates 



down the main axis at the rate of one internode per two derivation steps ( p 9 , plo) ,  

the interval between the lifting of apical dominance by signal T and the induction of 

the flowering signal S by signal V increases linearly towards the inflorescence base. 

This process allows the lower branches to grow longer than the upper ones, resulting 

in a structure that is more developed near the base than near the apex in later 

development a1 st ages. 

The entire control process is repeated for each axis: its apex is transformed into a 

flower by signal S, the growth of lateral axes is successively enabled by signal T, and 

the second basipetal signal V is sent to induce the flowering signal S in the next-order 

axes. Consequently, a basipetal flowering sequence is observed along all axes of the 

inflorescence. 

A comparison of these models reveals that Model I1 controls the flowering on 

lateral branches using growth potential c accumulated by signal T on its way down, 

while model I11 employs the time interval between signals T and V for the same 

purpose. Since both models produce identical developmental sequences, it is not 

possible to decide which one is more faithful to nature without gathering additional 

data related to plant physiology. Nevertheless, the models clearly indicate that the 

flowering sequence of Mycelis cannot be explained only in terms of a flowering signal 

and the lifting of apical dominance. Another factor, whether it is an accumulated 

delay or a third signal, is needed. The mathematical models bring forward evidence 

and assist in formulating plausible hypotheses related to the control mechanisms that 

may be employed by nature. Determination of the final answer will require further 

study of the real plant. 

In these two models, parametric L-systems provided a simple mechanism for spec- 

ifying the series of state changes capturing time delays, both before the release of 

florigen at the plant base and in the production of internodes by the apex. To effect a 

change in either delay, the appropriate parameter is incremented or decremented. Ad- 

ditionally, in L-system 14 the parameter c in the downward signal ~ ( c )  lifting apical 

dominance represents the accumulation of growth potential for the lateral branches 

in a straightforward manner. 



5.10 L-systems as a model of parallel computation 

Parametric L-systems were introduced to model plants [120, 1221, but their do- 

main of application includes standard computational problems as well [121]. This 

section explores L-systems as a general model of computation, and the relationship of 

that model to parallel machine architectures. The following examples illustrate the 

computational possibilities of parametric L-systems. 

Example 5.10.1. The L-system 

computes the value of n factorial in n derivation steps: 

Example 5.10.2. The L-system 

computes consecutive terms of the Fibonacci series: 

Example 5.10.3. The following L-system implements the odd-even-transposition 

parallel algorithm for sorting numbers ala2 . ..a, [2, pages 89-91]. 

This L-system operates by exchanging parameter values ai and ai+l if ai > ai+l. Pairs 

whose first element has an odd-numbered index i are considered in odd-numbered 



derivation steps; pairs whose first element has an even-numbered index i are consid- 

ered in even-numbered steps. This principle is illustrated by the following sample 

derivation. 

In spite of its simplicity, the parallel odd-even-transposition algorithm sorts n numbers 

in O(n) time, which is better than the O(n1og n)  lower bound for sequential sorting. 

Example 5.10.4. The L-system given below generates prime numbers using a par- 

allel version of the sieve of Eratosthenes. 

As specified by production pl, module ~ ( k )  generates a series of modules ~ ( k )  rep-

resenting consecutive integers. Each module A(k) propagates to the right through a 

sequence of modules P(n) representing prime numbers found so far. If ~ ( k )  immedi-

ately precedes P(n) in a string, and n does not divide k, ~ ( k )  moves to the right of 

P(n). Specifically, production p4 copies ~ ( k )  to the right side of ~ ( n ) ,  while pa removes 

its previous occurrence. If n divides k evenly, production p2 acts alone and removes 

~ ( k )from the string. Thus, A(k) reaches the end of the string marked by module E 

if and only if k is prime. ~ ( k )  is then transformed to ~ ( k )  by production p3. These 

operations are illustrated by the following derivation steps. 



As shown by the above examples, the most obvious characteristic of computation 

using parametric L-systems is the m o n a d i c  nature [I531 of production application. 

Information is passed unilaterally from the modules specified by the production pre- 

decessor to the modules in the successor. This contrasts L-systems with applicative 

languages, such as C or Lisp, in which computation occurs in dyads: a function is 

called, then returns a value to the calling environment. 

The relationship between L-systems and the SIMD model of parallel computa- 

tion [2, Chapter 11 is illustrated by Example 5.10.3. The string of modules corre- 

sponds to a collection of processors which act according to the same production set 

(Single Instruction), but hold different parameters (Multiple Data). In this case, the 

processors are arranged in a linear array in which the neighbours can communicate. 

Since each production creates one module, the array contains a constant number of 

processors connected in a fixed way. 

An extension to the SIMD model is suggested by Example 5.10.4, which allows 

productions to create new modules and destroy existing ones. The corresponding 

parallel architecture can be envisioned as a linear array of processors which may 

self-replicate and die in the course of computation. Such a model can be simulated 

using existing computers; an implementation of L-systems on a Connection Machine, 

proposed by R. and S. Pinter [115], is the closest approximation of this model to 

date. A separate processor is allocated to each module of the generated string. After 

a derivation step, the processors are reallocated to accommodate productions that 

create or delete modules. As reallocation may dominate the computation time, con- 

clusions drawn from this implementation cannot be automatically extrapolated to the 

original model. 

The addition of parameters and mathematical expressions to the L-system for- 

malism extends the range of applications from biological simulation and visualization 

to more traditional computational problems. Parametric L-systems provide a model 

for parallel computation with self-replicating processors, and are worthy of further 

research as a potential foundation for a class of programming languages based on 

monadic computation and concurrency. 



5.11 Summary 

The examples presented in this chapter illustrate the suitability of parametric L- 

systems for a broad range of applications. The addition of parameters to the L-system 

formalism has extended the range of models that can be expressed and provides a 

tool that is more flexible than standard L-systems. 

The models of Anabaena catenula presented in Section 5.1 demonstrate the use of 

parameters to capture geometric and cell-state information. 

The phyllotaxis models of L-systems 3 to 5 rely on parameters for the exact 

specification of angles and distances necessary for the geometric description of their 

spiral patterns. Additionally, in L-systems 4 and 5, mathematical expressions are 

used to change the values of parameters gradually over time. 

Although no detailed models of particular tree species have been developed to 

date, L-system 6 demonstrates that the branching structure of trees can be captured 

using the parametric L-system formalism. 

The developmental models of plant organs in L-systems 8 through 11are controlled 

by lineage mechanisms captured in the parameters expressing growth potential, devel- 

opmental delay, and growth rates. The interactive manipulation of these parameters 

allows the creation of a family of shapes of each type. A sequence of images illustrat- 

ing the development of an organ can be created by interpreting the L-system string 

after each derivation step. 

In order to create smooth animations of plant growth using parametric L-systems, 

the concept of age-controlled L-systems was introduced in Section 5.7. L-system 12 

provides an example of the use of parameters to control the progression of time and 

for the expression of continuous growth functions. 

The description of endogenous models of plant development is illustrated in Sec- 

tions 5.8 and 5.9. L-system 13 models the diffusion and decay of nitrogenous com- 

pounds in a Anabaena catenula filament. The models presented in L-systems 14 and 

15 combine growth potentials, delays, and signals moving through a growing structure 

to describe the flowering sequence of Mycelis muralis. 



These examples illustrate the wide range of biological problems that can be mod- 

elled, analyzed, and visualized using parametric L-systems. As revealed in Section 

5.10, parametric L-systems can also be applied to standard computational problems, 

and can be considered as a computational model for parallel machines. 



Chapter Six 

FURTHER EXTENSIONS 

As illustrated in Chapter 5, parametric L-systems can be used to model a wide 

variety of plant architectures. The practical experience stemming from the develop-

ment of these and other models [62, 120, 121, 1221 led to further extensions of the 

formalism. Their focus is on increased flexibility and efficiency in model specification 

and operation. Extensions have been made in three areas: 

specification of hierarchical models, making it simple to reuse previously devel-

oped L-system components, 

a straightforward method for removing groups of modules that represent struc-

tures no longer required in a model, and 

incorporation of features of common computer languages, which enhance para-

metric L-systems as a plant modelling mini-language. 

6.1 Hierarchical modelling 

During the modelling process, it often becomes apparent that a part of the new 

plant, such as a leaf or petal, has similar structure to a previously modelled part of 

a different plant. A great deal of time and effort can be saved by incorporating the 

corresponding production rules into the current model. However, the integration of 

predefined components into a single L-system is not without difficulties. There may 

be collisionsbetween symbols in the L-systems to be merged; for example, the module 



A representing the apex of a branch will not necessarily develop the same way as the A 

representing the apex of a leaf. The reused components may have incompatible sizes 

and operate on different time scales. These problems can be addressed using a brute 

force approach, by renaming all conflicting symbols and changing parameter values 

in the component L-systems. Rather than rely on this error-prone, ad hoc process, I 

propose the extension of parametric L-systems with a sub-L-system mechanism that 

insulates the component's modules from those of the remainder of the model, and 

limits the scope of its production rules to a substring of the current parametric word. 

Sub-L-systems are invoked directly from the "higher level" L-system in a manner 

similar to subroutines in a computer program. This yields a hierarchical model with 

nested sub-L-systems. Cyclic nesting is allowed, as discussed in Section 6.1.3. 

In the context-free case, the specification of a parametric L-system with sub-L- 

systems is similar to the specification of a OL-system. However, instead of a single 

set of productions, there is a set of productions for the overall structure, called the 

main L-system, plus a set of productions for each independently modelled plant com- 

ponent. In order to produce a string representation of the component, the main 

L-system introduces modules representing the axiom of the sub-L-system into the 

string, delimited by the modules ?(id) and $. The parameter of the ? module identi- 

fies the sub-L-system to be applied to these modules. The substring delimiters must 

occur in matching pairs in the same way as parentheses are used in an arithmetic 

expression, and may be nested within the string. The newly introduced sequence of 

modules will be replaced in subsequent steps by the results of successive derivation 

steps of the identified sub-L-system. Thus, the parametric string is partitioned into 

substrings; those modules enclosed in a pair of delimiters ? and $ are subject to the 

rules of the identified sub-L-system, while the remainder are governed by the rules of 

the main L-system. 

The following L-system illustrates the operation of the sub-L-system mechanism 

in the context-free case, using a simple branching structure as an example. Note that 

the axiom w of the sub-L-system does not play a role in the model. It is used when 



the component L-system is being developed and tested. 

L-system 16: A simple branching s t r u c t u r e  

Lsystem: I /* Main L-system */ 
w : A 


pll : A + I[?(~)A$]A 


endLsyst em 


Lsystem: 2 /* Sub-L-system f o r  t h e  branch */ 
w : A 


p21 : A + I A 


endLsyst em 


Starting from the axiom A, the following parametric words are generated in the 

first five derivation steps. 

In each step, the production that is applied to a module A depends on the sub-L- 

system identified by the delimiters immediately enclosing it. Thus, production pll is 

applied to the module A appearing at the right of each word, producing an internode 

I, a lateral branch incorporating the sub-L-system reference ?(2)A$, and a new apex 

A. Production pal is applied to the modules A appearing in each branch, producing an 

internode I and a new apex A. No further branching occurs in the lateral branches, 

since production pll is not applicable within the scope of any reference to L-system 

2. 
1 

The sub-L-system mechanism presented above addresses the issue of collision of 

symbols used to denote modules, but still requires the user to harmonize the geo- 

metric scales of component sub-L-systems. Rather than forcing the user to do this 



Figure 6.1: Model of the sedge C a r e x  laevigata 01989 J .  Hanan and P. Prusinkiewicz 

on a module by module basis, the sub-L-system mechanism is further extended by 

introducing a global scaling factor as the second parameter of the ? module, giving 

it the format ?(id,scale). Interpretation of the resulting strings is straightforward; 

commands in a delimited substring have the same turtle interpretation as before, but 

the dimensions of the graphical objects produced are scaled by the product of the 

scaling factors of nested sub-L-systems. The main L-system is assumed to have a 

scaling factor of 1. 

As an example, consider the model of the sedge Carex laevigata shown in Figure 6.1 

and in Plate C.6. The underlying L-system incorporates sub-L-systems for the male 

and female inflorescences, and a developing polygonal leaf model. 



L-system 17: Sub-L-system based model of t h e  sedge Carex laevigata 

Lsystem: 1 /* Main L-system f o r  t h e  sedge */ 
#def ine  I R  1.02 /* Internode growth r a t e  */ 
#def ine  SW .0075 /* I n i t i a l  width of t h e  stem */ 
#def ine  SWR 1.06 /* Stem width growth r a t e  */ 

w : /(30) + (lO)#(SW)A(I) 


pll : ~ ( a )  : a == 30 + ~(1)/(137.5)?(3,1.25)~$ 


pl2 : A(a) : a%lO== 0 I)
+ ~(1)/(137.5)[~(a)][~(a)]#(~~)~(a+ 

p13 : A(a) + F(l)A(a+ 1) 


p14 : #(d) : d < 200 + #(d* SWR) 


P15 : S(a) + A(25I1(-. 1)!(.3)~((30 - a) * .5)'(0)?(2,1.25)~$ 


P16 : L(a) + ~(60)!(.1)?(4,l )x(a- 10,a, (a  - 13)/100)$ 


P17 : ~ ( t ): + ~ ( tt < 2 * IR) 

pis : ~ ( t ): + ~ ( t!(t< 2) * IR/2)F(t * 1 ~ 1 2 )  

endLsyst em 

Lsystem: 2 /* Sub-L-system f o r  t h e  female sp ike  */ 
#include S G /* Surface d e f i n i t i o n s  f o r  a seed */ 
#def ine  FIR 1. O 1  /* Female in ternode growth r a t e  */ 
#def ine  FSR 1.05 /* Female seed growth r a t e  */ 
w : F(5)x 

P21 : x 



(L-system 17 continued) 

Lsystem: 3 /* Sub-L-system f o r  t h e  male sp ike  */ 
#include M /* Male su r f ace  d e f i n i t i o n  */ 
#def ine  MIR 1.025 /* In ternode growth r a t e  */ 
#def ine  MSR 1.02 /* Seed growth r a t e  */ 
w : F(5)x 


p31 : x -, A(o) 


P32 : A ( t )  : t < 5 5  + ~ ( . 2 ) [ ~ ] / ( 1 3 7 . 5 ) ~ ( t + 1 ) 


p33 : B ~ (5 ) [ - -~ (1 )1
+ 

p34 : F(t )  : t < 1 + ~ ( t*MIR) 

P35 : A(a)  : a <  15 + A ( ~ * M S R )  

p36 : M ( t )  : t < 3 + ~ ( t*MSR) 

Lsystem: 4 /* Sub-L-system f o r  t h e  l e a f  */ 
#def ine  W .05 /* S t a r t i n g  width */ 
#def ine  WR 1.04 /* Width growth r a t e  */ 
#def ine  L .16 /* S t a r t i n g  l eng th  */ 
#def ine  LR 1.05 /* Length growth r a t e  */ 
w : #(.l)x(l,  10, -.02) 


p41 : x(S, A, T) : S > 0 X(S - I,A, T) 


p42 : x(~ jAjT)  : !(S > 0) 4 [A(S,S+A,T)][B(S,S+A,T)] 


P43 : f (n) : n < 1 5  + f(n*wR) 


P44 : F(n) : n <  15 + F ( ~ * L R ) 


p45 : A, T) : a == +
~ ( a ,  A 

'(TI{ [-(golf (W)I.{.F(L)/(45)[-(90)f (W)).)]; A(a+ 1,A, T) 

p46 : A, T) : a == A +~ ( a ,  

'(TI{ [+(golf (W)I.{.F(L)/(45)[+(90)f ( W ) ) - ) I ;  B(a+ 1,A, T) 

p47 : {[-(90)f (w)].{.F(L)[-(90)f (w)).)];~ ( aA(a, A, T) -4 + 1,A, T) 

p48 : B(a, A, T) -f (w)).)];~ ( a{[+(90)f ( ~ ) ] . { . ~ ( ~ ) [ + ( 9 0 ) f  + 1,A, T) 

endLsyst em 
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The development of the branching structure is controlled by the main L-system. 

Productions pll to pis model the growth of the main stem of the plant, with leaves L 

and branches S initiated every 10 steps by production pl2. In step 30, production pll 

initiates the creation of the male spike using the sub-L-system reference ?(3,1.25)x$. 

Production pl5 models a side branch tipped by a female spike, which is specified by 

the modules ?(2,1.25)x$. Production p16 inserts the sub-L-system for the leaf, using 

the reference ?(4, i)x(a - 10, a, (a - I~ ) / Ioo )$ .  

Sub-L-systems 2 and 3 are based on the model of cylindrical phyllotaxis first 

presented in L-system 5.2.1 on page 62. The tapered shape is created by the continued 

growth of spikelets after they have been initiated. 

Sub-L-system 4, which controls the growth of the leaf, has three parameters in 

its axiom. The first represents a delay between a leaf's initiation and the start of its 

growth. The remaining two parameters control the bending of the leaf due to gravity 

through the application of productions p45 and p46. The leaf is modelled using the 

developmental surface technique described in Section 3.3.2 on page 38. 

Note that the module x is specified as the axiom in all three sub-L-systems refer- 

ences, but that very different productions are applied in each case. 

The sub-L-system mechanism presented to this point does not address the issue 

of harmonizing time scales among component L-systems. For instance, how do you 

model the development of a tree, where a derivation step may represent a year's 

growth, while at the same time modelling leaf development, where one step represents 

a few hours' growth. The simplest approach to the combination of such L-systems by 

hand is to introduce delays into the L-system that has the higher rate of development. 

The same effect is achieved for components modelled by age-controlled L-systems 

(Section 5.7) by adjusting the time step constant. An alternative to the hand-coding 

of delays is captured by a further extension of sub-L-systems, as follows. 

In a time-scaled sub-L-system, a relative time scale is specified as the third param- 

eter of the start module ?, indicating the number of derivation steps to be processed 

in the sub-L-system for each step in the higher level one. This parameter can be 



assigned any non-negative real value, as in the following example. 

L-system 18: Time-scaled sub-L-system example 

Lsystem: 1 /* Main L-system */ 
#define SR I /* Sub-Lsystem r a t e  */ 
w : A 


pll : A -+ 1[?(2,I, SR)B]A 


endLsystem 


Lsystem: 2 /* Sub-L-system */ 
w : B 


pal : B + I B 


endLsystem 


The defined constant SR determines how many derivation steps will be performed by 

sub-L-system 2 for each step in the main L-system. Starting from the axiom A, the 

following strings will be produced in the first few derivation steps. The sequence in 

the left column is produced for SR = .5, in the middle for SR = I, and in the right 

column for SR = 2. The complete sequence for the central column is the same as for 

L-system 16 on page 107, with the sub-L-system reference ?(2) replaced by ?(2, I, I) 

and the module A replaced by B. The ellipsis, . . -,represents modules that have been 

left out of the list for clarity. 



Figure 6.2: Developmental sequence of a spiral 

In each derivation step of the main L-system, production pll produces a new internode 

I and a new branch [?(2, I,SR)B$]. Only the first two internodes and the first branch 

are shown. The growth of the branch is controlled by production pll in conjunction 

with the sub-L-system rate SR. In the central column, with SR = 1,the branch grows 

by one module I for every step of the main L-system. In the left-hand column, with 

SR = .5, the branch grows by one module I for every 2 steps of the main L-system. 

In the right-hand column, with SR = 2, the branch grows by 2 1's in each step of the 

main L-system. Thus, the growth rate of the branch can be controlled by modification 

of the sub-L-system time scale. 

6.1.3 Cyclic references to sub-L-systems 

An aspect of time-scaled sub-Lsystems that can cause difficulties is illustrated by 

the following L-system, which models the simple self-similar spiral structure shown 

in Figure 6.2. 
L-system 19: A s p i r a l  

Main Lsystem: 19 


#define SR 1 /* Sub-L-system r a t e  */ 

w :  A 


pl : A -+ .8, SR) +A$
~ ? ( 1 ,  

endLsyst em 

This L-system operates by referencing itself to produce a scaled down line segment at 

an angle of 75" to the previous segment. Given that the time scale SR = 1,evaluation 



proceeds correctly, producing the following strings in the first few derivation steps. 

If the time scale is increased, the cyclic reference will cause an infinite loop. For 

instance, if SR = 2 the following strings will be produced. 

Each time a sub-L-system reference ?(I, .8,2) + A $  is processed, a new identical refer- 

ence is introduced in the first sub-step, which is itself processed in the second sub-step, 

continuing the cycle. The module $ at the end of the string is never reached, and 

sub-L-system processing continues to the limit of machine resources. This can be 

prevented by modifying the production rules, either to reduce the time scale value in 

each step or to provide a stopping condition, or both, as in the following L-system. 

L-system 20: Spi ra l  2 

Lsystem: 1 

w : ~ ( 3 ) 


pl : ~ ( a ): a > 0 4 F?(I, .8, a) +A(a - I)$ 


endLsyst em 


In conjunction with the decreasing value of module A's first parameter, the condition 

a > 0 prevents the introduction of sub-L-systems once the limit is reached, as can be 

seen in the following sequence of strings, which are created in 3 derivation steps of 



the main L-system. 

In the second derivation step of the main L-system, the modules +A(2) are processed 

in 3 sub-steps, as specified by the third parameter of the sub-L-system reference. In 

the first sub-step, the modules +F?(I, .8, 2 ) ~ ( 1 ) $  are produced. In the second sub- 

step, the newly introduced substring ~ ( 1 )  produces the modules +F?(I, .8, I)A(o)$. 

In the third substep no further changes take place, as the condition in pll evaluates 

to false and no more sub-L-system references are introduced. The use of the same 

decreasing parameter of the module A as the time scale for new sub-L-systems will 

also end the recursion when the value becomes 1,resulting in the same string. 

This "recursive" mechanism is interesting from a theoretical point of view (cf. 

Wyvill [157])and is useful for hierarchical modelling of self-similar structures, but its 

relation to biological mechanisms is not certain at this time. 

As discussed to this point, sub-L-system operation has been restricted to the 

context free case. The introduction of sub-L-systems to context sensitive parametric 

L-systems is straightforward. The context matching procedures are not changed, and 

the sub-L-system delimiters are typically included in the list of symbols to be ignored. 

When information must be transferred across a sub-L-system boundary, either the 

same letter must be used to represent the signal in all components, or productions 

must be added to recognize the different signals from various components. This is 



illustrated in the following example. 

L-system 21 :  Context s ens i t i ve  sub-L-system example 

Lsystem: I /* Main L-system */ 

#ignore ? $ 


w : SI? (~)X$I 


p l l :  S <  I + S 


P12 : S + I 


endLsyst em 


Lsystem: 2 


#ignore ? $ 


w : X  

p21: z <  X + z 

P 2 2  : Z 4 X 


endLsyst em 


The following strings represent the axiom and the results of the first 3 derivation 

steps of this L-system. 

SI?(~)X$I  

Is?(2)x$ I 

11?(2)x$1 

11?(2)x$1 

The signal S cannot be transmitted through the sub-L-system string, as production 

pal only recognizes Z in its left context. In order for the signal to be passed, production 

p22 can be converted to recognize the external signal as in the following sub-L-system. 

Lsystem: 2' /* F i r s t  a l t e r n a t i v e  t o  sub-L-system 2 */ 
#ignore ? $ 

w : X 


p21: S <  X + S 


P 2 2  : S -+ X 


endLsyst em 




Alternatively, new productions could be added to recognize the signal, as in the 

following sub-L-syst em. 

Lsystem: 2" /* Second a l t e r n a t i v e  t o  sub-L-system 2 */ 
#ignore ? $ 

w : X 


p21: z <  X + z 
P22 : Z X 

p23: s <  x s 

P24 : s x 
endLsyst em 

Either option would produce the following sequence of strings. 

Further research is required to establish a general mechanism facilitating the har- 

monization of signals between sub-L-systems. 

The passage of information across sub-L-system boundaries is also a problem when 

time-scaled sub-L-systems are used. If a sub-L-system is running faster than the L- 

system in effect for a neighbouring module, a message may be created and disappear 

before it can be considered as context by that module. On the other hand, a module 

within the sub-L-system may react to a single signal coming across the boundary 

more than once in a single derivation step of the main L-system. Analogous problems 

exist for sub-L-system that run slower than the main L-system. These situations can 



be illustrated as follows. 

L-system 22: Context-sensitive time-scaled sub-L-system example 

Lsystem: I /* Main L-system */ 

#define SR I /* Sub-Lsystem r a t e  */ 

#ignore ? $ 


w : S I ? ( ~ , ~ , S R ) X $ I 


p l l :  S <  I -+ S 


P12 : S I 


endLsyst em 

Lsystem: 2 


#ignore ? $ 


w : X  

p21: S <  X + S 


P22 : S Y 


p23: s <  Y + z 

endLsystem 


As before, the constant SR determines how many derivation steps will be performed 

in sub-L-system 2 for each step in the main L-system. The following strings will be 

produced in the first 2 derivation steps of the main L-system. 



The sequences in the columns from left to right are produced for SR = .5, SR = I, 

SR = 2, and SR = 4, respectively. In the left hand column, with SR = .5, the signal S 

is not received by the slower sub-L-system, as it is removed by production pl;, before 

it can be recognized. In the second column, with SR = I, the signal is passed through 

the string and the module X is converted to a Y by production p;,;,. In the third column, 

with SR = 2, the signal is passed through in a single step of the main L-system. In 

the right hand column, with SR = 4, the signal is not transmitted, as it is created and 

disappears before it can be recognized by the main L-system symbols. In addition, 

the presence of the signal for longer than 2 steps of the sub-L-system causes it to be 

received twice, transforming the module Y into a Z according to production pz3. 

These problems are compounded for neighbouring sub-L-systems operating at 

different rates, or when using fractional time scales. An ad hoc solution can be 

achieved by establishing modelling conventions to be applied by the user in these 

situations. A more general solution is related to asynchronous and locally synchronous 

development of plant modules [72] and is worthy of further research. 

6.1.5 Summary 

In summary, the sub-L-system mechanism has been introduced to enable the cre- 

ation of hierarchical models, allowing straightforward reuse of previously developed 

L-system components as part of a single model. The mechanism isolates module and 

production definitions within a sub-L-system, and provides a means for harmonizing 

geometric scales among components. In the context-free case, different time scales of 

the component models can be resolved using a time scaling factor. If cyclic references 

to sub-L-systems are made, care must be taken to avoid infinite processing "loops". 

Context-sensitive models can be developed, and information can be passed across 

sub-L-system boundaries if a modelling convention is established and followed, but 

a more general solution will require investigation of asynchronous communications 

among modules. 

Aside from having value as a tool for hierarchical modelling, the sub-L-system 

mechanism can be used to implement a form of the table L-systems concept first 

presented by Rozenberg [132]. Table L-systems have a number of sets of productions 



instead of just one. An external mechanism is used to select the set of productions 

applicable to the entire string in any given step. This allows the simulation of envi- 

ronmental effects which modify the way a plant develops, such as the shortening of 

daylight hours as the growing season progresses. Table L-systems can be implemented 

using sub-L-systems by enclosing the entire string in a sub-L-system reference and 

having the table switching controlled by the main L-system. 

6.2 Substring removal 

In plant development there is often a progression of very different forms, for in- 

stance from bud to flower to fruit. Whether this is modelled by replacing a complete 

structure by another, or by metamorphosis of existing sub-structures while others, 

such as petals, drop off, there needs to be a mechanism to remove a large number 

of symbols from the string in a single step, without requiring productions for each 

symbol. This function is performed by the cut symbol %. Whenever it is detected in 

the string during the generation process, it and all following symbols up to the closest 

unmatched right bracket ] are ignored for derivation purposes. If an unmatched right 

bracket is not found, symbols are ignored until the end of the string. Consequently, 

the string resulting from a derivation step does not contain successors of the ignored 

modules. However, the modules are not ignored in the context matching process. 

A simple example of the use of the cut symbol is illustrated by the following 

L-system. 

L-system 23: A simple flower 

#include B /* bud surf ace d e f i n i t i o n  */ 
#include C /* flower cen te r  surface d e f i n i t i o n  */ 
#include S /* Seed surface d e f i n i t i o n  */ 
w : A(I)--B 

pl : A(a) : a == 1 -+ F[P]A(~)% 

p 2 :  ~ ( a ): a==2  + V C  

P3 : c + s 
p4 : P ~'o[--P1/(~~)[--P1/(~~)~--P1/(~~)[--P1/(~~)[--P1-+ 



The axiom represents a flower bud NB, preceded by a module A which controls its 

development. In the first derivation step, production pl creates a stem F,initiates 

petals P, changes its own state to ~ ( 2 ) )  and inserts a % into the string in preparation 

for bud removal. The resulting string is F[P]A(~)%NB. In the second derivation step, 

production pg converts the module A into NC representing the reproductive organs 

making up the central part of the flower. The modules %NB are removed by the 

action of the cut symbol. Five petals NP are positioned by production pq, which also 

introduces a module % so that the petals will be removed in the next step. In the 

third step, the flower center C will be converted to a seed S by production ps. 

The cut symbol provides a simple mechanism for removing a sequence of modules 

from an L-system string. It can be used to capture natural transformations within 

a plant, as in the example above, or to model traumatic effects such as pruning or 

branch death. 

6.3 L-syst ems as a plant modelling mini-language 

L-systems with turtle interpretation can be considered a mini-language for ex- 

pressing plant models to be visualized on a computer screen. As illustrated by the 

examples in Section 5.10, the parametric extensions presented in this dissertation 

broaden the range of applications of this mini-language to include more standard 

computational problems. In this context, a comparison of parametric L-systems to 

standard computer languages was made, which led to the extensions of parametric 

L-systems presented in this section. These extensions incorporate variables local to 

productions, global variables for reading and writing, and new processing capabilities 

to create a more flexible and efficient mini-language. 

6.3.1 Variables local to productions 

The first feature of computer languages examined was the use of variables in a 

production, other than those specified as formal parameters in the predecessor. For 



example, consider the following production from L-system 6 on page 69. 

pl : w) * r 2 ,  w * wr)]/(d)A(s * rl,w * wr)~ ( s ,  -+ ! (~)F(s)[&(~o)B(s  

It calculates the value w * w r  twice, once in module B and again in module A. This can 

be avoided by introducing a temporary variable local to the production, and setting 

its value in an assignment statement, as shown below. 

P: : w) : {T = w * w r ;  ) -+ * r2,  T)]/(d)A(s * rl,T)~ ( s ,  !(w)F(s)[&(~o)B(s 

This production can be substituted for pl in L-system 6.  Since there will be a total 

of 2" A, B, and C modules in the string after the nth derivation step, the use of this 

production will result in 2n calculations in the next step rather than 2n+1. 

In general, an assignment statement in a production p takes the form t = &(C); 

where C is the set of formal parameters for the L-system, t E C, and &(C) is a 

correctly formed expression with formal parameters from C that have appeared in the 

predecessor of p. The condition and expressions in the successor of p may incorporate 

local variables previously defined in the production. Syntactically, the st at ement s can 

be inserted into a production in the positions shown below: 

where a is a list of assignment statements processed after the predecessor has been 

matched and the parameters bound, and ,B is a list of assignment statements processed 

only if the condition evaluates to true and the production is selected for application. 

6.3.2 Global variables read by productions 

The computation required in a derivation step may be further reduced by intro- 

ducing global variables whose value can be accessed by the expressions in a production. 

Considering L-system 6 as a whole, it can be seen that modules of types A, B, and C 

synchronously change their respective width parameter using the same formula. This 

fact is exploited in the following L-system. 



L-system 24: A more e f f i c i e n t  vers ion of Honda's model f o r  t r e e s  

#define rl 0.9 /* contract ion r a t i o  f o r  t h e  t runk  */ 
#define r2  0 . 6  /* contract ion r a t i o  f o r  branches */ 
#define a0 45 /* branching angle from t h e  t runk  */ 
#define a2 45 /* branching angle f o r  l a t e r a l  axes */ 
#define d 137.5 /* divergence angle */ 
#define w r  0.707 /* width decrease r a t e  */ 
{w = 10;) 
w : ~ ( 1 ) 


{W = W * w r ;  ) 


p : A ) + ! ( w ) F ( ~ ) [ & ( ~ o ) B ( ~  r1)* r 2 ) ] / ( d ) ~ ( l * 


p~ : ~ ( 1 )  * r 2 ) ] ~ ( 1 *
+ ! ( w ) F ( ~ ) [ - ( a 2 ) @ ~ ~ ( 1  ri) 


~ (1)  ! ( ~ ) ~ ( l ) [ + ( a 2 ) @ ~ ~ ( 1 *
p3 : --+ r 2 ) ] ~ ( 1 *r1) 

The list of statements enclosed in braces appearing before the axiom is executed once 

at the start of the derivation process. In this case, the single assignment statement 

initializes the global variable W capturing branch width to its starting value of 10. 

The statement list that appears after the axiom is executed at  the beginning of each 

derivation step. In this case, W is multiplied by the width decrease rate w r .  This 

operation is performed only 1 time per derivation step, instead of the 2n times it is 

performed when only local variables are used. In addition, this approach saves the 

storage of 2"+l parameters in the next string. Note that the same cannot be done for 

the lengths, since length is not consistent throughout a string, even among modules 

of one type. 

In addition to efficiency related uses, variables accessible to all productions may 

be employed to represent the environment in which the simulation takes place. For 

instance, such variables could represent the number of sunshine hours in a day or the 

concentration of a nutrient in the growth medium. 



6.3.3 Global variables written by productions 

In order to collect general information about a model, individual productions 

are allowed to alter the value of a global variable. For example, a global variable 

can be used to count the number of occurrences of a particular module type in a 

string. However, this type of operation alters the way parallelism in L-systems is 

understood and implemented. Strictly speaking, the definition of L-systems requires 

productions to be applied simultaneously in each derivation step. In this context, 

allowing productions to modify and write global variables leads to inconsistencies 

when the productions attempt to set the same variable to different values. The 

situation changes if productions are viewed as asynchronous concurrent processes [33, 

Chapter 41. Various synchronization techniques are then available to resolve the 

write conflict by allowing only one process at a time to modify a shared variable. For 

example, its value may be read, changed, and written back inside a critical section 

in each production [33, page 821. Of course, the mutual exclusion of critical sections 

implies that productions are no longer applied simultaneously within a derivation 

step. Nevertheless, even with no imposed order of production application, the result 

of a derivation may be deterministic, as is the case when a shared variable is used to 

count the number of times a particular production has been applied. 

6.3.4 Mini-language processing cycle 

Since global variables are used to collect information about the overall generation 

process, it is necessary to both initialize and print the variables at the appropriate 

stages of a derivation. To be able to perform these operations, the notion of deriva- 

tion in L-systems must be modified; it can no longer simply be a sequence of parallel 

production applications (Figure 6.3a), but must become a cycle of alternating se- 

quential and parallel computations (Figure 6.3b). Further analysis of the structure of 

L-system execution revealed the following useful points for inserting statement lists 

while retaining as much of the parallel nature of the process as possible. 

1. before the L-system derivation begins, in order to initialize global variables 

representing the environment and variables used for counting items related to 
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Figure 6.3: Operation of an L-system without global variables (a) and with global variables (b) 

the number of derivation steps, 

2. 	 before each derivation step, in order to initialize variables used within a step 

and to modify environment variables over time, 

3. 	 at the time of production application, as described in Section 6.3.1, 

4. 	 at the end of each derivation step, to record current step results in global vari- 

ables, and 

5. 	 at the end of the entire derivation process, to calculate and report overall statis- 

tics. 

In the following example, global variables are used to compute the total length 

of the segments in the tree, the number of new branches in each step, and the total 

number of branches in the complete structure. 



L-system 25: Producing s t a t i s t i c s  f o r  Honda's model f o r  t r e e s  

/* contract ion r a t i o  f o r  t h e  t runk */ 
/* contract ion r a t i o  f o r  branches */ 

#define a0 45 /* branching angle from t h e  t runk */ 
#define a2 45 /* branching angle f o r  l a t e r a l  axes */ 
#define d 137.5 /* divergence angle */ 
#define w r  0.707 /* width decrease r a t e  */ 
{W = I O ; N =  I ; L  = O ; T B =  0 ; )  

u : A(I)  

pl : ~ ( s ): {L = L + s;B = B + I;) * r2)]/(d)A(s* rl)+ !(w)F(s)[&(~o)B(s 

p2 : ~ ( s ): {L = L $ s;B = B +I;) -+ !(w)F(s)[-(~~)@vc(s * r1)* r 2 ) ] ~ ( s  

p~ : C(S) : {L = L $ s; B = B + 1;) + ! (w)F(s)[+(~~)@vB(s * rl)* r 2 ) ] ~ ( s  

{ 
p r i n t ( " ~ t e p = " ,N); 

The block of statements appearing immediately after the productions is processed 

at the end of each step. The statements in the final block are processed once at 

the end of the entire derivation. In this L-system, the branch width W is controlled 

globally as in L-system 24. The variables accumulating total segment length L and 

total number of branches TB are initialized to 0 at the start of the derivation. The 

new branch counter B is initialized to 0 at the start of each step. The statements 



in the productions accumulate the number of branches and total length. At the end 

of each step, the appropriate output is produced and the step counter N and total 

branch counter TB are updated. After the derivation is complete, the total length and 

branch count are printed out. 

In general, output procedures called at the end of each step or at the end of the 

derivation produce well-defined results. If they are called within productions, they do 

not; this is due to the parallel nature of L-systems. Since the productions are applied 

concurrently, the sequence of output messages is not predictable. However, most 

computers currently in use have a traditional single-processor architecture, requiring 

a sequential implement ation of L-syst ems. The usual technique for performing the 

derivation step pi r=$ pi+l is to scan the string pi from left to right, apply productions 

sequentially to consecutive modules, and append the resulting successors to the string 

pi+l [119, pages 107-1081. Since all modules of pi are considered before the next 

derivation step, the result is the same as if productions were applied in parallel. 

Models can take advantage of the sequential application of productions within each 

derivation step, and use constructs that rely on it. 

6.3.5 Summary 

These extensions enhance parametric L-systems as a plant modelling mini-language. 

The use of local and global variables can result in more legible L-systems that operate 

with greater efficiency in terms of both space requirements and processing time. In 

addition, the user has a wider range of output options; besides the graphical visualiza- 

tion, statistics on the operation of the model may be produced. This is particularly 

important for biological applications where the spatial model is used as a tool to 

study some other phenomena, such as the production of biomass. 

While providing more modelling power, these extensions must be used with care, 

to ensure that the models produced do not violate the parallel nature of the growth 

process under consideration. For instance, the updating of a global variable in a 

production rule and the use of the same variable in another production's condition can 

result in production application being dependent on the order in which the modules 

are considered. The analysis of appropriate restrictions for the use of global variables, 



and of the possibility of automatic detection of these situations, is open for further 

study. 

The introduction of further programming languages features such as procedural 

statements and user defined functions is an area open for further development. A 

study of the biological implications of the use of such constructs and their relation to 

parallelism would also be of interest. 



Chapter Seven 

CONCLUSIONS 


7.1 Research contributions 

L-systems were proposed in 1968 as a mathematical model of development at the 

cellular level. The formalism applied parallel rewriting rules to simulate divisions 

or state changes of the cells constituting an organism. Geometric interpretation of 

L-systems was introduced to allow the visualization of the models, and the range of 

application was extended to include more complex plants. Nevertheless, the discrete 

nature of the rewriting formalism imposed limitations on the models. For exam- 

ple, exact values of branching angles, lengths of internodes, and concentrations of 

chemicals in plant modules could not be expressed easily. 

In this dissertation, I have presented an extension of L-systems that overcomes 

these limitations. The key concept is the association of numerical parameters with 

the symbols representing plant modules, so that their features can be easily quanti- 

fied. Parametric L-system productions incorporate arithmetic expressions for updat- 

ing parameter values during the rewriting process. Parameters may also appear in 

the logical expressions used to select the applicable productions in each step. The 

formal definitions of various classes of parametric L-systems parallel the usual def- 

initions found in the theory of L-systems, progressing from context free to context 

sensitive. Deterministic, non-deterministic, and stochastic application of productions 

is possible in each case. Finally, the notion of bracketed strings is incorporated to 

allow the modelling of branching structures. 



The practical value of parametric L-systems has been demonstrated using a series 

of examples. The simple model of the blue-green alga Anabaena catenula illustrates 

the use of parameters to capture cell states and geometric attributes. In the model 

of spruce cones, parameters are used to express constant values of angles and lengths 

with an accuracy within a fraction of a percent; such precision is necessary for the 

model to operate correctly. In the model of the sunflower, as well as in the models of 

trees, precise parameter values are also important, but they are no longer constant 

and change gradually according to growth functions captured by mathematical ex- 

pressions in the productions. In the model of compound leaves, parameters control 

developmental delays, which have a critical impact on the resulting structures. The 

models of simple leaves and the bicubic model of a petal surface capitalize on the 

ease with which parameters can be modified. The models are controlled by intuitive 

parameters that allow the creation of a family of plant organ shapes, and produce 

sequences of surface shapes representing the leaf or petal in consecutive stages of 

development. In order to create smooth animations, simulating time-lapse photog- 

raphy of developing plants, the concept of age-controlled models is introduced and 

illustrated using the vegetative growth of Anabaena as an example. 

The examples reviewed to this point were all expressed using context-free para- 

metric L-systems, as they only require lineage mechanisms to control development. 

Context-sensitive parametric L-syst ems make it possible to capture endogenous con- 

trol mechanisms as well. In the model of Anabaena with heterocysts, one of the 

parameters represents concentration of nitrogen compounds; their diffusion through 

the filament and decay in the vegetative cells is described by mathematical expressions 

incorporated in the productions. In the models of Mycelis muralis, context-sensitive 

productions are used to simulate the flow of the hormones controlling flowering se- 

quence. 

Compared to modelling with non-parametric L-syst ems, the use of parameters can 

simplify production rules, making a model such as that of Mycelis muralis easier to 

present and understand. Furthermore, parameters facilitate interactive manipulation 

of model attributes using graphical tools such as control panels, since it is easier 



to change values of parameters than to change the format of productions. Conse-

quently, models expressed in terms of parametric L-systems are more accessible to 

users without a detailed background in computer science. 

Experimentation with parametric L-systems revealed room for further improve- 

ments, resulting in further extensions to the formalism. Sub-L-systems offer the 

possibility of hierarchically incorporating previously defined components into larger 

structures, for example petals into flowers, flowers into inflorescences, and inflores- 

cences into an entire plant. Geometric scales of components can be easily harmonized 

within a complex model. Specification of qualitative changes, such as the transforma- 

tion from bud to flower to fruit, is facilitated by the cut symbol which removes a large 

number of unwanted symbols representing obsolete structures. Extensions incorpo- 

rating features of other programming languages, such as local and global variables, 

improve the operation of parametric L-systems as a plant modelling mini-language. 

Local variables increase the efficiency of production application by preventing the 

repetitive calculation of the same expression within a production. Global variables 

may capture aspects of the environment that affect development, or collect informa- 

tion about a model such as the number of flowers produced in a certain amount of 

time. 

7.2 Impact of parametric L-systems 

Although the first description of parametric L-systems only appeared in 1990 [120], 

this notion has already had an impact beyond the scope of this dissertation, resulting 

in several software and research projects. In the book The Algorithmic Beauty of 

Plants [122], the parametric L-system formalism was used to express a wide variety 

of models, from abstract fractal branching structures to realistic models of herbaceous 

plants and trees. Inspired by this book, J. Leech of the University of North Carolina 

reproduced many of its results using a plant modelling program called lsys that he 

based on the parametric L-system concept. This software is available over Internet 

and is widely distributed. 



Figure 7.1: 16 day old Physcomitrella patens 01991 F .  D.  Fracchia and N. W. Ashton 

In the biological domain, N. Ashton and F. D. Fracchia [5] used parametric L-

systems to model the development of a moss, Physcornitrella patens, from a single 

cell to a complete gametophyte (Figure 7.1). L-system rules were based on obser- 

vations of the growth of a real moss, and the resulting visualization of development 

"provided an excellent means for verifying the underlying hypothesis of P. patens 

morphogenesis" [5]. 

For educational purposes, Dr. Prusinkiewicz, L. Mercer, and I designed and im- 

plemented an interactive display, How Does Your Garden Grow?. This project was 

commissioned by the Saskatchewan Science Centre to present basic concepts of plant 

structure and development to a school age audience (Figure 7.2). Pushbuttons are 

used to select from a variety of parametric L-system models in the garden. Parameters 

can then be manipulated using a dial, and 3D rotations controlled using a joystick. 

The Virtual Laboratory, designed and implemented by L. Mercer [103, 1041, com- 

bines a computer micro-world with a hypertext system in order to create a research 

and learning environment. This provides a means for organizing and performing sim- 

ulation experiments in various domains. The main application of the system, which 

actually motivated the project, is a Virtual Laboratory in biology, centered on plant 

modelling software based on parametric L-systems. A sample screen is shown in Fig- 

ure 7.3. Funding for this project was provided by Apple Computer, Inc., of Cupertino, 

California. 



Figure 7.2: How Does Your Garden Grow? 

Figure 7.3: A virtual laboratory screen 



Figure 7.4: A frame from a QuickTimeTM animation of rose campion growth 

Apple's interest in the research presented in this dissertation also resulted in direct 

cooperation. Apple included animations of plant development produced with para- 

metric L-systems in the initial release of their Q u i c k ~ i m e ~ ~  software (Figure 7.4). 

QuickTime is a standard for multimedia processing that allows the recording and 

playback of real-time video and computer animation on a personal computer. 

Further to this, I contributed several "exhibits" for the Virtual Museum designed 

by G. Miller et  a1 [I061 of Apple's Advanced Technology Group. The Virtual Museum 

is a software system that allows a "visitor" to "walk around" in a computer model of a 

museum. Exhibits in the museum's plant room are represented as three-dimensional 

flowers and leaves modelled using parametric L-systems. The individual exhibits 

consist of QuickTime movie animations of simulated plant growth and of the effects 

of changing model parameters, accompanied by text describing the models. A sample 

screen is shown in Figure 7.5. 

In another collaborationy I incorporated parametric L-systems into MacBounce [105], 



Figure 7.5: A Virtual Museum plant room exhibit 0 1 9 9 2  Apple Computer, Inc. 

Figure 7.6: A simple branching structure under gravity 



a physically-based modelling environment used in Apple's computer graphics research 

program. The resulting plants are susceptible to the effects of simulated gravity and 

wind, and to inter-ob ject collisions. Rather than drawing line segments, the turtle 

inserts cross-like structures, composed of rigid bodies, at nodes. The nodes are con- 

nected by springs that are braced by torques. Parameters are used to specify the 

associated masses and constants. In each derivation step, the turtle's state at an ex- 

isting node is updated by the physically-based model before productions are applied. 

A sample model is shown in Figure 7.6. 

Plant models produced using parametric L-systems were also used in a physically- 

based modelling system developed by A. Snider 11391. His program operates on the 

final structure produced by the plant modelling program and applies physically-based 

techniques to enhance the resulting image, as shown in Figure 7.7. The disadvantage 

of this approach is that the structure cannot be grown. 

Rather than incorporating parametric L-system models into a larger simulation 

Figure 7.7: Parametric L-system trees with (a) and without (b) physically-based enhancements 
01992  A. Snider 



Figure 7.8: The Hilbert Hedge from [124] 

environment, Prusinkiewicz and McFadzean [I241 took the opposite approach, incor- 

porating branch intersection testing into the modelling program based on parametric 

L-systems. This was used to simulate the effects of mechanical collisions between 

growing apices and objects in the environment including other branches. Figure 7.8 

demonstrates the use of this technique to simulate the effects of pruning on a hedge. 

When a branch is clipped, a signal triggers the growth of dormant apices closer to 

the base of the branch. 

7.3 Further research 

The introduction of environmental effects presented at the end of the last section 

represents the initial stage of research aimed at complementing parametric L-systems 

with exogenous control mechanisms. The formalism presented in this dissertation 

allows limited simulation of these mechanisms. Global variables can be used to repre- 

sent the environment, and sub-L-systems can simulate changes in the rules governing 

growth as a result of changes in the environment. The formalism should be examined 

to determine what can and cannot be modelled with it. 

Other theoretical problems include the characterization of parametric L-systems 



with regards to the traditional hierarchy of L-systems, and in relation to the restric- 

tions that should be applied in the context of biological modelling. For instance, 

the modelling power of L-systems that employ subapical development to simulate 

branching structures should be investigated and compared to that of L-systems with- 

out such restrictions. Problems related to finding an L-system that models a given 

plant structure, called inference problems, are similar to those for standard L-systems. 

A DOL-system can be inferred automatically if a plant's development can be described 

by strictly lineage mechanisms; for interactive mechanisms the problem is harder 1931. 

However, a thorough analysis should be made to determine if parametric L-systems 

make inference problems easier to solve due to the presence of parameters. 

Theoretical issues of a more general nature deserve attention as well. As illus- 

trated by the L-systems that solved standard computational problems such as sorting 

and finding prime numbers, parametric L-systems can provide a model for parallel 

computation. The design and analysis of algorithms for this model is an open prob- 

lem. The concept is also worth investigation as a basis for a class of programming 

languages based on monadic computation and concurrency. 

Further extensions to the parametric L-system formalism can be made. The 

method for creating continuous animations should be extended to apply to context- 

sensitive L-systems. In addition, techniques for obtaining context information from 

an arbitrary number of branches should be worked out. 

Hierarchical modelling using sub-L-systems has proven to be valuable in prac- 

tice. However, this formalism requires further study to allow the harmonization of 

component time scales, particularly in the context-sensitive case. Examination of 

this problem may provide valuable insight into the use of parametric L-systems for 

modelling the asynchronous development of plant modules. 

Another major area for further research is the use of the formalism for modelling 

a broader spectrum of plants. The modelling process itself can provide insight for 

biologists, as noted in the description of the work of Ashton et  a1 [5]on page 132. 

The development of new realistic models is also important for future application in 

areas such as landscape design and commercial synthetic image production. 

The creation of developmental models for both leaves and petals with topology 



that changes over time remains a challenge. One approach to this problem would 

be to investigate the incorporation of the hierarchical B-spline refinement techniques 

proposed by Forsey and Bartels [45] into the developmental bicubic surface specifi- 

cation presented in this dissertation. An alternative approach, pursued by Hammel 

e t  a1 [60],uses parametric L-systems to build a skeleton around which an implicit 

surface contour is traced. 

As a plant modelling mini-language, parametric L-systems can be employed to 

create developmental architectural models controlled by both lineage and endogenous 

mechanisms. The extension of parametric L-systems to model a broader range of 

environmental effects is a logical next step for further research. While some initial 

work has been done in this area, a variety of effects remain to be explored, including 

self-shadowing and plant-insect interactions. The latter are the focus of attention 

at the CSIRO Centre for Tropical Pest Management in Brisbane, Australia. The 

software developed in the scope of this dissertation has been chosen as the basis of 

their future modelling system. I am planning to participate in this project over the 

next few years and to continue my research, applying computer graphics as a tool to 

study the world around me. 
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Appendix A 

USER'S VIEW OF THE 

IMPLEMENTATION 

The parametric L-system formalism has been implemented in a program called the 

continuous plant and fractal generator or cpf g. In keeping with the philosophy of the 

Virtual Laboratory [103, 1041, the program was designed to produce a visualization 

of a parametric L-system specification read in from a file, and to support subsequent 

interaction by re-reading the file after changes have been made. These changes can 

be introduced using either a standard text editor or virtual control panels. 

This appendix describes the cpfg program from a user's perspective. It includes 

a general overview and descriptions of the command line arguments, interactive fea-

tures, and sample input files. 

A.l Overview 

Cpfg produces a visualization of a parametric L-system model using Logo-style 

"turtle" geometric interpretation. The user interacts with the program by: 

specifying the file names for input data on the command line, 

rotating the modelled object interactively using a mouse-controlled cursor, and 

controlling execution of the program using a menu. 



In the initial call to cpf g, the user specifies the names of up to three files (for 

samples see Section A.3). 

The L-system file contains the parametric L-system that describes the model. 

There is a main L-system, possibly followed by one or more sub-L-systems. Each 

L-system is composed of an identifier, an optional seed for the random number 

generator if the L-system is stochastic, a derivation length, a list of symbols 

to be ignored when context matching, the axiom, the set of productions, and 

statement lists to be interpreted during the derivation process. 

The view file contains viewing, rendering, and drawing parameters, including 

the names of files that specify any surfaces to be included in the model. 

The animation file contains parameters controlling frame by frame production 

of images for animation purposes. This file is optional. 

In addition, the command line may contain output file names for rayshade or Postscript 

output (2D only), and a specification of the initial string length, which defaults to 

150,000. 

The cpf g program generates a string by performing the given number of derivation 

steps for the input L-system model. The window and viewing parameters are set 

according to the bounding box of the modelled object, either as specified in the view 

file by the user, or as calculated by the program, so that the image will be positioned 

in the center of the cpfg  window. Finally, the string is interpreted as described in 

Section 4.5 to create an image on the screen. 

A.2 User interaction 

After the initial image is displayed, further interaction with the program is con-

trolled using the mouse. In order to rotate the object, the left mouse button is pressed 

with the cursor anywhere in the cpf  g window. While the left button is down, any 

movement of the cursor will rotate the object around axes through the center of its 

bounding volume. Left to right movements cause rotations around the vertical axis 



parallel to the screen, and up and down movements cause rotations around the hor-

izontal axis parallel to the screen. In order to select commands from the pop-up 

menus, the right mouse button is pressed with the cursor anywhere in the program's 

window. There are two menus available to the user. Initially, the user has access to 

the main menu, which includes the following items: 

New model, which rereads both the L-system and view files, generates a new 

string, resets the window and viewing parameters, and interprets the string to 

create a new image, 

New L-system, which rereads the L-system file, generates a new string, and 

interprets it to create a new image, but does not recalculate the bounding box, 

New view, which rereads the view file, resets the window and viewing parame-

ters, and re-interprets the existing string to create a new image, 

Animate mode, which puts cpfg in animate mode, activating the animation 

menu, and 

Exit,which ends the process. 

By editing the originally specified data files using a text editor or a virtual control 

panel, the user can change the model and have the result visualized by selecting either 

New model, New view, or New L-system. 

The second user menu becomes available when the program is in animate mode. 

This mode is useful for producing developmental sequences of plants and as a de-

bugging tool when developing L-system models. During the animation process, the 

L-system string is interpreted after each derivation step, the resulting image consti-

tuting the current frame in the animation. The animation process begins with the 

input of parameters, including specifications of the first frame and last frame of the 

animation, from an animation file. A sample of this file is described in Section A.3.3. 

After reading the parameters, the animation routine derives the L-system string 

for the number of steps specified by the "first frame" parameter, then interprets it to 

create the initial image. At this point, the user can control the animation process by 



selecting from the animation menu, which contains the same items as the main menu 

plus the following items. 

Step causes the execution of the next derivation step; the resulting string is 

interpreted to display the next frame. 

Run causes the animation to proceed frame by frame until the "last frame" is 

reached, 

Forever, has the same effect as Run, except that the animation is cycled with 

the "first frame" following the "last frame". 

Stop causes the animation to pause once the current frame has been displayed. 

Rewind causes the "first frame" of the animation to be displayed. 

Clear removes the image from the window. 

New animate rereads the animate file and proceeds to the new "first frame". 

Don't animate causes the program to leave animate mode and removes these 

items from the menu. 

The animation parameters may be modified by editing the animation parameter file 

in a separate window and then selecting "New animate" to  cause the animation 

parameter file to be reread. 

A.3 Sample input files 

This section provides examples of the data files for the model of Anabaena catenula 

described in Section 5.8. 

A.3.1 L-system file 

The syntax of L-system productions follows the specifications in Definitions 4.1, 

4.5, 4.8,and Section 6.3. Spaces and tabs are allowed anywhere in the L-system 



specification except within keywords. Multi-line productions are specified by starting 

each continuation line with a tab character. Expressions are defined as in Section 

4.1; operator precedence is defined in Table 4.1, and the following function calls have 

been implemented: sin, cos, tan, acos, asin, atan, floor, ceil, trunc, abs, exp, log, and 

ran. 

File name: anabaena .1 

Lsystem: I 


der iva t ion  length:  200 


ignore:  f"C 


Axiom: -(90)F(0,0,900)F(4,1,900)F(0,0,900) 


F ( s , t , c )  : t==l&& s>=6 --> F(s/3*2,2,c)f(l)F(s/3,I,c) 


F ( s , t , c )  : t==2 && s>=6 --> ~(s/3,2,c)f(l)F(s/3*2,1,c) 


F(h , i , k )  < F ( s , t , c )  > F(o ,p , r )  : s>3.9 1 1  0 . 4 0  --> 

F (s+ .I ,t ,c+0.25* (k+r-3*c) ) 

F ( h , i , k )  < F ( s , t , c )  > F(o,p, r )  : s<=3.9 && c<=.40 --> 
f (s*2) "C(s*2)F(O, 0,900)f (s*2) 

C(w) --> C(w+. 025) 

endlsyst  em 

14.3.2 View file 

A view file contains drawing, viewing, and rendering parameters including the 

names of surface specification files for any surfaces to be included in the image. The 

parameters can appear in any order but must be entered on separate lines. 

File name: anabaena .v 

angle f a c t o r :  12 

i n i t i a l  color :  16 

co lor  increment: 32 

i n i t i a l  l i n e  width: 15.0 

l i n e  width increment: 1 .0  



viewpoint: 0,0,30 

view r e f e r ence  po in t  : 0,0 ,0  

t w i s t :  0 

proj e c t  ion : p a r a l l e l  

f r o n t  d i s t ance :  -10000.0 

back d i s t ance  : 10000.0 

s c a l e  f a c t o r :  0 .8  

z bu f f e r :  on 

cue range: 0 

shade mode: 3 

l i g h t  d i r e c t i o n :  1 .0 ,0 .0 ,0 .5  

d i f f u s e  r e f l e c t i o n :  10 

t ropism d i r e c t i o n :  1.0,-3.0,O.O 

i n i t i a l  e l a s t i c i t y :  0.0 

e l a s t i c i t y  increment : 0.0 

su r f ace  ambient: . I  

su r f  ace d i f f u s e  : .75 

su r f ace :  C c y s t . s  1 . 2  

The first five parameters in this example (up to the line width increment) 

specify initial values for the turtle's state and environment, as do tropism direction, 

initial elasticity, and elasticity increment (as described in Chapter 3). 

The three-dimensional viewing process is controlled by the viewpoint, view ref- 

erence point, twist, projection, front distance, and back distance parameters. 

All these parameters have the standard IRIS graphics library definition. The final 

image is scaled relative to the window size by the scale factor. 

Rendering is controlled by the parameters z buffer, cue range, shade mode, 

light direction, diffuse reflection, surface ambient, and surface diffuse. 

The surface: lines are optional and a variable number can be included. The first 

parameter is the id symbol associated with a in the L-system generated string to 

identify a surface to be drawn by the turtle. The next parameter identifies the surface 

specification file name to be associated with the id symbol. The final parameter is a 



scaling factor to be applied to the control points as they are read in. 

A.3.3 Animation file 

This file controls program operation in animate mode. The first three parameters 

are flags and can be either on or off. 

File name: anabaena .a 

double bu f fe r :  on 

c l e a r  between frames: on 

sca l e  between frames: off  

swap i n t e r v a l  : 5 

f i rs t  frame: 1 

l a s t  frame: 170 

If the "double buffer" flag is on, the next frame is not drawn onto the screen but 

into a separate buffer. Once the drawing process is complete, this buffer is exchanged 

with the screen buffer, creating a smooth flow of images from frame to frame. If the 

"double buffer" flag is off, the next frame is drawn over top of the existing frame. 

The screen will be cleared between frames if the "clear between frames" parameter 

is on. If the "scale between frames" flag is on, the bounding box is determined and 

the image is scaled to fit the window before each frame is displayed. This has the 

effect of preventing the image from growing out of the window, but does not reveal 

relative size differences between frames. It is useful when studying fractals, but is 

typically not used in the case of plant development simulations. The "swap interval" 

parameter controls the speed of the animation by introducing a minimum time delay, 

expressed in screen refresh cycles, between the display of frames. The "first frame" 

parameter specifies the number of derivation steps to be performed before displaying 

the first frame. The "last frame" parameter specifies the number of the derivation 

step which is to be considered the last frame of the animation sequence. A value of 

-1 indicates that the L-system derivation length should be used to specify the last 

frame. 



A.3.4 Surface specificat ion file 

The first section of a surface specification file contains information about the 

surface as a whole. This includes the extreme values of x, y, and z for the surface, 

the geometry parameters, and a scaling parameter giving the size to be considered 

as equivalent to the turtle's step size. This is followed by groups of nine lines, each 

describing one component patch. Each group consists of a patch name, patch-specific 

rendering information, three lines of patch neighbourhood information and four lines 

of patch control points, each line representing one row of four points. Further details 

of surface specification can be found in [61, Section 3.51. 

File name: cyst.s 

-75.00 75.00 -75.00 75.00 0.00 65.99 

CONTACT POINT X: 0.00 Y: 0.00 Z: 0.00 

END POINT X: 0.00 Y: 0.00 Z: 0.00 

HEADING X: 0.00 Y: 1.00 Z: 0.00 

UP X: 0.00 Y: 0.00 z: 1.00 

SIZE: 150.00 

Patch-0 

TOP COLOR: 0 DIFFUSE: 0.00 BOTTOM COLOR: 0 DIFFUSE: 0.00 

AL: " A: " AR: " 

L: " R: " 


BL: " B: Patch-1 BR: " 


64.3 -32.27 0.0 70.7 -20.1 0.0 75.0 14.2 0.0 66.1 32.3 0.0 


50.0 -55.90 0.0 50.0 0.0 27.6 50.0 30.0 45.1 50.0 58.0 0.0 


30.0 -68.73 0.0 20.0 -23.7 66.0 20.0 30.0 40.4 30.0 68.3 0.0 


0.0 -75.00 0.0 0.0 -33.5 50.9 0.0 50.0 60.2 0.0 75.0 0.0 

Patch- 1 

TOP COLOR: 0 DIFFUSE: 0.00 BOTTOM COLOR: 0 DIFFUSE: 0.00 

AL: " A: Patch-0 AR: " 

L: " R: " 


BL: " B: " BR: " 






Appendix B 

IMPLEMENTATION 


CONSIDERATIONS FOR 


PARAMETRIC L-SYSTEMS 


This appendix addresses issues related to my implementation of the parametric L- 

system formalism. The continuous plant and fractal generator, or cpf g, is a program 

written in C that reads L-system specifications from a file and creates a visualization 

of the model using turtle interpret ation. 

In the first stage of processing, the cpf g program generates a string by performing 

the given number of derivation steps for the input L-system model. In the next stage, 

the bounding box is determined if it has not been supplied by the user. The generated 

string is interpreted as described in Section 4.5, except that no drawing is performed. 

Instead, after each module is interpreted, the position of the turtle is processed to 

determine its effect, if any, on the bounding box. Once this process is complete, 

the window and viewing parameters are set appropriately. Finally, the string is re- 

interpreted to create an image on in the program's window. 

B. l  Program organization 

An overview of the cpfg program organization is presented in Figure B.1. The 

control module accepts input file names as command line arguments, reads in the 

files, and handles user interaction through mouse-activated menus, as described in 



Y Postscript 
File 


Figure B.l: Cpfg system overview 

Appendix A. It calls the generate module to create the next stage in a model's 

development, and calls the in t e rp re t  module to create the screen display or output 

in rayshade or Postscript format. The central data structure common to all three 

modules is the parametric string that represents the object being modelled. The 

control  module initializes the current string, the generate module carries out the 

L-system derivation, and the in t e rp re t  module applies turtle interpretation to the 

string to produce output. 

The parametric string is represented in a straightforward fashion as a one-dimen- 

sional character array. A module is represented as a single letter followed by a comma- 

separated list of floating point parameters, enclosed in parenthesis. If a module has no 

parameters, no characters are stored after the letter. The floating point numbers are 

stored byte by byte in their internal form. For example, assuming that the internal 

representation of a floating point number takes 4 bytes of storage, a parametric word 

A(9,  .0125)~~(3.1546)would be stored as 



Byte Contents 

1 A 

2 ( 

3-6 [7 floating point representation of 9 

7 9 

8-11 floating point representation of .0125 

12 1 
13 B 

14 C 

15 ( 

16-19 [7 17 floating point representation of 3.1546 

2 0 ~  1 
Storing the parameters in this form allows faster access than storing them as ASCII 

numbers, while avoiding the storage-allocation and pointer-space overhead of a more 

complex data structure, such as a linked list. These are important considerations, as 

some models may require upwards of a million modules in later stages of development. 

B.2 The control module 

Once the names of files to be read and written have been determined from the 

command line, the cpfg program creates the menus and opens a window. The files 

are then read and the generate and in t e rp re t  modules are called to display the 

model. The program then enters an event loop in order to respond to user command 

input via the mouse. This may result in files being reread, and new visualizations 

being created. Further details of the interactive aspects of the interface can be found 

in Appendix A. 

Input procedures for the view file and animation file are straightforward. Sample 

files can be found in Sections A.3.2 and A.3.3, respectively. The L-system file is parsed 

by code generated using l e x  and yacc, which creates a list of L-systems, comprised 

of the main L-system and any sub-L-systems used in the model. A sample L-system 

file can be seen in Section A.3.1. The internal representation is closely related to the 



file format; each L-system is composed of the following: 

the L-system identifier, used by the sub-L-system mechanism when selecting 

the rules to use for the particular sub-L-system reference (see Section 6.1)) 

the derivation length, 

the list of characters to be ignored during context matching (see Section 2.5), 

an optional seed value for the random number generator, for stochastic L-

systems, 

the axiom, a list of modules with parameter expressions in postfix form, and 

the set of productions, each production composed of the following: 

- a list of formal modules representing the left context in right to left order, 

- a formal module representing the strict predecessor, 

- a list of formal modules representing the right context in left to right order, 

- a pre-condition statement list, 

- a condition expression, 

- a post-condition statement list, 

- a list of formal modules representing the successor in left to right order, 

- a probability expression for productions in stochastic L-systems, and 

- a symbol table local to the production, containing all variable names de-

fined in the predecessor and context modules, as well as those defined on 

the left hand side of any assignment statements in the statement lists. 

All expressions are stored in postfix order for easy evaluation. The symbol 

table associated with each production keeps track of the current binding of the 

variables during production application. 

lists of statements to be processed at specific times in the derivation cycle, as 

described in Section 6.3: 



- at the start of the derivation process, 

- at the start of each derivation step, 

- at the end of each derivation step, and 

- at the end of the derivation process, 

the global symbol table, containing global variable names defined on the left 

hand side of any assignment statements in the above lists. 

Once the L-system has been read in from the file, two strings are created: the 

current string and the result string. The sub-L-system stack is initialized to con-

tain the main L-system. The current string is initialized to contain the axiom with 

all expressions evaluated. It is then passed to the generate module to undergo a 

derivation, and the resulting string is passed back. If several derivation steps are re-

quired, the result string becomes the current string and the process is repeated until 

the desired number of derivations has been performed. At this point the final result 

string is passed to the in t e rp re t  module. If animation is requested by the user, the 

interpretation is performed after each derivation step. 

B.3 The generate module 

As cpf g is implemented on a sequential machine, a parallel derivation is simulated 

by processing the string from left to right, one module after another. The production 

list for the L-system on the top of the sub-L-system stack is used to determine the 

matching production for each module (see Definitions 4.2 and 4.9). If an applicable 

production is found, the successor modules are appended to the result string after 

their expressions have been evaluated using the current values of variable names in 

the local and global symbol tables. If no production is found to match, the module 

is appended to the result string, as if an identity production for that module was 

included in the production set. If the letter of the module being processed is equal to a 

?, the new sub-L-system identifier is pushed onto the stack, and processing continues. 

If the letter of the module being processed is equal to a $, the sub-L-system stack 

is popped, making the previous sub-L-system productions available. This derivation 



process continues at the next module in the string, until all characters in the current 

string have been processed and the result of this derivation step has been produced. 

B.4 The interpret module 

The turtle interpretation process described in Section 4.5 can be summarized as 

follows. A three-dimensional LOGO-style turtle interprets the string modules one 

by one, from left to right. The state of the turtle is represented by its position and 

orientation, the colour and width of the lines that it draws, and its elasticity. Certain 

symbols are identified as commands that control this state, allowing the turtle to be 

rotated, moved, and to have its drawing attributes changed. The amount of change in 

the turtle's state is determined by the value of the interpreted module's first parameter 

if it is present, or by drawing environment parameters if not, in conjunction with the 

current scaling factor, which is initially set to 1. When the turtle is moved, it may 

also draw a line segment connecting consecutive positions in space. At the end of each 

move, tropism effects are simulated by modifying the turtle's orientation according 

to its current elasticity and an environment parameter which specifies the tropism 

direction. 

In order to model branching structures, parametric L-system strings include brack- 

ets which enclose the substring to be considered as a branch. In the interpretation 

process, the left bracket causes the turtle's state to be pushed onto a stack. The 

"branch" is then drawn by interpreting the enclosed substring. When the right 

bracket is reached, the stack is popped, returning the turtle to its previous state 

and drawing of the parent branch is resumed. 

If a polygon is to be drawn, consecutive positions of the turtle are stored in a 

polygon list pointed to by the top entry of the polygon stack. Whenever a { module 

is encountered, a new current polygon is pushed on the stack. It is popped when a 

) is encountered. These polygons can be rendered as wireframes, filled with constant 

colour, or Gouraud shaded. 

Externally defined bicubic surfaces are incorporated into an image by interpreta- 

tion of a followed by a module which identifies the particular surface to be drawn. 



The identifying module may include a scaling factor as its first parameter. The sur-

face parameters are read in from a "surface definition file" and include control points 

and geometric and neighbourhood information. A sample file is presented in Section 

A.3.4. 

Special purpose interpretation routines can be incorporated using the "black box" 

mechanism. The user-supplied code must be compiled into the program, as described 

in Section 3.4. The programmer is free to use module parameters in any way, and 

has access to the turtle's state, as well as the viewing and drawing parameters read 

in from the view file. 

When a sub-L-system reference, ?, is encountered, the current scaling factor is 

multiplied by the new sub-L-system scaling factor, and the result is pushed on a sub-

L-system scale stack. When the end of sub-L-system character, $, is interpreted, the 

scaling factor from the top of the sub-L-system stack is divided out of the current 

scaling factor, and the stack is popped. 

The i n t e r p r e t  module is responsible for creating both the screen image and out-

put files in various formats. In order to perform these functions without duplicating 

large amounts of code, a rendering routine dispatch table was implemented. The table 

is a data structure holding pointers to routines for rendering operations; turtle state 

updates are handled by the main interpretation routine. For instance, if Postscript 

output is required, the control  module passes the dispatch table for the Postscript 

routines to the i n t e r p r e t  module. If screen output is required, the dispatch table 

for Iris GL rendering routines is passed. For each interpreted symbol, the in t e rp re t  

module calls the function in the appropriate slot of the current dispatch table. The 

dispatch table provides access to the following routines: 

Setup - handles any required preprocessing, such as opening of output files, 

and generating header information specific to the desired output format, 

StartNode -processes the start of a line segment, 

EndNode -processes the end of a line segment, 

StartBranch -processes the start of a branch, 



EndBranch -processes the end of a branch, 

StartPolygon - initializes a polygon, 

Endpolygon -takes all vertices and draws the polygon according to the shade 

mode specified in the view file (see Section A.3.2), 

SetColour - sets rendering colour, 

SetLineWidth - sets width of subsequently drawn segments, 

Circle -draws a circle at the current position of the turtle, 

Sphere -draws a sphere at the current position of the turtle, 

BlackBox -handles rendering specific to a blackbox function, 

PredefinedSurface -draws a predefined surface, 

LdefinedSurface -draws an L-system defined surface, 

FinishUp -handles any required post-processing, such as closing files. 

Either the StartNode or EndNode routine can be responsible for drawing the segment, 

depending on the type of rendering. The advantage of using the EndNode routine to 

do the drawing is that segments can be drawn with widths that differ at either end. 



Appendix C 

COLOUR PLATES 


This appendix collects colour plates matching selected black and white figures in 

the text. 



Figure C.l: Spruce cones 01990 D. R. Fowler and J. Hanan 

Figure C.2: A sunflower head 



FigUI C.3: Sunflower field 0 1 9 9 0  D. R. Fowler, N. Fuller, J. Hanan, and A. Sni der 

Figure :.4: Rose campion flower development a 1 9 9 1  P. Prusinkiewicz and M. mmel 



Figure C.5: Mycelis muralis 01987 P. Prusinkiewicz and J. Hanan 

Figure C.6: Carex laevigata 01989 J .  Hanan and P. Prusiilkiewicz 



Figure C.7: Water-lilies 0 1 9 9 0  D. R. Fowler, J. Hanan, P. Prusinkiewicz, and N. Fuller 


