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Supporting Information Text

This text describes the computational models in more detail. In the description of patterning, we use the term “primordium”
to denote both the incipient primordia (initia) and primordia that are already outgrowing.

Main symbols

(r, φ) polar coordinates (radius, angle) of a primordium center on the receptacle

(ρ, θ) polar coordinates (radius, angle) within a primordium

ra active ring radius (circular)

re radial coordinate of a point on an elliptic active ring

ri radial coordinate of primordium i

rj radial coordinate of sampling point j on the active ring

s arc-length coordinate on the generative curve, normalized to interval [0, 1]

ρi radius of primordium i

kp rate of change of parameter p

∆x increment of variable x

t simulation time

w material point coordinate on the generative curve

d distance

Thl threshold length of the active ring segment for inserting a new primordium in Model 1

Thd threshold distance to neighbors for inserting a new primordium in Models 2 and 3

λ controls asymmetry of primordium insertion in Model 1

Bm B-spline of degree m

Model 1

The objective of Model 1 is to explore the first phase of phyllotactic patterning, during which new bract primordia are inserted
between previously formed ones within an expanding active ring. The model is expressed using the formalism of L-systems
(1–3), which is well suited for simulating circular structures with a changing number of interacting components. Both the
primordia and the active ring segments that separate them are represented explicitly as L-system modules arranged into a
circular L-system string. A primordium is characterized by its position (arc-length distance from the first primordium modulo
the ring perimeter) and age (time elapsed since the primordium creation). A segment is characterized by its state and polarity,
corresponding to symbols

←
S,
←
L and

→
S,
→
L described in the main text. A simulation begins with a small active ring with a

single primordium and proceeds by iterating four phases:

1. Expand the active ring,

2. Displace incipient primordia laterally,

3. Insert new primordia into the intervals that exceed threshold length, and

4. Visualize the results.

The active ring expands uniformly, at a constant rate kr > 0. Ring radius ra, which in Model 1 is equal to the distance of the
primordia from the ring center, thus increases according to the function

∆ra(t) = ra(t) · kr ·∆t,

where ∆t is a time increment per simulation step. Optionally, the threshold length of the active ring segment Thl into which a
new primordium will be inserted is reduced by a predefined factor kT h:

∆Thl(t) = Thl(t) · kT h ·∆t.

This reduction allows for simulating the observed decrease of the space into which new primordia are inserted over time.
In the absence of molecular data revealing the mechanism of lateral displacement, we employed a simple heuristic formula to

displace an incipient primordium i, identified by being younger than both of its neighbors, towards its older neighbor j:

∆di(t) = −kd · (di,j(t)− d0(t)) ·∆t. [1]
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Here di,j(t) is the arc-length distance between the incipient primordium and its older neighbour, measured along the active ring.
Constant kd > 0 and function d0(t) > 0 are model parameters. This equation stipulates attraction of the incipient primordium
towards its older neighbor for distances di,j(t) greater than target distance d0, no interaction for di,j(t) = d0, and repulsion at
distances smaller than d0. Displacement rate kd controls the magnitude of these influences (Fig. S5 B–D). In all simulations
shown we assumed d0 = 1

2Thl(t), which means that, upon a symmetric insertion, the incipient primordium is neither attracted
nor repelled by its neighbors.

A new primordium is inserted into any segment of the active ring that exceeds the current threshold arc length Thl. The
primordium divides the ring segment between its younger and older neighbors in proportion λ : (1− λ), where the parameter
λ ∈ (0, 1) controls the asymmetry of insertion. Consistent with the Hofmeister / Snow and Snow hypothesis and experimental
observations suggesting that new primordia are inserted symmetrically (Figs. 4 F, G and Fig. 5 C), we assumed λ = 0.5
(symmetric division) (Fig. 4 H).

Upon the insertion of a new primordium, the state and polarity of the incident segments are updated according to the age of
the neighboring primordia. In addition, existing intervals S change to L. For parameters resulting in a Fibonacci progression of
primordia numbers, these transitions are equivalent to L-system productions shown in Fig. 4 E. The model visualizes both the
primordia and the intervals between them. Several visualization modes are supported. To facilitate comparisons of the model
with reality, the simulation can be shown with experimentally obtained images in the background (Fig. 4 I) and suspended
for a predefined time at selected frames to focus on developmental stages of interest (Movie 1). Consecutive states of the
simulation can be superimposed to form a single image illustrating the progress of the simulation over time (Fig. S5).

Model 2

Model 2 extends Model 1 from the early patterning of bracts to the patterning of all primordia. The primordia are no longer
confined to the active ring and eventually cover the entire receptacle, abstracted as a flat disk. Correspondingly, primordia
configurations are no longer represented by an L-system string with explicitly identified neighbors, but by a set of primordia
positions, with the neighbors inferred on the basis of distances.

The radius of the active ring is controlled by a graphically defined function of time, ra(t) (Fig. S6 A). Consistent with
experimental data (Figs. 2 and 6 D–H), this function first increases, capturing ring expansion as in Model 1, then decreases to
simulate ring contraction in a later stage of patterning.

A newly created primordium i = 1, 2, . . . lies on the active ring. Over time, its position ri(t) is updated using the equation:

∆ri(t) = ra(t) · g(t) ·∆t. [2]

The graphically defined function g(t) (Fig. S6 B) specifies changes in the radial position of primordia with respect to radius
ra(t) of the (circular) active ring (under the assumption that ra(t) ≤ ri(t)). Initially g(t) is greater than 0, causing early
bract primordia to move centrifugally beyond the active ring. The differences in the radial distances of primordia are at first
imperceptible, but increase over time. A sawtooth pattern front results (Fig. 7 A – C). When the active ring starts contracting,
g(t) is reduced to 0. The radial coordinate ri of primordia initiated at this stage thus remains fixed.

To determine when and where new primordia should be inserted, the active ring is sampled in small angular steps (10−4

radians in the simulations shown), and distance di,j of each sample point i to each primordium j is computed as a function of
their polar coordinates (ri, φi) and (rj , φj) (Fig. S6 D and E):

di,j =
√

(r̄i,j(φi − φj))2 + (ri − rj)2. [3]

The first term approximates the arc-length distance between points i and j, measured along a circle of radius r̄i,j = (ri + rj)/2
(the average of radii ri and rj). The second term is the radial distance between points i and j. If distance di,j is above the
graphically defined threshold Thd(t) (Fig. S6 C) for all existing primordia j, a new primordium with polar coordinates (ri, φi)
is inserted at sample point i and its two closest neighbors are recorded. If the new primordium is almost at the same distance
from three primordia, the younger two primordia are considered the nearest neighbors.

We experimented with several extensions of Eq. 1 to simulate the displacement of incipient primordium i towards its older
neighbor j on a disk. The results shown in Fig. 7 and in Movie 2 were obtained by assuming that only the angular component
φi of the primordium’s position is affected:

∆φi(t) = −(cosα · kd) (φi,j − cosα · φ0) ∆t. [4]

Here φi,j = φi − φj is the angle between primordia i and j, and φ0 = Thd/r̄ is the angular counterpart of threshold distance
Thd in Model 1. Coefficient cosα, defined by formula

cosα = r̄ · φi,j

di,j
, [5]

reduces the displacement rate kd and the angular rest distance φ0 when radial positions ri and rj differ. Graphically, only
projections of these values on (a tangent to) the active ring are considered (Fig. S6 E).

In Movie 2, primordia are initially displayed as circles with radii indicating current threshold Thd(t), then as spheres
approximating the actual primordium size. This transition makes it possible to visualize both the interaction between primordia
on the active ring and their subsequent self-organization into a circular lattice.
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Model 3

Model 3 simulates phyllotactic patterning on a data-driven model of the gerbera receptacle. It is an extension of Model 2 to a
continuously growing, curved surface. The simulation begins with a small receptacle and proceeds by iterating the same phases
as Models 1 and 2. In contrast to those models, however, the expansion of the receptacle and advancement of the active ring
are determined by data extracted from microscopic observations.

The dynamic receptacle model. The model describes the receptacle as its size and shape change in the course of head development.
In addition, it characterizes trajectories of material points on the receptacle surface due to nonuniform growth. The receptacle
is modeled as a polygonized surface of revolution, obtained by rotating a growing profile curve around the head axis (4, 5). The
profile curve is modeled as a B-spline (6, 7). B-spline approximation techniques are used twice: first to fit individual profile
curves to data points obtained by digitizing a sequence of head sections, then to create a continuous-time progression between
these curves.

The input consists of volumetric data representing K = 11 heads at different developmental stages (Fig. 2 A). We extracted
a longitudinal section of each head using MorphoGraphX (8), and combined these sections into a composite image using
Photoshop (Fig. S9 A). We then fitted a uniform cubic B-spline to the right half of each receptacle using the method described
before in the context of leaf contour tracing (9). Each profile was thus represented by a parametric curve Ck : [0, 1]→ R2 of
the form

Ck(s) =
Ik∑

i=0

B3,i(s)Pi,k,

where s is the normalized (s ∈ [0, 1]) arc-length position along the curve, k = 1, 2, . . . ,K is the profile number, Ik is the number
of control points, Pi,k are 2D positions of the control points, and B3,i(s) are B-spline basis functions of degree three. The
curves were clamped to the interval [0, 1] by replicating knots four times at its beginning and end.

To simulate receptacle growth continuously over time, we blended profiles Ck(s) using quadratic B-splines B2,k:

C(t, s) =
K∑

k=1

B2,k(t)Ck(s). [6]

The resulting head profiles (curves t = const) and trajectories of points with the same normalized arc-length parameter (curves
s = const) are shown in Fig. S9 B. As our data did not include the age of the sample heads, we manually adjusted positions of
the spline knots that control progression through the blending functions over time (Fig. S9 C) to approximate smooth growth
of the simulated head.

To simulate the trajectories of materials points, we tracked visible primordia in the composite image of head sections,
treating them as landmarks embedded in the developing head (10). The landmarks in profile k were numbered from j = 1
(closest to the base) to j = Jk (closest to the apex), and their positions sj,k were expressed in terms of the normalized arc-length
parameter s. The base and the apex of each profile were treated as additional landmarks, s0,k = 1 and sJk+1,k = 0. As younger
heads had fewer landmarks than older ones, we propagated missing landmarks from older to younger profiles by assuming that
profile segments with no landmarks expand uniformly in length. For example, a landmark sj+1,k appearing on profile k but not
on profile k − 1 is propagated by evaluating the following equation:

sj+1,k−1

sj,k−1
= sj+1,k

sj,k
.

Fig. S9 D shows how this landmark is propagated in the context of existing landmarks.
Given the landmarks, we constructed a continuous mapping of material point coordinates w to normalized arc-length

parameters s in profile k:

sk(w) =
Jk+1∑
j=0

B2,j(w)sj,k,

and blended all profile mappings to express s over continuous time t:

s(t, w) =
K∑

k=1

B2,k(t)sk(w).

By substituting s(t, w) for the arc length s in Eq. 6 we re-expressed the profile curves in terms of material points w:

Ĉ(t, w) = C(t, s(t, w)).

The resulting reparametrization describes the trajectories of material points over time (curves with constant w) while maintaining
head profiles captured by Eq. 6 (curves with constant t) (Figs. 8 A and S9 E).

The final component of the receptacle model characterizes the positions of the active ring. We estimated its normalized
arc-length position sa,k in each profile k = 1, . . . ,K from the position of the youngest visible primordium. As patterning of
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auxin maxima precedes morphological changes in the receptacle (Fig. 3), we assumed that the active ring lies ahead of this
primordium, separated from it by approximately four (still invisible) incipient primordia. We then fitted a spline to obtain a
continuous representation of the active ring’s position over time:

sa(t) =
K∑

k=1

B2,j(t)sa,k.

Given Eq. 6, the curve describing the position of the generative zone over time is thus

G(t) = C(t, sa(t)).

We have modeled the shape of the growing receptacle, the propagation of material points, and the propagation of the active
ring on its surface by rotating profiles and trajectories captured by functions Ĉ(t, w) and G(t) around a vertical axis (Fig. 8 B
and Movie 3).

Phyllotactic patterning on the receptacle. The position of the active ring on the receptacle is given by function sa(t) in the
case of a circular active ring (Fig. 9 C and Movies 4 and 5). To model an elliptic ring (Fig. 9 E and Movie 6), we assumed that
the arc-length coordinate se of a point on the ring varies with its polar coordinate φ according to the function

se(t, φ) = sa(t) +A ·min(r1(t)− ra(t), ra(t)) · sin(2(φ− φref )).

Parameter A ≥ 0 controls the eccentricity of the ellipse. Variable r1(t) is the current radius of the receptacle, assumed to be
equal to the distance from the disk center to the oldest primordium. The term min(r1(t)− ra(t), ra(t)) modifies the eccentricity
as a function of the ring size. The maximum eccentricity is thus reached in the middle of the receptacle, where ra = 1

2r1.
Parameter φref controls the inclination of the ellipse. The simulation in Fig. 9 E was performed assuming A = 2× 10−3 and
φref = 140◦.

A newly created primordium lies on the active ring such that its arc-length position si(t) equals sa(t) (or se(t)) at the time
of insertion. A primordium’s position over time is updated by evaluating si(t) = s(t, wi), where wi is the material coordinate
of the primordium. The ages and radii of primordia are updated as in Model 2. New primordia are inserted when and where
there is enough space for them on the active ring. The distance between each primordium i to sample point j on the ring is
computed as:

di,j =
√(

ri + rj

2 (φi − φj)
)2

+ (L(t) · (si(t)− sj(t)))2, [7]

where L(t) is the length of the profile curve C(t, s) (recall that arc-length distance s is assumed to be normalized). The
difference in angular position is thus computed as in Model 2, but the difference in radial position is replaced by the difference in
arc-length position. The lateral displacement is computed using Eqs. 4 and 5, with distance di,j between primordia calculated
using Eq. 7 instead of Eq. 3. Simulation results are shown in Fig. 8 C and Movies 4–6.

The dynamic primordium model. To enhance the visual realism of the phyllotaxis model, we extended it with a three-dimensional
submodel of floret primordia, informed by the description of their development (11). Ray, trans and disk florets are considered
jointly, as their differences only appear later, outside the model time range. Bracts are modeled schematically, as elliptical
bumps, because longitudinally extended bracts would obscure the receptacle.

At each point in time, the model takes as input the position p and boundary B of each primordium. It returns the shape
of each primordium as a height function: displacement from the reference receptacle surface S in the normal direction. To
facilitate computation, we locally approximate the receptacle surface S near each primordium by the tangent space TpS
centered at the primordium center p.

We modeled the first four stages of floret primordium development (11), whereby its distinct physical appearance characterizes
each stage (Fig. S10 K). At Stage 1, floret primordia continuously deform from a flat area of the receptacle to an undifferentiated
bump. Each bump begins to form ring-shaped petals at Stage 2, with the center depressing slightly and a ridge rising along
the periphery. Individual petals emerge at Stage 3, usually in a five-fold radially symmetric pattern; on occasion, we have
observed six petals in nature. At Stage 4, petals elongate, covering the developing stamen and carpel primordia; however, we
did not model these covered structures. The model has two components: a model of isolated floret primordia, which ignores
the influence of their neighbors, and a model of primordia deformation, which captures the effect of primordia crowding (tight
packing) on the receptacle.

Isolated primordium model. To model an isolated primordium, the primordium boundary B, approximated as an ellipse, is
transformed to the tangent space TpS and approximated as circle B′ (Fig. S10 A and B). This transformation is effected using
the normalized distance function

ρ(q) = (uq − up)2

a2 + (vq − vp)2

b2 ,

where (up, vp) are Cartesian coordinates of the primordium center p, (uq, vq) are the corresponding coordinates of an arbitrary
sampling point q, and parameters a and b are semi-axes of the ellipse.

T Zhang, M Cieslak, A Owens, F Wang, SK Broholm, TH Teeri, P Elomaa, and P Prusinkiewicz 5 of 20



We use height function fbump_contour(ρ) to model the undifferentiated bump in Stage 1 and the overall contour of the
primordia in the subsequent developmental stages. The emergence of the bump is modeled as a function of age, which scales
the contour shape (Fig. S10 C):

fbump(ρ, age) = fheight(age)fbump_contour(ρ).

In Stage 2, the primordium shape is transformed into a cylinder with an elevated ridge on the perimeter. This transformation
is captured by modifying the shape of the bump using function fridge_contour(ρ) (Fig. S10 D):

fridge(ρ, age) = fbump(ρ, age)fridge_contour(ρ).

Primordia in Stages 3 and 4 have an emergent corolla with n = 5 or n = 6 petals. To model it, we first define a star-shaped
stencil in tangent space TpS (Fig. S10 E):

fcorolla_stencil(ρ, θ, age) = fpetal_spacing(age)
(

cos
(
nθ

4

)− 3
2

+ sin
(
nθ

4

)− 3
2
) 1

2

− ρ.

Points satisfying the inequality fcorolla_stencil(ρ, θ, age) ≤ 0 represent petals; the remaining points are indentations between
them. The size of petals is controlled by the graphically defined function fpetal_spacing. Given fcorolla_stencil, the three-
dimensional primordium shape is defined as the height function (Fig. S10 F):

fpetals(ρ, θ, age) =
{
fbump(ρ, age) if fcorolla_stencil(ρ, θ, age) ≤ 0,
fbump(ρ, age)findentation_depth(ρ) otherwise.

The function findentation_depth(ρ) controls the depth of indentation between the petals.
The final shape ffloret of an isolated primordium is a weighted combination of shape functions fbump, fridge and fpetals:

ffloret(ρ, θ, age) = α(age)fbump(ρ, age) + β(age)fridge(ρ, age) + γ(age)fpetals(ρ, θ, age).

The weight functions α, β, and γ are defined graphically (Fig. S10 J), and are guaranteed to sum to unity via normalization.

Inter-primordium collisions. The phyllotaxis model produces a tightly packed patterning of primordia, each demarcated by
their boundary B. The boundaries produced from the model are elliptical by construction. However, there are stages of
primordium growth (e.g., between stages 1 and 3) that do not have elliptical boundaries (11). The radial size of these primordia
appear larger than the available space relative to their neighboring primordia and therefore must deform. The resultant pattern
of primordia is tightly packed, conforming to the collisions between primordia. We model the available space of colliding
primordia as the Voronoi diagram of the primordium positions p on the surface S (Fig. S10 G) (a detailed review of Voronoi
diagrams can be found in (12)). If the primordium’s boundary B′ exceeds the available space demarcated by its Voronoi cell,
then the primordium is deformed to fit within the Voronoi cell (Fig. S10 H). We model the primordium’s shape at sample
point q via the shape function ffloret(ρ, θ, age), however, we fit this shape into the available space of the Voronoi cell (i.e.,
primordia neighborhood) by scaling the distance value (ρ) smoothly towards 1 as q approaches the Voronoi cell’s boundary ∂Vp.
Therefore, the scaling factor must map ρ such that 1) it is a function of q’s position within the Voronoi cell, 2) it preserves
the distance ρ in the interior of the Voronoi cell, and 3) it smoothly maps ρ to 1 near the boundary ∂Vp. We construct this
distance remapping function fV oronoi in two parts: first, we compute a smooth, monotonically increasing, shape-aware scalar
field over the domain of the Voronoi cell Vp; second, we remap this scalar field via a graphically defined function that controls
the shape and speed of the fall-off towards the Voronoi cell boundary ∂Vp.

Computing Voronoi diagram. The Voronoi diagram is calculated in 2 steps from the primordia positions (i.e., centers). First, we
use a 3D surface construction algorithm (13) to construct the Delaunay triangulation of primordia centers. Second, we calculate
the dual graph of the Delaunay triangulation. The Voronoi diagram partitions the surface S into Voronoi cells (polygons). Each
Voronoi cell Vp encloses a single primordium position p (Fig. S10 G). The boundary ∂Vp comprises several linear segments;
each segment is shared with the boundary of a neighboring primordium (e.g., ∂Vp′), and is equidistant from p and p′.

Computing the interior of a Voronoi cell. We desire a scalar function f over the (two-dimensional) domain of the Voronoi cell
Vp that is smooth and monotonically increasing from the center p outwards to the boundary of the Voronoi cell ∂Vp, such
that f evaluates to 0 at p, and f evaluates to 1 on the boundary ∂Vp. The function f is easily modeled as a boundary value
problem—a partial differential equation with appropriate boundary conditions. The unique solution to Laplace’s equation is
such a function

∇2f
∣∣
Vp

= 0,

subject to the Direchlet boundary conditions

f |p = 0,

f |∂Vp
= 1.
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We solve this equation numerically over a rectilinear grid obtained by discretizing domain Vp in the tangent space TpS. The
discrete vertical and horizontal spacing between grid points (∆u and ∆v, respectively) are fractions of the linear coordinates in
the tangent space at p (Fig. S10 H). The values of f over Vp are therefore multiples of the vertical and horizontal spacing, i.e.,

fi,j = f(i∆u, j∆v),

where i, j ∈ Z. The Laplacian operator (∇2) applied to f evaluated over TpS is then approximated via the central finite
difference

∇2f(u, v) = ∂2f

∂u2 + ∂2f

∂v2 ≈
fi−1,j − 2fi,j + fi+1,j

(∆u)2 + fi,j−1 − 2fi,j + fi,j+1

(∆v)2 ,

and the Laplace equation becomes

∇2f(u, v) ≈ fi−1,j − 2fi,j + fi+1,j

(∆u)2 + fi,j−1 − 2fi,j + fi,j+1

(∆v)2 = 0.

We rearrange the equation to solve for fi,j

fi,j = (∆v)2 (fi−1,j + fi+1,j) + (∆u)2 (fi,j−1 + fi,j+1)
2(∆u)2 + 2(∆v)2 , [8]

which implies the solution to the Laplace equation at fi,j is in terms of f evaluated at neighboring grid points. Given initial
values of fi,j |Vp , and the (Dirichlet) boundary conditions f(p) = f0,0 = 0, and fi,j |∂Vp = 1, we iteratively solve the Laplacian
equation (Eq. 8) for each fk

i,j ,

fk+1
i,j =

(∆v)2 (fk
i−1,j + fk

i+1,j

)
+ (∆u)2 (fk

i,j−1 + fk
i,j+1

)
2(∆u)2 + 2(∆v)2 ,

for k = 0, 1, 2, . . . until the function converges to within some tolerance ε; i.e., |fk+1
i,j − f

k
i,j | < ε for all i and j.

Scaling the distance. The solution to Laplace’s equation is a scalar field over the domain Vp, the values of which increase
smoothly and monotonically from the primordium center towards the domain boundary. We use a graphically defined function
to remap these values to a scaling factor that is applied to the radial distance ρ of any point q = (uq, vq) ∈ Vp. The scaling
factor maps ρ towards a distance of 1 (where ffloret falls off) as q approaches the boundary of the Voronoi cell Vp (Fig. S10 G
and H) . The shape of the primordium is preserved at any developmental stage, albeit now conforming to the boundary of the
Voronoi cell ∂Vp (Fig. S10). Taking into account the developmental stage (Fig. S10 J), the simulated primordium (Fig. S10 K)
can now be incorporated into the final head (Figs. 8 D, 9 K and Movie 7).
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Fig. S1. Plant architecture of Gerbera hybrida. (A) Side view of a gerbera plant. Flower heads are supported by leafless scapes (stems), which separate them from the rosette
leaves. (B) Schematic representation of the plant architecture. A shoot terminates with one terminal head (TH) and one lateral head (LH) initiated in the axil of the youngest leaf
(1). A new shoot continues from the axil of the second youngest leaf (2). C) Top view of a dissected gerbera shoot showing three leaves (1, 2, 3), two flower heads (TH, LH),
and a new shoot (new SU) corresponding to the schematic drawing in (B). Scale bars: 10 cm (A), 1 cm (C).
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Fig. S2. The response of gerbera DR5rev:3xVENUS-N7 reporter lines to auxin treatment. Confocal microscopic images show top projections of the adaxial epidermis in bracts
detached from 3-4 mm flower heads. The images were collected 12 hours after submerging the dissected bracts into auxin (10 µM IAA + 10 µM NAA) or mock solutions. The
DR5 signal is shown in yellow, chlorophyll autofluorescence in purple. All four transgenic lines (TR3, TR5, TR7 and TR8) used in this study are responsive to the exogenous
auxin, as suggested by the strong DR5 expressions in the treatment group. Scale bars: 200 µm.
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Fig. S3. The data set for early patterning of bracts. (A) top view of 56 randomly sampled head meristems with up to 34 auxin maxima, visualized by confocal microscopy. The
images of heads marked by the red circles have been reflected to match the chirality of the remaining heads. The inset shows how the angular distances between DR5 maxima
have been estimated in Fig. 4 B, counterclockwise from initium 1 (arrows). (B) Superimposed images of multiple heads with the same number of DR5 maxima show that the
pattern progression is stereotypical. Scale bars: 500 µm (A), 200 µm (B).
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Fig. S4. Position of bulging bract primordia in relation to the DR5 signal. (A) Confocal microscopic image showing a sector of the head margin. The head is approximately
at stage IV–V identified in Fig. 2. Cell walls are stained with propidium iodide (PI). (B,C) Optical cross section showing outgrowth of primordia Pa and Pb. (D) Meristem
surface corresponding to image (A) isolated and visualized using MorphoGraphX. (E) DR5 signal intensity of epidermal cells projected on the segmented meristem surface. (F)
Gaussian curvature of the meristem surface. Scale bars: 100 µm.

T Zhang, M Cieslak, A Owens, F Wang, SK Broholm, TH Teeri, P Elomaa, and P Prusinkiewicz 11 of 20



Fig. S5. Lateral propagation yields robust progression through Fibonacci primordia numbers in the circle model. (A) Traces of hypothetical primordia (green to red: incipient to
older) that emerge symmetrically between their neighbors in an expanding active ring. Primordia numbers increase in a geometric progression (1,2,4,8,...). (B) Traces of
primordia that emerge symmetrically and propagate laterally with displacement rate kd = 0.02025, resulting in strict progression through Fibonacci primordia numbers (See Eq.
1 in Supplementary Text for the definition of parameter kd). (C,D) Traces of primordia for rate kd reduced by 20% (C) and increased by 20% (D). Dark background zones
indicate states with Fibonacci primordia numbers, which occur (A to D): 37.7%, 100%, 82.3%, and 89.3% of time.
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Fig. S6. Elements of Model 2. (A–C) Graphically defined functions controlling the model over normalized development time. (A) Radius ra of the active ring. (B) Normalized
function g controlling receptacle expansion. Dashed line in (A) shows receptacle radius r1 (equal to the distance of the first primordium to the receptacle center) resulting from
the combination of functions ra(t) and g(t) (Eq. 2 in Supplementary Text). (C) Threshold distance Thd for inserting new primordia. (D,E) Definition of distance between
primordia. (D) Distance di,j between primordium or sampling point i and primordium j is a function of their radial and angular positions. (E) The distance is calculated using a
straight-line approximation of the curvilinear geometry in (D). The rate of lateral displacement kd of incipient primordium i is projected on the tangent to the active ring.
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Fig. S7. Impact of the lateral displacement rate kd on patterns generated using Model 2. The rates are shown in proportion to the reference value kr used in the simulations in
Fig. 7.
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Fig. S8. Impact of the threshold distance to neighbors on the patterns generated using Model 2. Red box indicates the pattern generated using the reference function Thd

defined in Fig. S6 C (same as in Figure 7 D–F up to primordia colors). The remaining patterns result from scaling the values and the rate of change of Thd.
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Fig. S9. Construction of the dynamic gerbera receptacle model. (A) Longitudinal head sections (corresponding to Fig. 2 A), with interiors suppressed for clarity, are combined
into a single image. The receptacle profiles (white curves) are traced manually on one side of the heads. (B) The initial model. Green curves approximate head profiles between
the traced stages. Yellow curves show the default trajectories of material points, obtained by assuming that the profiles grow uniformly in length. The red curve represents
propagation of the active ring, estimated from the position of the youngest visible primordium at each time point. (C) The quadratic spline functions used as weights to combine
consecutive profiles in (B). (D) Method for tracking primordia sj,k (filled circles) that serve as landmarks to estimate local growth rates. Growth of the central domain, where the
landmarks are absent, is calculated by extrapolating later growth stages (dotted lines). (E) Dynamic model of the head accounting for the non-uniform growth of its surface
(corresponding to Fig. 8 A). Trajectories of material points (yellow curves) are changed with respect to the initial model (B).

16 of 20 T Zhang, M Cieslak, A Owens, F Wang, SK Broholm, TH Teeri, P Elomaa, and P Prusinkiewicz



J

K

B H

I

E

Isolated
shape

Collisions

C

S

D

S

F

S

A

B

S

G

V

V

S

B'ST
V

STST B'

S

Fig. S10. Construction of the dynamic primordium model. (A) The base of a primordium isolated from its neighbors is embedded in receptacle S characterized by center p and
elliptic boundary B with semi-axes a and b. (B) The boundary B is transformed to the tangent space TpS of S, centered at p. The transformed boundary B′ is a circle. (C, D)
Early stages of the primordium development are approximated using height functions fbump and fridge of radial position ρ defined on the tangent plane (C) and transformed
back to the receptacle space S (D). (E, F) Later stages of the development are modeled using a stencil (dark and light regions in (E)), which modifies height function fpetals

according to the polar coordinates (ρ, θ) to simulate the emergence of petals (F). (G) Information on the primordium neighborhood is encapsulated as a Voronoi cell Vp

centered at p. The cell is part of a Voronoi diagram, computed by taking into account the centers of all primordia present. (H) Cell Vp is transformed to the tangent space
TpS. The isolated primordium base with boundary B′, which may extend beyond the Voronoi cell, is deformed to fit within the cell. (I) The deformation, expressed as
function fV oronoi that modifies distances to the primordium center, is applied to the height function defining the floret shape. (J) The final floret shape is modeled as a linear
combination of the shape functions fbump, fridge and fpetals. Their relative contributions (weights) are graphically defined functions of the primordium’s age, describing the
progression of floret shape through developmental stages. The resulting function ffloret is modified by function fV oronoi to take the presence of primordium neighbors into
account. (K) Snapshots of the simulation of primordium development.
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Fig. S11. Divergence angles between the first 300 primordia generated by the gerbera model. (A) The active ring is circular (Fig. 9 C). (B) The active ring is transiently elliptic
(Fig. 9 E). Dotted lines indicate the golden angle ϕ ∼= 137.5◦ and its multiples (within the range 0 to 360◦), which highlights that the differences in the divergence angles are
due to the random order of primordia emergence. In spite of these differences, the final phyllotactic pattern is the same.
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Movie S1. (corresponding to Fig. 4I). Simulation of early bract patterning (up to 34 primordia). The
simulation is effected using Model 1 (the expanding ring model), overlaid on the composite images of heads
showing auxin distribution (DR5 signal) in the corresponding developmental stages. Pauses highlight the
simulation stages that correspond most closely to the microscopic images.

Movie S2. (corresponding to Fig. 7). Simulation of the patterning of bract and floret primordia on an
expanding disk. The simulation is effected using Model 2 (the disk model), overlaid on the composite images
of heads up to the 34-primordium stage. The decreasing radius of the circles that represent primordia reflects
the decreasing threshold distance for the insertion of new primordia according to the Hofmeister / Snow &
Snow rule. The model captures the differences in the radial position of primordia that become visible at the
21-primordium stage and are pronounced at the 34-primordium stage, as highlighted by the simulation pause.
The continuing simulation captures the emergence of parastichies based on the template of bracts and the
patterning of florets, which stops when the entire receptacle surface is consumed.

Movie S3. (corresponding to Figs. 8 A and B, and S9). Construction of the data-driven growing receptacle
model. The white contour propagating in the top left panel represents changes in the receptacle shape and
size over time. This dynamic is captured by computing weighted averages of digitized longitudinal sections of
real heads, with the weights changing over time as indicated by the white bar sweeping the plots of individual
weight functions in the bottom panel. The top right panel shows the growing receptacle, obtained by revolving
the contour around a vertical axis of symmetry. Colors indicate zones that are not occupied by primordia
(green), are occupied by bract primordia (yellow) or are occupied by floret primordia (white).

Movie S4. (corresponding to Fig. 8C). Simulation of phyllotactic patterning in gerbera heads on a growing
receptacle — side view.

Movie S5. (corresponding to Fig. 9C). Simulation of phyllotactic patterning in gerbera heads on a growing
receptacle — top view.

Movie S6. (corresponding to Fig. 9E). A variant of phyllotactic patterning in gerbera heads (Movie 5).
The active ring becomes transiently elliptic during the patterning of florets. In spite of the loss of circular
symmetry leading to the occurrence of some dislocations (local departures from the mathematically ideal
spiral phyllotaxis), the final pattern closely resembles that produced with the circular active ring.

Movie S7. (corresponding to Figs. 8D and 9K). Simulation of phyllotactic patterning in a gerbera head with
realistically modeled floret primordia.
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