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Abstract

The creation of realistic and lifelike plants has been a long-standing challenge in computer

graphics. While significant progress has been made regarding the generation of plants using

procedural methods, there is still a gap in understanding how to simulate their dynamics as

efficiently and realistically as possible. One of the major challenges in this area is the incor-

poration of complicated non-inertial effects into plant motion. Previous works tend to either

focus on quasistatic simulations - which by definition assume the absence of non-inertial ef-

fects - or ignore secondary motion in their dynamics calculations altogether. Either of these

result in incomplete simulations that do not adequately capture the wide range of plant

motion observed in nature. This is important because the human eye is keenly critical of

inconsistencies in motion, meaning that incomplete models can easily appear off-putting and

uncanny. To address these limitations, this thesis proposes a generalized and comprehensive

physics model that aims to better capture the dynamics of procedurally-generated plants.
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Chapter 1

Introduction

This is an exploratory project whose aim is to combine known methods for procedurally gen-

erating plants with known methods for procedurally animating them. Previous works in this

field have tackled the problem of finding out the growth response that a plant may exhibit due

to its weight, light and/or space availability, or even exposure to wind fields. However, the

physics models in these works can be expanded upon; some works are limited to quasistatic

behaviour, whereas others explicitly ignore secondary motion in their dynamics calculations.

To address these limitations, this thesis aims to develop a more complete model that better

captures the dynamics of procedurally-generated plants, including non-inertial accelerations.

The goal of this research is to develop a more comprehensive and accurate model of plant

behavior that can simulate a wide range of plant movements and responses to environmental

factors. It has the potential to advance the field of computer graphics by enabling the cre-

ation of more realistic and dynamic plant simulations, which could have applications in fields

such as video game design, movie production, and virtual reality environments. Additionally,

this research could contribute to a better understanding of simulating plant biomechanics,

which could have positive uses in fields such as agriculture and horticulture.

1



1.1 Methodology outline

There have been numerous advances in the field of developmental plant modeling in the pre-

vious decades. The field is interested in using computers for the modeling, simulation, and

visualization of plants as they develop over time. Developmental models consist of proce-

dural systems that create spatial structures and consider these structures as they develop

over time. However, most works in developmental plant modeling are (understandably) only

concerned with the creation of the spatial structure itself, and the research stops there. This

means that we do not get to see nor analyze how the end-result plant reacts to environmen-

tal forces (human interaction, wind forces, etc.). This thesis explores this gap by exploring

the dynamics problem of procedurally generated plants, that is, finding the accelerations

response of the plant due to applied input forces.

The methodology employed in this thesis for simulating plant motion is rather general,

meaning that it can be adapted to many existing works in developmental plant modeling.

However, I will only focus on animating plants generated using Lindenmayer systems.

Lindenmayer systems, or L-systems for short, are parallel re-writing systems and a type of

formal grammar, and they excel at representing developmental models of plants. Starting

with an initial string called the axiom, an L-system evolves in accordance to a given set of

production rules that define how each letter in the axiom evolves and produces other letters

over time. These letters, called modules, can each correspond to different organs of the plant,

such as internodes, leaves, or flowers. The structure of the plant is thus wholly represented

by the modules composing its L-system string at any point in time. The question that pro-

ceeds is: how do we solve the dynamics problem of plant models represented by this structure?.

There are several candidate methodologies that can been used to solve the dynamics of L-

system models (an overview is provided in Chapter 2), but ultimately, we chose to pursue a

2



method derived from rigid-body dynamics. The reason for this is because Dr. Prusinkiewicz

and I deemed it logical to represent each organ of the plant as a rigid body, and to connect

these rigid-bodies with three-dimensional angular springs. The job of the angular springs is

to resist rotation between successive rigid bodies, and, once rotated, to introduce restoration

forces that return the rigid bodies to their rest orientations, causing the illusion of elasticity.

This composition of rigid-bodies and joints is called an articualted body. With this physics

model at hand, we can use one of several articulated-body dynamics algorithms to calculate

the acceleration response of the plant due to abstract input forces. It is at that point that

a time integration scheme may be used to advance the system forwards in time, yielding an

interactive environment of plant motion.

The rigid-body dynamics algorithm used in this thesis is Featherstone’s articulated-body al-

gorithm [21]. Assuming that the input forces are provided, the articulated-body algorithm

computes the acceleration of each rigid body in the system in O(n) time, where n is the

number of degrees of freedom of the plant.

It is worthwhile to note that despite serving distinct purposes, the articulated-body algorithm

and L-systems are eerily alike in how they operate; both are based on the idea of locality,

meaning that any element of the L-system string/articulated-body is only aware of the exis-

tence of itself and those attached to it. Moreover, both employ a recursive mechanism with

which to transfer information throughout the system. Indeed, a key reason we pursued to

employ the articulated-body algorithm was due to its theoretical similarities with L-systems.

3



1.2 Contributions

This thesis does not contribute a ‘new way’ of doing things; it simply explores the com-

bination a proven method for modeling plants (L-systems) with a promising method for

animating their dynamics (the articulated-body algorithm). Additionally, the work in this

thesis aims to to verify how useful and appropriate it is to use Featherstone’s articulated-

body algorithm for animating accurate plant motions in real-time.

1.3 Chapter outline

The remaining chapters are arranged as follows:

• Chapter 2: Provides a short survey on physically-based plant modeling and animation

literature.

• Chapter 3: Covers preliminary physics background information, setting up the stage

for chapter 4.

• Chapter 4: Provides a general overview of articulalted-body dynamics algorithms,

points out where Featherstone’s articulated-body algorithm lives in this classification,

and derives the articulated-body algorithm from mechanical principles.

• Chapter 5: Quickly goes over the basics of plant modeling with L-systems, and

introduces the notion of ‘Articulated-body L-systems’, which are L-systems modeled

in such a way that they explicitly represent developmental models of simulation-ready

articulated-bodies.

• Chapter 6: From bio-mechanical principles, discusses the methodology that was em-

ployed in this thesis to make our articulated-body L-system plants move as lifelike as

possible.

4



• Chapter 7: Provides an overview of the programming components completed in this

thesis.

• Chapter 8: Goes over several test cases that mathematically support the credibility

of the animations.

• Chapter 9: Presents many example simulations showcasing plants reacting to different

user interactions, as well as comparisons of synthesized plant motion against real plants.

• Chapter 10: Concludes the contributions of the thesis and provides a list of research

questions that remain unsolved.

5



Chapter 2

Previous work

The work described in this thesis belongs to two main research topics in computer graphics:

plant modeling and plant animation. Plant modeling refers the general process of creating

virtual representations of plants that can be rendered to a screen. This is a vague definition

at best, and there exist a plethora of approaches in which one can achieve this. Plant anima-

tion is a subtopic within plant modeling, and in the context of this thesis, will be defined to

be the art of adding mechanical motion to said plant models. Mechanical motion is motion

that emerges from the addition of energy or application of forces to the mechanical system

at hand.

Mechanical motion may be predefined, which is manually created by an artist, or procedural,

which is computationally generated on the spot. The previous works shown in this chapter -

as well as the contents presented in this thesis - will only tackle procedural motion. Further-

more, there will be an emphasis on physically-based plant modeling and animations, which

is the art of constructing and animating models of plants such that their shape and motion

conform to the laws of nature.

This chapter explores relevant previous works in physically-based plant modeling and ani-

6



mations, and is organized as follows:

• Section (2.1): Previous works on plant modeling

• Section (2.2): Previous works on plant animations

• Section (2.3): Previous works that couple plant modeling and animations

The difference between the second and third criteria points above can best be understood

by using the definitions of developmental and non-developmental models of plants:

Definition: A developmental model is a procedural system that creates a spa-

tial structure, and considers this structure as it develops over time. A non-

developmental model is one that is not developmental.

The works presented in Section (2.2) can be said to animate non-developmental plant models

because they first create static geometric plant model and then add mechanical motion to

it. This is in contrast to the works presented in Section (2.3) because their method allows

the plants to experience and be affected by mechanical motion during their formation; they

animate developmental plant models. This is an important distinction because plants are

living, sensing organisms; their development is heavily influenced by environmental stimuli,

and as such, a model that does not capture this behaviour cannot be fully ‘complete’. Having

said this, it is not at all trivial to add mechanical motion to developmental models of plants,

which is likely the reason why many works fall under the first two criteria whereas only a

handful belong to third.

The work in this thesis aims to take steps towards a unified physically-based developmental

plant model such that one can add versatile mechanical motion (e.g. wind motion, user

interaction, collisions and contacts, gravitational effects, etc.) to developmental models of

plants, but ultimately, still belongs in Section (2.2) because I create a model of a plant

and animate it after the fact.

7



2.1 Previous work on plant modeling

Plant modeling approaches can be categorized into three principal classes: reconstructions

from existing real world data, interactive modeling methods, and procedural or rule-based

systems.

2.1.1 Reconstruction methods

Reconstruction methods consist of taking data from real-world plants and using them to

virtually create the geometric plant model. They are also known as data-driven modelling

methods. Common approaches involve the use of individual photographs [89, 88], sets of

photographs taken from multiple points of view [78, 73, 33], and recently, point clouds ob-

tained from laser scans [97, 100, 16].

Reconstruction methods are ideal for creating models of plants whose shape is geometrically

accurate, however, the method’s main drawback is its inability to produce a wide variety of

models. To address this limitation, Shlyakhter et al. [84] extract tree silhouettes from images

and reconstruct the main tree skeleton, and from there, use L-systems to procedurally grow

the small branches and foliage. Neubert et al. used particle flow to extract branch structure

from the recovered tree volume. Stava et al. [86] combine the reconstruction and procedural

approaches by taking polygonal tree models as inputs - which were themselves reconstructed

from images - and use them to estimate the parameters of a procedural model such that it

would produce trees similar to the input.

2.1.2 Interactive modeling methods

Interactive modeling methods aim to enhance an user’s modeling experience by minimizing

the effort required to produce visually plausible models without imposing excessive limita-
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tions on the user. Ideally, a decent interactive modeling software will give a beginner the

ability to create realistic models, without limiting the capabilities of an expert.

Early ideas in interactive plant modeling date back to Reeves and Blau in 1985 [75], where

they let an user specify a surface of revolution that would then define the overall silhouette

of a tree. Weber and Penn [94] furthered user interactability by exposing ample control over

a tree’s architectural parameters. Deussen and Lintermann [19, 48] introduced a method in

which the user models in ‘components’; each component represents a different geometric con-

struct, which the user can then arrange in different configurations to create unique botanical

structures . Motivated by this idea, Prusinkiewicz et al. [70] explored a visual way in which

to procedurally model plants, which was done by allowing users interactive control over the

local attributes of plant architecture as functions of their location along the principal stems

of the structure.

Several previously cited models employ a global-to-local methodology, which means that

users are in charge of defining the overall structure, whereas the model is in charge of

generating the details. Boudon et al. [15] for example adapted such a paradigm by allowing

users to define the silhouette of the structure, allowing for detailed constructs to be inferred

procedurally thereon. Advancements in touch interface technology meant for the immediate

incorporation of this technique into such devices [96, 49]. Longay et al.’s TreeSketch [49] is

notable because it integrates procedural tree generation with a multi-touch tablet interface

that provides detailed control of tree form. The procedural component is used to simulate

the competition of branches for space and light as the tree develops over time, and is based

on a culmination of previous works on self-organization [91, 3, 52, 77, 62].
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2.1.3 Procedural or rule-based methods

Procedural plant modeling can be traced back to the early tree modeling techniques pre-

sented in Ulam 1962 [91] and Honda 1971 [37]. Honda modeled trees by defining a few

parameters that would then be used to describe an explicitly defined recursive structure,

whereas Ulam considered trees as self-organizing structures; the branching structure was

not explicitly defined, but rather emerged through the competition for space of the individ-

ual elements of the structure.

Honda’s method has led to further development in explicit recursive generative algorithms

in plant modeling. Aono and Kunii [2], as well as Bloomenthal [13], explored more realistic

generation of large trees. Reeves presented an early example of using these recursive methods

for the generation of forests in early 3D animations [75]. Oppenheimer tackled the problem

of the ‘jarring similary’ that oftentimes presented itself in explicitly recursive models, and

did so by exploring randomness and the bending and twisting of branches [59]. For a similar

purpose, Weber and Penn [94] explored ample control over parameters to give users further

control of the structure. Recursive methods were also the basis to some previously mentioned

interactive modeling methods [48, 71].

Likewise, Ulam’s self-organizing method was also furthered by researchers in plant mod-

eling. Měch and Prusinkiewicz introduced Open L-systems, which as opposed to regular

L-systems, have the ability to communicate with its local environment [52]. Runions et al.

used space colonization algorithms to create 2D venation patterns on leaves [76] and 3D

branching structures in trees [77], the latter of which was extended by Palubicki et al. [62].

Some of the previously mentioned sketch-based interactive methods were actually primarily

dependent on space-colonization methods [49, 35], with the principal idea being that the

user can sketch to define the ‘available space’ that the plants can grow into.
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Certain methods even employ a mixture of a self-simiar and self-organiszing approach.

Makowski et al. [50] tackle the synthesis of plant ecosystems, and describe their plant

models as “deterministic at the scale of architectural units and self-organizing at the scale of

the whole plant”. Such methodology proved them successful in the creation of developmental

plant models across differing ecosystems.

Developmental models of plants using L-systems

L-systems are parallel rewriting systems introduced by Lindenmayer in 1968 [46] with the

goal of describing the development of simple (filamentous) multicellular organisms over time.

Since then, research in L-systems has evolved to the point that they can be used to describe

many facets of the development of three-dimensional branching structures.

Chapter 5 goes over the details, but for now, it suffices to know that L-systems were

chosen as the methodology for generating plant structures in this thesis because

they excel at namely two things amongst others:

• Modeling developmental models of plants.

• Providing an easy-to-parse string representation of the object at an instance in time.

Having easy to parse representation of developmental models of plants is relevant because

they greatly facilitate the process of creating a physical model from the developmental one.

In our case, all L-system objects are comprised of modules which can be arranged linearly

like a string. Each module may represent an individual component - such as an individual

organ - of the plant being modeled. For example, the string

I I F

could denote two internodes I I followed by a flower F. This readily-available discrete de-

scription of the developing plant will be a convenient first step towards their rigid-body
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interpretations.

2.2 Previous work on plant animations

The real-life motion of a plant can most generally be described through the concepts of

stresses and strains. Stress is a quantity that represents the internal forces that a plant per-

ceives due to applied external forces. For the context of this thesis, we will only be modeling

elastic strains, which means that strain is proportional to stress and can be defined as the

ratio of deformation of the material due to the applied stress(es) [55]. External forces may

either be surface forces or body forces. Surface forces act on the external boundary of the

plant, such as those from wind and water droplets, whereas body forces are those that act on

the volume of the plant, such as gravity. Once a plant has been deformed from its rest state,

the internal binding forces of the plant, called restoration forces, will attempt to restore the

plant to its original shape.

It is this push and pull between external and internal forces that causes the oscillatory motion

of plants that we see every day. It is only in the past few decades, however, that computers

have given computer scientists the ability to synthesize this motion.

There are two general animating techniques that are used to synthesize the motion of a

plant: data-driven and physically-based techniques. Data-driven methods are those in which

the synthesized plant motion predominantly originates from pre-obtained data, whereas

physically-based methods are those in which the synthesized plant motion predominantly

originates from physical simulations. This thesis employs a physically-based approach.

It’s true that empirical data (e.g. Young’s modulus, bulk tissue densities) is needed to guide

a physically-based method, but ultimately, the motion itself is dictated by numerically inte-
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grating some type of equations of motion forward in time.

There are various works in plant animation literature that strongly follow either a data-driven

or a physically-based approach, however, from observation, most employ a non-obvious mix-

ture of both techniques. It may therefore be appropriate to say that works in plant ani-

mations belong in a spectrum between data-driven methods and physically-based methods,

with those towards the centre being classified as hybrid methods (Figure 2.1).

Figure 2.1: Spectrum of plant animation methods

There is, however, a third criterion that we should take into account, and that is the extent

to which the use of heuristics is involved. Heuristic approaches, in the context of plant ani-

mations, are those in which shortcuts were used - either to minimize complexity or maximize

run-time speed - at a potential cost in physical accuracy. With this added criteria, a given

previous work in plant animations can now be thought of as belonging somewhere inside the

triangle depicted in Figure 2.2.

Figure 2.2: A triangle classifying previous work in plant animations

The rest of this section will be concerned with exploring data-driven, physically-based, and

hybrid methods by introducing a handful of literature belonging to each classification.
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2.2.1 Data-driven methods

In theory, an idealistic physically-based simulation of plants would be able to perfectly recre-

ate real-life plant motion at real-life speeds. In reality however, such a model does not exist.

Computationally efficienct physically-based methods tend to be inaccurate, and accurate

methods tend to be inefficient. Additionally, different applications require different levels

of physical abstraction. One wouldn’t animate the motions of a forest at the cellular level.

Physically-based methods are thus not ideal for all applications, especially those in which

efficiency and stability play more important roles than versatility; data-driven methods offer

exactly such traits.

In the context of plant animations, data-driven methods are those in which plant motion is

synthesized primarily through the use of pre-obtained data. This data is typically either em-

pirically obtained from real-world specimen (e.g. motion captured data), or it is generated

using some sort of physical property of real-world specimen (e.g. modal analysis methods).

The key mindset behind these methods is that it is generally faster to ‘look-up’ stored motion
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than it is to generate it on the fly. Also, since all the motion originates from this ‘database’,

the output motion will be predictable (that is, there is a reassurance that simulations will not

‘blow up’ due to numerical instabilities, as is often the case in physically-based animations).

Concrete examples of procedural data-driven animation methods include techniques like “mo-

tion graphs” [43, 45] and “video textures” [80]. The main premise behind both of these meth-

ods is to create infinite synthesized motion from finite input motion. In the motion-graph

method, connections between different sets of input videos are created by finding seamless

transitions between similar frames in different sections of the input data, this map is what

is called the motion graph. Then, at runtime, one can selectively traverse the motion-graph

endlessly, yielding infinite motion from finite input data. Video textures work by randomly

rearranging (and possibly blending) original frames from the source video, so that individual

frames may be re-used, but the video will never loop. James et al.’s approach [39] extends

motion graph and video texture techniques to work on scenes with many elements such as

bundles of plants; instead of trying to find unlikely transitions between entire scenes, they

find transitions between the individual elements of the scene, such as individual plants or

even the individual organs of each plant. Haevre et al. [92] and Zhang et al. [99] explore

data-driven animation on trees by first using offline physically-based methods to generate

the database, and then using motion-graph techniques on this data to synthesise tree motion

in real time. On a similar note, both Chuang et al. [17] and Habel et al. [34] have used

stochastic motion textures - noise-generated textures capturing the stochastic nature of the

wind - to drive the oscillations of branches on a look-up basis.

There are also methods that go a level of abstraction further: instead of using input motion

to directly synthesize the output motion, use the input motion to extract parameters that

can then be used to synthesize the output motion. For example, Sun et al. [87] extract

wind parameters from a video of a tree undergoing wind motion, which can be used on other
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plants, as well as different objects entirely like snow, dust, hair, etc. Wang et al. [93] extract

the material parameters of plants from video, these material parameters are then used to run

physically-based finite-element-method (FEM) [102] simulations of a wide variety of plants.

2.2.2 Physically-based methods

It is not at all trivial to animate plants in a physically-based manner in real-time; user in-

teractions are unpredictable, environmental forces are chaotic, and internal binding forces

are difficult to quantify. Nevertheless, the motion of plants is inherently appealing to the

human eye, and as such, we are drawn as computer scientists to the problem of synthesizing

such motion. This endeavour goes by the name of physically-based animations. In short,

physically-based animation requires that a set of equations of motion be integrated forward

in time using some sort of numerical method.

There exist a wide variety of physically-based approaches with which to simulate the motion

of plants, with each having their own advantages and disadvantages. However, by con-

struction of the problem, all physically-based works require two things: the creation of a

discretized physical model of the real-life object they are representing - the physics model -
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and a simulation algorithm that will operate on said model - the simulation method. The next

few subsections explore common physically-based animation techniques within the context

of plant animations.

Link-and-spring methods

The most common approach within physically-based plant animations is to represent the

plant with thin rigid links connected by angular spring-like joints [79, 20, 60, 64]. The idea

here is that each link shall be defined to be undeformable, with the incentive being that

plant motion will instead emerge from changes in the relative orientations of the links. Each

angular spring has two uses; to resist rotation and, once rotated, to introduce a restoration

torque which will attempt to bring the spring back to its rest orientation. On the grander

scale, these restoration torques act as a mechanism with which to re-orient a plant back to

its rest pose.

Implementing physically-based simulations of link-and-spring methods is non-trivial for two

key reasons. First, it is difficult to calculate the inertial properties of any particular interior

element of the branching structure because it depends on the the inertia of everything both

directly and indirectly attached to it. Secondly, since most elements are attached to other

elements that are in motion themselves, the ‘child’ elements experience what are called fic-

ticious forces. A fictitious force is a perceived force due to the acceleration of the object it

is attached to. Both of these problems are difficult to handle in real-time.

In order to to maintain real-time stability, Sakaguchi and Ohya [79] employ a decoupled

system; they ignore the accelerations and velocities of parent rods when computing the ac-

celeration of child rods, and ignore the inertia of children when calculating the inertia of

parents. This method greatly simplifies the dynamics calculations and has been adapted

by other works as well [20, 34, 64], however, it does significantly compromise the quality
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of certain animation scenarios. As an example, let’s take a potted plant in static equilib-

rium; if we were to accelerate the pot alone, we would expect the plant to ‘swing back’ in

the opposite direction of acceleration as it attempts to maintain zero inertia, and we would

expect the plant to oscillate back and forth thereon until it uses up all its energy. However,

in a decoupled system as described above, the plant would remain stationary the entire time

because the links would ignore the acceleration of the pot altogether.

Another simplifying shortcut is to ignore axial twisting between segments [95]. This is cost

effective because we are essentially ignoring one degree of freedom per spring. This is a

relatively safe shortcut because plant motion mostly emerges from bending as opposed to

twisting, but there are definitely scenarios where this is not the case (i.e. twisting the stem

of a herbaceous plant).

Rigid-body methods

One step slightly beyond rod and spring methods in plant animations are rigid-body methods.

The idea here is to represent the plant with rigid-bodies that are connected with elastic spher-

ical joints, and to use rigid-body dynamics algorithms [4, 25] as their simulation method.

This is the method employed in this thesis.

The equations and algorithms governing the dynamics of articulated bodies - which is a

common term given to systems of rigid bodies connected by joints - have been theoretically

known by roboticists for decades before their introduction into computer graphics 1. Most

stem from either the Euler-Lagrange equations of motion, which are described in the next

chapter, or the Lagrangian formulation of the equations of motion for a mechanical system.

There are two key caveats in pursuing an articulated-body implementation; the first is the

1A wortwhile survey is presented in [26].
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‘mental barrier’ that can arise due to the increased level of complexity in the mechanics

and algebra required to write articulated-body software, and the second is a ‘technologi-

cal barrier’ that arises due to the computational complexity and numerical instability of

articulated-body simulations. This is because not only do articulated-body methods expe-

rience the same instabilities as link-and-spring methods, but they do so at a much larger

extent. For example, even moreso than link-and-spring methods, articulated-body simula-

tions tend to be immensely stiff. Within the context of numerical analysis, a stiff system

is one in which small perturbations in the inputs yield potentially large and unpredictable

responses in the system’s output. In the context of articulated-bodies, this means that small

forces may result in large and unpredictable accelerations (butterfly effect). This combined

with the fact that every rigid-body is connected by a stiff spring means that there are a lot of

large forces contributing to the system’s instability. It should be noted that this instability

was the key problem that led to major setbacks during the development of this thesis, and

is discussed in Section 9.4.2.

As such, a stable and efficient numerical integration scheme of such systems remains a work

in progress within the field. Quigley et. al [72], for example, approach their Featherstone-

esque tree dynamics by evolving their springs independently of one another by solving their

analytic equations locally. This may compromise the ‘liveliness’ of tree motion, but it makes

it feasible to simulate large, stiff trees in real-time; something that can not yet be done in a

stable manner otherwise.

Deformable rod methods (1-D continuum mechanics)

Other methods treat individual plant segments as deformable instead of rigid. Habel et

al. [34] use the explicit analytic formula of the 1D Euler-Bernoulli beam model to drive

the deformations of individual, decoupled branches of varying thicknesses. Bertails [10]
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represents the branches of a tree with thin deformable rods, doing so by solving Kirchoff’s

discrete equations for piecewise helical rods, except unlike its predecessors [61, 11], does so

in a recursive manner similar to Featherstone [21] to achieve real-time results. Likewise,

Bergou et al. [9] are able to model bending and twisting in a tree with techniques derived

from nonlinear Kirchoff rods. Pirk et al. [63] use PBD-based Cosserat rods [44], which are a

generalization of Kirchoff rods that add stretching and shearing, to model the dynamics of

branches in their combustible trees models.

Deformable volume methods (3-D continuum mechanics)

Finally, as computational power increases, it is becoming feasible to run three-dimensional

continuum mechanics algorithms in real-time. The most common approach in this area

is geared towards finite-element method (FEM) simulations. The main setback with such

techniques is that they struggle to model highly elastic materials, which is an ubiquitous

property of many plants. A common approach is to partition the deformable body and

introduce constraints that allow large deformations between the partitions [90, 6], giving an

illusion of high flexibility. A handful of papers have emerged from Jernjej Barbic̆’s lab in

recent years exploring interactive large-deformations of plants in real-time, also using finite-

element method simulations [5, 14, 6, 101, 93]. The efficient simulation of large deformations

is in part possible due to heuristic speed-up techniques such as domain decomposition [6]

(splitting up the deformable object into different domains) and model reduction [5] (reducing

the complexity of each domain’s dynamics). The resulting animations have high quality

dynamics and can be ran at interactive speeds. An interesting extension to the methods in

this thesis would involve the creation of a simulation-ready FEM-esque mesh from either an

L-system, or some other procedural plant-modeling technique.
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Multi-scale and level-of-detail methods

Multi-scale models are an interesting emerging concept in computer graphics. The key idea

to identify here is that computer graphics as a field deals with the subjective; the ‘appro-

priate’ level of fidelity with which to model a virtual scene strictly depends upon the frame

of reference of the observer. If an observer is very zoomed into the object of interest, for

example, then what is important in that instance is to present a model of the microscopic

structures and behaviours of the visible elements of the scene. On the contrary, if the user

were to zoom out and observe the same exact scene from a distanced point of view, then

it would only be worthwhile (and feasible) to model the structure and behaviours that are

observable at that macroscopic frame of reference. Multi-scale methods are those in which

we attempt to create a model of a scene that supports a seamless transition between the

requirements of these differing frames of references.

Within the context of plant modeling and animations, most works in level of detail simula-

tions pertain to the simulation of large forests. Giacomo et al. [20] use heuristic wind motion

to drive the motion of thin delicate branches (predictable motion: inaccuracies are forgivable

by the human eye), whereas physically-based methods were used to drive the motion of larger

branches that were bent through user interaction (unpredictable motion: inaccuracies stick

out to the human eye). Beaudoin and Keyser [7] successively group branches together (as

needed) and simulate them as a single branch. Zhang et al. [98] assign adaptive priorities to

joints in order to bypass the computation of lesser important joints in certain frames. They

also incorporate LODs into their wind fields by generating mipmaps of their wind fields,

such that further away trees can use coarser, and thus more efficient, windfield mipmaps.
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2.2.3 Hybrid methods

From observation, the vast majority of works in plant animation are not purely data-driven

nor purely physically-based, but rather, employ a mixture of both techniques. An argument

can even be made that cited works in the previous sections are actually hybrid; heavily

data-driven methods like motion-graph techniques may need physical cues to determine ap-

propriate graph transitions, and heavily physically-based simulations require empirical data

like shape and material properties to be accurate. However, these are just nuances, and

in this section we will instead explore previous works in plant animations that employ a

mixture of data-driven and physically-based techniques to a somewhat equal extent.

A common hybrid approach consists of using stochastic data to aide in the physically-based

simulation of a plant. The main justification here being that since we often perceive natural

phenomena as random, it can adequately be modeled as such. Early examples in computer

graphics include stochastic fractals for mountain range generation [51, 29] and stochastic

particle effects for fuzzy objects and explosions [74]. In the context of plant animation,

wind motion is the main cause of stochastic motion. Shinya and Fournier [83] model the

stochastic properties of wind in the fourier domain, and use this data to drive the forwards

time-integration of their physics model, bypassing the need to calculate complex wind forces.
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Stam [85] does the same as Shinya and Fournier, but instead of synthesising the wind field

(the cause), he synthesizes the motion of the branches themselves (the effect).

Another hybrid approach consists of using data-driven approaches for some parts of the sim-

ulation, and using physically-based approaches for others. Ota et al. [60] use 1/fβ noise -

whose frequencies have been shown to be prevalent in many natural phenomena - to drive

the oscillation of the leaves, and resort to the aforementioned link-and-spring method for the

physical simulations of the branches.

2.3 Previous works that couple plant modeling and an-

imation

In real plants, the time scales in which growth and dynamics operate are much different,

meaning that instantaneous growth does not have a practical influence on instantaneous

dynamical motion. Therefore, by coupled growth and dynamics, we are instead referring

to capturing how every-day dynamical motion affects long-term growth and how long-term

growth affects every-day motion.

The growth of a plant can have a significant impact on its every-day dynamics. A thickening

stem will prevent bending, for example, whereas an elongating stem augments bending, pos-

sibly resulting in a plant being unable to support itself (e.g. Euler buckling). Additionally,

the spontaneous dynamical forces acting on a plant can have a significant impact on long-

term growth. For example, a plant subjected to constant harsh winds and thunderstorms

may result in critical deformations and even loss of branches, which not only has immediate

effects, but also permanently affects the future growth of the plant (the removal of existing

branches could allow other branches to grow in their stead, for example). This means that
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growth and dynamics are related to each other, and so the modeling of such interactions is

essential.

We are therefore concerned in previous work that couple mechanical processes and devel-

opmental models of plants, that is, the plants can be influenced by environmental factors

as their geometry and topology evolve over time. There are three notable classes of models

present within the topic of ‘coupling plant growth and animation’:

1. Models that animate plant development without considering mechanical influences,

but that do consider mechanistic ones.

2. Models that animate plant development considering mechanical influences using quasi-

statics.

3. Models that animate plant development considering mechanical influences using dy-

namics.

Mechanistic growth models

Mechanistic growth models address environmental effects in a ‘cause and effect’ manner (i.e.

‘if there is enough space, then grow in that direction’). Mechanical models constitute a

subcategory within mechanistic models, and focus on using physics to resolve interactions.

Mechanical models are therefore also mechanistic (i.e. ‘if a force is acted, the acceleration

response is as such’), but not all mechanistic models are mechanical.

The majority of growth models that interact with their environment presented thus far are

mechanistic. For instance, the way in which plants interact with their environment presented

in [52] can be regarded as a purely mechanistic manner of doing things. The idea is that

there should be bi-directional information exchange between plants and their environment,

with this information influencing plant growth over time. For example, there is competition
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for space, competition for light, and even competition between root tips for nutrients and

water in soil.

Mechanical growth models - quasi-statics

A quasi-static process is one that is assumed to occur at an infinitesimally slow rate. In the

context of animating the development of plants, a quasi-static growth model may ignore the

notion of inertia because we are assuming that the system is evolving so slowly such that it

is in the absence of non-inertial accelerations. Let’s say we are trying to model the effects

that some natural phenomena has on plant growth; a quasi-static approach is ideal if one

is more interested in the final result of this interaction, rather than in the motion the plant

took to get there (which is what dynamics tackles).

For example, Power et al. [65] incorporated inverse kinematics into L-system models to sup-

port the interactive arrangement of organs. Their plants are modeled by rigid links connected

with spring-like joints, which act as a discretization of a continuous bending rod. Jirasek

et al. [40] extended the aforementioned work and fully integrated a quasi-static model of

biomechanics into L-systems, which was used to model the effect of gravity and tropisms on

the plant’s shape; phenomena that were until then modeled through non-physically based

methods.

Mechanical growth models - dynamics

Dynamics is the branch of physics concerned with the study of forces and their effects on

motion. Developmental models that incorporate dynamics allow for the simulation of growth

and dynamical effects at the same time. One may think that this is an unrealistic and in-

applicable scenario because long-term growth and immediate physical motion operate on
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completely different time scales. However, such models are educational in the sense that

they can help botanists further understand the effects that environmental forces have on

plant growth. In the context of games and virtual reality, such plant models would instantly

be applicable to the emerging field of procedurally generated worlds. A key limitation in the

field is the ‘dullness’ that oftentimes emerges due to lackluster procedural methods. Incor-

porating environmentally-sensitive plant models into the ‘open-world’ paradigm would allow

developers to populate their worlds with plants that can adapt and truly belong to their

diverse environments.

The effect of wind on the immediate and long-term shape of virtual plant branches and leaves

were studied in by Derzaph [18] in the context of small herbaceous plants, and Pirk et al. [64]

in the context of trees. In both works, the immediate plant response to wind are based off

Sakaguchi’s rod-spring method [79], and regarding long-term growth response, both employ

a method in which the strength of the wind field determines the extent to which the plant

exhibits permanent deformation. Derzaph uses L-systems to model their herbaceous plants,

whereas Pirk et al. employ a competition for space approach which has been shown to be

better suited for trees [62]. Pirk et al. also presented a particle-based model of model of

climbing plants [63]; the plants, whom are physically represented by shape-matching clouds

of particles [54], are able to latch onto neighbouring surfaces as they grow, whilst simulta-

neously avoiding penetration and conforming to gravitational forces.

The methodology presented in this thesis does not couple plant modeling and

animation. This is because a snapshot of a developmental model is first taken, which is

then used to create dynamics simulations. Growth and mechanics do not operate in parallel.

However, the key motivator behind this work is indeed to further the work towards an uni-

fied physically-based model coupling plant growth and dynamics, and the topic is elaborated

further in the last section of the thesis (Section 10.3).

26



27



Chapter 3

Physics background

3.1 Contents of the chapter

The dynamics algorithm to be presented in the next chapter is not necessarily straightfor-

ward, and as such, this chapter will aim to cover relevant background material that will ease

in its understanding. Section 3.2 discusses the important notion of reference frames, and

Section 3.3 summarizes the rudimentary components of rigid-body dynamics needed for the

derivation of Featherstone’s articulated-body algorithm.

A reader familiar with elementary rigid-body dynamics may find that they can skip this

chapter.

3.2 Coordinate systems

A coordinate system or coordinate frame, also called a reference frame in physics, is an

abstraction that lets us quantify the motion of the objects around us. An object has no ‘in-

trinsic’ position nor orientation, for example, but instead, these quantities are relative and

always refer to an agreed upon coordinate system of our choosing. For the time being, the

physics and mathematics employed will remain in Euclidean space, and not only this, but we
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will also be sticking to the Cartesian representation of this space; these simplifications bring

forth a simple description for the reference frames we will be using, which is that of a position

vector p along with three right-handed orthonormal basis vectors, {x̂, ŷ, ẑ}, that will span

our three dimensional Cartesian space. Technically, we also need to agree on a length scale

on which each reference frame operates, but we will assume that unless otherwise specified,

an unit length along an axis will correspond to a real-world metre for all reference frames

presented hereafter.

The vectors p and {x̂, ŷ, ẑ} are still abstract, meaning that we haven’t agreed what they

refer to (or equivalently, which reference frame they are in), therefore, we will postulate that

unless otherwise specified, the positions and orientations of objects and reference frames will

refer to the world reference frame, FO, by default. The world reference frame FO looks as

follows:

pO =


0

0

0

 and {x̂, ŷ, ẑ}O =




1

0

0

 ,


0

1

0

 ,


0

0

1


 . (3.1)

The three basis vectors - or axes - in Equation 3.1 can be combined to make up what is

called the rotation matrix of FO, RO, with each axis making up a column in the matrix.

This is compactly notated as RO = [x̂, ŷ, ẑ] with matrix form

RO =


x1 y1 z1

x2 y2 z2

x3 y3 z3

 =


1 0 0

0 1 0

0 0 1

 . (3.2)

We can now formally define a general reference frame, F , to be the tuplet (p,R) with p
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being its position and R its rotation matrix. Again, unless otherwise specified, these refer

to the global frame FO.

3.2.1 Transformation matrices

Now that we have defined a frame F to be the tuplet (p,R), we can define the transforma-

tion matrix of F , T, to be the following affine transformation matrix:

T =

R p

0 1

 =



r11 r12 r13 p1

r21 r22 r23 p2

r31 r32 r33 p3

0 0 0 1


. (3.3)

The group of matrices with the above form can be referred to be the matrix group of rigid-

body motions. They encapsulate the possible motions of a rigid body, which is that of a

translation and rotation, but no deformation (e.g. no scaling nor skewing).

A transformation matrix T has three major uses:

1. to represent the configuration (position and orientation) of a reference frame.

2. to change the reference frame in which a vector or frame is represented.

3. to displace a vector or frame.

In the first case, T merely represents the configuration of a frame with respect to another

frame (FO if no frame is specified). In the second case, T is an operator that changes the
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reference frame in which a vector or frame is represented. This is called a passive transfor-

mation because the physical quantity in question is not being physically disturbed; we are

merely changing the frame in which we wish to define it. Finally, in the third case, T is an

operator that moves the vector or frame in question within the same reference frame. This

is called an active transformation because this time the physical quantity is being physically

disturbed.

Foreword on reference frames

The concept of reference frames and their relative transformations is an essential one in this

thesis. This is because Featherstone’s algorithm necessitates that each and every rigid-body

(and joint) have a reference frame embedded within it, with the intention being that the

transformation matrices will act as information-transfer protocols between the connected

elements1. The location and orientation of the body-fixed frame is not critical because the

only thing of importance is that the reference frame move and rotate with the body (one-

to-one correspondence). If this is so, the rigid body’s position and orientation can be wholly

described by the position and orientation of its reference frame, meaning any calculations

needing the relative configurations of bodies can resort to the relative configurations (and

thus transformations) between their respective reference frames. This also means, however,

that there will be an abundance of reference-frame related algebra in the next chapter, so

for ease of following, this algebra will be introduced as needed.

1A reader familiar with L-systems might instantly see their theoretical correlation with Featherstone’s
algorithm.
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3.3 Rigid body dynamics

3.3.1 Definition of a rigid body

A rigid body may be regarded as a system of particles whose relative positions are fixed. This

means that a rigid body by itself cannot deform, but rather, it will be the relative displace-

ments between interconnected rigid bodies that will ultimately yield intricate articulated-

body motion. An independent rigid body may be uniquely described by three properties:

• Its mass

• Its center of mass (CoM)

• Its moment of inertia tensor

each of which will be explained in the next three subsections.

Mass of a rigid body

The mass of a rigid body represents its resistance to linear acceleration and is obtained

through the volume integral of its density equation ρ

m =

∫
v

ρdv. (3.4)

However, for simplicity’s sake, we will only be considering rigid bodies with uniform density,

meaning ρ is a constant and may be taken out of the integral

m = ρ

∫
v

dv = ρV (3.5)

where V is the volume of the rigid body.
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Center of mass of a rigid body

The center of mass of a rigid body is the weighted average position of the body. A special

and useful property of the center of mass is that a linear force acting at the center of mass

of a rigid body will create a linear acceleration and no angular acceleration. Its components

are given by integrating over the volume of the body:

xcm =

∫
v

ρ xdv∫
v

ρ dv
ycm =

∫
v

ρ ydv∫
v

ρ dv
zcm =

∫
v

ρ zdv∫
v

ρ dv
. (3.6)

Since we are only considering rigid bodies of uniform density, ρ is again constant and may

be taken out of the integrals, yielding simpler formulas for the center of mass:

xcm =

∫
v

xdv∫
v

dv
ycm =

∫
v

ydv∫
v

dv
zcm =

∫
v

zdv∫
v

dv
(3.7)

These equations are are also those of the centroid of the rigid body, which is always equal

to the center of mass when density is uniform. We can take advantage of symmetries in

locating the center of mass, which usually makes the process much quicker.

Moment of Inertia tensor of a rigid body

Just like mass represents a body’s resistance to a change in its linear motion, the moment

of inertia represents resistance to a change in its rotational motion. Let us imagine that a

rigid-body has been impaled by an undeformable and infinitely thin metal rod. If we rotate

the thin rod alongn its axis, then the rigid body rotates with it. This thin rod is what would

be called the rigid body’s current axis of rotation, and the amount of force needed to rotate

the body would depend on how the rigid-body’s mass is distributed relative to the thin rod.

To generalize this scenario, we can say that the moment of inertia, Iaxis, of a body with

respect to an axis of rotation is
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Iaxis =

∫
r2dm (3.8)

where r is the perpendicular distance of the mass differential dm with respect to the chosen

axis of rotation. It is important to keep in mind that the magnitude of a rigid-body’s mass is

inherent, but the same can not be said for the moment of inertia; the magnitude of the mo-

ment of inertia strictly depends on the chosen axis of rotation in which we want to compute it.

Take into example a thin wire of length L, then dm = ρdl and we would integrate these

squared distances over the length of the wire L with respect to our chosen axis of rotation.

For a surface, dm = ρda and we integrate over the surface area A. Lastly, for a rigid body

or volume, dm = ρdv and we integrate over the volume V . Intuitively, Iaxis measures the

average squared distance of the objects’s mass from the axis of rotation.

Again, it is important to keep in mind that Iaxis is always defined with respect to an axis

of rotation, and the value of the moment of inertia will likely change depending on the

location and direction of the rotation axis with respect to the rigid body. If we assume

the thin rod is ‘glued’ in space, and all it can do is rotate itself and its rigid body along

its axis, then it is an example of one-dimensional angular motion, however, things get sig-

nificantly more complicated when the axis is free to translate and rotate in three dimensions.

When dealing with three dimensional rotational motion, instead of having to recalculate

Iaxis as the axis of rotation changes, it is simpler and more efficient to calculate a moment

of inertia tensor I which is defined at a fixed location and coordinate system with respect

to the rigid body. The moment of inertia tensor is a 3x3 symmetric, positive-definite matrix

and has form
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I =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 (3.9)

where the Iii diagonal components are the moments of inertia about axis î, meaning if the

axis of rotation were to coincide with î, then only the Iii term would be needed, producing

the aforementioned one-dimensional motion. The Iij terms are called the products of inertia,

and in general, appear because the axis of rotation points along an arbitrary direction. For

the moments and products of inertia to be constant quantities, we would need to compute

them with respect to a coordinate system that is fixed to the body and rotates with it; hence

the usefulness of the aforementioned paradigm in which each rigid body has a coordinate

frame attached to it.

The origin of the body-fixed coordinate frame can be located at any point in space, however,

it is oftentimes convenient to pick the center of mass of the rigid body. On a greater note,

it is extremely convenient to pick the principal axes of the rigid body as the body-attached

reference frame axes. The principal axes of a rigid body are its frame axes such that I is

diagonal, significantly simplifying all calculations involving I.

The principal axes of a rigid-body need not be unique, but they always exist. We can

mathematically see this is the case because I is symmetric and positive-definite, meaning it

can always be diagonalized, regardless of the chosen point of origin. I can therefore take the

form

I =


I1 0 0

0 I2 0

0 0 I3

 (3.10)
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where Ii are the principal axes of the rigid body. It is intuitive to assume that three mutually

orthogonal axes of symmetry of a rigid-body make up a set of principal axes, and this is

indeed correct.

The moment of inertia, angular momentum, and rotational kinetic energy of a rigid body

about any arbitrary rotational axis all take on fairly simple forms in a coordinate system

whose axes are aligned with the principal axes of the rigid body. For example, let’s assume

n is an unit vector denoting the axis of rotation with respect to the body-fixed coordinate

frame. We can use the direction cosines of n (cosα, cosβ, cosγ) with respect to I to compute

the moment of inertia Iaxis along this arbitrary axis:

Iaxis = nT In =

[
cosα cosβ cosγ

]
I1 0 0

0 I2 0

0 0 I3



cosα

cosβ

cosγ


= I1cos

2α + I2cos
2β + I2cos

2γ

However, it should be noted that the simulation method presented in this thesis never ro-

tates a rigid-body about an abstract axis of rotation; 3-D rotations are always represented by

three successive miniscule rotations about each of the body’s principal axes, which is called

the Euler angle approach. An informed reader may know that Euler angles are generally

non-commutative, and can thus struggle in representing continuous rotations. This discus-

sion is elaborated upon in Section 6.5.

3.3.2 Newton-Euler equations for a rigid body

The change of motion, or acceleration, of any rigid body may be fully described by the ex-

ternal forces and torques acting on it. These forces and torques may be summed up into a

single linear force f acting at the center of mass of the body, and a single moment τ acting
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about the body’s center of mass.

First, we note that the center of mass of a rigid body has the special property that a linear

force acting through it induces no angular acceleration. Therefore, we can use Newton’s

second law to determine the resultant linear acceleration of the body due to the linear force

f

f =
dp

dt
=
d(mv)

dt
= m

dv

dt
= ma

where p is the body’s linear momentum, m its mass, v the instantaneous velocity of the

center of mass, and a the resulting linear acceleration of its center of mass.

For the rotational component, we can use the rotational equivalent of Newton’s second law

to determine the resultant rotational acceleration of the body due to τ ,

τ =
dL

dt
=
d(Iω)

dt

where L is the angular momentum of the body, I its moment of inertia, and ω its instanta-

neous rotational velocity. However, the quantities in the equation above have to be defined

with respect to an inertial, non-accelerating reference frame, otherwise the equation is void.

Any non-moving frame can be used, so let’s just refer those quantities to our world frame

FO.

τ =
dLO
dt

=
d(IOω)

dt
. (3.11)

However, this means that in order to use this equation of motion, we have to re-compute the

body’s world-frame inertia tensor, IO, every time we step the simulation forwards in time.

The problem here is that in the general case, IO is not aligned with the principal axes of the

body, and thus Equation 3.11 needs to be in its non-diagonalized form:
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LO = IO · ω =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz



ωx

ωy

ωz

 .
The issue here is that due to the existence of off-diagonal terms in this representation of the

inertia tensor, the direction of the angular momentum does not necessarily align along the

axis of rotation, which will greatly complicate future calculations. Therefore, we re-state the

equation, but this time using the predefined diagonalized inertia tensor that will be rotating

with our rigid-body, IB:

LB = IB · ω =


Ixx 0 0

0 Iyy 0

0 0 Izz



ωx

ωy

ωz

 .
This simplification doesn’t come for free, however. Since we are now defining our equations

in a reference frame that is attached to a possibly accelerating rigid-body, then it is no longer

an inertial frame of reference, and the equation of motion is incomplete. We need to add

a velocity-dependent term to our equation to account for the fact that this reference frame

could be accelerating:

(
dL

dt

)
O

=

(
dL

dt

)
B

+ ω × LB

=
d(IB · ω)

dt
+ ω × LB

=
dIB
dt
ω + IB

dω

dt
+ ω × LB

The time derivative of the body-fixed inertia tensor, IB, within the viewpoint of the body-

fixed frame is null, therefore that term cancels to zero:
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(
dL

dt

)
O

= IB
dω

dt
+ ω × LB

= IBω̇ + ω × LB.

Finally, all the calculations in the next chapter will use the body-fixed inertia tensors and

angular momentum, IB and LB, as opposed to their global counterparts, IO and LO. There-

fore, for legibility preferences, we will assume that I ≡ IB and L ≡ LB unless otherwise

noted. The Newton-Euler equations for a rigid-body are thus

f = ma

τ = Iω̇ + ω × Iω

(3.12)

Equations 3.12 are called the Newton-Euler equations of rigid-body motion, and give the

translational and angular accelerations of the body as a function of the input force.
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Chapter 4

The Articulated-Body Algorithm

4.1 Chapter overview

m2g

m1g

Figure 4.1: A 2-D double compound pendulum

The system illustrated in Figure 4.1 is called the double compound pendulum. We assume

that the first body is connected to the ceiling via a revolute joint, and that a second body is

connected to the first one via another revolute joint. Additionally, both bodies can accelerate

under gravity. This system, albeit rather simple, is famous because it exhibits non-linear

behaviour and does not have an analytical solution ([82] provides an analysis of its chaotic

nature). This means that we must employ some sort of numerical algorithm to simulate it.
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Appendix A provides a manual derivation of the equations of motion for the system, and,

despite the system having only two degrees of freedom, finding its equations of motion still

proved to be quite the tedious task. One might then see that it is unfeasible to manually

derive the equations of motion for a larger rigid-body system; the algebra required would be

overburdening. Therefore, we seek a way in which to automate the process of finding these

equations of motion, which is part of the job of a dynamics algorithm.

The job of a dynamics algorithm is to construct and numerically evaluate the equations of

motion of a given physical system [25, Chapter 3]. There are two fundamental classes of

dynamics algorithms: forward dynamics algorithms and inverse dynamics algorithms. For-

ward dynamics algorithms tackle the problem of finding the acceleration of a system given

its input forces, whereas inverse dynamics algorithms tackle the problem of finding the forces

required to produce a desired acceleration of the system. The ‘construction’ portion of a

dynamics algorithm refers to the process of finding the system of equations that yield the

desired outputs of the system as a function of its inputs, whereas the ‘evaluation’ portion

refers to the act of using these equations to ‘march’ the system to some point further in time

using some sort of numerical algorithm.

In this chapter, no assumptions will be made regarding the composition of the physical sys-

tem at hand, other than it be composed of rigid bodies connected by joints such that there

are no loops in the system’s topology. Such systems are prevalent in fields such as robotics,

mechanical engineering, and computer animations to name a few, and have various names

across literature. In this thesis, however, I will be sticking with the term articulated-body as

it is the one employed by Roy Featherstone in ‘The Calculation of Robot Dynamics Using

Articulated-Body Inertias’ [21], which is the original paper on which the simulation method-

ology employed in this thesis is built upon.
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The purpose of this chapter is to introduce some background information on rigid-body dy-

namics algorithms, and to manually derive the algorithm used in this thesis, which goes by

the name the articulated-body algorithm. Section 4.2 provides a broad classification of rigid-

body dynamics algorithms, as well as where the articulated-body algorithm lives within this

classification. Section 4.3 provides a formal description of an articulated body, which will

be used section 4.4, which provides a full derivation of the articulated-body algorithm from

mechanical principles.

The contents of this chapter all fall under previous work, and were primarily adapted from

the following sources:

1. BV Mirtich, Impulse-based dynamic simulation of rigid body systems, 1996 [53]

2. D House and JC Keyser, Foundations of Physically Based Modeling and Animation,

2016 [38]

3. R Featherstone, Rigid body dynamics algorithms, 2014 [25]

4. R Featherstone, The calculation of robot dynamics using articulated-body inertias, 1983

[21]

5. E Kokkevis, Practical physics for articulated characters, 2004 [42]

4.2 Classification of rigid-body dynamics algorithms

The decision to use the articulated-body algorithm to simulate the dynamics of plants was

made early into the development of this thesis, and it stems from the observation that both

the articulated-body algorithm and L-systems store and propagate information in a similar

recursive manner, despite the fact that they achieve totally different goals. However, there
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are several other viable algorithms that could have been used to simulate the motion of plants

represented by rigid bodies. It is therefore important to introduce a general classification

of rigid-body dynamics algorithms, and to point out where the articulated-body algorithm

lives in this classification.

4.2.1 Maximal coordinate vs generalized coordinates

Let us begin with a general definition of an articulated body:

“An articulated body is a collection of rigid bodies that may be connected together

by joints, and that may be acted upon by various forces. The effect of a joint is

to impose a motion constraint on the two bodies it connects: relative motions are

allowed in some directions but not in others” [25].

This description already suffices to divide rigid-body dynamics algorithms into two classes,

depending on how one wants to handle the joint motion constraints:

• Generalized coordinate formulation: Constraints are handled by removing the

number of coordinates of the system such that only the coordinates can only represent

desirable configurations.

• Maximal coordinate formulation: The number of coordinates is unchanged; con-

straints are instead handled by adding forces, called constraint forces, to the system.

The purpose of these forces is to avoid, or restrict, the relative motion of bodies in

impossible directions.

Example 1 offers a practical scenario of both approaches.

Given a system of m degrees of freedom and a set of constraints that remove c of those,

then, in the generalized coordinate1 approach, the objective is to parametrize the remaining

1Also called reduced coordinates or minimal coordinates
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Example 1: Maximal vs generalized coordinates

Imagine two rigid bodies, b1 and b2, floating independently in space. The positional state
of each rigid body may be denoted by 6 parameters; 3 translational and 3 rotational.
Therefore, the system has 6·2 = 12 degrees of freedom.

b1
b2

If we were to connect the two bodies by a revolute joint j, which allows for one rotational
degree of freedom between the two bodies, then the positional information of b2 can now be
wholly described by the positional information of b1, plus the joint angle. This means the
degrees of freedom of the system is down to 7.

b1
j

b2

By introducing this joint, we have added 5 constraints to the system. To handle them, we
can either introduce forces into the system to maintain the constraints, or, we can reduce
the number of coordinates of the system down to 7. The former is the maximal coordinate
approach, and the latter is the generalized coordinate approach.
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n = m − c degrees of freedoms of the system. The n parameters are called the generalized

coordinates of the system, and are historically denoted with the vector q. This method of

formulating mechanics problems has roots in Lagrangian mechanics, in which the number of

generalized coordinates is exactly the number of degrees of freedoms in the system.

In contrast, given a system of m degrees of freedom and a set of constraints that remove

c of those, then, in the maximal coordinate approach2, the system would still be repre-

sented by the original set of m maximal coordinates, and the constraints would instead be

enforced by introducing c constraint forces into the system. At each instant, a basis for the

constraint forces is known beforehand; the Lagrange multipliers (which must be computed)

are a vector of c scalar coordinates that describe the constraint force in terms of the basis [4].

Kinematic constraints

It should be noted at this point that, as far as literature goes, there appears to be no clear-cut

‘superior’ methodology to employ. If n is the number of degrees of freedom in the system,

then O(n) algorithms exist for both forward and inverse dynamics problems in both the

maximal and generalized formulations. Therefore, in terms of efficiency, there is no clear

advantage of one over the other. An in-depth comparison of both methods can be found in

David Baraff’s work on linear-time dynamics using Lagrange multipliers [4]. However, for

our purposes, it suffices to consider how each method handles kinematic constraints, and the

implications that this has on the suitability of either method over the other in a particular

mechanics problem.

A kinematic constraint is a relative motion constraint between two individual rigid bodies.

Figure 4.2 shows a classification of the possible kinematic constraints present in rigid-body

2Also called the Lagrange multiplier approach
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Figure 4.2: Classification of different kinematic constraints

systems. From a computer animations standpoint, the different types of constraints and

their utilization can be summarized as follows:

• Equality constraints are suitable for enforcing permanent physical contact between two

bodies, whereas inequality constraints allow for the separation of the bodies. Equality

constraints are thus ideal for handling the hard constraints of joints, such as those

imposed by prismatic and revolute joints, whereas inequality constraints can be used

to describe softer phenomena such as collisions, bouncing, and loss of contact between

bodies.

• Holonomic and nonholonomic constraints are both equality constraints. Holonomic

constraints are functions of the positions of the system, whereas nonholonomic con-

straints are functions of the positions and also the velocities. Holonomic constraints

only allow for the relative sliding between two objects, whereas nonholonomic con-

straints can also handle relative rolling between the objects.

• Scleronomic constraints and rheonomic constraints are both holonomic constraints.

Scleronomic constraints do not depend on time, whereas rheonomic constraints do. If

we take a simple pendulum as an example, which is scleronomous in nature, we could

turn it into a rheonomous system by moving the pivot back and forth as a prescribed

function of time. Scleronomic constraints, such as those imposed by revolute and pris-
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matic joints, are widely used in rigid-body systems; all the constraints employed in

this thesis are scleronomic.

With these kinematical constraints defined, we can deduce the following (as described in [4]):

generalized coordinate approach excels at representing systems that have a relatively large

number of scleronomic constraints, but no other types of kinematic constraints, whereas the

maximal coordinate approach excels at representing systems with a mixture of kinematic

constraints. The reasoning for the first point is that it is generally only worthwhile to re-

parametrize the system if an abundant number of degrees of freedom have been strictly

removed, which is the case when the system is tightly packed with scleronomic constraints.

The reasoning for the second point is that since constraint forces are versatile and can enforce

soft and hard constraints, then methods using constraint forces can better handle environ-

ments where different types of constraints are prevalent.

The plants constructed in this thesis will be connected together solely with scleronomic con-

straints (and many of them, for that matter), therefore, from a purely kinematical stand-

point, it makes sense to explore a generalized coordinate approach.

4.2.2 Forward vs inverse dynamics

Forward dynamics algorithms tackle the problem of finding the acceleration of a system given

its input forces, whereas inverse dynamics algorithms tackle the problem of finding the forces

required to produce desired accelerations of the system. To understand this formally, we can

look at the equation of motion for a general rigid-body system written in its canonical form3:

H(q)q̈ +C(q, q̇) = τ . (4.1)

3From hereon, assume a generalized coordinate formulation as that is the one used in this thesis
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In the equation above, q, q̇, and q̈ are the generalized position, velocity, and accelerations

vectors of the system, respectively. Likewise, τ is the vector of generalized forces. Since from

now on we are assuming a generalized coordinate formulation, then all of these vectors have

size equal to the number of degrees of freedoms of the system, n. H is a n×n matrix called

the generalized inertia matrix, and it is a mapping between forces and accelerations. It is

written H(q) to indicate that it is a function of the generalized positions only. Likewise, C

is the vector of generalized bias forces, and is written C(q, q̇) to indicate that it is a function

of both the generalized positions and velocities of the system. The vector of generalized bias

forces can most simply be understood to be the value that τ must take to produce a zero

acceleration of the system as a whole. It accounts for the Coriolis and centrifugal forces,

gravity, and any other forces not included in τ .4

Using Equation (4.1), we can now see that the forward dynamics problem consists of calcu-

lating q̈ given τ , whereas the inverse dynamics problem consists of calculating τ given q̈.

One can encapsulate these problems with the following two functions:

q̈ = FD(model, q, q̇, τ ) (4.2)

and

τ = ID(model, q, q̇, q̈). (4.3)

In both equations, model refers to the data structure containing all the information of the

rigid-body system at hand not included in q, q̇, and q̈. The formal description of the model

data structure is provided later in this chapter, and includes information such as the number

of bodies and joints, the manner in which they are connected (the ‘topology’ of the system),

the inertial properties of each bodies, and so on.

4It should be noted that the notation used for these equations varies between literature, but the overall
meaning is consistent. The notation used in this thesis is the one used by Featherstone in [25].

49



4.2.3 Kinematic trees vs closed-loop systems

Rigid-body systems can be classified into two further classes; kinematic trees and closed-loop

systems. A kinematic tree is any rigid-body system that does not contain loops in its connec-

tivity, whereas a closed-loop system is any rigid-body system that does. It is considerably

more difficult to devise an algorithm that works on closed-loop systems, and, interestingly

enough, a standard procedure for devising such algorithms consists of adding extra con-

straints to a kinematic-tree algorithm in order to account for the closed loops [25, Chapter

8].

The source of this added difficulty can be understood by first noting that any rigid body in

a kinematic tree can be seen as having a discrete set of predecessors and successors. The

predecessors are any rigid bodies that come before it - all the way down to the base - and

the successors are any rigid bodies that come after it, all the way up to the tips. When a

loop is introduced, however, this trait is no longer true because a rigid body that’s part of

a loop is technically its own predecessor and successor, greatly complicating matters.

There are known algorithms that work on closed-loop systems (e.g. [25, Chapter 8]), but

the algorithm employed in this thesis only works on kinematic trees. It should be noted that

this limitation is not significant within the context of plant simulations because real plants

seldomly show signs of cycles in their topology.

4.2.4 Classicifation of the articulated-body algorithm

We can now formally define the articulated-body algorithm with all these classifications at

hand; the articulated body algorithm solves the forward-dynamics problem (i.e. finds the
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accelerations of the system given input forces) in O(n) time, where n is the number of de-

grees of freedom in the system. Additionally, the articulated-body algorithm employs the

generalized coordinate formalism, and operates strictly on kinematic trees.

Finally, there are two further types of forward-dynamics algorithms operating on kinematic

trees:

1. Inertia Matrix Methods: These methods operate on a global scale. A system of

linear equations is constructed, representing the equation of motion of the system as a

whole.

2. Propagation Methods: These methods operate on a local scale. The idea is to

recursively propagate dynamical information from one body to another in such a way

that the accelerations can eventually be calculated one body at a time.

Inertia matrix methods are algebraically simpler than propagation methods, but can only

achieve a time complexity of O(n3), whereas propagation methods can reach time complex-

ities of O(n).

The articulated-body algorithm is a propagation method and can thus reach a time com-

plexity of O(n) because it never strictly solves for H nor C, which are time consuming to

solve. Studies have been done showing that propagation methods start exceeding inertia

matrix methods in terms of efficiency at around a dozen bodies [22, 25].

4.3 Formal description of an articulated body

Before delving into any dynamics equations, it is necessary to formally describe the elements

that make up an articulated body. The following description assumes that the articulated-
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body in question is an open kinematic-tree that is rooted somewhere in the world.

4.3.1 Parent and children bodies

An articulated body is a collection of rigid bodies and joints, where each joint is a connection

between exactly two bodies. We will assume that the articulated-body is rooted somewhere

in the world, and that the rooted rigid-body be called the root body, b0, which is connected

to the world via an immovable joint j0.

Every other body bi in the system must be connected to the system via an inboard joint.

The body to which bi’s inboard joint connects to is referred to as bi’s parent body; all bodies

have a parent body except for the root body.

Figure 4.3: Let’s take b1 above into consideration. Its inboard joint is j1, and its outboard
joints are j2 and j3. Its parent is the root body b0 (not pictured), and its children are b2 and
b3.

Additionally, the set of all the bodies that have body bi as its parent are called the children
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of bi. The joint(s) corresponding to the children of a particular body are called its outboard

joints. See Figure 4.3.

4.3.2 Indexing and connectivity

Every rigid body and joint in the system are indexed. Additionally, the immovable root

body and its immovable proximal joint are denoted b0 and j0, respectively. The remaining

rigid bodies are indexed 1 to NB, where NB is the number of movable rigid bodies in the

system. The (movable) joints are also indexed 1 to NB. Every joint ji is the corresponding

inboard joint of body bi for 1 ≤ i ≤ NB, such that a body always shares an index with its

inboard joint. If i is the index of a body, then λ(i) is an integer function that returns the

parent of i. Likewise, if i is the index of a body, then µ(i) is a vector function that returns all

the children of i. Together, the functions λ() and µ() define the connectivity of the system.

If we use the system in figure 4.3 as an example, then:

λ(1) = 0 and µ(1) = {2, 3}

λ(2) = 1 and µ(2) = {}

λ(3) = 1 and µ(3) = {}

4.3.3 Body-fixed frames

The frame denoting the orientation and position of body i is denoted as Fi. We define the

local orientation and position of body i to be relative orientation and position of Fi with

respect to its parent’s frame, Fλ(i). We define the global orientation and position of body i

to be the relative position and orientation of Fi with respect to the world reference frame,

FO. A frame F only has meaning if it is given with respect to another frame. This other

frame is usually explicitly given, or we are referring to FO.
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4.3.4 Dynamic state of an articulated body

We define the dynamic state of an articulated body to be the instantaneous values of the

system’s state variables required to perform a given dynamics calculation. For the problem

of forward dynamics, the dynamic state consists of the generalized joint positions,

q = [q1 q2 · · · qn]T ,

their first time derivatives,

q̇ = [q̇1 q̇2 · · · q̇n]T ,

the generalized forces acting on the joints,

τ = [τ1 τ2 · · · τn]T ,

and the global forces acting on the system’s rigid bodies,

fext = [̌fText1 f̌Text2 · · · f̌TextNB
]T .

The values above define the dynamic state of the articulated-body, and are required in order

to compute the instantaneous generalized accelerations of the system,

q̈ = [q̈1 q̈2 · · · q̈n]T .

Note that except for fext, all of the vectors above have size n where n is the number of

degrees of freedom of the system. The vector fext has size 6NB, where NB is the number

of movable rigid-bodies in the system. This is because six scalars (three translational and

three rotational) are required to indicate the net external force acting on any rigid-body at

an instant in time; these six scalars are encoded in a single six-dimensional vector, called a

spatial vector, which is denoted with an upside-down hat. Spatial vectors and spatial vector
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algebra will be introduced later in this chapter.

At this point, we may note that the joint coordinates are the generalized coordinates of the

articulated-body, so from hereon, the terms generalized coordinates and joint coordinates

are interchangeable. Additionally, it is helpful to visualize a joint as either being a revolute

or prismatic joint; this is because any higher-order joint can be modeled as composition of

revolute/prismatic joints with volume-less bodies in between. Lastly, just like an Euclidean

vector belongs to Euclidean space, the generalized coordinate vectors of the articulated body

belong to what is called the configuration space of the system.

It is worth mentioning that whilst vectors generally start at index 0, the elements q0, q̇0, and

q̈0 correspond to the 0-DoF joint connecting the immovable root body to the earth (one can

even say that the immovable root body is the earth), thus they always have a value of zero

and for convenience, are generally omitted from their vectorial representation.

4.4 The articulated-body algorithm

A forward dynamics problem requires finding the accelerations of a mechanical system given

its input forces. As an example, let’s take a single rigid body m1 and assume it is freely

floating in a vacuum but currently stationary. If we act upon it with a linear force at the

center of mass, we can use Newton’s equations to find that the resulting acceleration only

has a linear component which is equal to a = f/m1 (Figure 4.4).

m
/m

1
1f fa = 

Figure 4.4: A rigid body experiencing simple linear motion.
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However, if another body were to be glued on top of it, then the previous equation no longer

works because the effective mass of m1 has been changed. Additionally, the center of mass

will have likely changed as well, so we wouldn’t even be able to say that the resulting accel-

eration would only have a linear component (Figure 4.5).

m1

m2

f a = ? 

Figure 4.5: A linear force not about the center of mass results in a non-trivial system.

Furthermore, what if we applied some sort of external torque at some point on m2? How

would this affect the motion of m1? (Figure 4.6).

m1

m2

f

τ

a = ? 

Figure 4.6: A linear force not about the center of mass plus a torque about a different point
results in a complicated articulated-body system.

The articulated-body algorithm tackles this problem by traversing the open kinematic tree

three times and recursively calculating different mechanical properties in each traversal. The

input to the algorithm is the current dynamic state of the system, and the output of the

system is the instantaneous acceleration of the system, q̈:

1. The first traversal starts at the root and ends at the leaves. It is in charge of com-

puting the absolute position and velocities of the system, as well as how a specific

body’s acceleration is influenced by the motion of the bodies that come before it in the
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kinematic tree. An absolute quantity is one that is defined with respect to the global

coordinate frame, FO.

2. The second traversal starts at the leaves and ends at the root. It is in charge of

letting each rigid body know how its children affect the body’s apparent inertia and

acceleration in that instantaneous configuration of the system.

3. The third and last traversal starts at the root and ends at the leaves. It is in charge

of computing the acceleration of the system by making use of the properties derived

in the previous two steps.

The remainder of this chapter deals with the derivation of these three algorithms, and at-

tempts to do so from mechanical principles.

4.4.1 First pass: forward propagation of velocities and accelera-

tions

The instantaneous absolute motion of the system has to be known in order to carry out any

dynamics calculations. Therefore, the first set of derivations we will be looking at consists

of computing the absolute motion of each rigid body given the generalized motion of the

system. This problem is summarized as follows:

Problem: Forward propagation of velocities and accelerations

Given the instantaneous joint positions q, velocities q̇, and accelerations q̈ of the

articulated body, compute the absolute linear velocity vi, angular velocity ωi, linear

acceleration ai, and angular acceleration αi of each rigid-body.

This algorithm will essentially translate the positions, velocities, and accelerations of the
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system from configuration space into Euclidean space. The starting point for this algorithm

is to note that the absolute motion of the base body is zero, therefore it is known and we

can inductively start from there.

The mathematical procedure for this problem involves finding the equations that make up

a particular recurrence relation. Recurrence relations consist of an equation, or a set of

equations, that define a sequence. As long as as an initial state is provided, these equations

give us the next term of the sequence as a function of the previous term(s). For the problem

at hand, we need to prove the vailidity of the following recurrence:

Base case: the absolute motion of the root body is initially known.

Recursive step: the absolute motion of any child body5 can be stated in terms of the

absolute motion of its parent, plus the motion of the joint connecting them.

The way to prove this recurrence relation is by finding its corresponding equations. The

recurrence relation above is special in that only the immediately previous term is needed to

define the next one. Our goal is thus to prove that this recurrence relation holds, and we

shall do so by finding the equations that give the motion of any child body in terms of the

motion of its parent body, plus the motion of the joint connecting them. Once we have these

equations, we can propagate the velocities and accelerations from the stationary root body

outwards, yielding the absolute motion of each body with respect to the global reference

frame, FO. This step will also compute any non-inertial accelerations that a body

may be experiencing due to the velocities of its ancestors.

Base case

The base case is trivial here. The root body with index 0 is immovable by definition, so its

absolute motion with respect to FO is zero. Therefore,

5Recall that all bodies except the root body are child bodies
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v0 = 0

ω0 = 0

a0 = 0

α0 = 0

Inductive case

For the inductive case, we will need to find the absolute motion of body i. Our inductive

hypothesis will be that we already know the motion of i’s parent, λ(i).

To proceed, we first define a few geometric quantities between the parent and child that are

required in order to derive the propagation equations. They are illustrated in Figure 4.7.

The vector ri denotes the displacement between the body-fixed frames of the parent and

child: Fλ(i) and Fi. The direction vector û is the joint axis of joint i; if i is revolute, û is

the axis of rotation, else, i is prismatic and û is the direction of translation6. Finally, di is

the vector pointing from the joint’s location to the location of Fi.

Now that we have these geometric quantities, we can start by defining the relative angular

velocity of a body to be the angular velocity it would have if its parent were fixed in space.

Equivalently, it is the angular velocity of the body due solely to the motion of its connecting

joint. The absolute angular velocity of body i can therefore be stated as the absolute angular

velocity of its parent, plus its relative angular velocity with respect to the parent;

ωi = ωλ(i) + ωrel. (4.4)

The equation for the linear relative velocity is is nearly identical, except there’s the additional

6Prismatic joints were not used in this thesis, but the derivation will still include them for completeness.
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Figure 4.7: Necessary geometric quantities between two bodies. The diagram hints towards
a revolute joint, but the same quantities apply for a prismatic joint.

cross-product term of ωλ(i) × ri;

vi = vλ(i) + ωλ(i) × ri + vrel. (4.5)

This term appears because unless ri = [0, 0, 0]ᵀ, the angular velocity of the parent will induce

a linear component on the child’s velocity. The angular acceleration may now be obtained

by taking the time derivative of Equation (4.4):

αi = αλ(i) +αrel. (4.6)

Similarly, the linear acceleration is obtained by taking the time derivative of (4.5);

ai = aλ(i) +αλ(i) × ri + ωλ(i) × ṙi + arel.

Since ri defines the relative position of body i with respect to its parent, its time rate of

change ṙi is the sum of two quantities: an induced linear velocity due to the rotation of the
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parent, ωλ(i) × ri, plus the linear relative velocity of body i with respect to its parent, vrel,

ṙi = ωλ(i) × ri + vrel.

This can now be substituted back into the equation of the linear acceleration to obtain

ai = aλ(i) +αλ(i) × ri + ωλ(i) × (ωλ(i) × ri) + ωλ(i) × vrel + arel. (4.7)

Equations (4.4) through (4.7) state ωi, vi, αi, and ai in terms of the state of the body’s

joint and parent. What’s left is to figure out the remaining unknowns in these equations,

which are the relative velocities and accelerations of the body: ωrel, vrel, αrel, and arel.

First, we recall that ωrel and vrel are the angular and linear velocities of a body due solely

to the motion of its joint, therefore they should be functions that only depend on the joint’s

velocity variable, q̇i. If the joint is prismatic, then then two bodies it connects can only slide

forwards and backwards with respect to each other, meaning the joint axis vector ûi points

from the joint to the child, thereby creating no angular veclotiy;

ωrel = 0,

vrel = q̇iûi.

(4.8)

For a revolute joint, ûi is the axis of rotation, giving its equations a slightly different look:

ωrel = q̇iûi,

vrel = q̇iûi × di.

(4.9)

In the equations above, di is the relative displacement between the joint and child body,

and the cross product term in the equation for vrel arises because unless di = [0, 0, 0]ᵀ, the

angular velocity of the joint will induce a linear component on the child’s velocity. Note

that q̇i is not bold because it is the single joint velocity between the two bodies and is thus
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a scalar. Given these equations, we can now solve for αrel, and arel for both prismatic and

revolute joints by taking the time derivatives of (4.8) and (4.9), respectively. The main trick

in these derivations is to note that since ûi rotates with body λ(i), then the change in ûi is

ωλ(i) × ûi, leading to the following derivation:

d

dt
(q̇iûi) =

d

dt
(q̇i)ûi + q̇i

d

dt
(ûi) = q̈iûi + ωλ(i) × q̇iûi.

Therefore, for a prismatic joint,

αrel = 0,

arel = q̈iûi + ωλ(i) × q̇iûi.
(4.10)

And for a revolute joint,

αrel = q̈iûi + ωλ(i) × q̇iûi,

arel = q̈iûi × di + ωλ(i) × q̇iûi × di + q̇iûi + (q̇iûi × di).

(4.11)

Equations (4.8) - (4.11) give us ωrel, vrel, αrel, and arel which may now be plugged back

into equations (4.4) - (4.7). For a prismatic joint:

ωi = ωλ(i)

vi = vλ(i) + ωλ(i) × ri + q̇iûi

αi = αλ(i)

ai = aλ(i) +αλ(i) × ri + q̈iûi + ωλ(i) × (ωλ(i) × ri) + 2ωλ(i) × q̇iûi.

(4.12)

And for a revolute joint:
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ωi = ωλ(i) + q̇iûi

vi = vλ(i) + ωλ(i) × ri + q̇iûi × di

αi = αλ(i) + q̈iûi + ωλ(i) × q̇iûi

ai = aλ(i) +αλ(i) × ri + q̈iûi × di + ωλ(i) × (ωλ(i) × ri)

+ 2ωλ(i) × (q̇iûi × di) + q̇iûi × (q̇iûi × di).

(4.13)

The set of equations in (4.12) and (4.13) state the absolute velocities and accelerations of a

body with respect to those of its joint and parent, proving that the recurrence relation holds

Upon further inspection, one may see that some of the equations in (4.12) and (4.13) depend

on the joint acceleration variables q̈i. These joint accelerations are a product of the net

forces acting on the system, and are not initially known. It is the job of the articulated-body

algorithm to find their values. However, before we get into the derivation of the articulated-

body algorithm, there is a problem that the set of equations in (4.12) and (4.13) are already

getting messy. The reason for this is two-fold:

• We have separate equations for revolute and prismatic joints.

• Even after having picked either a revolute or prismatic context, we still have separate

equations for the angular and linear components.

If we want cleaner algebra, which is a must if we are to derive the articulated-body algorithm,

then we must use spatial algebra. Let us therefore introduce the basic elements of spatial

algebra that will be utilized in the derivation of the articulated-body algorithm.
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4.4.2 Spatial Algebra

Spatial vector algebra refers to the utilization of 6-D vectors, which in our context are called

spatial vectors, for algebra involving rigid-body arithmetic. They combine the linear and an-

gular components of rigid-body dynamics, greatly reducing the amount of algebra involved

when carrying out rigid-body mechanics calculations. A thorough tutorial on 6-D vectors is

offered in [24], and a more in-depth theoretical analysis on 6-D vectors and their underlying

basis can be found in [23].

Spatial velocity and acceleration

The spatial velocity is the concatenation of the angular velocity and the linear velocity of a

rigid body:

v̌ =

ω
v

 .
Note that since we need to differentiate between 6-D and 3-D vectors, we will depict 6-D

spatial vector and matrices with an ‘upside down’ hat on top of it as above.

Similarly to the definition above, the spatial acceleration is the union of the angular accel-

eration and the linear acceleration of a rigid body,

ǎ =

α
a

 ,
where α = dω

dt
and a = dv

dt
. Example 2 shows the spatial version of the Euler-Lagrange

equations of motion for a rigid body.

64



Example 2: Euler-Lagrange equations in spatial notation

We saw in the previous chapter that the Euler-Lagrange equations of motion for a rigid body
were as follows,

f = ma

τ = Iω̇ + ω × Iω,
where f is a linear force incident at the center of mass, and τ is a torque about the center
of mass. Also recall that the inertia tensor I is assumed to have been defined with respect
to the center of mass of the rigid body, so that it is constant and does not need to be
re-computed every simulation step.

We can write the same equation as follows:[
f
τ

]
=

[
0 M
I 0

] [
α
a

]
+

[
0

ω × Iω

]
,

where M is the diagonal mass-matrix of the rigid body,

M =

m 0 0
0 m 0
0 0 m

 .
We can then define the two new terms as follows:

Ǐ =

[
0 M
I 0

]
, and p̌ =

[
0

ω × Iω

]
.

Together, Ǐ and p̌ define the spatial isolated quantities of the rigid body in question, and
they incorporate the mechanical properties of a rigid body in isolation (i.e. not attached
to a child or parent). Ǐ is the spatial isolated inertia tensor of the rigid body, expressed
in body coordinates, and p̌ is its spatial isolated bias force. The bias force is the external
force that would be needed to produce no acceleration on the body (i.e. to counteract any
velocity-dependent accelerations the body might be experiencing). With these quantities
defined, the Euler-Lagrange equations can now assume their final spatial form,

f̌ = Ǐǎ+ p̌,

where f̌ is the force acting on the body, Ǐ is the isolated inertia tensor of the rigid body, ǎ
is the acceleration of the body, and p̌ is the isolated bias force of the body, all in spatial form.
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Spatial Transforms

Just like there are 6-D vectors, there are also 6x6 matrices called spatial matrices. We can

use these matrices to represent spatial transformations, which are super useful because they

are used to translate physical quantities between coordinate frames. For example, the trans-

formation of a dynamical quantity from frame F to frame G is denoted as GX̌F .

A spatial transform between frames F and G can be thought of as having two components:

one due to the position of frame G relative to F , and the other due to the orientation of frame

G relative to F . The general form is provided below, with a detailed derivation presented in

[25, Chapter 2]:

GX̌F =

 1 0

−r̃ 1


R 0

0 R

 =

 R 0

−r̃R R

 , (4.14)

where R is the 3x3 rotation matrix corresponding to the rotation between F and G, and r̃

is the cross operator of r, the offset vector from F to G:

r̃ =


0 −rz ry

rz 0 −rx

−ry rx 0

 .
The two matrices in the middle of Equation (4.14) correspond to the translation and rotation

matrices of the spatial transformation, respectively. The spatial transformation GX̌F can now

be used to transform physical quantities from F to G. For example, if we have a spatial

velocity defined in frame F , v̌F , but we wanted to describe it with respect to frame G, then

we would carry out the following expression:

v̌G =G X̌F v̌F
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Note that Featherstone’s algorithm is all about recursively propagating physical quantities

from parents to children and vice versa. Therefore - albeit conceptually complex - spatial

algebra and its notation will prove to be crucial in the rest of the chapter.

Spatial Force

Similar to velocities and accelerations, a spatial force is the union of a linear force and a

torque, and has the form

f̌ =

 f

τ


Forward propagation of accelerations in spatial formulation

It turns out that one can compactly represent the previously derived equations for the forward

propagation of accelerations in spatial notation. To reiterate, this is what they look like for

prismatic joints (Equation 4.12),

αi = αλ(i)

ai = aλ(i) +αλ(i) × ri + q̈iûi + ωλ(i) × (ωλ(i) × ri) + 2ωλ(i) × q̇iûi,

and for revolute joints (Equation 4.13),

αi = αλ(i) + q̈iûi + ωλ(i) × q̇iûi

ai = aλ(i) +αλ(i) × ri + q̈iûi × di + ωλ(i) × (ωλ(i) × ri)

+ 2ωλ(i) × (q̇iûi × di) + q̇iûi × (q̇iûi × di).

By gathering up common terms, we can re-express these equations in spatial notation. For

prismatic joints, they look as follows,
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αi
ai

 =

 αλ(i)

−ri ×αλ(i) + aλ(i)

+ q̈i

 0

ui


+

 0

ωλ(i) × (ωλ(i) × ri) + 2ωλ(i) × q̇iûi

 ,
(4.15)

and for revolute joints,

αi
ai

 =

 αλ(i)

−ri ×αλ(i) + aλ(i)

+ q̈i

 ui

ui × di


+

 ωλ(i) × q̇iûi

ωλ(i) × (ωλ(i) × ri) + 2ωλ(i) × (q̇iûi × di) + q̇iûi × (q̇iûi × di)

 .
The three terms in the right hand-side of each acceleration equation are similar between both

prismatic and revolute formulations, and indeed, each have a simpler term associated with

them such that ultimately, both the prismatic and revolute formulations can be expressed

by a single equation:

1. The left terms are the spatial accelerations of the parent body as witnessed from the

child body’s perspective. Therefore the terms are both equal to FiX̌Fλ(i)ǎλ(i), where

FiX̌Fλ(i) is the spatial transformation from the parent frame Fλ(i) to the child frame

Fi.7

2. The middle terms are the ones dependent on the joint variable accelerations q̈i. The

vector in each respective term is called the spatial joint axis of the joint, and it is equal

to

ši =

 0

ui

 and ši =

 ui

ui × di


7From now on, FiX̌Fλ(i) will instead be denoted as iX̌λ(i) for simplicity.
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for prismatic and revolute joints, respectively. Conceptually, a prismatic joint is really

just a 3-D unit vector indicating the allowable direction of translation, whereas a

revolute joint is a 3-D unit vector indicating the allowable axis of rotation. In the

same vein of thinking, the spatial joint axis is just a 6-D vector indicating both in

parallel.

3. The third term involves all the velocity-induced accelerations. It is called the spatial

Coriolis force, but includes both centripetal and Coriolis effects. If the joint is pris-

matic, it is equal to

či =

 0

ωλ(i) × (ωλ(i) × ri) + 2ωλ(i) × q̇iûi

 . (4.16)

and if the joint is revolute, it is equal to

či =

 ωλ(i) × q̇iûi

ωλ(i) × (ωλ(i) × ri) + 2ωλ(i) × (q̇iûi × di) + q̇iûi × (q̇iûi × di)

 . (4.17)

Note that this vector effectively describes the acceleration that a body will experience

due to the velocities of its ancestors; which is crucial if we are to use articualted-bodies

to approximate the complex yet lively motion of plants.

The final equation for the spatial acceleration of a rigid body is thus

ǎi = iX̌λ(i)ǎλ(i) + q̈iši + či. (4.18)
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4.4.3 Second pass: the articulated-body equations of motion

The ‘articulated-body algorithm’ has a bit of a misnomer (hence why I personally prefer

to call it Featherstone’s algorithm); it is not named such merely because it operates on

articulated bodies, which many algorithms do, but rather because its main idea is to construct

each simulation step what are called the articulated-body equations of motion for each body

in the system. An articulated-body equation of motion belongs to a single rigid body, called

the handle, and it is the equation of motion that the handle perceives to have when we

temporarily sever it from its parent, and take into complete consideration the dynamical

effects that the entire subtree8 of the handle has on it. What this means is that instead of

just calculating the Newton-Euler rigid-body equation of motion for each body in the tree,

f̌ = Ǐǎ+ p̌, (4.19)

which is incomplete, the articulated-body algorithm is interested in the calculation of the

more complete articulated-body equation of motion for each body in the tree,

f̌ = ǏAǎ+ p̌A. (4.20)

In Equation (4.20), ǏA and p̌A are the articulated-body inertia tensor and the articulated-

body bias force, respectively (hence the superscript A). The articulated-body inertia tensor

represents the apparent inertia of the handle body if we took into account how the inertia

of its descendants affects it 9. This means that the instantaneous positions and orientations

of each body in the handle’s subtree contribute to its articulated-body inertia, leading to a

system in which each rigid-body typically has an unique articulated-body inertia. Likewise,

the articulated-bias force encapsulates the opposing force that the handle body experiences

due to the motion of its descendants, i.e., it is the force that would need to be applied at

8A subtree of a body is the articulated body consisting of all the descendants of the body, with the body
acting as the base

9Note that the inertia of the handle’s ancestors does not directly affect the handle’s inertia itself
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the handle body to ‘cancel out’ the motion the body is inheriting from its subtree. Equation

(4.19) is incomplete because it assumes the rigid body is in isolation. Equation (4.20) is

complete because it does not assume the body is in isolation; it captures the dynamical

effects (inertia and velocity-induced accelerations) of the handle’s descendants. This idea -

combined with the computation of the spatial Coriolis force from last section - are the key

reasons why Featherstone’s algorithm is a candidate algorithm for producing lively motion

that is often neglected in plant animation works.

It is important to note that the articulated-body equation above is only valid if the handle

body - the body to whom the equation refers to - is assumed to be temporarily detached

from its rigid-body system. It’s of course true that the handle body experiences non-inertial

effects due to the motion of it’s ancestors, however, prior to the computation of ǏA and p̌A,

the parental bias effects affecting the handle, či, will have already been pre-computed in a

base-to-tip pass consisting of the equations derived in the previous section (4.4.1).

It is a non-trivial task to compute the bias force10 of kinematic trees because a domino-like

effect of non-inertial terms are accumulated throughout the depths of the handle’s subtree.

If both ǏA and p̌A are known for any particular body in the system, however, then the

acceleration of that body may be calculated directly (assuming that the external force on

that body, f̌ , is known).

Deriving the articulated-body inertia and bias force

In this section, we aim to prove the existence of, and derive, the variables ǏA and p̌A for all

bodies in a kinematic tree. An algorithm will ultimately be constructed based off the derived

equations for ǏA and p̌A; the articulated-body algorithm. This problem is summarized as

follows:

10Also called the ficticious force, pseudo force, and zero-acceleration force, amongst others
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Problem: Calculation of articulated-body quantities

Given an abstract kinematic tree with NB bodies, prove the existence of, and derive,

the spatial matrix ǏAi and spatial vector p̌Ai for all 1 ≤ i ≤ n such that

f̌ Ii = ǏǍi ǎi + p̌Ai ,

where f̌ Ii is the spatial force of body i’s inboard joint (the joint connecting it to its

parent), and ǎi is the unknown output spatial acceleration of body i.

Since it confused me for some time, I thought I’d note that it helped to think about the

equation f̌ Ii = ǏǍi ǎi + p̌Ai as saying the following two equivalent things:

1. If the net force my parent is giving me is f̌ Ii (resolved at my local coordinate frame),

what acceleration ǎi will I experience, taking into account the inertia ǏǍi and bias force

p̌Ai that I perceive to have due to my children?

2. If I currently have acceleration ǎi, what force f̌ Ii will I propagate to my parent, taking

fully into account the influences of my subtree?

This calls for an inductive proof over the kinematic tree, but this time starting at the leaves of

the tree and recursively working our way down to the base. This can be achieved by finding

a recurrence relationship similar to what we did in Section 4.4.1, but this time having the

following form:

Base case: ǏAi and p̌Ai is known if i is the index of a leaf of the kinematic tree.

Recursive case: if i is not the index of a leaf, then IǍi and p̌Ai can be stated in terms

of all ǏAj and p̌Aj such that j ∈ µ(i) (recall µ(i) contains all children of body i).
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In other words, we need to prove that ǏAi and p̌Ai exist trivially for the leaves of the kinematic-

tree, and we need to prove that any other body’s ǏAi and p̌Ai can be stated in terms of its

children.

Base case

If i is a leaf body of the kinematic tree, then there are no children attached to it and thus

its articulated inertia equals its isolated inertia, ǏǍi = Ǐi. Likewise, if i is a leaf body, there

are no outbound attached bodies to contribute towards i’s articulated-body bias force, so

we may also conclude that the articulated-body bias force for a leaf body is also its isolated

counterpart, p̌Ai = p̌i. Therefore, if i is a leaf body,

f̌ Ii = ǏAi ǎi + p̌Ai = Ǐiǎi + p̌i,

meaning that ǏAi and p̌Ai always exist for the base case. Note that the equation above is just

the spatial formulation of the Newton-Euler equations as seen in Example 2.

Inductive case

For the inductive case, our inductive hypothesis will be to assume that the theorem holds

on all the children of body i, that is, there exists an ǏAj and p̌Aj such that

f̌ Ij = ǏAj ǎj + p̌Aj ∀j ∈ µ(i).

The idea will be to start with the canonical Newton-Euler equation for body i, and, through

a set of derivations, to reach the desired equation required to fulfill the proof:

f̌i = Ǐiǎi + p̌i
derivation−−−−−→ f̌ Ii = ǏAi ǎi + p̌Ai

If solved, the derivation will ultimately yield the equations for ǏAi and p̌Ai . First, we note

that f̌i is composed of two different types of forces acting on body i:
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1. The force from the single inboard joint f̌ Ii . The inboard joint is the one that connects

body i to its parent.

2. The sum of forces of the outboard joints,
∑

j∈µ(i) f̌
Oj
i . The outboard joints are the

ones connecting body i to its children.

Note that we will assume that all of these forces are expressed (or resolved) at body i’s

coordinate frame, that is, a linear component along the center of mass, and an angular

component about the center of mass. This means that we can plug in these forces into the

isolated Newton-Euler equation for body i which is expressed in the reference frame of i:

f̌i = f̌ Ii +
∑
j∈µ(i)

f̌
Oj
i = Ǐiǎi + p̌i,

and rearranging:

f̌ Ii = Ǐiǎi + p̌i −
∑
j∈µ(i)

f̌
Oj
i .

We have now matched the left-hand-side of the equation (f̌ Ii ) to what is desired. To proceed,

we note that by Newton’s third law, the outboard force between two bodies must be equal

and opposite to the inboard force between those same two bodies, as long as both forces

are expressed in the same reference frame. The outboard forces of body i are thus actually

negative the inboard forces of its children!

f̌
Oj
i = − iX̌jf̌

I
j .

We can now combine the two above equations as follows:

f̌ Ii = Ǐiǎi + p̌i +
∑
j∈µ(i)

iX̌jf̌
I
j .

The child forces f̌ Ij are not trivial because they are influenced by all the bodies in j’s
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respective subtree. However, by the inductive hypothesis, we have stated that we already

know f̌ Ij = ǏAj ǎj + p̌Aj . Therefore, we can state the above equation as:

f̌ Ii = Ǐiǎi + p̌i +
∑
j∈µ(i)

iX̌j(Ǐ
A
j ǎj + p̌Aj ).

The next step is to note that we can express the spatial acceleration of a child in terms of the

spatial acceleration of its parent plus the spatial acceleration of the joint connecting them.

This is done using the previously derived equations for acceleration propagation in Equation

(4.18):

ǎj = jX̌iǎi + q̈j šj + čj.

Plugging this into our current equation for f̌ Ii , we get,

f̌ Ii = Ǐiǎi + p̌i +
∑
j∈µ(i)

iX̌j

[
ǏAj (jX̌iǎi + q̈j šj + čj) + p̌Aj

]
,

which can be re-arranged to group up common terms like so:

f̌ Ii =

Ǐi +
∑
j∈µ(i)

iX̌j Ǐ
A
j

jX̌i

 ǎi + p̌i +
∑
j∈µ(i)

iX̌j

[
p̌Aj + ǏAj čj +

(
ǏAj šj

)
q̈j
]
. (4.21)

In order to continue with the inductive proof over Equation (4.21), we note that the remaining

unknown is q̈j. It can be addressed by making use of the following term:

Qj =

[
sj1 · · · sj6

]
fj1
...

fj6

 = šTj f̌
I
j .

This will take the dot product of the spatial joint axis with the spatial inboard force, and

will return the magnitude of the force exerted through the joint in question. We continue
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by substituting the acceleration propagation of all j’s into their respective articulated-body

equations,

f̌j = ǏAj (jX̌iǎi + q̈j šj + čj) + p̌Aj ,

and pre-multiplying both sides by šTj to make use of Qj,

šTj f̌j = šTj
[
ǏAj (jX̌iǎi + q̈j šj + čj) + p̌Aj

]
= Qj = šTj Ǐ

A
j (jX̌iǎi + q̈j šj + čj) + šTj p̌

A
j ,

which can now be used to find an equation for q̈j:

q̈j =
Qj − šTj ǏAj jX̌iǎi − šTj

(
p̌Aj + ǏAj čj

)
šTj Ǐ

A
j šj

. (4.22)

We can now plug in this equation for q̈j into our current equation for f̌ Ii (4.21) and rearragnge

to couple up common terms:

f̌ Ii =

Ǐi +
∑
j∈µ(i)

iX̌j

(
ǏAj −

ǏAj šj š
T
j Ǐ

A
j

šTj Ǐ
A
j šj

)
jX̌i

 ǎi
+ p̌i +

∑
j∈µ(i)

iX̌j

[
p̌Aj + ǏAj čj +

ǏAj šj
[
Qj − šTj

(
p̌Aj + ǏAj čj

)]
šTj Ǐ

A
j šj

]
.

(4.23)

Note that this equation has the desired form

f̌ Ii = ǏAi ǎi + p̌Ai ,

meaning Equation (4.23) has yielded the coefficients necessary to complete the proof:

ǏAi = Ǐi +
∑
j∈µ(i)

iX̌j

(
ǏAj −

ǏAj šj š
T
j Ǐ

A
j

šTj Ǐ
A
j šj

)
jX̌i and (4.24)

p̌Ai = p̌i +
∑
j∈µ(i)

iX̌j

[
p̌Aj + ǏAj čj +

ǏAj šj
[
Qj − šTj

(
p̌Aj + ǏAj čj

)]
šTj Ǐ

A
j šj

]
(4.25)
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4.4.4 Third pass: solving for accelerations

The third pass consists of computing the accelerations of all the joints and bodies of the

system. This has been trivialized because at this point we have the articulated inertias and

articulated bias forces for each body in the system:

q̈i =
Qi − šTi ǏAi iX̌λ(i)ǎλ(i) − šTi

(
p̌Ai + ǏAi či

)
šTi Ǐ

A
i ši

ǎi = iX̌λ(i)ǎλ(i) + q̈iši + či.

. (4.26)

A final pseudocode for the third pass, as well as the first and second passes over the kinematic

tree, is presented in the following section.

4.4.5 Final algorithm

The pseudocode for the final algorithm is provided in Algorithm 1. There are some things

to point out with the algorithm:

1. NB is the number of bodies in the system.

2. In lines 6 and 7, we initiate the articulated-body quantities to their isolated counter

parts.

3. In line 7, we add negative the external force to p̌i because external forces may be

treated as non-inertial forces, we just need to define it with respect to i’s frame. Any

forces generated due to user interaction (pulling, wind, etc.) are handled here.

4. In line 15, we set the acceleration of the root body to be the opposite of gravity. This

acceleration will be propagated to the rest of the system as a non-inertial acceleration.

This means that the rest of the bodies will experience it as normal gravity!
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Algorithm 1 Articulated Body Algorithm

1: procedure ArticulatedBodyAlgorithm()
2:

3: for i = 1 to Nb do . First pass, from base to leaves
4: v̌i = Equation (4.12) or (4.13)
5: či = Equation (4.17) or (4.16)
6: ǏAi = Ǐi
7: p̌Ai = p̌i − iX̌0f̌

x
i /*add external force */

8: end for
9:

10: for i = Nb to 1 do . Second pass, from leaves to base
11: ǏAi + = Equation (4.24) minus Ǐi
12: p̌Ai + = Equation (4.25) minus p̌i
13: end for
14:

15: ǎ0 = −ǧ
16: for i = 1 to NB do . Third pass, from base to leaves

17: q̈i =
Qi−šTi ǏAi

iX̌λ(i)ǎλ(i)−šTi (p̌Ai +ǏAi či)
šTi Ǐ

A
i ši

18: ǎi = iX̌λ(i)ǎλ(i) + q̈iši + či.
19: end for
20:

21: end procedure
22:
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Chapter 5

L-Systems

The previous chapter discussed the forward dynamics problem of an abstract articulated

body. This chapter introduces modeling with L-systems, and how one can model an L-

system object such that it explicitly represents an articulated body.

Section 5.1 introduces the elementary elements of L-systems that were used in this thesis,

and Section 5.2 provides a generalized overview of how one can create explicit articulated

bodies with L-systems. A reader well-versed in L-systems may find that they can skip Sec-

tion 5.1.

5.1 L-systems

Lindenmayer systems, or L-systems for short, are formal grammars that excel at represent-

ing self-similar structures. A self similar structure is one that is exactly or approximately

similar to a part of itself. Such structures are abundant in nature, and to name a few, can

be witnessed in the geometry of snowflakes, the patterning of branches, leaves, and inflo-

rescences, and even in macroscopic scales such as the arrangement of rivers and mountain

ranges.
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The central concept of L-systems is that of rewriting, which is the replacement of parts of

a simple initial object using a set of rewriting rules or productions [69, Chapter 1]. If one

uses these rewriting rules over several iterations, then a simple original object can turn into

a beautifully intricate self-similar structure.

L-systems were conceived as a means to model multicellular life, and originated in Aristid

Lindenmayer’s work in 1968 [46], where he developed the essential elements of L-systems

[47]. Since then, L-systems have been built upon to support the modeling of more complex

structures. The types of L-systems used in this thesis would fall under bracketed parametric

L-systems, whose description is the main focus of this section. A more in-depth description

of the different types of L-systems and their applications in botanical image synthesis is

presented, for example, in The Algorithmic Beauty of Plants [69].

5.1.1 0L-systems

0L-systems are the simplest types of L-systems necessary to model self-similar structures,

and were formally introduced by Lindenmayer in [47]. An 0L-system is an ordered triplet,

G =< V, ω, P >, (5.1)

where

1. V is a nonempty set of letters called the the alphabet of the system.

2. ω ∈ V + is a non-empty word called the axiom.

3. P ⊂ (V × V ∗) is a finite set of productions.
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The alphabet V represents all the possible symbols that an L-system word (or string) may

be comprised of for a particular object at an instant in time. It is common practice, for

example, to have certain symbols in V correspond to distinct organs of the object being

modeled. The non-empty string ω simply dictates the starting L-system string of the object

in question. Finally, a production is denoted as (a, χ) ∈ P and is typically written as a→ χ,

where a ∈ V , and χ is a (possibly empty) word over V (that is, χ ∈ V ∗). In the notation

a→ χ, a is called the predecessor, and χ is called the successor, of the production.

Once an 0L-system has been defined as above, then starting with the axiom ω, it will at-

tempt to match each letter in ω against each production in P in parallel. A production

a → χ matches symbol s ∈ ω if and only if s ≡ a, at which point s is replaced with χ. We

say that the L-system has completed a derivation step once we have attempted to match

each letter, resulting in a new string. It is at this point that the user may decide to per-

form another derivation step, but this time using the new string as input instead of the axiom.

The ‘0’ in the name 0L-system refers to the fact 0L-systems are not context sensitive. A

context sensitive L-system is one in which a letter’s neighbours can potentially determine

whether a production succeeds. Context sensitive L-systems may not have been used in the

plant simulations presented in this thesis - and are hence not described in this chapter - but

they are definitely supported by the presented simulation methodology.

5.1.2 Parametric 0L-systems

Parametric L-systems extend the original concept of L-systems by associating numerical pa-

rameters with the symbols representing plant components. Parametric L-systems operate

on parametric words, which are strings of modules consisting of letters with associated pa-

rameters. The letters belong to the alphabet V - which is the same as with 0L-systems -
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but each letter is now accompanied by a finite number of parameters belonging to the set of

real numbers R. A module with letter A ∈ V and parameters a1, a2, ..., an ∈ R is denoted as

A(a1, a2, ..., an). Formally, a parametric 0L-system is defined as an ordered quadruplet,

G =< V,Σ, ω, P >, (5.2)

where

1. V is a nonempty set of letters called the the alphabet of the system

2. Σ is the set of formal parameters

3. ω ∈ (V × R∗)+ is a non-empty parametric word called the axiom

4. P ⊂ (V ×Σ∗)×C(Σ)× (V ×E(Σ)∗)∗ is a finite set of productions. Noting that Σ is the

set of formal parameters present in the L-system, then C(Σ) is the set of all correctly

constructed logical expressions operating on Σ, and E(Σ) is the set of all correctly

constructed arithmetic expressions operating on Σ.

A production in a parametric 0L-system is denoted as (a, C, χ) ∈ P and is typically written

as a : C → χ. This is identical to the definition of the non-parametric productions given

above, except for two further caveats:

1. The number of real-valued actual parameters of the letter being matched has to be the

same as the number of formal parameters in the production’s predecessor (that is, the

module A(0.1, 0.5) would not match with a production looking for modules of form

A(a,b,c)).

2. The logical expression C ∈ C(Σ) is called the condition; the condition is a boolean-

valued function of the parameters in a. The production only succeeds if C evaluates to

true. The condition can be empty, in which case the production can again be denoted

as a→ χ.
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If the two extra conditions are met, then the production succeeds on the letter in question,

and a is replaced with χ. The rest of the logic between parametric and non-parametric

0L-systems is the same.

5.1.3 Turtle interpretation of L-system strings

The description of parametric 0L-system presented thus far suffices to mathematically rep-

resent a plethora of self-similar objects, however, it is missing a way in which to graphically

represent them. In order to do so, we can use turtle geometry [1] as a means to graphically

represent L-system words [67, 66]. The logic here is to give a graphical representation of each

symbol in the word its own position and orientation with respect to some global reference

frame FO, which is done by using a turtle to keep track of positions and orientations with

respect to the previous symbol of the word.

A turtle is formally defined to be a position vector p = (x, y, z)T , and three mutually

orthonormal vectors, Ĥ, L̂, Û, which indicate the turtle’s heading, its direction to its left,

and its direction up, respectively (note how this also defines a coordinate frame as used

by Featherstone’s algorithm). These three vectors together represent the turtle’s current

orientation. The position and orientation together are called the turtle’s pose. The active

rotation of a turtle from an orientation, [ Ĥ L̂ Û ], to a new one, [ Ĥ′ L̂′ Û′ ], can be

expressed by the formula:

[ Ĥ′ L̂′ Û′ ] = [ Ĥ L̂ Û ] R,

where R is a 3× 3 rotation matrix. The rotations along any of the Ĥ, L̂, and Û vectors can

be represented by the following matrices:
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RU(α) =


cos α sin α 0

−sin α cos α 0

0 0 1



RL(α) =


cos α 0 −sin α

0 1 0

sin α 0 cos α



RH(α) =


1 0 0

0 cos α −sin α

0 sin α cos α



The idea is to define a starting position and orientation of the L-system’s turtle, and to

introduce symbols to the L-system’s alphabet, V , that can be used to move and rotate the

turtle. We therefore formally introduce the following parametric symbols to the alphabet V :

F(x) Move forward a step of length x, drawing a line segment between the

previous and current turtle positions.

f (x) Move forward a step of length x without drawing a line segment.

+(δ) Turn left by angle δ using rotation matrix RU(δ).

−(δ) Turn right by angle δ using rotation matrix RU(−δ).

&(δ) Pitch down by angle δ using rotation matrix RL(δ).

∧(δ) Pitch up by angle δ using rotation matrix RL(−δ).

\(δ) Roll left by angle δ using rotation matrix RH(δ).
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/(δ) Roll right by angle δ using rotation matrix RH(−δ).

|(δ) Turn around using rotation matrix RU(180◦).

5.1.4 Bracketed 0L-systems

The parametric 0L-systems described thus far can only model organisms with non-branching

architectures because the letters in a string are arranged in a strictly linear fashion. In order

to represent branching structures, we can use the concept of strings with brackets. A brack-

eted string is one in which left and right brackets, ‘[’ and ‘]’, are added to the alphabet, V ,

of the L-system in question. Any sub-string u ∈ V + in the L-system string enclosed by two

brackets is a branch. Note that u may have sub-branches of its own.

Turtle geometry can be easily accommodated into a bracketed L-system environment by

introducing the following functionality to the symbols ‘[’ and ’]’:

[ Push the current state of the turtle onto a pushdown stack. The informa-

tion saved on the stack contains the turtle’s position and orientation.

] Pop a state from the stack and make it the current state of the turtle.

5.2 Articulated-body L-systems

The main premise behind the methodology presented in this thesis is that L-systems are

ideal in representing explicit structures of articulated bodies, whose dynamics problem can

then be simulated by Featherstone’s algorithm. The bare-bones description of bracketed

parametric L-systems provided in this chapter suffices to create these types of L-systems,

which will be referred to as Articulated-body L-systems.
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Technically speaking, all L-systems are discrete branching structures and thus they may all be

thought of as representing articulated bodies. However, by articulated-body L-systems, we

are instead referring to L-systems modeled in a strict fashion such that at any time during its

time evolution, the L-system string of an articulated-body L-system must explicitly contain

the following information:

1. The physical properties of each individual rigid-body in the system (mass, center of

mass, inertia tensor)

2. The physical properties of each individual joint in the system (type of joint, default

value of joint variables(s)).

3. The connectivity of the system (what is connected to what? where does a joint connect

relative to its adjacent bodies?).

An articulated body is a collection of rigid bodies that may be connected together by joints.

Logically, this implies that the L-system should be composed of modules corresponding to

rigid bodies and modules corresponding to joints. However, we can’t just mash rigid-body

and joint modules into a string in a random order: the underlying structure would likely not

conform to the articulated-body structure required by Featherstone’s algorithm as described

in Section 4.3. Additionally, what exactly should the information stored in each rigid-body

and joint module be?

This section is thus concerned with describing the structure of articulated-body L-systems

as employed in this thesis, which are L-systems designed such that - after any number of

derivation steps - the resulting structure of the L-system string will conform to the formal

description of articulated-bodies as provided in Section 4.3.

It should be noted that the modeling program used in thesis was L-studio 4.0 [41], which is a

Windows version of the virtual laboratory [27] plant modeling suite. However, the only thing
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of importance is that there be an accordance between the output of the modeling program

and the input of the external physics program. This means that we are primarily concerned

with the structure of the output L-system string, and not the specific modeling method nor

the software that was used to create it.

5.2.1 Structure of articulated-body L-system strings

We only need two definitions from which to infer the permissible structures of articulated-

body L-systems. The first definition belongs to articulated-bodies, whereas the second defi-

nition belongs to L-systems:

1. A joint represents a connection between exactly two rigid bodies.

2. The location of a module in an L-system string defines its connectivity.

By taking definitions (1) and (2) above we can deduce that a joint module J must always

have a body module B immediately to its ‘left’ and immediately to its ‘right’ in the L-system

string. This condition leads to the three following rules:

1. We cannot have two consecutive joint modules in the string (BJJB, BJ[JB], B[J]J).

Note that the spherical joints we will be using are modeled as three consecutive

revolute joints, but each of these revolute joints are technically connected via

volume-less rigid bodies (even then, this is handled within the physics library

meaning we do not need to consider this when constructing the L-system).

2. We cannot have two consecutive body modules in the string (BB, B[B]).

The reason for this is because the L-system is saying ‘there are two modules next

to each other, therefore they are connected’, however, Featherstone’s algorithm is

saying ‘they can’t be connected because there is no joint between them’, meaning
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there is a conflict between definitions. One could interpret this as the two rigid

bodies being glued together by a 0-DoF joint, but such assumptions were not

carried out in this thesis.

3. It is not possible to branch immediately after a joint module.

This is because branching immediately after a joint module will always either

bring forth two consecutive joint modules (BJ[JB]B, BJ[B]JB) or associate a joint

as a connection between three bodies (BJ[B]B), neither of which are allowed. Note

that we are assuming the absence of ‘needless branching’ (e.g. the string BJ[B]).

The following are thus examples of permissible strings:

BJB,

BJBJB,

B[JB]JB,

B[JB[JB]JB]JB.

Notice how all permissible strings start with a body module; it corresponds to the immovable

root body in Featherstone’s algorithm. The only practical reason why we need to include it

in the string is because - as will be explained in Chapter 6 - every joint needs two adjacent

bodies in order to compute its spring constant. The base body therefore represents the im-

movable section of the plant’s stem that is buried in the ground. The immovable joint j0,

however, is not needed in my implementation and is thus omitted from my articulated-body

L-system interpretation.

Everything described thus far boils down to the following definition for the structure of an

articulated-body L-system:

Definition of Articulated-body L-system structure: An articulated-body

L-system is composed of modules B representing rigid bodies, and modules J
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representing joints. At any point in time, all base-to-tip or tip-to-base traversals

of the articulated-body L-system must start with a B module which may then be

followed by any number of JB pairs.

Another way of putting it is that all strings representing a single base-to-tip or tip-to-base

traversal of the tree - such that they are unbranched strings - must match the regular expres-

sion B(JB)∗. It should be pointed out that the indexing scheme required by Featherstone’s

algorithm is readily available by the above structure. This is because a left-to-right traversal

of any proper articulated-body L-system string will always start with a B module correspond-

ing to the root body with index 0, and will always be followed by any number of JB pairs

sharing the same index:

B0,

B0J1B1,

B0J1B1J2B2,

B0[J1B1]J2B2,

B0[J1B1[J2B2]J3B3]J4B4.

Finally, it should be stated that articulated-body L-systems are allowed to contain any other

types of modules and they may be located wherever the modeler desires; there will be no

conflicts as long as none of these modules represent rigid-bodies nor joints.

We have effectively discussed the permissible structures of articulated-body L-system strings,

but have provided no details regarding the formal parameters that each rigid body and joint

module must have. These parameters are immediately discussed.

5.2.2 Parameters of rigid-body and joint modules

In theory, we may use any types of joints to connect two rigid bodies (revolute, prismatic,

spherical, planar, etc.). After all, Featherstone’s algorithm as derived in Chapter 4 makes no
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assumptions on joint types. This is because any desired joint may be modeled as a compo-

sition of prismatic and revolute joints that are each connected via volume-less rigid bodies.

In practice, however, we are using articulated-bodies to approximate the dynamics of plants

and thus only need to capture the relative rotations between connected rigid bodies. This

means that all joints will be spherical, and thus any mention of a joint hereon will assume a

spherical joint.

With this assumption at hand, we are now interested in figuring out the parameters that

belong to rigid-body modules versus the parameters that belong to (spherical) joint modules.

Certain parameters are obvious (e.g. a rigid-body should have a parameter indicating its

mass, each joint should contain the default values of its joint variables), whereas others are

not.

The main issue in deciding these parameters arises from the geometrical quantities required

by Featherstone’s algorithm. We recall that every joint and rigid body has a local reference

frame embedded within it, and additionally, that a body’s frame is located at the body’s

center of mass and is oriented according to the body’s principle axes of inertia (Figure 5.1).

Since Featherstone’s algorithm is all about information transfer, then it is required that all

spatial transformations between connected frames be obtainable from the parameters present

in the rigid-body and joint modules. It is not obvious, however, the parameters that each

joint and body module must have such that the transformations between reference frames are

adequately represented. Keep in mind that throughout all of this, we are trying to maintain

the important notion of locality, which means that a module should only contain information

that ‘belongs’ to itself.

We can derive these parameters by analyzing how turtle geometry is used to graphically

represent L-systems; a turtle represents a coordinate frame, and the symbols controlling a
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Figure 5.1: The local reference frames of rigid bodies and joints.

turtle either represent a change in position (F, f) or a change in orientation (+, -, &, ^, \, /,

|). There is thus a nice analogy present here: rigid-body modules correspond to changes in

positions (similar to F and f), whereas spherical joints correspond to changes in orientation

(+, -, &, ^, \, /, |). This means that a rigid-body module should contain the information

required to translate between its inboard joint and each of its outboard joints, whereas a

joint module should contain the information required to rotate between the two bodies it

connects. For simplicity, I will assume that all outboard joints connect at the same location

within a body’s local reference frame1.

We can thus deduce that a rigid-body module must have the following parameters:

1. One scalar denoting the mass of the rigid body.

2. Three scalars denoting the translation from the inboard joint to the location of the

center of mass.

They should be given with respect to the inboard joint’s frame.

3. Three scalars denoting the translation from the center of mass to the location of the

outboard joints.

1There is no ‘theoretical’ reason why we must assume this; its just cleaner to present (and implement)
a paradigm in which each body has a single ‘socket’ where its inboard joint connects and a single ‘socket’
where all its outboard joints connect.
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They should be given with respect to the center of mass frame. Note how the

three scalars from (2) plus the three scalars from (3) denote the translation from

the inboard joint to the outboard joint(s).

4. Three scalars denoting the diagonal elements of the body’s moment of inertia tensor

about the body’s inboard joint frame.

The inertia tensor has to be given with respect to the axes of the inboard joint

frame because those are the axes about which the body rotates. We can find

such an inertia tensor by first computing it about the body’s center of mass and

then translating it to the inboard joint location via the parallel axis theorem (this

works because the principle-axes-aligned center of mass frame and the inboard

joint’s frame always share the same orientation, meaning that the inertia tensor

of the body about the inboard joint’s frame will also be diagonal).

We can also deduce that a (spherical) joint module must have the following parameters:

1. Three scalars denoting the rest angles of the spherical joint in each direction of rotation.

This is how branching angles are specified.

2. Three scalars denoting the current angles (relative to the rest angles) of the spherical

joint in each direction of rotation (these will act as the initial generalized coordinates,

q, of the system). Note how the three scalars from (1) plus the three scalars from (2)

fully describe the rotation imposed by the joint.

3. Three scalars denoting the spring constants of the spherical joint in each direction of

rotation. The chapter that follows (Chapter 6) will describe how these spring constants

were derived in this thesis.
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5.2.3 Note on small rigid bodies

When we export our L-system string into our Featherstone’s simulator, we are essentially

taking a ‘snapshot’ of a developmental model at some point in its lifetime. It could be

the case that this snapshot will include infantile modules that had just been created at the

time of the snapshot; these modules, if turned into rigid bodies, may have a volume and/or

mass so tiny such that they may introduce numerical instabilities into the physical simula-

tion. It was therefore found useful to prune these infantile modules (with respect to some

user-defined threshold) in a post-processing step before feeding the string into the dynamics

library.
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Chapter 6

Representing continuous branching

structures with articulated bodies

At this point we have looked at the following topics:

1. How to simulate the dynamics of articulated bodies forward in time using the articulated-

body algorithm (Chapter 4).

2. How to construct ‘articulated-body L-systems’, which are L-systems that generate

structures of articulated bodies such that they can be simulated by the articulated-

body algorithm (Chapter 5).

This chapter is concerned with the last piece of the puzzle, which is

3. How to make these articulated-body simulations move like real plants.

In order to do so, we need to look at the equations behind real-life plant motion, and

how we can best go about approximating them with articulated-body dynamics. Section

6.1 provides a succinct summary of the discretized deformation scheme employed in this

thesis, and poses the main problem to be addressed in the chapter. Section 6.2 reviews

the basics of deformation with a focus on the deformation types modeled in this thesis
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(bending and torsion). Section 6.3 presents continuous and discretized bending deformations,

whereas Section 6.4 does the same but for torsional deformations. Section 6.5 discusses the

correctness of representing spherical joints by Euler angles, and finally, Section 6.6 describes

the implementation and limitations of damping as employed in this thesis.

6.1 Summary of deformation paradigm employed

An articulated body is a collection of rigid bodies that may be connected together by joints,

where a joint is a connection between exactly two bodies. The body closer to the base is

called the joint’s proximal body whereas the body further from the base is called the joint’s

distal body. We will assume that every joint is spherical as per the discussion in Section

5.2. This leads to the paradigm in which the rigid-bodies encapsulate translations between

its adjacent joints, and (spherical) joints encapsulate rotations between its adjacent bodies.

U 

R 

H 

U 

R 

H 

Figure 6.1: The local reference frames of rigid bodies and joints.

Every body and joint in the system shall have a local coordinate frame embedded within

it, and we will call its axes R̂, Ĥ, and Û (Figure 6.1). They have identical function to the

Ĥ, L̂, and Û frames described in Section 5.1.3, but have been rearranged to more faithfully

represent the coordinate frame paradigm carried out in this thesis.
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(bending spring)
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controls roll
(twisting spring)
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(bending spring)
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Figure 6.2: A spherical joint ji and its local coordinate frame. Each spherical joint will be
approximated as three perpendicular revolute joints each acting about one of the axes. Each
revolute joint will have an angular spring associated with it: sR̂i , sĤi , and sÛi .

In order to make many things simpler, every rigid-body in my articulated-body L-

systems is a cylindrical internode (and thus has constant length and radius). The main

reason for this is because it is not obvious how to derive the spring constants for a spher-

ical joint that’s connecting rigid bodies with abstract shapes. If both of the rigid bodies

are cylindrical internodes, however, then we can derive our spring constants by discretizing

well-studied bending equations of continuous rods.

Since the body-fixed axes are aligned with the principal axes of inertia, then, since all of our

rigid-bodies are cylinders, two axes will point radially and one axis will point longitudinally.

If we choose our coordinate frame such that the heading vector Ĥ always points longitudi-

nally, then the spring sĤi will always correspond to twisting and the springs sR̂i and sÛi will

always correspond to bending (Figure 6.2). This is the methodology carried out in

this thesis.
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The rest of this chapter is mainly interested in the problem of finding the spring constants

kR̂i , kĤi , and kÛi corresponding to the joints sR̂i , sĤi , and sÛi , such that our articulated-bodies

will realistically approximate the elasticity of real plants.

6.2 Deformation types

The motion of continuous materials is generally described through the concepts of stresses

and strains. In general terms, stress σ is defined as force F per unit area A,

σ =
F

A
,

and arises from externally applied forces. Strain is proportional to stress, and is equal to the

ratio of deformation experienced by the body in the direction of the force with respect to the

initial dimensions of the body. External forces may either be surface forces or body forces.

Surface forces act on the external boundary of the plant, such as those from wind particles

and water droplets, whereas body forces are those that act on the volume of the plant, such

as gravity. Once deformed, the internal forces that bind the plant will attempt to restore

the plant to its original pose. These forces will be referred to as the plant’s restoration forces.

This behaviour in which the plant attempts to return to it’s original shape is called elas-

tic deformation, however, a plant under the influence of overwhelming stresses may deform

permanently (plastic deformation), or it may outright fracture. In this thesis, I will only be

considering elastic deformations, which means that the plants will always attempt to restore

themselves to their original pose.

Restoration forces emanate from the composition of the molecular structures that make up

a plant, but since we are limited to articulated bodies, deformation will instead be modeled
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Figure 6.3: Rotations at the joints being used to represent the deformation of a continuous
body

at the macroscopic scale, and will be represented by rigid bodies that have been successively

rotated with respect to each other (Figure 6.3). The discrete elements in charge of the rota-

tion between bodies will be three-dimensional spring-like joints. The main hypothesis here

is that relative bending between successive bodies at the joints will approximate continuous

deformation.

tension compression shear bending torsion

Figure 6.4: Types of elastic deformation

There are five types of elastic deformation that all continuous materials adhere to at the

macroscopic level: tension, compression, shearing, bending, and torsion (Figure 6.4). In this

thesis, I only tackle bending and torsion. It is the case that bending and torsion (especially

bending) are the most visually prevalent in the common motions of plants, however, a su-

perior physically-based model would still capture tension, compression, and shear, and thus

the modeling of these classes of deformations remains as future work.
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Pure bending1 and torsion have the following definitions:

1. Pure bending: occurs when a torque is applied perpendicular to the internode’s

longitudinal axis such that no axial, shear, nor torsional forces are introduced.

2. Torsion: occurs when a torque is applied parallel to the internode’s longitudinal axis.

The next two sections go over the biomechanical equations that govern each of the above

forms of elastic deformation, as well as how we can approximate them using rigid bodies

connected by angular springs. The biomechanical equations to be presented are summary of

the derivations provided by Niklas in [57, Chapter 5] as well as [55, Chapter 3].

6.3 Continuous pure bending

Let us consider a cylindrical beam of length l with a circular cross section of radius r, and let

us assume it has been bent into a section of a circle by a moment M such that it has constant

curvature. This condition is called pure bending as long as the beam does not experience

simultaneous axial, shear, nor torsional forces. The equation governing this interaction is

M = EIK, (6.1)

where M is the bending moment, E is the modulus of elasticity or Young’s modulus of the

internode, I is the second moment of area2 of the internode’s cross-sectional surface, and

K is the resulting curvature to which the internode has been bent. The equation indicates

that the magnitude of the bending moment M required to bend a beam to a curvature K

is proportional to the product of the elastic modulus E and the second moment of area I.

The product EI is called the flexural rigidity of the internode, and can be thought of as a

1From hereon, bending will be referred to as ‘pure bending’ for clarity.
2Not to be confused with the moment of inertia, or inertia tensor, which shares the same symbol.
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mapping between torque and bending.

E can be thought of as the internode’s resistance to bending due to the composition of its

material; a metallic rod, for example, would bend less than a rubber rod of the same shape

if both were acted upon by the same moment M . The modulus of elasticity E is defined to

be the quotient of stress and strain:

E =
stress

strain
=
σ

ε
.

The values for E used in the plant simulations showcased in Chapter 9 were adapted from

the empirical data provided by Niklas in [56].

I can be thought of as the internode’s resistance to bending due to it’s cross-sectional shape;

given a moment M , a cylindrical internode with a large radius would greater resist M than a

cylindrical internode with the same Young’s modulus but a smaller radius. I can be directly

calculated, and is equal to the following equation:

I =

∫
area

d2dA, (6.2)

where dA is an area differential of the volume’s cross-sectional surface, and d2 is the squared

distance of dA from the neutral plane. As an intuitive understanding of the above equation

and the neutral plane, let’s look at a continuous cylindrical internode that has been bent

from its rest orientation (Figure 6.5). Since the convex portion of the beam is experiencing

tension (in red) and the concave portion of the beam is experiencing compression (in blue),

then there must exist a plane along the beam called the neutral plane (drawn as a black

line) that experiences no tension nor compression. The further away an area differential dA

is from the neutral plane, the more tension or compression it experiences. However, this

also means that it is harder to bend an object whose accumulative cross-sectional area is
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concentrated away from the neutral plane (Figure 6.6).

tension

neutral plane compression

Figure 6.5: A bent internode experiences tension and compression.

Figure 6.6: I-beams are universal in construction and engineering because they maximize
the second moment of area whilst minimizing cross-sectional surface area. This means that
they are relative sturdy for their low material costs.

The value of the second moment of area is generally different when measured against different

neutral planes of the same object. This is just like how the (mass) moment of inertia can

take different values when measured against different axes of rotation of the same rigid body.

Therefore, for simplicity, we will assume the following characteristics regarding pure bending:

1. All internodes have circular cross-sections.

2. The neutral plane of all these continuous internodes perfectly cuts the internode into

two semi-cylindrical internodes.

With these assumptions, one may carry out the integration in Equation 6.2 to get that the

second moment of area of a cylindrical beam of uniform radius r is
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I =
π

4
r4. (6.3)

6.3.1 Discretized pure bending

The concept of strain is inapplicable to rigid bodies because they cannot deform. Our solu-

tion will instead be to divide a continuous rod into smaller, discrete elements (in our case,

cylindrical rigid bodies) and connecting them using revolute springs. Subsequently, we can

determine the appropriate spring constants by discretizing the equation M = EIK at the

spring locations. The approach in doing so has been adapted from Power et al. [65].

The key idea here is that we can replace the curvature at the location of a spring, i, by

its discrete approximation Ki ≈ θi/Li, where Li is the average (axial) length of the joint’s

adjacent cylindrical rigid bodies and θi is the angle between them (Figure 6.7). Note that θi

is assumed to be the joint’s current angle with respect to the joint’s rest angle. Additionally,

since the generalized coordinates q of the system also represent the current joint angles with

respect to the rest angles, then θi ≡ qi, where qi is the generalized coordinate corresponding

to the angular joint in question.

θi

Ki = θi 
lλ(i)

2

li

si

lλ(i)

2

2

li

2
(     +       ) 

Figure 6.7: Calculating the discrete curvature Ki between two rigid bodies.
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In the same vein of thinking, we can take the second moment of area at the spring location

Ii to be the average second moment of area of both its adjacent bodies,

Ii =
π
4
r4
λ(i) + π

4
r4
i

2
=
π

8
r4
λ(i) +

π

8
r4
i , (6.4)

where rλ(i) and ri are the radiuses of the joint’s proximal and distal cylindrical rigid bodies,

respectively.

Lastly, there is no direct physical analogy between the modulus of elasticity E in the contin-

uous case and Ei in the discrete case. This is because E describes the relationship between

stress and strain in a continuous material, which is a concept absent in articulated-bodies

as rigid bodies cannot deform. However, since we want the overall deformation behaviour of

the articulated-body to be as close as possible to that of the continuous cylinder, we proceed

by defining that Ei = E. The values of E used in my animations were adapted from the

empirical studies carried out by Niklas in [56]. In other words, I did not use biomechanically

precise values for E in my plant simulations, and instead calculated them via trial-and-error

by using the values in that paper as a starting point.

By putting this all together, we get that the bending torque τi generated by a bending

angular spring bent to an angle of θi away from its rest angle is

τi = −EiIiKi = −Ei
(π

8
r4
λ(i) +

π

8
r4
i

)( 2θi
lλ(i) + li

)
, (6.5)

where lλ(i) and li are the lengths of the joint’s proximal and distal bodies, respectively, rλ(i)

and ri are the radiuses of the joint’s proximal and distal bodies, respectively, θi is the angle

between the internodes with respect to the rest angle, and Ei is an user-defined constant.

The minus sign appears because τi is the opposing restoration force generated by the de-

formed spring.
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We recall from the discussion in Section 6.1 that each spherical joint in the system si has

two springs that correspond to bending motion, which are sR̂i and sÛi . Therefore, those are

the two springs that will operate on the discrete bending equation above (sĤi operates on

the twisting equation which is derived in the next section). The springs have corresponding

spring constants kR̂i and kÛi , which can be obtained by coupling up all the constants in

Equation 6.5:

kR̂i = kÛi = Ei

(π
8
r4
λ(i) +

π

8
r4
i

)( 2

lλ(i) + li

)
. (6.6)

This symbolic representation of ki along with the fact that θi ≡ qi allows the bending spring

equations to reach their simplest form:

τ R̂i = −kR̂i qR̂i ,

τ Ûi = −kÛi qÛi ,
(6.7)

which is the angular version of Hooke’s law. In the equation above, τ R̂i and τ Ûi are the

restoration torques generated about a spherical spring’s R̂ and Û axes, respectively, whereas

qR̂i and qÛi are their respective joint angles. Section 8.3 goes over an example cantilever

simulation that provides quantifiable insight regarding the correctness of approximating real

bending using the above restoration forces.

6.4 Continuous torsion

Let’s again take a continuous cylindrical internode as an example. Whereas pure bending

consists of a compression along the concave portion of the internode and tension along the

convex portion of the internode, torsion can be thought of as twisting (shearing strain) be-

tween successive ‘circular slices’ of the internode along its longitudinal axis.
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The equation for torsion has identical form to equation M = EIK, and looks as follows:

T = GJ
dθ

dl
(6.8)

where T is the axial torque acting along the longitudinal axis of the internode, G is the shear

modulus of the internode’s material, J is the internode’s polar second moment of area, θ is

the twist amount (in radians), and l is the length over which the twisting takes place.

Just like the modulus of elasticity E represents resistance to bending due to the composition

of the tissue, the shear modulus G represents resistance to shearing - and as a consequence -

twisting. The polar second moment of area is thus the torsional counterpart to the (planar)

second moment of area; it is the internode’s resistance to torsion due to it’s cross-sectional

shape. However, whereas bending exhibited a neutral plane that experienced no deforma-

tion, torsional deformation exhibits a neutral axis only. The neutral axis is the longitudinal

axis about which the internode is twisting. Just like we assumed that the neutral plane cuts

the cylindrical internode into two semi-cylindrical ones, we will assume that the neutral axis

perfectly runs along the cylindrical internode’s centroidal axis.

The equation for the polar moment of area is the same as the equation for the second moment

of area, the only difference being that we are measuring distances from the neutral axis as

opposed to the neutral plane:

J =

∫
area

d2dA.

where d is the distance of the area differential dA from the neutral axis. An internode with

uniform radius r has

105



J =
π

2
r4. (6.9)

We note that it is twice as large as the planar second moment of area (I = (π/4)r4), which

is a key reason why it is easier to bend plants than it is to twist them. Section 9.2.2 provides

a constructive example of the importance of shape in the plant simulations.

6.4.1 A note on the values used for the shear modulus of elasticity

The shear modulus of elasticityGmay be used to represent a material’s resistance to twisting.

The values for G used in my plant simulations were calculated from their Young’s modulus

counterpart E via the following equation ([8, Chapter 2], [55, Chapter 2]):

G =
E

2(1 + ν)
. (6.10)

This equation relates E and G through the Poisson’s ratio ν of the plant material in question,

where the Poisson’s ratio relates lateral strain to axial strain:

ν = − lateral strain

axial strain
. (6.11)

In the context of our continuous cylindrical internodes, ν can tell us how much the cylinder

will ‘fatten’ when its main axis is squeezed, or how much the internode will ‘slim’ when its

main axis is stretched. Most materials have a value of ν between 0 (highly undeformable) to

0.5 (highly deformable). The main issue here is that the equation is typically only applicable

to engineering materials such as metals and plastics. This is because the equation assumes

the following three things:

1. it assumes that the material is linearly elastic.

2. it assumes that the material is homogeneous (composed of the same material through-

out its volume).
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3. it assumes that the material is isotropic (the material is equivalent when measured

against any direction).

This is rather problematic because plant stem tissue, considered as a material, may exhibit

non-linear elastic behaviours, and is both heterogeneous and highly anisotropic, which begs

the question: “to what extent does this approximation affect the plant simulations?”. With

all this said, however, it is non-trivial to find better values for G because the relation between

stresses and strains and the material moduli of anisotropic materials must be empirically de-

termined [55, Chapter 2]. Furthermore, these measurements may be affected by external

factors such as temperature, humidity, and nutrient availability.

In conclusion, the twisting motion exhibited by my simulations operating on this approxi-

mation was deemed plausible enough (see Section 9.2.1) to the point that other components

of the thesis took precedent over the use of this approximation. This means that a superior

method in finding twisting spring constants was not pursued, and it remains as future work

to quantify the error produced by this approximation, and perhaps even to find a better

alternative altogether (which may mean empirically determining the material properties in

order to more faithfully simulate the motion of a desired plant).

6.4.2 Discretized torsion

We need to find the spring constant that will best approximate the torsional restoration

torques between two rigid bodies that have been twisted with respect to each other. We

proceed to do this by discretizing the equation T = GJ dθ
dl

at the locations of the springs i,

analogously to how we did the bending equation.

We can replace the differential equation dθ/dl by its discrete approximation θi/Li, where θi

is the twist angle between the joint’s adjacent bodies, and Li is the length over which the
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twisting takes place. This length can be computed as the average length of both adjacent

cylindrical bodies:

dθ

dl
≈ θi
Li

=
2θi

lλ(i) + li
, (6.12)

where lλ(i) and li are the lengths of the joint’s proximal and distal cylindrical rigid bodies,

respectively. We again recall that θi is assumed to be the twisting angle with respect to the

joint’s rest twisting angle, meaning that θi ≡ qi, where the generalized coordinate qi is the

spring’s corresponding joint angle.

Furthermore, we can take the polar second moment of area at the spring location Ji to be

the average polar second moment of area of both its adjacent bodies,

Ji =
π
2
r4
λ(i) + π

2
r4
i

2
=
π

4
r4
λ(i) +

π

4
r4
i , (6.13)

where rλ(i) and ri are the radiuses of the joint’s proximal and distal cylindrical rigid bodies,

respectively.

Finally, the discussion for Gi is the same as the previous discussion for Ei; there is no direct

analogy between the value of the shear modulus of elasticity G in the continuous case and

Gi in the discrete case, so, since we desire similar behaviour, we set Gi = G. As explained in

Section 6.4.1, the shear modulus Gi at the location i of a spring was heuristically obtained

from its Young’s modulus counterpart Ei via the equation

Gi =
Ei

2(1 + νi)
, (6.14)

where νi is the Poisson’s ratio of the continous plant material at the location of the spring.

Materials generally experience a value of ν between 0 (undeformable; diamond, ceramics,

carbon fiber composites) and 0.5 (highly deformable; rubber, skin, cartilage). All the plant
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models simulated in Chapter 9 represent small, herbaceous plants consisting of medium

rigidity (when compared to both extremes), and thus the range of values used for ν was

between 0.2 and 0.3, which is faithful to empirical studies of comparable specimen ([36, 58],

[55, Chapter 2]).

By putting this all together, we get that the twisting torque τi generated by an angular

spring bent to an angle of θi away from its rest angle is

τi = −GiJi
θi
Li

= −
(

Ei
2(1 + νi)

)(π
4
r4
λ(i) +

π

4
r4
i

)( 2θi
lλ(i) + li

)
, (6.15)

where lλ(i) and li are the lengths of the joint’s proximal and distal bodies, respectively, rλ(i)

and ri are the radiuses of the joint’s proximal and distal bodies, respectively, θi is the angle

between the internodes with respect to the rest angle, and both Ei and νi are user-defined

constants. The minus sign again appears because τi represents the opposing restoration force

generated by the spring.

Finally, since the spring acting about the twisting axis of a spherical joint is sĤi , we can

conclude from Equation 6.15 that its corresponding spring constant, kĤi , is equal to

kĤi =

(
Ei

2(1 + νi)

)(π
4
r4
λ(i) +

π

4
r4
i

)( 2

lλ(i) + li

)
. (6.16)

This symbolic representation of kĤi along with the fact that θi ≡ qi allows the torsional

spring equation to reach the simple form

τ Ĥi = −kĤi qĤi , (6.17)

which is again the angular version of Hooke’s law. In the equation above, τ Ĥi is the torsional

restoration torque generated about a spherical spring’s Ĥ axis, and qĤi is its corresponding

joint angle. Section 9.2.1 presents an example plant simulation that explicitly showcases
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torsional movement as guided by the spring constant derived above.

6.5 Infinitesimal rotations

We have presented a discretization scheme in which a continuously deformable rod can be

represented by rigid bodies connected with 3-D spherical joints. Additionally, we have men-

tioned that the 3-D rotation of the spherical joint will be approximated via three consecutive

1-D rotations along the three pairwise orthogonal coordinate axes of the spherical joint. This

method of representing 3-D rotations is known as Euler angles [31, Chapter 4 section 4]. In

our implementation, the three 1-D rotations correspond to a roll (rotation about Ĥ), pitch

(rotation about R̂), and yaw (rotation about Û). However, Euler rotations are not com-

mutative [31, Chapter 4 section 7], so which sequence of 1-D rotations should we employ in

order to yield the most realistic motion?

The theoretical answer is that we can actually pick whichever order of rotations we wish be-

cause, whilst finite rotations are not commutative, infinitesimal rotations are [31, Chapter

4 section 8]. An infinteseimal rotation is an orthogonal transformation of coordinate axes in

which the components of a vector are almost the same in both sets of axes. Therefore, since

we are only ever advancing the system’s joint angles forwards in time by an incremental

amount dt, an argument can be made that rotation order is not critical. This is the argu-

ment employed in this thesis, such that the rotation order RR̂ → RĤ → RÛ was the one

arbitrarily chosen. This rotation scheme is referred to as intrinsic XYZ Euler angles, where

XYZ refers to the rotation order (which corresponds to R̂ĤÛ in my implementation), and

the keyword intrinsic refers to the fact that the axes rotate with each other (as opposed to

extrinsic Euler angles).
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Having said this, however, it should be noted that the argument is flawed and there is am-

ple room for future work in this area (e.g. what about a quaternion representation of the

spherical joints, as described in [25, Chapter 4]?). The reason for this is that whilst dt is

minuscule, we cannot say that it is infinitesimal. As a consequence, we cannot guarantee

that advancing the articulated-body forward in time by dt will result in infinitesimal rota-

tions. Indeed, it was found that the simulations could gain energy every simulation step if

dt was not small enough, which is severe in my simulations because they advance their state

forwards in time roughly one-hundred thousand times per second, meaning that the tiniest

addition of energy in a single simulation step will result in a catastrophic explosion of the

system’s state all within a fraction of a second. It should be disclosed that large dt can cause

numerical instabilities for multiple reasons and not just the finite rotation issue (Section

9.4.2 discusses efficiency and stability of the methodology), and therefore it is not clear to

me the extent to which the Euler-angle approximation contributes towards the simulation’s

instabilities.

For context, all the simulations employed in subsequent chapters employ a value of dt between

0.01s and 0.0000001s, with the cantilever example in Section 8.3 requiring the smallest dt in

order to remain stable.

6.6 Damping

The restoration forces as presented in the previous sections will ensure that the plant model

always attempts to reorient itself to its rest pose, where the rest pose refers to the image an

articulated-body takes as a whole when all of its generalized coordinates are zero, that is,

when q = 0. The magnitude of the restoration forces are generally large enough to cause

overshooting (which is when the plant swings past its rest pose), which is correct behaviour

because overshooting is the cause of the common oscillatory motion of real plants. We have
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not, however, discussed any means by which to dissipate the mechanical energy in the system,

which is problematic for two distinct reasons:

Biomechanical reason: real plants dissipate mechanical energy which explains why

they eventually stop oscillating. Therefore, if we do not model this, our plant simula-

tions will oscillate much more (and possibly indefinitely) than their real-life counter-

parts, which is not natural behaviour.

Numerical stability reason: As briefly discussed in the previous section, plant

simulations operating on the methodology presented in this thesis can exhibit severe

numerical instabilities. A common source of the instability is the subtle yet catastrophic

addition of energy into the system due to numerical error. A system that dissipates

energy will therefore be more stable as a result.

We therefore seek to introduce damping forces into the system whose job are to dissipate

mechanical energy. There are several sources of damping in real plant motion, however, the

methodology implemented in this thesis only models linear velocity-dependent damping at

the joints. One could say that this type of damping mimics the internal friction that real

plants experience when they deform, but this is dishonest in my implementation because

my spring constants were determined by trial-and-error as opposed to through biomechan-

ical insights. I believe there to be ample room for improvements regarding damping in my

methodology.

The implementation for this type of damping can be derived by first noting that each sim-

ulation step, every angular spring i in the system is effectively computing its restoration

torque via the Hooke’s law equations as described in Sections 6.3 and 6.4:

τi = −kiqi, (6.18)

where τi is the restoration torque generated by the angular spring, ki is the spring constant
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as derived in Sections 6.3 and 6.4, and qi is the current spring angle (away from rest angle) of

the respective angular spring. Therefore, to damp the system, we can introduce the typical

linear velocity-dependent damping term, −biq̇i, to Equation 6.18:

τi = −kiqi − biq̇i, (6.19)

where bi is the linear damping constant of the spring, and q̇i is the instantaneous angular

velocity of the spring. The damping constants used throughout the simulations in Chapter 8

and Chapter 9 were all determined manually on a trial-error basis; the simulations were ran

against many damping constants until the motion looked as realistic as possible. It remains

as future work to figure out an automatic way with which to figure out this damping constant

from biomechanical principles.

Note on drag forces

Another common source of damping comes from drag forces, which in these simulations,

corresponds to air resistance. Air resistance acts on all objects moving through a fluid (or

gas), and does so in the opposite direction of the object’s motion. This is because the moving

object is attempting to push away the molecules of the space in its direction of travel, and

as a consequence, these disturbed molecules are applying an equal and opposing force on the

object.

It was my impression that air resistance would be trivially implemented by calculating the

external drag forces acting on each rigid body, and adding them to the system’s fext vector.

However, every attempt at implementing drag forces led to the same result: the drag forces

were introducing severe instabilities into the system.

For context, my air resistance implementations worked perfectly for a single-pendulum, and
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it was even proved that, for the one-body problem, certain constants existed such that

air resistance could be equivalent to the previously described method of damping at the

joints. However, any further addition of rigid-bodies resulted in increasingly unstable sys-

tems, which is troubling because damping forces are supposed to stabilize physically-based

animation models and not the opposite. The issue is definitely that the propagating drag

forces introduced energy into the system, what is not obvious, however, is why this was

the case. It is unclear to me whether I’ve severely overlooked something, or whether more

consideration needs to be given regarding the nature in which drag forces are handled in an

articulated-body implementation.

As a consequence, the incorporation of drag forces into my thesis was eventually scrapped,

and I instead exaggerated the nodal damping forces in order to account for the missing drag

forces.
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Chapter 7

System Overview

The main programming contribution in this thesis is not a standalone application, but rather

an object-oriented C++ library nicknamed the L-system dynamics library (LSDL). The pur-

pose of LSDL is to simulate the dynamics of L-system objects using articulated bodies, and

is designed to be easily integrated into any C++ projects. LSDL is a direct extension to

Martin Felis’ open source Rigid Body Dynamics Library (RBDL)[28], which implements the

data structures and algorithms presented in Featherstone’s Rigid Body Dynamics Algorithms

[25]. A subset of RBDL’s functionality is exactly what is presented in Chapter 4, which is

the functionality on which LSDL is built on.

Section 7.1 presents the key RBDL components that were used to develop LSDL, Section

7.2 presents LSDL, and Section 7.3 describes two sample graphical applications that operate

on LSDL, which were implemented throughout the completion of the thesis.

7.1 RBDL

RBDL is an efficient C++ physics library that implements the data structures and algorithms

described in Featherstone’s Rigid Body Dynamics Algorithms [25]. One of these algortihms is

115



the articulated-body algorithm which was the topic of Chapter ??. This section is concerned

with explaining exactly what functionality was adopted from RBDL in the development of

LSDL.

There are three key RBDL components that were used in the creation of LSDL:

1. Its math library that implements 6-D vector algebra.

2. Its PhysicsModel data structure that stores all the data of an abstract articulated-

body.

3. Its PhysicsModel::ForwardDyamics() method that runs the articulated-body algo-

rithm on an object of type PhysicsModel.

7.1.1 6-D Vector Algebra Library

RBDL includes the implementation of a 6-D vector algebra library that facilitates the de-

velopment of code involving spatial algebra. It provides the data structures and operations

shown in Section 4.4.2, namely, the data structures for spatial matrices and spatial vectors

along with their operations.

7.1.2 The PhysicsModel data structure

The PhysicsModel data structure contains all the information necessary to describe an ab-

stract articulated body. It is mainly composed of two basic data structures: the Body data

structure and the Joint data structure.

The Body data structure contains data such as its mass, center of mass, and inertia tensor (all

in body coordinates), and the Joint data structure contains data defining which directions
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the joint allows motion in.

The remaining contents in the PhysicsModel class are just as described in Section 4.3. As

a summary, each instance of a PhysicsModel class stores the following information:

1. The rigid bodies in the system.

2. The joints in the system.

3. The connectivity between the rigid-bodies and joints.

4. The gravity acting on the system.

In addition, it always stores the most up-to-date values of the following information:

1. The dynamic state of the articulated body (q, q̇, τ , and fext).

2. The generalized accelerations q̈ of the articulated body.

3. The instantaneous absolute spatial transformation matrix iX̌0 of each body.

4. The instantaneous absolute spatial velocity v̌i and spatial acceleration ǎi of each body.

Note that RBDL never manipulates the generalized input forces τ nor the spatial external

input forces fext; they are supposed to be set by the application using RBDL.

7.1.3 The PhysicsModel::ForwardDynamics() method

The PhysicsModel::ForwardDynamics() method belongs to all objects of type Physic-

sModel. When the method is called, it uses as input the model’s current dynamic state

(q, q̇, τ , and fext) to update the model’s acceleration vector q̈ via the articulated-body al-

gorithm. The procedure in doing all of this is exactly as derived in the latter half of Chapter

4.
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7.2 LSDL

The L-system dynamics library (LSDL) is the main programming component completed in

this thesis. The job of LSDL is to simulate the dynamics of models generated by L-systems

using articulated-body dynamics. From hereon, we will assume that any L-system in ques-

tion will have the format described in Section 5.2.

The most important class contained in LSDL is the PlantModel class, as it contains all

the functionality needed to create and simulate the dynamics of L-system objects. The

PlantModel class inherits RBDL’s PhysicsModel class, with the intention of using RBDL’s

PhysicsModel::ForwardDynamics() method on objects of type PlantModel. In other

words, the PlantModel class is simply an extension to the PhysicsModel class that in-

corporates functionality specific to simulating the dynamics of plants. There are two key

methods that are exposed by the PlantModel class:

PlantModel::PlantModel(string lsystem string): The constructor of the PlantModel

class that takes in an L-system string as input. This is the method that should be

called by an external program whenever a new plant instance should be created in the

simulation. The format of the input L-system string should be as described in Section

5.2.

PlantModel::PhysicsStep(float dt): When called, the plant model advances its posi-

tional state variables (q, q̇) in time by the amount dt. It also computes the absolute

positions and velocities of each rigid body.

An external program using LSDL is intended to do so through the PlantModel interface,

treating it as a black box. Algorithm 2 depicts the structure that a sample program using

LSDL might take. Note that this sample program does not yet include user interaction nor

visuals; each of these topics will be talked about later in this chapter.
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Algorithm 2 An example usage of LSDL. Each iteration of the while loop advances the
system 0.01s forward in time.

1: procedure main(string lsystem string)
2:

3: PlantModel model ← new PlantModel(lsystem string)

4: float dt ← 0.01
5:

6: while true do
7: model->PhysicsStep(dt)

8: end while
9:

10: end procedure

The two sub-sections that follow go over the PlantModel(string lsystem string) method

and the PhysicsStep(float dt) methods.

7.2.1 The PlantModel::PlantModel(string lsystem string) method

The job of the PlantModel::PlantModel(string lsystem string) method is to sequen-

tially parse (from left to right) all of the modules in the input L-system string, lsystem -

string, and to add any encountered joint and rigid body modules to the articulated body. It

does not matter how the input lsystem string was generated; only that it have a permissi-

ble structure as per Section 5.2. The pseudocode for the method is presented in Algorithm 3.

In Algorithm 3, the method PhysicsModel::AddNewBody(Body parent, Joint joint, Body

child) is an RBDL method that takes in a Body object called parent, a Joint object called

joint, and another Body object called child. The method connects the child body to the

parent body via the joint joint, effectively adding the child body to the articulated-body.

It is worthwhile to clarify the following:

• RBDL’s PhysicsModel::AddNewBody(Body parent, Joint joint, Body child) method
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Algorithm 3 Constructor method for a plant object.

1: procedure PlantModel::PlantModel(string lsystem string)
2:

3: Stack〈Body〉 parentStack ← empty
4:

5: Body parent ← null
6: Joint joint ← null
7: Body child ← null
8:

9: for each Module module in lsystem string do1

10:

11: if module.type == Joint then
12: joint ← m
13: else if module.type == Body then
14: child ← m
15: AddNewBody(parent, joint, child)
16: parent ← child
17: else if module.type == NewBranch then
18: parentStack.add(parent)
19: else if module.type == EndBranch then
20: parent ← parentStack.takeLast()
21: else
22: continue
23: end if
24:

25: end for
26:

27: end procedure
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requires that the position and orientation of the joint be specified with respect to both

the parent and child bodies. The reason why this geometrical information does not

need to be included in the parameters of the method is because it can be inferred from

the formal parameters of the parent, child, and joint modules (as per the discussion

in Section 5.2).

• Note the use of a stack to create branching structures.

7.2.2 The PlantModel::PhysicsStep(float dt) method

The job of the PlantModel::PhysicsStep(float dt) method is to advance the plant

model’s state variables (q and q̇) in time by the amount dt. It uses the currently-stored

generalized forces τ and external forces fext of the plant model to do so. The pseudocode is

presented in Algorithm 4.

Algorithm 4 Pseudocode for the PhysicsStep method

1: procedure PlantModel::PhysicsStep(float dt)
2: ComputeForces()

3: ForwardDynamics()

4: TimeIntegrate(dt)

5: ComputePositions()

6: end procedure
7:

8: procedure PlantModel::TimeIntegrate(float dt)
9: q̇← q̇ + q̈ · dt

10: q← q + q̇ · dt
11: end procedure
12:

• The ComputeForces() method is in charge of computing the plant’s restoration and

damping forces as derived in Chapter 6, and storing them in τ .

• The ForwardDynamics() method has already been described; it uses as input the

model’s current dynamic state (q, q̇, τ , and fext) to update the model’s acceleration
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vector q̈ via the articulated-body algorithm.

• The TimeIntegrate(float dt) method uses the newly-computed value of q̈ along

with the input time step dt to determine q̇ and q at a point dt further in time. The

time integration scheme employed is semi-implicit forward Euler.

• Lastly, the ComputePositions() method is called at the very end, and is in charge

of updating the transformation matrix of each rigid body with respect to the global

reference frame FO. An external application may visualize the articulated-body after

the ComputePositions() statement has been called, and can do so by making use of

these updated transformation matrices.

7.3 Example applications using LSDL

Two LSDL applications were created throughout the development of this thesis. The first

is a simple OpenGL program that served as testing grounds for the simulations, and the

second is an Unreal Engine 5 [30] application that was used to create the final renderings

found in Chapter 9. It should be noted that there is no real difference between the underlying

structure of these applications, as they both have the structure described in Algorithm 2.

7.3.1 OpenGL application

The structure of the example OpenGL application is illustrated in Algorithm 5. We first note

that it is a direct extension to Algorithm 2. Let’s look at the components of the pseudocode:

• The OpenGL application takes an L-system string as its single input, which is no

different from Algorithm 2.

• The SetupOpenGLGraphicsEnvironment() function constitutes the typical setup phase

that any graphical application adheres to. This includes creating the window, binding

122



Algorithm 5 The layout of the OpenGL application.

1: procedure main(string lsystem string)
2:

3: SetupOpenGLGraphicsEnvironment();
4: model ← new OpenGLPlantModel(lsystem string)

5:

6: while true do
7: HandleUserInput(model);
8: model->PhysicsStep(dt)

9: RenderPlant(model);
10: end while
11:

12: end procedure

input, compiling shaders, and setting up the camera.

• In line 4 we create our plant model. The OpenGLPlantModel class inherits the Plant-

Model class as described in Section 7.2, meaning that line 4 also runs the Plant-

Model constructor (Algorithm 3), which creates the articulated-body from the pro-

vided lsystem string. The OpenGLPlantModel includes any data structures specific

to an OpenGL interpretation of the plant model, which in my implementation, only

consisted of storing the triangular meshes used for rendering the model’s rigid bodies.

• All application-specific user interaction features reside in the HandleUserInput(model)

function, which includes essentials such as camera movement, camera zoom, and closing

the application. More importantly, however, the HandleUserInput(model) function

includes all user input that results in the generation of external forces (pulling, moving

the base), as well as user input that results in a manipulation of simulation constants

(gravity, damping, elasticity, etc.). I figured it best to present the interaction methods

employed in this thesis alongside their graphical simulations, therefore the explana-

tions for these user interactions are scattered throughout Chapter 9. Forces generated

inside this function should either be added to the plant model’s τ vector (if they are

generalized forces) or fext vector (if they are global external forces). These forces will
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be used by the PhysicsStep(dt) method when computing the new positions of the

plant model.

• Lastly, RenderPlant(OpenGLPlantModel model) is an application-specific function

that takes in an object of type OpenGLPlantModel and renders it to the scene. Al-

gorithm 6 shows the pseudocode for the RenderPlant(model) function. The trans-

formation member variable in line 4 is equal to the body’s global transformation

matrix, ˇiX0, and the mesh member variable in line 5 is an object of type Mesh, which

is a OpenGL-specific data structure storing all the relevant data corresponding to the

body’s geometric mesh. This includes data such as vertices, faces, textures, UV co-

ords, vertex normals, and material properties. Finally, the RenderMesh(Mesh mesh,

mat4x4 transform) function within the RenderPlant function consists of the typical

GPU function calls that bind the active vertices and active transform of the GPU to

those contained in the parameters mesh and transform, respectively.

Algorithm 6 The RenderPlant() method

1: procedure Render(OpenGLPlantModel m)
2:

3: for each RigidBody b in m do
4: mat4x4 transformation ← b.transformation
5: Mesh mesh ← b.mesh
6: RenderMesh(mesh, transformation)
7: end for
8:

9: end procedure

7.3.2 Unreal Engine 5 application

The underlying structure of the Unreal Engine 5 (UE5) [30] application is depicted in Algo-

rithm 7. We can see that the OpenGL and UE5 applications are identical in form.

The Unreal engine was thus used mainly for its graphics, and here are the following key UE5

tools that were used:
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Algorithm 7 The layout of the UE5 application.

1: procedure main(string lsystem string)
2:

3: SetupUE5GraphicsEnvironment();
4: model ← new OpenUE5PlantModel(lsystem string)

5:

6: while true do
7: HandleUserInput(model);
8: m.PhysicsStep(dt)

9: RenderPlant(model);
10: end while
11:

12: end procedure

Real-time global illumination: all the simulations showcased in Chapter 9 were

rendered using UE5’s real-time global illumination, which they’ve called Lumen.

Bi-directional reflectance distribution function (BRDF) materials: The geo-

metric mesh models and corresponding textures making up the plant models in Chapter

9 were personally modeled using using blender [12]. However, their materials were cre-

ated within UE5, which offers an easy way to set material properties such as roughness,

randomness, specularity, and even subsurface scattering.

Instanced static-meshes: Only a single internode/leaf/flower mesh is ever loaded

into GPU memory for any particular plant (including their textures and materials).

This is done via the engine’s support for instancing. Then, each render frame, I

can provide different transformation matrices for each instanced rigid body; these

transformation matrices are the ones that are output each frame by Featherstone’s

algorithm (the programming connection between my thesis and unreal engine is exactly

this).

Timeline editor: The user interaction for the comparison simulations in Section 9.1.5

and 9.2.3 were scripted using UE5’s timeline editor. It enabled me to easily re-run the

same same pull motion against different material properties (e.g. rigidity, damping)
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until the motion was accurate.
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Chapter 8

Validations

The main goal for this thesis is to create plausible simulations of procedurally-generated

plants. However, it’s still important to perform some test simulations in order to provide

quantifiable validity over the presented methodology. In order to do so, this chapter will be

concerned with the following example simulations:

• Single physical pendulum: A single rigid-body constrained to rotate in 2D.

• Double physical pendulum: A link of two rigid-bodies constrained to rotate in 2D.

• Cantilever beam: A link of n rigid-bodies connected together by revolute joints,

deflecting under its own weight.

The three subsections that proceed tackle each of these simulations.

8.1 The physical pendulum

A rigid body that is free to swing under its own weight about a fixed horizontal axis of

rotation is known as a physical pendulum or compound pendulum (Figure 8.1).
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Figure 8.1: Free body diagram of a 2D physical pendulum

The equation of motion governing this system is simple and can be derived by hand. The

idea is that we can validate the implementation presented in this thesis by animating two

identical pendulums in parallel: one operating on the manually derived equation and the

other operating on the L-System Dynamics Library (LSDL, the physics library created in

this thesis). Presumably, if both approaches are equivalent as they should be, the simula-

tions will be identical. Actually, since there are no plant-motion related components in this

simulation, we are essentially only testing the base features of LSDL which are provided by

Martin Felis’ Rigid-Body Dynamics Library (RBDL) [28]. Since RBDL already has a much

more in-depth suite of test cases [28], this example is more-so validating the following:

1. It validates that the process from modeling an L-system and exporting it into LSDL

works as intended (the examples that I will show in this chapter were all created with

L-systems).

2. It validates that no errors were introduced when building LSDL on top of RBDL.

We now continue by deriving the equation of motion. If we constrain the body’s oscillations

within two dimensions, then, in the absence of non-inertial forces, the equation for the

angular acceleration of the body θ̈1 can be obtained from the angular version of Newton’s
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2nd law:

τ = Iθ̈1, (8.1)

where τ is the total torque applied to the body about its rotation axis, I is the moment

of inertia of the body with respect to its rotation axis, and θ̈1 is the resulting angular

acceleration the body experiences. We also know that τ is the moment generated by the

gravitational force acting on the pendulum. In the 2-D case, it is equal to the scalar quantity

τ = d × F , where d = l is the distance from the center of mass to the rotation axis, and

F = −mgsinθ1 is the force acting in the direction of rotation:

τ = −mgl sin θ1. (8.2)

Combining and rearranging Equations 8.1 and 8.2 gives us the angular acceleration of the

body at it’s joint:

θ̈1 =
−mgl
I

sin θ1. (8.3)

If we take the same pendulum and animate it using LSDL, the same equation of motion will

presumably be calculated:

θ̈2 = ABA(model, θ2) =
−mgl
I

sin θ2. (8.4)

In order to test this, we shall simulate two identical pendulums with identical initial condi-

tions. The only difference will be that one will operate on the equation of motion derived

by hand (8.3), and the other on the equation of motion derived by Featherstone’s algorithm

(8.4). Note that both simulations need to operate on the same time integration scheme in

order for the comparison to be valid. I used semi-implicit forward Euler integration for the

time evolution of both systems:
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θ̇i = θ̇i + θ̈i∆t,

θi = θi + θ̇i∆t.

(8.5)

Figure 8.2 depicts three snapshots of both simulations running in parallel. The pendulum on

the left is computing accelerations using RBDL’s implementation of Featherstone’s articulated-

body algorithm, whereas the one on the right is computing accelerations using the equations

derived above. Both simulations are using the same time integration scheme (the semi-

implicit Euler integration mentioned above). The first snapshot is at t = 0, the second

snapshot is at t = 16s, and the third snapshot is taken at t = 49s. We see that the

simulations do not appear to diverge.

Figure 8.2: Snapshots of two single physical pendulums simulated side by side.

Indeed, the program was left running overnight and yet they did not diverge, which cements

the hypothesis that both simulations are equivalent (and additionally, deterministic). Using

different time integration schemes on both simulations would likely cause them to eventually

diverge.

8.2 Double physical pendulum

The single physical pendulum is trivial because there are no non-inertial accelerations acting

on the system. The next system worth testing against is therefore a chain of two rigid-bodies

called the double physical pendulum (Figure 8.3).
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Figure 8.3: A 2-D double physical pendulum

We can begin by manually deriving the equations of motion for a double physical pendulum,

just as was the case with the single physical pendulum. After that, we can compare the

motion of the system using these derived equations versus the motion of the same system

using the articulated-body algorithm. We note that these equations, which can be repre-

sented by the two functions f1 and f2, will both depend on all the instantaneous positions

and velocities of the system:

θ̈1 = f1(θ1, θ2, θ̇1, θ̇2),

θ̈2 = f2(θ1, θ2, θ̇1, θ̇2).

(8.6)

These functions can be derived by hand using Lagrangian mechanics, albeit through a lengthy

and tedious process. The derivation has been moved to appendix A to keep this section clean.

The resulting equations of motion for θ̈1 and θ̈2 are

θ̈1 =
Jx cos(θ1 − θ2)θ̈2 + Jx sin(θ1 − θ2)θ̇2

2 + µ1 sin θ1

−Ja
,

θ̈2 =
Jx cos(θ1 − θ2)θ̈1 + Jx sin(θ1 − θ2)θ̇2

1 + µ2 sin θ2

−Jb
.

(8.7)

The terms Jx, Ja, Jb, µ1, and µ2 are all constants and are described in appendix A. Note that
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θ̈1 and θ̈2 are still in both equations, however, the system can easily be solved by substituting

one equation into the other and isolating for the respective θ̈i terms (not shown).

With our derived equations for θ̈1 and θ̈2, we again proceed by running two simulations in

parallel: one using these derived equations, and the other using LSDL. Figure 8.4 shows

several snapshots of the simulations. The pendulum on the left is calculating accelerations

via LSDL whereas the one on the right is calculating accelerations via the derived equations

above. Note that this system also has no plant-motion components, so we are still essentially

testing RBDL’s base features.

Figure 8.4: Two double physical pendulums side by side. Notice the chaotic motion starting
at the 4th frame.

The simulations are visually indistinguishable from each other for the first couple seconds,

but at some moment (around t = 7.20s), they diverge. In the subsequent seconds, the

simulations completely deviate from one another. Therefore, if both algorithms are indeed

calculating the same algebraic expressions for θ̈1 and θ̈2, why do the simulations diverge?

Are the algorithms not calculating the same equations for θ̈1 and θ̈2 after all?
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The answer is that whilst it is possible that that there are algebraic differences between both

algorithms (due to human error), it is significantly more likely that the deviation is due to

numerical error instead. This is because the double pendulum is a chaotic system, meaning

that a small change in its current state can result in large difference in a later state. Since

each simulation uses a different sequence of arithmetic operations (addition, subtraction,

multiplication, division) on its path to compute θ̈1 and θ̈2, then - even if both algorithms

are algebraically equivalent - there will still be numerical differences present between their

calculations. For example, the following is the instantaneous acceleration of θ̈1 at t = 0 of

both pendulums in figure 8.4:

RBDL: θ̈1 at t = 0 : −126.12857413787080 (rad/s2).

Custom physics: θ̈1 at t = 0 : −126.12856820663652 (rad/s2).

We can see that it is a very slight difference. However, since thousands of iterations are being

computed every second, and since each iteration depends on the previous iteration, then the

resulting accumulated numerical differences between both simulations will definitely cause

the chaotic systems to diverge.

For context, two identical double-pendulum simulations - both operating on LSDL - were left

running overnight and did not diverge with respect to each other, meaning that the algorithm

is deterministic. After that, three double-pendulum simulations were ran side-by-side, each

described as follows:

1. The first simulation used LSDL with normal initial conditions, that is, θ1(0) = θ2(0) =

θ̇1(0) = θ̇2(0) = 0.

2. The second simulation used LSDL with a ten-thousandth radian change in the initial

angle of the first body, θ1(0) = 0.0001, but the other initial conditions unchanged,

θ2(0) = θ̇1(0) = θ̇2(0) = 0.
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3. The third simulation using the derived equations with normal initial conditions, θ1(0) =

θ2(0) = θ̇1(0) = θ̇2(0) = 0.

It was found that simulations (1) and (2) diverged with respect to each other before simu-

lations (1) and (3) did. Since simulations (1) and (2) would never diverge at all without a

perturbation, it means that the difference between the LSDL simulation (1) and the derived

equations simulation (3) is less significant than pertubing the initial angle of one of the pen-

dulums by one ten-thousandth of a radian: heavily implying that the error is numerical as

opposed to algebraic.

8.3 Cantilever beam

Figure 8.5: A cantilever beam of length l supported on its left end.

A cantilever beam is defined as a slender beam that is fixed at one end while extending hor-

izontally (Figure 8.5). The deflection of cantilever beams resulting from applied transverse

loads is an extensively studied topic in the field of structural engineering. In this section, we

aim to compare the deflections obtained from our simulation with the expected deflections

predicted by established equations. This comparison will help validate the methodology
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presented in Chapter 6 for approximating real-world beam deformations via rigid-bodies

connected by angular springs.

Let us assume our continuous cantilever to be a cylindrical beam of length l, radius r, density

ρ, and modulus of elasticity E. Let us also assume all of these values are constants. Given

these conditions, there are several cantilever beam equations that may be used to test our

simulations, but we will be picking the scenario in which there is an uniformly distributed

load acting on the beam. Additionally, we will take self-load (the load due to gravity) to

be the only load acting on the cantilever. The equation for the maximum vertical deflection

of such a beam is commonly taught in structural engineering due to its pedagogical nature,

and can be derived by integrating the bending-moment equation M = EIK (from which we

also derived our spring constants in Chapter 6). This derivation is presented in [32, Chapter

8], and its outcome is the equation

δy =
wl4

8EI
, (8.8)

where

• δy is the maximum vertical deflection (from the horizontal) of the beam’s floating tip.

• w is the uniformly distributed load per unit length acting along the beam. We will

simply take this to be the length-normalized force of gravity, w = Fg
l

= mg
l

.

• l is the length of the beam.

• E is the Young’s modulus of the beam.

• I is the second moment of area of the beam’s cross-sectional area. For circular cross

sections as in our example, I = 1
4
mr4.

It is important to note that this equation only works for small deflections. The reason

for this is that the assumption was made that the cantilever would only experience small
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curvature when carrying out the integration over M = EIK. This is because otherwise, the

system would be non-linear and would not have a nice, closed-form solution as in Equation

8.8. This is analogous to how a pendulum’s angle as a function of time only exhibits a

closed-form solution if the small-angle approximation is assumed. In order to conform to

such assumptions, the cylindrical cantilever being simulated has the following parameters:

l = 1.0m, r = 0.01m, E = 8100MPa, and ρ = 923kg/m3 for the cylinder’s density. The

values are arbitrary and were only chosen such that the cantilever’s expected deviation would

be much smaller than its length. By plugging these values into Equation 8.8, we see that

the expected deflection of the free tip of the beam is

δy =
wl4

8EI
= 0.0055893m,

which is miniscule compared to its length of 1.0m, meaning the use of the equation is war-

ranted. The deflection of such a cantilever beam was simulated by discretizing the metre-long

continuous beam into NB rigid-bodies. The NB rigid bodies were connected together by rev-

olute springs whose spring constants were computed via the methods discussed in Chapter

6. The simulations were left oscillating in an underdamped status until they reached static

equilibrium. It was at this point that the vertical deflection of the cantilevers’ end point was

measured. The following results were obtained with NB = 10, 25, 100, 250, and 500:

n simulated δy(m) expected δy(m) deviation(m)

10 0.0067664 0.0055893 0.0011771

25 0.0060488 0.0055893 0.0004595

100 0.0057051 0.0055893 0.0001158

250 0.0056376 0.0055893 0.0000483

500 0.0056155 0.0055893 0.0000262

We can see that doubling the number of bodies results in roughly half the amount of error,

implying that the computed deviation does indeed converge towards the expected deviation.
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More rigorous testing would be required to get further information regarding the correctness

of the spring constants, for example, would the simulation ‘overshoot’ the expected deviation

as Nb gets much bigger? What about validating the deformation scheme against large defor-

mations? For the purposes of plausible plant animations at the macroscopic scale however,

these results are promising.

Figure 8.6: A cantilever beam simulation with 25 bodies.

Figure 8.6 shows how the cantilever represented by 25 rigid bodies looks after it has reached

static equilibrium. Note that the length of the beam is 1m, so a deflection of 0.006m is not

easily noticeable to the naked eye.

Efficiency and stability of the cantilever simulations

One might’ve wondered the following question: Why didn’t you test the cantilever model

against 100,000 bodies? The answer is that the simulations get significantly slower as the

fidelity of the model increases. The remainder of this discussion was moved to Section 9.4.2

in order to join all discussions on efficiency and stability.
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Chapter 9

Results

The methodology employed in this thesis for creating procedural plant models and simu-

lating their dynamics has been discussed. This chapter presents some sample animations

illustrating the results of these methods.

9.1 Plant simulations - monopodial structures

Figure 9.1: A monopodial plant structure modeled via an L-system.

The biological structure of many simple yet elegant plants can be described as a single-

stemmed structure with leaves branching out in phyllotactic patterns. They are called
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monopodial plant structures and can accurately be modeled with L-systems. Figure 9.1 illus-

trates an L-system object of an abstract monopodial plant model whose leaves are branching

out in a spiral phyllotactic pattern. This section will be dedicated to showcasing several

sample animations of monopodial plant structures. It should be noted that this section and

future ones will not discuss the techniques used to model the illustrated plants because -

other than the fact that they are modeled with an articulated-body L-system format in mind

- the underlying L-system modeling techniques employed all fall under previous work (e.g.

[69, Chapter 3]).

Figure 9.2: (top): A leaf being approximated by a single cylindrical internode. (bottom): A
leaf represented by several cylindrical internodes.

This section is instead concerned with showcasing the methodology presented in this thesis

through the simulation of monopodial plant structures. There is one problem that needs

to be addressed first, however. The leaves in Figure 9.1 are not cylinders, meaning that

we can not use the methodology from Chapter 6 to calculate the spring constants of its

connecting node. Actually, it is simply not obvious what the springs constants should be

between rigid bodies of abstract shapes. In order to bypass this problem, the dynamics of

any non-cylindrical organs of a plant such as the leaves and flowers will be approximated by

cylindrical rigid-bodies (e.g. Figure 9.2, Figure 9.3). All the leaves in my plant models are

approximated by a single rigid body.
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Figure 9.3: (left) The plant that is rendered versus (right) the actual appearance of its
articulated-body.

All the shape and material properties used in my models were adapted from [56]. In the

study, Niklas determines the following properties of 76 herbaceous plant species:

1. Stem radius (m).

2. Plant height (m).

3. Bulk tissue density ρ (kgm3).

4. Young’s modulus E (MPa).

The material properties in this study provided a good basis with which to calculate the

following parameters of the plant models:

1. The length, radius, and density of the cylindrical rigid-bodies composing the plant’s

stem.

2. The elasticity properties (E/G) and second moment of area I needed to calculate the

spring constants between the cylindrical rigid-bodies composing the plant’s stem.

The parameters related to the rigid bodies and spring constants for other organs such as

leaves and plants were also adapted from the study, but were manually adjusted to better

140



represent the motion of the respective organ. For example, the rigidity of a spring connect-

ing a leaf and an internode was generally down-scaled by an user-defined constant because

the connection between a leaf and an internode should be more flexible than the connection

between two internodes. It remains as future work to find an automatic way to find the

spring constants for connections between abstract types of organs/rigid-bodies.

9.1.1 Example: gravity

g  
g  5  

1  

g  5  g  5  

g  5  

Figure 9.4: (left): The rest pose of a broad-leaf plant experiencing normal gravity. (right):
The rest poses of the same plant if it were to experience the 5x force of gravity in other
directions.

Gravity can be implemented by applying a downwards gravitational force at the center of

mass of each rigid body in the system. However, a different approach is typically used with

Featherstone’s algorithm; since the algorithm excels at the propagation of accelerations, we

can set the acceleration of the immovable root body to 9.81m/s2 upwards, meaning that the

rest of the articulated-body will experience it as an acceleration going 9.81m/s2 downwards.

Figure 9.4 showcases the effects of varying gravitational force on a simple broad-leaf plant.

141



9.1.2 Example: moving base

A key motivator behind using Featherstone’s algorithm for the dynamics of plants is its

ability to properly capture non-inertial accelerations, which is is an essential component of

real plant motion. An easy way to showcase this is by accelerating and decelerating the base

of the plant such that all resulting motion is non-inertial. The problem is that the current

implementation does not allow for a movable base.

In order to proceed, we need to extend the articulated-body algorithm to account for a

floating base. A floating-base system is one in which the base is a moving body, and can be

implemented by installing a 6-DoF joint between the root body and the origin of the world

[53, Chapter 4].

Figure 9.5: Simulating the movement of a potted plant by only accelerating its base. (left
column): rightwards and then leftwards. (middle column): forwards and backwards. (right
column): counter-clockwise motion.

With a floating-base implementation at hand, we can proceed by representing the now-

movable base with a pot, and moving the pot around the scene to see the resulting plant

motion (Figure 9.5). Notice how the plant jerks opposite to the direction of acceleration,
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this can most clearly be seen in the left column pictures.

The acceleration and deceleration of the pot is controlled by user input. This is done by

defining two user constants: one for the magnitude of acceleration of the pot (due to user

input), and the other the magnitude in deceleration of any already-moving pot (mimicking

deceleration due to kinetic friction). Additionally, the arrow keys are mapped to differ-

ent directions of acceleration; pressing an arrow key accelerates the plant in the respective

direction, and releasing the key stops acceleration in that respective direction. The plant

decelerates automatically because deceleration is always being applied to a moving plant,

proportionate to the deceleration constant. The deceleration constant mimics the roughness

of the terrain on which the pot slides.

9.1.3 Example: pulling

The two previous examples (gravity and movement of the base) are examples of dynamical

plant motion arising only from non-inertial effects. We are now interested in plant motion

arising from physical interactions as well. This includes environmental forces such as wind,

rain, wildlife interaction, and human interaction. All of these forces together make up the

external force vector, fext, which is an input into Featherstone’s algorithm. In this section,

we shall showcase such motion by pulling a virtual plant.

Pulling was implemented through the use of a 3-D cursor; the cursor is used to virtually

‘click and pull’ desired parts of the plant. The main issue here is that a mouse can only

map 2 dimensions, so we used a 3-D haptic device to control the movement of the 3-D cursor.

The algorithm to do so is as follows:

1. When the cursor button is pressed: Store the cursor’s current 3-D position, po,
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as well as the closest rigid-body to this position, b. b is the rigid body that will be

pulled.

2. While the cursor button is held: The linear force F acting on b is equal to the

current position of the cursor minus po (times some user-defined constant). Add this

linear force to the elements of fext corresponding to b. We may also set the haptic

feedback force to be the opposing force, −F, if desired.

3. When the cursor button is released: Set the corresponding elements of fext to 0.

Figure 9.6 provides snapshots of a monopodial plant being pulled at its tip.

Figure 9.6: (top row): progressively pulling a small herbaceous plant near at its tip. (bottom
row): the resulting motion after releasing.

9.1.4 Example: modifying elasticity

The presented methodology excels in its ability to capture the motion of plants undergoing

different material properties. As an example, Figure 9.7 shows different snapshots of a rose

whose Young’s modulus has been severely reduced, resulting in the rose being unable to

support its own weight. Such techniques could be used to simulate the motion of withered
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or damaged plants.

Figure 9.7: A rose with reduced Young’s modulus falling under its own weight.

9.1.5 Example : motion comparison against a real monopodial

plant

The previous examples showcased the proposed methodology by analyzing specific plant mo-

tions, however, the plant models themselves were still abstract. I therefore also compared
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the proposed methodology against real plant motion.

The comparison experiment was carried out by first capturing a video of a real plant be-

ing pulled, and then modeling and animating the same plant motion thereafter. The plant

in question was purchased from a local supermarket, and has a monopodial structure with

leaves branching out in a spiral phyllotactic pattern (Figure 9.8).

Figure 9.8: Side and top views of a tropical plant.

The articulated-body L-system string of the plant model was constructed manually in order

to get as accurate a model as possible. This was done by measuring the individual com-

ponents of the plant and creating rigid-bodies out of these measurements. The stem was

approximated with eight cylindrical rigid-bodies, and each leaf was approximated by a single

cylindrical rigid-body. The densities and spring constants of the internodes were adapted

from Niklas’s measurements [56] just as the previous examples, but again, the densities and
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spring constants of the leaves required further alteration on a trial-and-error basis in order to

make their motion realistic. Figure 9.9 provides several snapshots of the real and synthesized

motion side-by-side.

1 2 3

4 5 6

7 8 9

10 11 12

Figure 9.9: Comparison of real and synthesized plant motion. The plant is first pulled
(frames 1-2) and released (frame 3).

One can see from Figure 9.9 that, if fed the proper shape and material properties, the

proposed methodology can create surprisingly accurate motion, and actually, the extent to

which the animations matched was completely unexpected due to all of the uncertainties

and approximations employed in the thesis. A direct future work consists of working on an

automatic way to determine these material properties (a closely related previous work in

this area is [93]).
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9.2 Plant simulations - structures with higher-order

branches

Figure 9.10: Growth time stamps of an inflorescent plant. The yellow spheres indicate flower
placement and size.

We also explored the animations of herbaceous plants with inflorescences. This is because

their motion is typically interesting and unique due to the propagation of motion from one

branch to another. The L-system modeling techniques used to modeled such plants are those

presented in [68]. In the paper, a single developmental model is proposed that accounts for

the restricted range of inflorescence types observed in flowering herbaceous plants. Addi-

tionally, many flowering plants first grow a main stem with leaves (vegetative stage) before

developing their flowers (flowering stage). We can therefore model a great variety of flower-

ing herbaceous plants by first growing a main monopodial stem (representing the vegetative

stage) and developing an inflorescence thereafter (representing the flowering stage). Figure

9.10 shows snapshots of a growing abstract inflorescent plant model and Figure 9.11 indicates

the vegetative and flowering parts of the plant.
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Figure 9.11: Many flowering plants can be modeled as a vegetative part (blue square) and a
flowering part (red square).

9.2.1 Example: twisting motion

Twisting can occur when different forces (wind, gravity) act on asymmetric structures, caus-

ing torques. It can also occur when the forces are asymmetric themselves. Twisting motion

is not as visually prevalent as bending motion because plants are generally harder to twist

than to bend, meaning that bending motion visually overwhelms twisting motion. Therefore,

in order to showcase the methodology’s ability to represent twisting motion, we can proceed

with the following contrived example:

1. Apply a slight external twisting torque along each internode of the plant’s main stem.

This torque could be the result of asymmetrical environmental forces, but for our

purposes, its magnitude is an user-defined constant.

2. Continue applying the torques until the plant settles (static equilibrium).

3. Release the torques. This will instantaneously be followed by the plant ‘swinging back’

towards its rest pose.
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Twisting can most easily be observed in plants with laterally extending branches, which is

why I chose to carry out the example above against a ‘T’-shaped inflorescent plant. Figure

9.12 shows front and top-down views of a ‘T’-shaped plant’s response to the axially-applied

external torques, and Figure 9.13 shows the resulting oscillatory motion directly after the

time of torque release.

Figure 9.12: (top row): twisting a plant in incremental amounts. (bottom row): top-down
view of the same motion, the twist amount is represented by the angle between the dashed
line and solid line.

One important thing to point out from the angular motion showcased in this section is that

straight lateral branches will take on a curved shape when the plant twists. This can be

explained through the angular notion of rotational inertia, which states that mass gets pro-

gressively harder to rotate the further away it is from the axis of rotation. In the angular

motion showcased in Figures 9.12 and 9.13, the axis of rotation of the system as a whole is

approximately equal to the longitudinal axis of the main monopodial stem. This means that

it will get progressively more difficult to angularly accelerate rigid bodies the further away

they are from the main stem, which leads to motion in which the distal bodies will always

be ‘lagging behind’ the proximal bodies. Therefore, lateral branches will appear curved if
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Figure 9.13: Snapshots showing the oscillatory motion of a twisted plant at the time of
release.

observed from a top-down-view, which I find intriguing because we are essentially visualiz-

ing the moment of inertia at play! Figure 9.14 showcases the same simulation as in figures

9.12 and 9.13, but this time the plant has exaggeratedly long lateral branches such that the

curved shape is more obvious.

Figure 9.14: (left): An inflorescent plant with exaggerated laterally-extending branches at
rest. (middle): The plant’s main stem is twisted in the direction of the arrow. (right): The
plant’s curved appearance shortly after the release of the external torques; the arrows denote
instantaneous direction of motion.
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9.2.2 Example: the importance of shape

The motion of a plant is heavily influenced by its shape. In these simulations, shape refers to

the length and radii of the plant’s cylindrical internodes. Figure 9.15 depicts the effects that

varying radii (top) and varying lengths (bottom) have on the range of motion that a plant

may have. Thicker plants bend less because internodes with larger cross-sectional areas are

more difficult to bend, whereas longer plants bend more because the angular springs will

struggle to restore the relative orientations between internodes whose mass is concentrated

further away from the joint.

9.2.3 Example : motion comparison against a real branching plant

Finally, the motion produced by the proposed methodology was compared against the mo-

tion of a real branching plant. This was done in an identical manner to the monopodial

plant comparison example from Section 9.1.5.

The plant chosen for this example was a Phalaenopsis Orchid as pictured in Figure 9.16.

It was picked because of its two distinctive flowering lateral branches, meaning that unique

and complicated motion will arise from the transfer of motion from one branch to the other.

The comparison experiment was again carried out by first capturing a video of the real or-

chid plant being pulled, and then modeling and animating the same plant motion thereafter.

The orchid model was constructed manually in order to get as accurate a model as possible,

which was again done by measuring the individual components of the plant and creating

rigid-bodies out of these measurements. Motion comparison of both real and synthesized

animations is provided in Figure 9.17.

One can see from Figure 9.17 that the virtual motion closely follows the real motion despite

all the chaotic motion.

152



Figure 9.15: (top): Three plants experiencing equal bending torques. The radii of the
plants vary ascendingly from left to right, but the plants are otherwise identical. (bottom):
The plants are again experiencing equal bending torques. The lengths of the plants vary
ascendingly from left to right, but the plants are otherwise identical.
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Figure 9.16: Side and top views of the orchid.

Figure 9.17: Comparison of real and synthesized orchid plant motion.

Finally, for context, both the orchid comparison video in this section and the tropical plant
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comparison video from Section 9.1.5 each took about ∼24 hours to complete:

• ∼12 hours modeling and texturing the plant’s flowers, leaves, and internodes using

Blender [12].

• ∼4 hours modeling the plant’s L-system. The dimensions the rigid-bodies were deter-

mined empirically in order to create matching models.

• ∼4 hours creating and setting up shading materials, lighting conditions, camera set-

tings, and other scene-related components in the Unreal Engine 5 [30] editor.

• ∼2 hours setting up the timeline editor for the pulling motion, and using it to re-create

the motion in the video. The main components that required trial-and-error in order

to match in these comparison simulations were the damping and spring constants for

leaves and flowers.

• ∼2 hours of post processing (positioning the videos side-by-side, scaling them accord-

ingly, making sure their animation times are aligned).

9.3 Model parameters

The purpose of this short section is to disclose exactly the number of tunable parameters in

my models. For starters, every cylindrical rigid-body needs exactly three parameters:

1 scalar for the length of the cylinder.

1 scalar for the radius of the cylinder.

1 scalar for the density of the cylinder.

Furthermore, every spherical joint requires the following parameters:

1 scalar for the Young’s modulus that will be used to generate the joint’s spring con-

stants.
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3 scalars for the three default joint angles of the joint.

3 scalars for the three initial joint angles of the joint.

1 scalar for the damping constant of the joint.

It is possible to have a different Young’s modulus and damping constant in each direction of

rotation, but I did not make use of this fact. Every single one of these parameters must be

given if the model is created by hand, which means there are 11 × NB parameters. This is

definitely time consuming even for small herbaceous plants, and poses many problems when

working with larger models as pointed out in [93] in their work on procedural parameters.

However, a procedurally-grown plant generally only requires a single scalar for every param-

eter type (i.e. ‘maximum internode length’), and uses this single parameter in conjunction

with a developmental rule to generate the lengths of all internodes. This means that the

actual number of parameters needed is substantially lower than 11×NB.

Finally, there are two global parameters pertaining to the simulation:

1 scalar for the timestep dt.

1 scalar for the number of physics substeps.

9.4 Accuracy and efficiency

An important question laying at the heart of the thesis is to verify how useful and appropri-

ate it is to use Featherstone’s algorithm for animating plant motions, and to compare how it

performs against other methods. The purpose of this section is to address these questions,

and does so by taking into account the results presented throughout this thesis.
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The discussion is best broken down into two: a discussion on accuracy and a discussion on

efficiency. Accuracy refers to Featherstone’s algorithm ability to approximate real plant mo-

tion, whereas efficiency refers to how quickly and reliably the simulations can be performed.

It is important to note that the model I’ve presented is not a perfect implementation of a

‘physically-based plant model operating on Featherstone’s algorithm’ (whatever this ‘per-

fect’ model may be). This is because - due to the complex nature of the project - several

approximations were employed that might have affected the potential accuracy and efficiency

of the method; could a quaternion representation of the joints have provided significant sta-

bility and hence efficiency? How about a different integration scheme or damping? It is

therefore possible that these approximations could skew the discussion of ‘the suitability of

Featherstone’s algorithm for plant motions’, but I am nevertheless confident that the over-

all strengths and weaknesses of the method in representing plant motion have been clearly

identified through the work on this thesis.

9.4.1 Accuracy

In the context of this thesis, accuracy refers to how well the Featherstone model is able to

approximate real plant motion. An accurate model would closely match the actual motion of

a plant, while an inaccurate model would differ significantly from the real motion. By con-

struction of the problem, the accuracy of any physically-based method may be decomposed

into two components:

1. the accuracy of the discrete model employed, and

2. the accuracy of the simulation method employed;

both of which are immediately discussed.
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Accuracy of the discrete plant model

By the ‘accuracy of the discrete plant model’, we refer to the faithfulness by which the vir-

tual, discrete plant model approximates the real, continuous plant. This depends on two

things: the discretization scheme employed (e.g. 1-D rigid links? 3-D rigid bodies? 3-D

finite elements?) and the precision, or granularity, of the models (i.e. the actual number

of discrete elements used); we are not yet concerned with the accuracy of the simulation

method itself.

In any physically-based animation project, the chosen discretization scheme typically dictates

the range of motions replicable by the model, regardless of simulation scheme used. Chapter

2 reviewed some common discretization schemes that have been used in plant animation

works. For example, by using 3-D spherical springs, the presented model can adequately

capture torsional plant motion (Section 9.2.1) whereas previous models that only use 2-D

bending springs cannot (e.g. [79, 64]). On the contrary, the presented model cannot handle

shearing deformations (as discussed in Chapter 6), whereas methods derived from 3-D con-

tinuum mechanics generally can (e.g. [6, 93]).

The accuracy of the discrete plant model also depends on its granularity or precision. In our

context, a more precise model would include more rigid-bodies and more spherical springs

in order to better approximate the real plant motion. The cantilever example for instance

(Section 8.3), showed how the accuracy of the model increased as the number of rigid-bodies

increased.

Accuracy of the simulation method

By the ‘accuracy of the simulation method’, we refer to a simulation method’s ability in

approximating real motion with respect to the inaccuracies that have already been forfeited

due to the chosen discretization scheme. In our context, we are interested in the extent
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by which Featherstone’s algorithm can be used to make articulted-bodies bend and twist

like real plants; these being the specific motions that can be captured by the discretization

scheme used in this thesis.

The accuracy of a simulation method is a complex and multi-dimensional issue, meaning that

it is unlikely that a single metric may be used to assess the accuracy of the entire model. This

is because the accuracy of the simulation method depends on the implementation details of

all its components such as external forces, spring constants, damping forces, and the time

integration scheme employed; many of which depend on each other.

One can instead proceed by assessing the accuracy of a physically-based simulation method

in pieces, and there are two common ways that this is done:

1. by using analytical solutions to compare the simulations with expected behaviours, or

2. by comparing the simulations with real-world observations.

The tests performed in Chapter 8 provided an analytical notion of accuracy; the double-

pendulum example (Section 8.2) showed Featherstone’s ability in capturing chaotic motion,

whereas the cantilever example (Section 8.3) showed the method’s ability in representing the

deformation of real objects. The ability of Featherstone’s algorithm to capture secondary

motion as analyzed in the double-pendulum example (and observed in the moving-base ex-

ample) should not be understated, as it is the key reason why the method can capture the

intricate and subtle motion of real plants.

On the other hand, the visual results presented in this chapter provided an observational no-

tion of accuracy. It is my impression that the motion comparison results presented

in Sections 9.1.5 and 9.2.3 speak for themselves in terms of the accuracy achiev-

able by Featherstone’s algorithm. They show that - when fed appropriate shape and
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material parameters - Featherstone’s algorithm is capable in creating highly accurate plant

motion. The other motion examples showcased in the chapter were not compared against

real plants, but nevertheless showcase the method’s ability in representing a plethora of mo-

tion patterns observed in real plants.

9.4.2 Efficiency

Efficiency refers to how quickly and reliably the Featherstone’s algorithm plant-simulations

can be performed, and in short, Featherstone’s algorithm struggles in efficiently sim-

ulating the dynamics of large and/or rigid plants. This was without a doubt the key

hurdle that complicated every step of the thesis’ development.

The problem can be constructively elaborated upon by continuing the discussion on the ef-

ficiency and stability of the cantilever beam simulation (Section 8.3). In the example, the

deformation of a unit-length cantilever beam bending under gravity was analyzed by mod-

eling it with an increasing number of rigid-bodies, up to a maximum of 500. The question

was: why wasn’t the experiment tested with a much larger number of rigid-bodies?

The answer was that the simulations get significantly slower as the fidelity of the geomet-

ric model increases. The reason for this is not that Featherstone’s algorithm is

slow; Featherstone’s algorithm is O(n) where n is the degrees of freedom of the system, and

therefore its speed in calculating q̈ is linearly proportional to the number of generalized coor-

dinates in the system1. For context, any plant model presented in this chapter can run over

one-hundred thousand iterations of Featherstone’s algorithm per second and still maintain

interactive frame-rates (30 FPS+).

1It can be parallelized, but the time increase would depend on the branching structure of the tree.
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The speed issues instead emerge because Featherstone’s algorithm - if used to simulate the

dynamics of elongated structures - is extremely unstable [22]. An unstable computational al-

gorithm is one in which a small change in the input may result to large changes in the output.

This is problematic because we are using the output of the algorithm q̈ to estimate the state

of the system at a point later in time; in an unstable system, smaller time steps must be taken

in order to accurately approximate the real motion of the plant, hence the speed issues. This

means that the inefficiency of the simulations lies in the attempt to numerically represent

highly non-linear motion, as opposed to an inherent flaw with Featherstone’s algorithm itself.

It should be noted that this issue is catastrophic because a small error in one iteration will

lead to a larger error in the next one; since tens to hundreds of thousands of iterations are

being computed per second, the simulation will explode in the blink of an eye.

For example, the 500-body cantilever simulation required a time step dt in the millionths of

a second to be numerically stable. This instability can be conceptualized by considering the

analytical leap in complexity from a one-body physical pendulum and a two-body physical

pendulum (as analyzed in Chapter 8), and then considering that our example above is es-

sentially a 500-body physical pendulum with the additional instability coming from the 500

stiff springs connecting it. The following chart shows the maximum stable time step dt for

the cantilever tests from Section 8.3:

n maximum stable dt(s)

10 0.0002

25 0.00003

100 0.000001

250 0.0000003

500 0.00000007
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We can see that the time step needed to remain stable is not linearly proportional to n.

This drastic increase in complexity is known, and a more comprehensive study on the topic

is presented by Featherstone in [22]. In general, the more complicated an articulated-body

is, the more unstable its dynamics simulation becomes meaning that a smaller time step

must be taken, hence the slow simulation speeds. Complexity in this context refers to the

number of bodies in the system, the geometry of the system (that is, the shape and size of

the rigid-bodies and where things are connected), and the rigidities of the spring constants

in the system.

These numerical instabilities are the reason why the methodology presented in this thesis can

only simulate plants of relatively small size in real-time. For context, the plant simulations

in this chapter had values of n between ∼50 and ∼100. It was found that a plant model with

n ≈ 100 was around the largest a model could get whilst still maintaining stable interactive

speeds. A performance evaluation of RBDL, including a comparison against another state-

of-the-art multibody dynamics library (SimBody [81]), is provided by its creator Martin Felis

in [28].

Measuring simulation speeds

We conclude the topic of efficiency by discussing the speeds of the plant simulations pre-

sented in this chapter. Let us define a physics step to consist of a single call to the method

PlantModel::PhysicsStep(float dt) as presented in Section 7.2.2 (presented again in Al-

gorithm 8 for convenience).

Furthermore, let us define a rendering step to be the application-specific method that renders

a plant model to the screen, such that the pseudocode of the plant simulatior takes on its

‘canonical’ form as shown in Algorithm 9.
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Algorithm 8 Pseudocode for the PhysicsStep method

1: procedure PlantModel::PhysicsStep(float dt)
2: ComputeForces()

3: ForwardDynamics()

4: TimeIntegrate(dt)

5: ComputePositions()

6: end procedure
7:

8: procedure PlantModel::TimeIntegrate(float dt)
9: q̇← q̇ + q̈ · dt

10: q← q + q̇ · dt
11: end procedure
12:

Algorithm 9 The canonical form of the plant simulator.

1: procedure main(string lsystem string)
2:

3: PlantModel m ← new PlantModel(lsystem string)

4: float dt ← user constant

5:

6: while true do
7: m->PhysicsStep(dt)

8: m->RenderingStep()

9: end while
10:

11: end procedure
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We note that both the PhysicsStep and RenderingStep methods are O(n), which means

that any modern system is able to simulate the plant simulations at interactive frames, even

for large values of n such as 100 000. However, since the value of dt has to be so tiny in order

to maintain stability, the simulated plant will appear to be moving in slow-motion when

compared to its real counterpart. The common (and employed) way to circumvent this is to

run many PhysicsStep iterations per RenderingStep iteration (Algorithm 10). This will

jeopardize the visible frames-per-second (FPS) of the simulation, but can greatly increase the

speed of motion. The speed of the simulations can thus be quantified by the two following

co-dependent metrics:

FPS: The number of visible frames-per-second (FPS).

relative speed: How fast the plant moves with respect to the real plant.

Algorithm 10 The canonical form of the plant simulator that incorporates physics sub-
stepping.

1: procedure main(string lsystem string)
2:

3: PlantModel m ← new PlantModel(lsystem string)

4: float dt ← user constant

5: int substeos ← user constant

6:

7: while true do
8: for i = 1 to substeps do
9: m->PhysicsStep(dt)

10: end for
11: m->RenderingStep()

12: end while
13:

14: end procedure

The metrics FPS and relative speed are related by the equation

relative speed = substeps * FPS * dt, (9.1)

where the variables of the equation are described as follows:
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relative speed (unitless): The relative speed by which the simulated plant appears

to move with respect to the real plant. A relative speed of 2 would mean that the

simulated plant motion will appear to move twice as fast as the real plant motion.

substeps (unitless): The number of physics steps per rendered frame.

FPS (s−1): The number of visible rendered frames per second.

dt (s): The constant delta time by which the system always advances its state. This

generally has to be exceptionally small to maintain stability.

The substeps and dt constants are user-defined. The values for relative speed and FPS

are a by-product of these constants (FPS also depends on the time it takes to process input

and render the scene, but are assumed to be uncontrollable for the context of this discus-

sion). The value for dt was chosen first in any particular simulation, and it was chosen to be

the largest value such that the simulation will be numerically stable. The value dt generally

needs to be small, which means that relative speed will be small as a consequence. In

order to combat this, substeps needs to be raised so that more physics simulation steps

are computed per rendered frame. Raising the value of substeps will affect FPS, however,

meaning that substeps can’t get too high otherwise FPS may fall below interactive levels.

The values for substeps used in the simulations in this chapter varied between 100 for simple

models and 2000 for the most complicated ones. Additionally, I aimed to have a minimum

FPS of 30 for all my simulations.

Figure 9.18 provides performance metrics of various plant simulations presented in this chap-

ter. The plant simulation with n = 99 was found to be the largest possible such that it could

achieve a relative speed close to 1. The orchid simulation that has n = 150 could only

achieve a maximum relative speed of 0.67, meaning that at best, its real-time simulation

will move two-thirds the speed of the real orchid.
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n

45 135

151

201

480

1500

4.5x10-5

4.0x10-5

3.0x10-5

1.5x10-5

1.5x10-5

51

63

99

150

dt substeps FPS

render only

physics only

Combined

165

30

30

relative speed

render only

physics only

Combined

165

142

135

render only

physics only

Combined

165

522

165

render only

physics only

Combined

165

838

165

render only
without rendering

physics only

Combined

165
6.478

with rendering

1.002

without rendering

5.064

with rendering

0.997

without rendering

3.151

with rendering

0.995

without rendering

1.028

with rendering

0.976

without rendering

0.691

with rendering

0.671

1066

165

Figure 9.18: A table showing performance metrics of several simulations presented in this
chapter.
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Chapter 10

Conclusion and future work

This thesis presented a physically-based model for simulating the dynamics of procedurally-

generated L-system plants. The key programming component implemented for the com-

pletion of this thesis is the L-system dynamics library (LSDL), a general purpose object-

oriented C++ library that allows one to simulate the dynamics of abstract L-system plants

via Featherstone’s articulated-body algorithm. LSDL was validated by using it to simulate

the dynamics plants with varying structures and material properties, including side-by-side

comparisons of real-world plant motion. LSDL was also tested against a series of phys-

ical tests that provided quantifiable validation of correctness. Additionally, the presented

simulations were subjected to various types of real-time user interactions, showcasing the ver-

satility of the proposed methodology. The resulting plant simulations were shown to capture

the flexibility and liveliness of real plant motion, including seldomly modeled movements

such as twisting and secondary motion. Additionally, it was specifically pointed out how

the articulated-body algorithm’s ability to capture non-inertial effects heavily contributed

towards the realism of the synthesized motion. Finally, the approximations and heuristic

assumptions present in the methodology were pointed out throughout the thesis in order to

clarify the contributions and limitations of the presented work. All in all, the work presented

in this thesis has shown to be a promising stepping stone towards an unified model in the
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physically-based modeling and animations of procedurally-generated plants.

The remainder of this chapter lists (some) of the many research problems that arose through-

out the development of this thesis.

10.1 Future work: accuracy of the model

The first category of research problems consists of problems related to making the articulated-

body plant motion more realistic. An attempt has been made to sort them ascendingly by

perceived level of difficulty.

• There is currently no damping due to air. What is the proper way to implement this

in articulated bodies?

– I attempted to implement air damping several times throughout the development

of the thesis but was never able to get it quite right, specifically, I found that the

propagation of drag forces only led to chaotic ‘jittery’ motion as opposed to the

desired damping motion.

• My method allows for any external forces to act on any number of rigid bodies of the

plant, meaning it is easily extensible to represent motion due to vector fields (wind,

plant immersed in water, etc.). However, the instability of the system (especially if

acted upon by many external forces) is troubling. What to do here?

• The damping constant at the joints is currently set through trial and error. What is an

automatic way to determine a good constant? Also, different organs probably require

different nodal damping constants?

• Does a certain consideration need to be taken regarding spring constants at branching

points?
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– In the current method, children bodies of the same parent are unaware of each

other, meaning that no dynamical behaviour is captured regarding the geometry

of plants at their branching points (Figure 10.1). This geometry provides extra

rigidity at the branching points; how to capture it using spring constants?

Figure 10.1: My methodology treats branching points as independent segments (left),
whereas in reality, plants exhibit unique geometry at the branching points (right).

• What is the best spring constant to properly represent a continuous internode with

discretized segments?

– Keep in mind that branches/stems are inhomogeneous in both density and Young’s

modulus (in both lateral and axial directions); my method does not handle either

of these.

– Densities and moduli of elasticity also change over time and have different values

in different parts of the plant. How to model this? For example, the pipe model

may be used to calculate the plausible radii of child branches with respect to the

radius of the parent branch. Does a similar rule exist for the Young’s modulus?

• How to handle joints between different types of rigid bodies? For example, what would

be the best spring constant between a stem and a leaf? Do we need to introduce

petioles?
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– All organs are currently represented by cylindrical internodes in order to avoid

this problem.

• The Young’s moduli used in my simulations were all adapted from the observations

provided in [56]. Is there a way to automatically generate these values for internodes?

How about for leaves, flowers, and other organs?

• The shear modulus for a plant was obtained from its Young’s modulus via an equation

that assumes that the material is isotropic, which plants are not. How would one

address this limitation?

10.2 Future work: efficiency

The second category of research problems is concerned with making the articulated-body

plant simulations faster, such that we can interactively simulate more complex models, or

interactively simulate many models in the same scene. Note that as per the discussion in

Section 9.4.2, efficiency and stability are effectively intertwined.

• It is known that one can use quaternions to represent spherical joints as opposed to

Euler angles. Would using quaternions affect stability? And if so, would it increase it

or decrease it?

• Could we get significant speedups via multi-threading?

• Can we get significant speedups using different time integrating schemes? It is known

that forward (or explicit) time-integration schemes are not appropriate for chaotic

systems. How would other time-integration schemes handle these simulations?

– For example, it is known that backward differentiation formula (BDF) methods

excel at numerically integrating stiff mechanical systems. The BDF refers to a

family of implicit methods that provides high stability when integrating chaotic
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systems such as ours.

• What about using hardware-accelerated extension to Featherstone’s algorithm?

– This is non-trivial because modern hardware-accelerated methods, such as GPU-

programming methods, excel on decoupled systems where the equations are all

independent of each other. The matrix representing the equations of motion of a

plant can exhibit sparsity depending on its branching structure, but ultimately,

the system cannot be fully decoupled because the dynamics of a body will always

depend on the bodies attached to it.

10.3 Future work: coupling of growth and dynamics

The final research question I will be mentioning is the one that speaks the most to me, and

it regards the coupling of growth and dynamics.

Back in Section 2.3, we discussed a few works in the field of physically-based developmental

plant modeling whose growth and dynamics models classified as coupled systems. What this

means is that to some extent, these works implemented a mechanism by which long-term

growth could affect dynamical behaviour, and dynamical behaviour could affect long-term

growth. It is important to research these types of developmental models because capturing

a plant’s growth response to mechanical (Newtonian) forces is just as essential as capturing

its growth response to other ‘classes’ of environmental influences such as light availability,

gravitational effects, ambient temperature, or water intake to name a few. Actually, it is

possible that a certain level of physical abstraction exists for which all of these growth in-

fluences can be captured by a single comprehensive physically-based growth model (e.g. a

physically-based model operating at the microscopic scale), meaning that they could ulti-
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mately be ‘equivalent’. Unfortunately however, we will likely not see such a computational

model for plant growth anytime soon.

We are therefore interested in the following question:

“How can we extend the methodology presented in this thesis such that growth

and dynamics are coupled?”

The main drawback of the paradigm employed in this thesis can be explained through its

state diagram as illustrated in Figure 10.2. In this methodology, an L-system model is grown

via a desired number of derivation steps (growth), it is then exported to the physics model,

whom may then subject the model to any number of physics steps (dynamics). The main

issue with this method is that there is no information transfer from the physics model back

to the L-system model, meaning that whatever happens in the dynamics calculations can

never affect subsequent growth.

L-system 

model
Dynamics 

model

derivation
step

physics
step

exportCurrent method:

Figure 10.2: A state diagram illustrating the methodology employed in this thesis. Growth
can influence dynamics, but dynamics cannot influence growth.

In order to address these limitations, we need to add information transfer from the dynamics

model to the growth model (Figure 10.3). This extension would let the growth model know

what’s going on in the dynamics world, and would let us capture certain currently unrepre-

sentable behaviours such as plastic deformation, fracture, or even loss of branches. There is

one remaining issue with this method, however, in that it requires two models to be defined:

a growth model and a dynamics model, meaning that data is needlessly duplicated.
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export

import

L-system 
model

Dynamics 
model

derivation

step
physics

stepBetter method:

Figure 10.3: A more elegant solution would account for bi-directional flow between the
growth model and dynamics model

This leads into the last solution - which I believe to be the most elegant - and that is to

calculate the dynamics within the L-system programming language itself (Figure 10.4). The

overarching idea here is that there are no fundamental differences between a growth model

and a dynamics model; they are both representations of the time evolution of a plant, re-

gardless of the time scale on which they operate. It just so happens that both growth and

(Featherstone-style) dynamics are ideally representable by Lindenmayer systems.

L-system 
model

derivation

step

incorporates 

dynamics model

incorporates
physics step

Best method:

Figure 10.4: The most elegant solution would incorporate dynamics as a part of its growth
model altogether.

Pursuing this methodology would necessitate the efficient implementation of Featherstone’s

algorithm within the L-system framework, which is not a simple task. Additionally, an

elegant implementation of this methodology should presumably incorporate bi-directional

communication between the L-systems and their environment. This would possibly require

an extension to the concept of Open L-systems [52] to account for transferring abstract dy-

namical data between the plants and their environment.
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Appendix A

Equations of motion for the double

physical pendulum

m2g

m1g

Figure A.1: A 2D double physical pendulum

The double physical pendulum consists of a link of two rigid bodies free to oscillate about a

2D plane (figure A.2). The first body is attached to the ceiling via a revolute joint, and the

second body is attached to the first body also via a revolute joint. The equations of motion

of this system can be represented by two functions f1 and f2, and they will both depend on

all the instantaneous positions and velocities of the system:
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θ̈1 = f1(θ1, θ2, θ̇1, θ̇2)

θ̈2 = f2(θ1, θ2, θ̇1, θ̇2)

(A.1)

.

Equations of motion

We shall use the Euler-Lagrange equations in order to find f1 and f2 and solve for θ̈1 and θ̈2:

d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

, (A.2)

where the qi are the generalized coordinate of the system (in our case, θ1 and θ2), and L is

the Lagrangian of the system. The Lagrangian is equal to the total kinetic energy T minus

the total potential energy V of the system,

L = T − V. (A.3)

(x1,y1)

(0,0)

m2g

(x2,y2)

m1g

θ1

θ2

l1

l2

Figure A.2: Free body diagram of a double physical pendulum

We proceed by defining the Cartesian coordinate system of our mechanical system as shown
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in figure A.2. Note that we define θ1 and θ2 to be the angle from the vertical, however, in

our Featherstone’s solver, θi is the angular displacement from our parent’s heading vector.

The reason for this is only to make the derivation of the Lagrangian a bit cleaner on paper.

Next, we need to find T and V . T is the total kinetic energy of the system and consists of

the linear and angular kinetic energies of both bodies,

T =
1

2
m1(ẋ2

1 + ẏ2
1) +

1

2
m2(ẋ2

2 + ẏ2
2) +

1

2
I1θ̇

2
1 +

1

2
I2θ̇

2
2
, (A.4)

whereas the potential energy V contains the gravitational potentials of each body,

V = m1gy1 +m2gy2. (A.5)

We proceed with a change of variable from the xi’s to θi’s:

x1 =
l1
2

sin θ1,

y1 = − l1
2

cos θ1,

x2 = l1 sin θ1 +
l2
2

sin θ2,

y2 = −l1cosθ1 −
l2
2

cos θ2.

(A.6)

Now we take the time derivative to get the ẋi’s in terms of the θi’s and θ̇i’s:

ẋ1 =
l1
2
θ̇1 cos θ1,

ẏ1 =
l1
2
θ̇1 sin θ1,

ẋ2 = l1θ̇1 cos θ1 +
l2
2
θ̇2 cos θ2,

ẏ2 = l1θ̇1 sin θ1 +
l2
2
θ̇2 sin θ2.

(A.7)

We have successfully changed all variables from xi’s to θi’s. Let’s substitute them back into

T:
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T =
1

2
m1(ẋ2

1 + ẏ2
1) +

1

2
m2(ẋ2

2 + ẏ2
2) +

1

2
I1θ̇

2
1 +

1

2
I2θ̇

2
2

=
1

2
m1[

1

4
l21θ̇

2
1(cos2 θ1 + sin2 θ1)]

+
1

2
m2[l21θ̇

2
1(cos2 θ1 + sin2 θ1) +

1

4
l22θ̇

2
2(cos2 θ1 + sin2 θ1) + l1l2θ̇1θ̇2(cos θ1 cos θ2 + sin θ1 sin θ2)]

+
1

2
J1θ̇

2
1 +

1

2
J2θ̇

2
2

=
1

2
(
1

4
m1l

2
1 +

1

12
m1l

2
1 +m2l

2
1)θ̇2

1 +
1

2
(
1

4
m2l

2
2 +

1

12
m2l

2
2 +m2l

2
2)θ̇2

2 +
1

2
m2l1l2θ̇1θ̇2 cos(θ1 − θ2)

(A.8)

Note that the three quantities in blue are constants, so we will give them the following

variable names:

Ja =
1

3
m1l

2
1 +m2l

2
1,

Jb =
1

3
m2l

2
2, and

Jx =
1

2
m2l1l2.

(A.9)

Ja is the moment of inertia of the first body about the joint glued to the ceiling, with an

extra term due to the inertia of the body attached to it. Jb is the moment of inertia of the

second body about its own proximal joint, and Jx is a cross moment of inertia term that

takes into account the rotational motion of the bodies with respect to each other. The final

form for T is thus

T =
1

2
Jaθ̇

2
1 +

1

2
Jbθ̇

2
2 + Jxθ̇1θ̇2 cos(θ1 − θ2). (A.10)

We proceed by also applying the change of variables to V :

V = m1gy1 +m2gy2

= −1

2
m1gl1 cos θ1 −m2g(l1 cos θ1 +

1

2
cos θ2)

= −(
1

2
m1 +m2)gl1 cos θ1 −

1

2
m2gl2 cos θ2.

(A.11)
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The terms highlighted in blue are again constants, and we can name them µ1 and µ2 such

that we’re left with the following simplification:

V = −µ1 cos θ1 − µ2 cos θ2, where

µ1 = (
1

2
m1 +m2)gl1 and

µ2 =
1

2
m2gl2.

(A.12)

Our final equations for T (equation A.10) and V (equation A.12) may now be substituted

into the Lagrangian:

L = T − V

=
1

2
Jaθ̇

2
1 +

1

2
Jbθ̇

2
2 + Jxθ̇1θ̇2 cos(θ1 − θ2) + µ1 cos θ1 + µ2 cos θ2.

(A.13)

The Lagrangian has now been re-stated in terms of its generalized coordinates, θ1 and θ2,

which means that we may proceed with the Euler-Lagrange equations.

d

dt

(
∂L
∂θ̇i

)
− ∂L
∂qθ

= 0. (A.14)

Plugging in θ1 into the above equation, we get the following equation of motion after sim-

plification:

Jaθ̈1 + Jx cos(θ1 − θ2)θ̈2 + Jx sin(θ1 − θ2)θ̇2
2 + µ1 sin θ1 = 0, (A.15)

and similarly for θ2:

Jbθ̈2 + Jx cos(θ1 − θ2)θ̈1 + Jx sin(θ1 − θ2)θ̇2
1 + µ2 sin θ2 = 0. (A.16)

We now isolate for θ̈1 and θ̈2:
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θ̈1 =
Jx cos(θ1 − θ2)θ̈2 + Jx sin(θ1 − θ2)θ̇2

2 + µ1 sin θ1

−Ja
,

θ̈2 =
Jx cos(θ1 − θ2)θ̈1 + Jx sin(θ1 − θ2)θ̇2

1 + µ2 sin θ2

−Jb
.

(A.17)

Both θ̈1 and θ̈1 still appear in both equations, but it can be solved by substituting one equa-

tion into the other, and isolating for the respective θ̈i term, yielding the desired equations.
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