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This establishes a correspondence between recurrence systems and iterated function systems,
which is of interest as a mathematical link between L−systems and fractals. The distinction
between geometric and topological self−similarity is useful in biological applications, where
topological self−similarity is more prevalent then geometric self−similarity.
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Self-similarity is a conspicuous feature of many plants. Geometric self-similarity is com-
monly expressed in terms of aÆne transformations that map a structure into its com-
ponents. Here we introduce topological self-similarity, which deals with the con�gura-
tions and neighborhood relations between these components instead. The topological
self-similarity of linear and branching structures is characterized in terms of recurrence
systems de�ned within the theory of L-systems. We �rst review previous results, relating
recurrence systems to the patterns of development that can be described using deter-
ministic context-free L-systems. We then show that topologically self-similar structures
may become geometrically self-similar if additional geometric constraints are met. This
establishes a correspondence between recurrence systems and iterated function systems,
which is of interest as a mathematical link between L-systems and fractals. The distinc-
tion between geometric and topological self-similarity is useful in biological applications,
where topological self-similarity is more prevalent then geometric self-similarity.

1 Introduction

In her 1950 book, Natural Philosophy of Plant Form 1, the eminent British botanist
Agnes Arber 2 wrote (p. 7):

It is well to return, even at long last, to such early work as is notably
rich in content, to see whether it still o�ers suggestions, which formerly
passed unheeded because the time was not ripe for them, but which
the intellectual climate would now foster. Originality is so rare in the
human mind that we need to harvest it to the last gleanings.

In this paper, we follow Arber's suggestion by revisiting the notion of self-similarity
in plants. Mandelbrot 3 de�ned self-similarity by referring to an underlying gener-
ative process (such as the Koch construction) as follows:

When each piece of a shape is geometrically similar to the whole, both
the shape and the cascade that generates it are called self-similar.

Selected plant structures, such as the inorescences of cauliower and broccoli,
compound fern leaves, and branching structures of trees, are often presented as
canonical examples of self-similarity in the literature on fractals 4. Yet aspects
of self-similarity were characterized by botanists 5 even before the term itself was
coined. One of the best such characterizations belongs to Arber herself, who wrote
the following in Chapter IX (\Repetitive branching and the Gestalt type, with
special reference to parallelism", p. 142) of her book 1:

The relation to one another of a compound leaf, a simple leaf, and a
mere lobe or hair, may perhaps be described as identity-in-parallel. A
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leaet of a compound leaf comes in, as it were, on both sides of the
equation: to the compound leaf, the leaet stands in the relation of part
to whole, but it is also the equivalent to the compound leaf as the whole,
though in another generation.

This quotation is interesting for several reasons. First, Arber's identity-in-parallel
clearly anticipated the notion of self-similarity in a botanical context. Second,
Arber referred �guratively to an equation, in which a form, \though in another
generation", would appear on both sides. Third, Arber did not imply that this
equation must necessarily have a geometric character. This leads us to the key
question considered in the present paper:

How can the equation anticipated by Arber be formulated in mathemat-
ical terms?

We �rst examine iterated function systems as one possible interpretation of
Arber's identity-in-parallel equation, and point to the botanical inadequacy of this
interpretation (Section 2). We then show that Arber's identity-in-parallel can also
be formalized in a di�erent way, at the level of plant topology rather than geometry.
This topological self-similarity can be expressed using recurrence systems 6;7 (Sec-
tion 3) and their variant, catenative formulas 8 (Section 4), both of which have been
de�ned within the theory of L-systems 9;10. A method for conceptualizing and visu-
alizing recurrence systems and catenative formulas makes use of data ow networks
(Section 5). Recurrence systems may describe both linear and branching structures,
which makes them well suited to characterize self-similarities in plant architecture
(Section 6). Furthermore, with an appropriate geometric interpretation, recurrence
systems may yield forms that are self-similar in both the topological and geometric
sense (Section 7).

2 Identity-in-parallel and iterated function systems

One obvious candidate for the identity-in-parallel equation is the global character-
ization of fractals 11;12;13, de�ned by the equation:

A =
m[

i=1

Ti(A): (1)

Here, the self-similar form A is the attractor of the set fT1; T2; : : : ; Tmg of con-
tracting transformations (usually similarities or aÆne transformations). This set is
referred to as an iterated function system (IFS). Consistent with Arber's descrip-
tion, the attractor A appears on both sides of Equation 1. Furthermore, assuming
that the initial structure A(0) is given, this equation can easily be extended to a
sequence of \generations":

A(n) =

m[

i=1

Ti(A
(n�1)); n = 1; 2; 3; : : : (2)

The above de�nitions of an IFS and its attractor can be extended to cases where
di�erent parts of a form are mapped into each other, instead of the whole form being
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mapped into its own parts. These cases are captured by the closely related notions
of recurrent IFS 14, controlled IFS 15, and language-restricted IFS 16;17. In all cases,
the di�erent parts A1; A2; ; : : : ; Az of the attractor satisfy the set of equations:

Aj =

mj[

i=1

Tji(Aji ); j = 1; 2; : : : ; z (3)

where z is the total number of parts, and mj is the number of transformations Tji
that map properly re-indexed parts A1; A2; : : : ; Az into part Aj . Unfortunately,
even with these extensions, iterated function systems do not adequately character-
ize the self-similarity of plants. On one hand, IFS are insuÆciently constrained: a
small change in parameter values can change an attractor representing a branching
structure into a set of unconnected points or segments, thus violating fundamental
properties of the structures being modeled. On the other hand, IFS are too con-
strained: they impose a strict geometric correspondence between the form and its
parts. Such correspondence is not frequently found in real plants, which is why
plant-like structures generated using IFS are con�ned to the small set of examples
that appear repetitively in the literature.

3 L-systems, recurrence systems, and self-similarity

In this section, we consider identity-in-parallel and self-similarity from a di�erent
perspective, focused on topology (the arrangement of components in a structure)
rather than geometry. This approach is rooted in the theory of L-systems 9;10;15.
After background de�nitions, we �rst review a theorem linking DOL-systems (de-
terministic context-free L-systems) to recurrence relations between the generated
strings of symbols 6;7. We call these relations recurrence systems in a slight modi-
�cation of the original de�nition 6 of this term. We then show that the recurrence
systems closely correspond to Arber's notion of identity-in-parallel, and thus con-
stitute a description of self-similarity.

De�nition 1 (from 15). Let V denote a set of symbols called an alphabet, V � the
set of all words (strings of symbols) over V , and V + the set of all nonempty words
over V . A DOL-system is an ordered triplet G = hV; !; P i where V is the alphabet
of the system, ! 2 V + is a nonempty word called the axiom and P : V ! V � is a
�nite set of productions. A production (a; �) 2 P is written as a ! �. The letter
a and the word � are called the predecessor and the successor of this production,
respectively.

De�nition 2 (from 15). Let � = a1 : : : am be an arbitrary word over V . The word
� = �1 : : : �m 2 V � is directly derived from (or generated by) �, noted �) �, if and
only if ai ! �i for all i = 1; : : : ;m. A word � is generated by G in a derivation of
length n if there exists a developmental sequence of words �0; �1; : : : ; �n such that
�0 = !, �n = � and �0 ) �1 ) : : :) �n.

Theorem 1 (from 6). Consider a DOL-system G = hV; !; P i, and for each a 2 V
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Figure 1: Illustration of the proof of Theorem 1

and n � 0 denote by a(n) the word derived from a in a derivation of length n:

a
n

=) a(n): (4)

If a ! b1b2 : : : bm is a production in G, then for any n � 1 the word a(n) satis�es
the recurrence formula:

a(n) = b
(n�1)
1 b

(n�1)
2 : : : b(n�1)m : (5)

Proof. We decompose the derivation a
n

=) a(n) into the �rst step and the remaining
n� 1 steps (Figure 1):

a
1

=) b1b2 : : : bm
n�1
=) b

(n�1)
1 b

(n�1)
2 : : : b(n�1)m : (6)

Thus, a(n) = b
(n�1)
1 b

(n�1)
2 : : : b

(n�1)
m 2:

De�nition 3. Given a DOL-system G = hV; !; P i, we call the set of the recurrence
formulas given by Equation 5, along with the initial conditions a(0) = a for all
a 2 V , the recurrence system associated with G.

Note. Recurrence systems can also be speci�ed independently of L-systems. For a
formal de�nition and equivalence results see 6;7.

Example 1. Consider L-system G1 = hfa; bg; a; P i with productions

a! ab ; b! a : (7)

This L-system can be viewed as a model of the development of a �lamentous or-
ganism, with symbols a and b representing individual cells. The �rst production
states that, over a certain time interval, a cell of type a divides into adjacent cells
a and b. The second production states that, over the same time interval, a cell
b changes its state into a. The above model is related to the development of the
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recurrence systemstep L-system

same sequence

Figure 2: A comparison of two methods for computing sequences of words generated by L-system
G1: by direct application of L-system productions (7) (left) and using recurrence relations (8)
(right).

�lamentous bacterium Anabaena, which is characterized by the unequal divisions of
cells 15;18. To keep the example simple, we ignore here the polarity of cells, which
would determine whether a cell a divides into ab or ba.

According to Theorem 1, the recurrence system associated with G1 is:

a(0) = a b(0) = b

a(n) = a(n�1)b(n�1) b(n) = a(n�1)
(8)

where n = 1; 2; 3; : : :. These equations provide an alternative to the usual method
for generating words in an L-system, as illustrated in Figure 2. The alternative
method closely corresponds to Arber's characterization of identity-in-parallel. We
can make this evident by paraphrasing Arber's words quoted in the introduction to
express the sample relation a(n) = a(n�1)b(n�1):

A substring a(n�1) of the whole string a(n) comes in on both sides of
the equation: to the whole string, the substring stands in the relation of
part to whole, but it is also the equivalent to the whole string, though
in another generation.

Equating identity-in-parallel with self-similarity leads to the �rst, most straight-
forward interpretation of recurrence relations as a formal description of topological
self-similarity. According to this interpretation, the words on which a recurrence
system operates represent consecutive developmental stages (generations n) of a
growing structure or a set of related structures (such as the structures derived from
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Figure 3: Self-similarity of the developmental sequences generated by L-system G1 from Exam-
ple 1. Sequence A has itself and sequence B as its parts. Sequence B has sequence A as its part.
This is a summary representation of the relations shown in more detail in Figure 2 (right).

a and b in the Anabaena example). The recurrence system speci�es how the younger
stages (with a lower index n) can be combined to produce the older stages. The
pattern of the recurrence relations is independent of the age (generation step) n:
for all n greater than some minimum value, di�erent developmental stages of the
same sequence are related to each other in the same manner.

The second interpretation of recurrence systems as a formalization of topolog-
ical self-similarity deals with entire in�nite developmental sequences, rather than
individual words. To see this, let f�0; �1; �2; : : :g and f�0; �1; �2; : : :g denote two
developmental sequences over some alphabet V , and N and Æ denote operations on
these sequences de�ned as follows:

N (�; f�0; �1; �2; : : :g) = f�; �0; �1; �2; : : :g ; (9)

f�0; �1; �2; : : :g Æ f�0; �1; �2; : : :g = f�0�0; �1�1; �2�2; : : :g : (10)

Thus, the N operator represents a unit delay of a developmental sequence, with the
initial element replaced by a given word �. The Æ operator represents concatenation
of developmental sequences, de�ned as the sequence resulting from pairwise con-
catenation of corresponding strings in the argument sequences. By applying these
de�nitions to the sequences

A = fa(0); a(1); a(2); : : :g ; B = fb(0); b(1); b(2); : : :g ; (11)

de�ned by the recurrence system (8), we obtain:

A = N (a;A ÆB) ; B = N (b;A) : (12)

Thus, the developmental sequences A and B include themselves as subsequences,
as illustrated in Figure 3. This self-similarity of developmental sequences corre-
sponds to the self-similarity of \cascades" in Mandelbrot's de�nition quoted in the
introduction.

The third interpretation of recurrence systems exposes self-similarity within
individual words. To see this, let us formally interpret productions of an L-system
G as local zooming operations. A derivation step �i ) �i+1 then represents the
e�ect of globally zooming into the sequence �i or, conversely, zooming out of the
sequence �i+1. Returning to Example 1 and Figure 2, a pair of words fa(n); b(n)g
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Figure 4: Self-similarity of the words generated by L-system G1 from Example 1. Productions and
their inverses are formally treated as scaling operations.

with n � 1 is then equal to a combination of \scaled" versions of these words
themselves, and in this sense these words are self-similar (Figure 4).

Independent of the interpretation used, Theorem 1 shows that recurrence re-
lations are a mathematical consequence of any developmental process that can be
modeled with a DOL-system. This is important from the biological perspective,
because it explains why repetitive developmental processes in plants lead to topo-
logical self-similarity in developmental sequences and the resulting structures.

4 Catenative formulas

An important variant of recurrence relations are catenative formulas 7;8, which have
the form

a(n) = a(n�d1)a(n�d2) � � � a(n�dm) : (13)

Here n is greater than some minimum value, and delays d1; d2; : : : ; dm are �xed
positive integer numbers (i.e., they do not depend on n). Catenative formulas
express older words as combinations of younger words from the same developmental
sequence a. A detailed account of the application of this concept to the description
of �lamentous organism (algae) is presented in 19.

Referring once again to L-system G1 from Example 1 and the related recurrence
system (8), we observe that b(n�1) = a(n�2) for all n � 2. Using this substitution,
we can express words a(n) as combinations of younger (lower n) words from the
same sequence as follows:

a(�1) = b ; a(0) = a ; a(n) = a(n�1)a(n�2) : (14)

Thus, the developmental sequence generated by L-system G1 satis�es the catenative
formula (14).

Catenative formulas are important as a topological counterpart of iterated func-
tion systems; in contrast, recurrence systems are a counterpart of recurrent iterated
function systems. In general, we may also consider a combination of both notions:
recurrence systems that operate simultaneously on several sequences of words, and
involve di�erent delays 6.

aThe term commonly used in literature is locally catenative formula. It reects the property that
\to get a new word by catenation of some previous words it is enough to remember previous words
at most p steps back in the sequence" 7 . However, while in this sense catenative formulas are local
in time, there are not local in space. For this reason, we have dropped the reference to locality
from their name.
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21

Figure 5: A data-ow representation of the recurrence relations given by Equation 8 and illustrated
in Figure 2

5 Data-ow network representation of recurrence systems

Iterated function systems are sometimes conceptualized asMultiple Reduction Copy

Machines (MRCM)4, which repetitively combine reduced copies of an original �gure
to produce a sequence of approximations of the attractor according to Equation 2.
Similarly, recurrent IFS are conceptualized using networkedMRCM4, which operate
on a set of �gures according to Equation 3. In the domain of words, a related device,
called a catenation machine, was introduced by Mavaddat 20;21 as a formal tool
for hardware design. Below we apply catenation machines to represent recurrence
systems in an intuitive, diagrammatic manner.

Referring to Figure 2, let us observe that the recurrence relations, which specify
how the previously obtained words are combined into a new word, are the same at
each level of a particular developmental sequence: independent of the derivation
length n � 1. This is reected in the repetitive pattern of lines showing \which
word goes where" on the right side of Figure 2.

Instead of drawing the repetitive pattern, we can visualize recurrence relations
between the old and new words using a data-ow network. Such a network is a
directed multigraph, with the nodes labeled by symbols of the recurrence system
alphabet (distinguished by a bar from the actual symbols) and arrows determined

by the recurrence relations. Speci�cally, if a(n) = b
(n�1)
1 b

(n�1)
2 : : : b

(n�1)
m is a recur-

rence relation then the nodes b1; b2; : : : ; bm are connected to node a by arrows that
point to a. These arrows are ordered in the same way as the symbols bi in the
recurrence relation. For instance, Figure 5 shows the network representing recur-
rence system (8) from Example 1. In general, the same letter bi may occur in a
production successor several times, and thus there may be several arrows from node
bi to node a, which is why the network is potentially a multigraph.

The nodes represent processing and storage elements of the network, and are
capable of holding arbitrarily long words. Each node is initialized with its corre-
sponding symbol (e.g., node bi initially holds symbol bi). The network operates
in synchronous steps, in which each node concatenates the words received from its
input nodes. This operation give the network its name coined by Mavaddat: the
catenation machine. The network generates sequences of words according to the
recurrence relations associated with a given L-system. After n steps, each node bi

will hold the word b
(n)
i .

A node with a single input can be interpreted as a delay operation, which
blurs the distinction between data-ow networks representing recurrence systems
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Figure 6: A sample developmental sequence with the topology described by L-system G2

and catenative formulas. For example, the network shown in Figure 5 represents
not only recurrence system (8), but also catenative formula (14).

Unlike recurrence relations, which can be viewed as a shorthand notation for
an in�nite sequence of equations corresponding to n = 1; 2; 3; : : :, the data-ow
network representations are �nite, with no explicit reference to index n. This reects
an essential feature of self-similarity: the repetitive character of relations between
components of a structure, which in our case are represented by words. The data-
ow networks capture these relations in a succinct and intuitive way, and therefore
provide a convenient graphical characterization of topological self-similarities in
developing structures.

6 Extension to branching structures

The relationship between development and recurrence systems examined in Sec-
tion 3 holds not only for linear structures, but also for branching structures, which
are paramount in the kingdom of plants. The extension of L-systems to branching
structures makes use of the bracketed string notation introduced by Lindenmayer 9.

Example 2. Let us consider a DOL-system G2 = hV; !; P i, in which the alphabet
V consists of four symbols: letter A denoting the apex of a branching structure,
letter I denoting a branch segment, and a pair of brackets [; ] delimiting branches.
The axiom is a single apex A, and the production set P has a single non-identity
production:

A! I [A][A]A : (15)

(We do not explicitly specify the identity productions for the remaining symbols,
such as I ! I .) According to production (15), in a given time interval the apex
A creates a branching structure consisting of a segment, two lateral apices, and a
terminal apex.

The above L-system generates the developmental sequence shown in Figure 6. It
can be interpreted as a schematic depiction of the development of a carrot-like leaf,
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Figure 7: A data-ow representation of the recurrence relations given by Equation 16

for example. The apices are represented as circles and the segments are represented
as lines. Their lengths and shapes have been chosen arbitrarily, since L-system G2
only describes the branching topology of the generated structures.

In order to formally characterize the self-similar aspects of this developmental
sequence, we apply Theorem 1 to construct the equivalent recurrence system:

A(0) = A ; A(n) = I [A(n�1)][A(n�1)]A(n�1) : (16)

This system is represented by the data-ow diagram in Figure 7. The structure
A(n), which represents the n-th stage of the development beginning with a single
apex A, can be viewed as a branching con�guration of a segment I and three copies
of the younger structure A(n�1). Thus, the structure A(n) and the developmental
sequence that generates it are topologically self-similar in all three senses of this
word described in Section 3. At the same time, the structures and the developmental
sequence shown in Figure 6 are not geometrically self-similar. This illustrates our
thesis that topological self-similarity captures a wider class of biologically relevant
phenomena, compared to geometric self-similarity.

7 Relation between topological and geometric self-similarity

In some cases, topologically-self-similar structures and developmental sequences can
be assigned a geometric interpretation that makes them geometrically self-similar as
well. This possibility is interesting from both the mathematical and the biological
perspective, as it highlights the conceptual relation between topological and geo-
metric self-similarities. The following discussion is based on a geometric extension
of the L-system from Example 2.

Example 3. Let us consider a DOL-system G3 = hV; !; P i, in which the alphabet
V consists of the four symbols A; I; [; ] introduced in Example 2, and additional
symbols + and � that indicate the direction of branching (to the left and to the
right, respectively). The axiom is a single apex A, and the production set P has
two non-identity productions:

A! I [+A][�A]IA ; I ! II : (17)

Compared to production (15), the �rst production above inserts an additional seg-
ment I between the branching point and the terminal apex A. The second produc-
tion replaces each segment I with the pair II in every derivation step. These changes
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Figure 8: Developmental sequence generated by L-system G3 with the turtle interpretation

I

A

][−][+

9876543

21

21

Figure 9: A data-ow representation of the recurrence relations given by Equation 18

become relevant when symbols are assigned a geometric interpretation. In our ex-
ample, we use the turtle interpretation of L-system strings 15;22;23. Speci�cally, we
assume that all apices A and segments I are represented as lines of equal length,
and all branching angles have the same magnitude of 45Æ. Under these assumptions,
the L-system G3 generates the developmental sequence shown in Figure 8.

In order to formally characterize the self-similar aspects of this developmental
sequence, we apply Theorem 1 to construct the equivalent recurrence system:

A(0) = A A(n) = I(n�1)[+A(n�1)][�A(n�1)]I(n�1)A(n�1)

I(0) = I I(n) = I(n�1)I(n�1)
(18)

The data-ow representation of this systems is shown in Figure 9. We extract
geometric information from the recurrence system (18) using the following theorem.
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Theorem 2 (from 15). Consider turtle interpretation J : V � ! S as a mapping
from the set V � of words over an alphabet V into the set S of geometric �gures (sets
of points in the plane or in 3D space). Furthermore, let T (�) represent the change
in the turtle state (position and orientation) resulting from the interpretation of
word � 2 V �. Then for any decomposition �1�2 of the word � such that �1; �2 do
not contain unbalanced right brackets, the following holds:

J (�1�2) = J (�1) [ J (�2)T (�1) : (19)

According to this theorem, the turtle interpretation of the word � = �1�2 is a
form (set of points in two or three dimensions) equal to the union of:

1. the turtle interpretation of the word �1, and

2. the turtle interpretation of the word �2, repositioned by the transformation
T (�1) that results from the interpretation of the word �1.

By applying Theorem 2 to the recurrence relation given by Equation 18, we thus
obtain:

J (A(n)) = J (I(n�1)) [

J (A(n�1)) T (I(n�1)+) [

J (A(n�1)) T (I(n�1)�) [ (20)

J (I(n�1)) T (I(n�1)) [

J (A(n�1)) T (I(n�1)I(n�1)) ;

J (I(n)) = J (I(n�1)) [ J (I(n�1)) T (I(n�1)) :

A geometric interpretation of these equations is shown in Figure 10. The generated
developmental sequence exhibits an aspect of geometric self-similarity: a pair of
structures fA(n); I(n)g can be obtained by combining younger developmental stages
fA(n�1); I(n�1)g of the same structures. This combination, however, involves ge-
ometric transformations T (I(n�1)) that change from one step n to another. In
contrast, the de�nition of geometric self-similarity embedded in the notion of iter-
ated function systems (Equations 1{3) postulates that transformations Ti be �xed
and not depend on the iteration number n.

In the example under consideration, we can achieve this independence by chang-
ing the interpretation of symbols A and I from one derivation step to another. To
this end, let us observe that all transformations T in recurrence system (20) include
the same term I(n�1) (equal to I(3) in Figure 10). According to the recurrence for-
mulas I(0) = I and I(n) = I(n�1)I(n�1) (Equation 18), the segment I(n) contains
twice as many symbols I as the segment I(n�1). Thus, if the length of line segments
represented by symbol I in step n is reduced by one half with respect to the lines
represented by the same symbol I in step n� 1, the corresponding transformations
T (I(n)) and T (I(n�1)) will be the same, independent of n. The forms J (A(n))
and J (I(n)), derived from A and I in n steps, can then be obtained by combining
the forms J (A(n�1)) and J (I(n�1)) using transformations T1; T2; : : : ; T5 that are
independent of n. Furthermore, since the length of segments represented by sym-
bol I (and, consistently, symbol A) is decreased by one half between consecutive
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Figure 10: Geometric relations between components of the developmental sequence generated by
L-system G3, as revealed by Equation 20

derivation steps, the forms J (A(n�1)) and J (I(n�1)) must also be scaled by one
half before they are combined into J (A(n)) and J (I(n)) (Figure 11a).

The resulting geometric self-similarity can be characterized by a data ow dia-
gram, in which the nodes assemble new �gures by computing the set-theoretic union
of �gures received at the inputs, and edges represent transformations. In order to
distinguish these diagrams from catenation machines, we now represent the nodes
as circles (Figure 11b). The order of inputs is irrelevant, because the union of sets
is a commutative operation.

The graph shown in Figure 11b represents the form of self-similarity found in
recurrent iterated function systems and their variants (Section 2). A comparison of
this graph with the catenation machine in Figure 9 points to the close relationship
between both notions. Nevertheless, it is evident from the number of assumptions
introduced in the above example that topological self-similarity yields geometric
self-similarity only in special situations.
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Figure 11: a) Geometric relations between components of the developmental sequence similar to
that shown in Figure 10, but including an additional scaling of the components. Transformations
T1 to T5 do not depend on the developmental step n. b) Control graph of the recurrent IFS
associated with Figure a.

8 Conclusions

We revisited the notion of self-similarity in the context of plant modeling. We
observed that the usual geometric self-similarity does not adequately capture self-
similarity in plants, and we investigated the notion of topological self-similarity as
an alternative. To this end, we revisited the notion of recurrence systems introduced
in the theory of L-systems, and we concluded that they can be viewed as a formal
characterization of the topological self-similarity in linear and branching structures.

Several questions are open for further research. We only considered \ordinary"
(non-parametric) L-systems, and it would be interesting to extend our discussion
to parametric L-systems 15;24 as well. It would also be interesting to investigate
the general conditions under which topological self-similarity yields geometric self-
similarity. More speci�c questions concern the relationship between delays in cate-
native formulas (Equation 13) and scaling transformations in the corresponding
recurrent IFS. In order to �rmly establish recurrence systems in the domain of
fractals, it would be worthwhile to formally extend previous characterizations of
the relations between L-systems, Koch constructions, and iterated function sys-
tems 16;17;25;26;27 to recurrence systems. The postulated structure of relationships
between these formalisms is shown in Figure 12.

The last class of problems deals with applications of recurrence relations and
topological self-similarity to the analysis and synthesis of real biological structures.
As is well known, geometric self-similarity makes it possible to represent intricate
forms using a minimum amount of data. The question is, to what extent topological
self-similarity could be used in an analogous fashion, reducing the amount of data
needed to describe and generate complex branching structures. In addition, it
would be interesting to investigate whether the relationship between development
and self-similarity could be used to infer models of plant development on the basis
of self-similarities observed in mature plants.
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Figure 12: Postulated relationships between L-systems, Koch constructions, recurrence systems,
and recurrent iterated function systems
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