THE UNIVERSITY OF CALGARY

Design and Implementation of Global Virtual
Laboratory - a Network-Accessible Simulation

Environment

by

Pavol Federl

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
CALGARY, ALBERTA
DECEMBER, 1997

(c) Pavol Federl 1997

THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies for acceptance, a thesis entitled “Design and Implementation of Global Virtual
Laboratory - a Network-Accessible Simulation Environment” submitted by Pavol Federl
in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. Przemyslaw Prusinkiewicz

Dr. Robert Kremer

Dr. Brian Wyvill

Dr. Claude Laflamme

Date

Abstract

Many activities in computer graphics can be regarded as experiments on virtual objects or
models. In the process of experimentation the existing models are gradually improved and
new model categories emerge. The Virtual Laboratory (VLAB) is a software environment
designed to support model development by facilitating the manipulation of models and
providing mechanisms for retrieving and storing large numbers (e.g., thousands) of them.
This thesis describes a number of VLAB extensions | designed and implemented as part of
my master’s research. As a result of these extension, the models in VLAB can be shared
between many users who may work at different geographical locations. Alternate views of
databases can be maintained, allowing users to access objects in different orders. A visual
parameter editor was implemented, providing intuitive mechanism for external control of
parameters used in experimentations through user configurable graphical user interfaces.
The overall performance and portability of VLAB was improved, and various
customization mechanisms for adjusting visual appearances of VLAB applications made
available.

Acknowledgments

| would like to thank my supervisor, Dr. Przemyslaw Prusinkiewicz, for the advice he
offered to me during my research, for the countless hours he spent with me on discussing
various aspects of VLAB, and for helping me to edit and proofread this thesis many times.
| could never have finished this research without him. Learning to conduct research from a
world-class researcher was a pleasure. My next thank-you goes to my mother and my
brother, for supporting my academic career in every possible way. Special thanks go to my
girlfriend, Jennifer Walker, for proofreading this thesis. Her moral and emotional support,
as well as her incredible patience while | was writing this thesis, made the whole process
enjoyable. Finally, I would also like to thank all users of VLAB for their valuable
comments and suggestions, most importantly to Przemyslaw Prusinkiewicz, Jim Hanan

and Radomir Mech.

Table of contents

Chapter 1: Introduction 1
I B 1Y/ (0] 1)Y= (o] [T 2
1.2. Overview of Virtual Laboratory 2.0 and its limitationsccccccceeviiiinns 4
1.2.1. VLAB objects and object oriented filesystemcccoevvvrvinnnnnns 5
1.2.2. VLAB 2.0 COMPONENTESuniiiiiiiiieieee et eeeaa e 7
1.2.3. POrtabIlity.....ceeeeeeiiiiiiiieeeeee e 13
G T YU [010 1= T PP 13
Chapter 2: Statement of objectives 15
2.1. Alternative views of object databasesccceeeieiiiiiiiieeeeiiieeeee 15
2.2. Support for Collaborationuiiieiiiiiiiie e 16
2.3, Panel Man@AgENcoooiiiiiiee et 16
2 S o - o 1 SR 18
2.5. Performance iIMProVeMENTS.......coiiiiiiiii e eaaans 18
2.6, USEI CUSTOMIZALIONccciiiiieeeiiiiiiiiies s e e e e e e e e e e e ettt e s e s e e e e e e e e e e eeeeeeennnns 19
2.7, SUIMMAIY ittt e e et e et e e et e e e e b n e e e et e e e eat e e eaa e e e etneeeeenneeeees 19
Chapter 3: Survey of related concepts and previous work 21
3.1. Concepts related t0 VLABuuuuiiii ettt e e e e e e e e e e eeeannnees 21
3.1.1. Monolithic versus open hypertext SyStems.........ccccvvveeeeeieieireneenn. 21
3.1.2. Prototype-extension Model ... 22
3.1.3. Graphical versus command line interfacescccccceeeeevvvveeenennnns 22
.14, TOOIS i ————————————— 23
3.2. Previous work related to the implementation of VLABccccvvvvieeenee. 23
3.2.1. Two way extensibility..........cccooumiiiiiiiii e 23
3.2.2. Building graphical user interfacesccccccevvvvviiiiiiiiiciieieeee e 25
3.2.3. Frameworks for experimentation.............cccceeeveiiiieiciiiiiiiiiiiieeeee 25
3.2.4. External parameter CONrol.........ccoceevveieiiiiiiiiieecer e 28

G TG T S T U1 0] 0=V VPP 28

X TABLE OF CONTENTS

Chapter 4: Remote access server 31
o I = - Tt (o | (0 11] o PP 31
4.2, REQUITEIMENTS ...ttt e e e e e e e e et e et e e e e e e e e aeeeeeeaeaaeaannnns 34
4.2.1. Implementation ModelS...........ccoooiiiiiiiiiiiieee e 34
4.2.2. Evaluation of implementation modelsccccoeviiiiiiiiiiiiccinnnn. 35
2 TR @ T 11 13 [40
G T I =1 T | PSSP 40
4.4. User's perspective Of RASEIVETouuiiiiiiiiii et 42
4.4.1. DAEMON MOUEuuuiiiiiiiiiiiiiiiieieteeeee e e e e e e e e e e s s s s s bbb e eeeeeaaeeeas 43
A4.4.2. SEUP MOUC.... ittt e e e e e e e et eeeaeeaaes 43
4.4.3. Related fileSccoveeiiiiiiiieie s 43
4.5. Implementation detailSuuuiiiiiiiiiiee e 44
4.5.1. Overall structure Of RASEIVENuuuuiiiiiiiieeeeeeeieeeeeeeee 44
4.5.2. Communication mechanism and format of messages.................... 49
4.5.3. Implementation of RAserver’'s setup modeccccccevvvvvvvvncenennnn. 50
4.5.4. Account file FOrmat.............uueiiiiiiiiiii 50
4.6. Remote aCCeSS lIDrary.......ccccuuuiiiiiiiiiiiiee e 50
4.6.1. OPtMIZALION ...coeee e e e e e e 51
4.6.2. REIUMN VAIUESuueiiiii s 51
4.6.3. Example of using RAIIDray ..o 51
S U 1 0] 0 1 = Y PP 52
Chapter 5: Panel manager 55
5.1. Background - panel manager in VLAB 2.0.......cccooiiiiiiiiiiiiiiiiiie 55
5.1.1. Panel definition file format...........cccccceiiiiiiii 56
5.1.2. Interfacing with an applicationccccoovviiiiiiiiiiiii e, 57
5.1.3. EXample Of USAQEcoviiiiiiiiiieieee et 58
5.1.4. Drawbacks of panel manager 2.0...........ccccceeeeiiieiiiiee e, 59
5.2. Requirements and deSIgNoeiiiiiiiiiiiieeeeee e 59
5.2.1. REQUITEIMENTSeeiiiiiiiiiiiiiiee et e e e e e e e e e e 59
5.2.2. Parameter tYPeS ...ttt 60
5.2.3. EXENSIDIITY ..eveeiiiiee e 61
5.2.4. Component hierarChy..........ccccouviiiiiiiiiiiiieee e 61
5.2.5. Specification of parameter locationccceevvviiiiiiiiiiieee e, 62
5.2.6. Dual mode Of OPEratioNceeiiiiiieieiiiieeeeeeiiei e 64
5.3. User’s perspective of panel Managereeeeeeiiiiiieeeeeiiiieieciiiieveeeee 64
5.3. 1. RUNMOUE ..ciiiiiiiiiii ettt 64
5.3.2. EditMOAE ... 68
5.4, Implementation detailS ..o 74
5.4.1. Panel definition file format...........ccccceeiiiiii 74
5.4.2. Implementation of run MOdE..........covviiiiiiiiiiiiii e 76

5.4.3. Implementation of edit MOdeccceviiiiiiiiieiiiiieeeee e 80

TABLE OF CONTENTS Xi

5.4.4., OptioNS dialog......cooeiiiiiiiiiii 85
5.5, SUMMAIY ..t e e e e e e e et e e e et e e e et e eeees 88
Chapter 6: Browser 89
G I 5 7Y [| o S 89
6.1.1. Support for external references to VLAB objects...........cccccuuunnn... 89
6.1.2. Objects and oofs databases in VLAB 3.0ccceeeeiviiiiieiiiiieeeeeeinns 90
6.2. User's perspective of BrOWSErooovvviiiiiiiiiiii e 91
6.2.1. Start-up iNformation...........coouuiiiiiiii e 92
6.3. Implementation detailS ... 99
G U |1 1 4 = VPP 104
Chapter 7: Metatext 105
7.1, Structure Of MetateXt.......ccoe i i e e e e e e 105
7.2. User’s perspective of metateXt...........ceeeeiiiiiiieeeiiiiicieeeecss e 107
7.2.1. Start-up information............oooiiiiiiiiiiii s 108
7.3. Implementation DetailSoooiiiiiiiiiii e 109
7.3.1. Indexfile formatoooooeiiiiiiiii 109
7.3.2. Frame file formatoooiiiiiiiiiicc e 109
7.3.3. Organization of metatext databasesccccceeevieeieeeeeiiveeeeeeeiiinnns 111
7.3.4. CUSIOMIZALION ..ceiiiiiieieeieee et 111
T4, SUMIMAIY ..ot e ettt a e e e e e e e e e e e aeeeennennnennaans 111
Chapter 8: Hyperbrowser 113
8.1. Requirements and deSigncoeiiiiiiiiiiiii i 113
8.1.1. Shortcomings Of MetateXt...........cccccuirrrriiiiiiiiieeeeee e 113
8.1.2. DeSIgN QOQAIS.....ceeeiieiiiiiiiiiie e 114
8.1.3. Implementation Models............coiiiiiiiiiiiiii e 114
8.1.4. HYPEIODJECTS .. .o 115
8.1.5. Hyperobject file SYStemMccceiiiiiiiiieiiciee e 115
8.1.6. HYPErBrOWSEr.....ccooeiiiieeee e 116
8.2. User’s perspective Of NYPerbroWSEer ... 116
B.2. 1. OVEIVIEW ...ttt e ettt rr e e e e e e e aeeeas 116
8.2.2. Start-up INfOrmation..........cooeviiiiiiiiiiii e 117
8.2.3. Invoking hyperobjects............uuuueiiiiiiiiiiiiiiiee 118
8.2.4. Changing the order of hyperobjects..........cccccvvvvvriiiiiiiiiiiieeee. 119
8.2.5. Invalid hyperobjectS.......cccooeiiiiiiiiii e 119
8.2.6. Renaming hyperobjectsS...........uuueiiiiiiiiiiiiiiiiee e 120
8.2.7. Adding hyperobjects to hofs databases...........cccccceeeeeiiiieieeennnnnn. 120
8.3. Implementation detailS ... 121

Xii

TABLE OF CONTENTS

8.3.1. Structure of hyperobjectScccccvvieiiiiiiiiiee 121
8.3.2. Format of the node file..........coooeeiiiiiiiiiii e, 121
8.3.3. Implementation of hyperbrowser............ccccceeeiiiiiiiiiiiiiiiiieeiiiiiis 122
8.4, SUMMANY ...ttt e e e e e e e e e e e e as 123
Chapter 9: Conclusion and future work 125
LS 00 I ©0 o o3 1 o] o S RPPPRPUPPRPN 125
9.1.1. AcCOMPlISNMENTS......cviiiiiiiiiiie e 125
9.1.2. IMpaCt Of VLAB 3.0 ...ttt 126
9.2. Limitations and fUtUre WOrKccoooeiiiii i 126
9.2, 1. FING oot 127
9.2.2. Improved GUI designer for panel manager...........cccccceeeeeeervnnnnnn. 127
S I FE U 1 o [TSP PUSPRRPR 127
9.2.4. EXtended ODJECIScccceeeee i 128
9.2.5. Extended hyperobjectS...........oooiiiiiiiiiiiicc s 129
9.2.6. Unified oofs and hofs databasesccccevvvvvivvvviiiiiiiiiie e, 129
9.2.7. Unique access to databases...........uuvveiiiiiiiiiieeeeieeeeeeee e 129
9.2.8. Multiple INhEertaNCe........ccooeeeiieiieeeee e 130
9.2.9. Alternate methods for storing databases.............ccccvvvireiieeeiinnnnn. 130
9.2.10. Distribution of external programs.............ccccoevvvviveiiiiiiiiiiiee e 131
Appendix A: RA class 137
Appendix B: More on panel manager 143
B.1. Example of creating a control panelcccooviiiiiieiiiiiicicc e 143
B.2. Component attribDULESoovvieiiiiiiiiiie e 147
B.3. ClasS COMPONENT......coiiiiiiii e e e e e eaaaaas 149

List of tables

2-1 Performance comparison of VLAB 2.0 and VLAB 3.0, in seconds.......... 19
4-1 Evaluation of implementation modelscccooviiiiiiiiiicicicce e, 35
5-1 ClaSS BVENL ..ottt e e 81
B-1 Component attributes ... 147

B-2 Class COMPONENT.......ccooiiiiiiieere et e e e e e e e e e eees

List of figures

Chapter 1:Introduction

1-1 Example of VLAB object’s directory organization.............ccccceeveeeeeeeeeeenne. 5

1-2 Structure of VLAB'S ODJECEScovviiiiiiiiii e 7
1-3 Snapshot of the VLAB 2.0 BIrOWSENuuvuuiiiiiiiiiee e 8
1-4 Snapshot of VLAB 2.0’s ObjeCt Manageruuueuiiiiieeeeeeeeeeeeeeeeeeiiiiiennnnns 9
1-5 Inter-client communication in VLAB 2.0.......ccoovvriiiiiiiiiiiiiiiieen e 10

1-6 Snapshot of VLAB 2.0’s panel managerccceeeeiiiiiieeeeeeeeeeeeeeeeeennnnnns 11
1-7 Communication in VLAB 2.0’s panel managerccooeoeeciiiiiinnninnnnn. 12
1-8 MetateXxt in VLAB 2.0coooiiiiiiiiiiie ittt 12

Chapter 2:Statement of objectives

2-1 Snapshot of panel manager 3.0 in graphical build mode........................... 17
2-2 Snapshot of browser’s customization dialogs...............euvveiiiiiiiiiiiieeeeeeennn. 20

Chapter 3:Survey of related concepts and previous work

Chapter 4:Remote access server

4-1 Database access in VLAB 2.0 (left), desired database access (right)........ 32
4-2 Communication flow between two VLAB applications and RAserver.....41
4-3 Message Format in Remote Access EXeNSioN...........ccccovvvvevvvviviiiiiiieennn. 49

Chapter 5:Panel manager

5-1 Communication flow in VLAB 2.0’s panel manager..........ccccceeeeeeeeeeeennn. 56
5-2 Example of a control panel and its definition file................cccccviiii i, 57
5-3 Panel manager 3.0 iN rUN MOE............uuuiiiiiiiiiiiiiiiieeee e 65
5-4 Panel manager 3.0 in edit MOdE...........covvvviiiiiiiiiiiie e 69
5-5 Popup menu for panel COmpoNeNntsS..........ccuviiiiiiiiiiiiii e 71

5-6 Attribute editor for panel COmMpPONENtS..........cccuiiiiiiiiiiiiieee s 71

XVi LIST OF FIGURES

5-7 Attribute editor for [abel cOmpoNENtS..........cccuviiiiiiiiii e 72

5-8 Attribute editor for integer range COMpPONENtS........ccceeeeeeeiiiiiveeeeiiiiinn, 72

5-9 Attribute Editor for Choice COMPONENTS........cooviiiiiiiiiiiiiiii e 73
5-10 Example of @ COMPONENTIIEEoooiiiiiiiiiiie e 76
5-11 RESIZE CUISOIS ..uuuuueiuiiititiiieeiieeeteaaaaaeaeaeaasassssasssssssbrbbasseseeeeeeeeaaaaaaeeaassssnnnans 84

Chapter 6:Browser

6-1 BrOWSEI'S WINAOWccoeiiiiiiiiiiiiiiiiiti ittt e e 91
6-2 Browser's 1ogin WINAOWcouuiiiiiiiiiiiiiiceeeee e e 92
6-3 Browser’'s find dialog............uuuuuiiiiiiiiiiiiiiiaeeeee e 96
6-4 Browser’s customization dialogs: a) main dialog, b) color

chooser dialog, c) font chooser dialogccoovvvviiiiiiiiiiiii e, 98
6-5 Two different tree layout methods: sparse (left) and

(oTo] 0] o F= Tod a1 | 11 100
6-6 Different tree drawing MethodsScouuiiiiiiiiiiiii e 100
6-7 Tree ClipPiNg IN DIOWSET ...t 102

Chapter 7:Metatext

7-1 Structure of a) metatext database, b) metatext processescccceeeene 106
7-2 Snapshot of metatext without (top) and with (bottom)

L (o F= 1T L= I 0 0= 11 S 107
7-3 Example of metatext display.............ooeuumuiiiiiiiiii 110

Chapter 8:Hyperbrowser

8-1 Example snapshot of hyperbrowser's wWindowcccccceeveiiiiiiiiiineennnns 117
8-2 Action menu in hyperbrowSer ... 118
8-3 The order of database traversal using the Next and Previous

fUNCLIONS IN NYPEIDIOWSETcoiiiii e 119

Chapter 9:Conclusion and future work
Appendix A:RA class
Appendix B:More on panel manager

B-1 Invoking panel manager in edit MOde...........cccoeviiiiiiiiiiiiiiiiiiiiinn 144
B-2 Setting the panel’s title in panel’s attribute editor..............cccccvvvvviieeennn. 144
B-3 Using the floating point range’s attribute editor and the font chooser145

LIST OF FIGURES

XVil

B-4 Panel manager in edit mode with two

B-5 Editing choice’s attributes...................

B-6 Final appearance of the control panel

COMPONENTScveereerieiiiereenieanin,

XViii LIST OF FIGURES

CHAPTER 1 Introduction

Computers in the current technological era are becoming more powerful, easier to use, and
more affordable every day. They are now in widespread use in industry, education,
research and homes. In scientific research, computers are used by scientists for various
purposes such as organization of work, electronic collaboration, development of
algorithms, and simulation of experiments. Various software applications exist, offering
adequate functionality for each of these tasks. However, a unified environment that would
support all these existing applications in a consistent way is needed. Virtual Laboratory
(VLAB) is a software environment designed to address this problem.

VLAB is based on an electronic analogy of a laboratory, offering scientists a coherent
platform for performing and organizing computer assisted experiments [13][18][20][21].
The idea behind VLAB emerged from the need for an environment for organizing and
simplifying work related to computer based simulation of biological phenomena. The
large number of files representing models of plants require structured organization.
Numerous parameters used in plant modeling demand a tool which provides a fast and an
intuitive mechanism for their modification. Frequent operations, such as rerunning plant
generating programs or invoking editors on different files, require a tool which performs
such actions quickly and conveniently. VLAB’s design aims to address these issues - to be
an interactive environment for creating, managing and conducting experiments.

The authorship of the concept of VLAB belongs to Dr. Przemyslaw Prusinkiewicz and his
graduate students Lynn Mercer and Jim Hanan [20]. In 1990, the first version of VLAB
(version 1.0) was designed and implemented by Lynn Mercer as part of her Master’s
Programme research [21]. VLAB 1.0 provided only very limited visual information about
the experiment databases and a very simple user interface, which was a direct
consequence of being implemented under a limited window management system (without
support for widgets, dialogs or other GUI components now readily available). In 1995,
Earle Lowe created a new version of VLAB (version 2.0) by redesigning its
communication mechanism and introducing fundamental changes to its database browsing
capabilities [18]. Unfortunately, much of the new functionality in VLAB 2.0 was
implemented as a prototype, resulting in low performance and reduced reliability in some
of its components. These shortcomings interfered with testing and verifying the new
concepts introduced and implemented in VLAB 2.0. Some of the deficiencies related to
the new browsing capabilities of VLAB 2.0 were addressed in my reimplementation of
browser - a VLAB application used for navigating and managing databases of

2 CHAPTER 1: INTRODUCTION

experiments. Browser’s reimplementation was the topic of my project in an undergraduate
computer science course [7]. | selected VLAB as the topic of MSc research to improve its
design and to add to its functionality.

VLAB has been successfully used to support a wide variety of activities in computer
science, such as simulations of biological phenomena, experiments in fractal geometry,
rendering and animation of complex scenes, presenting tutorials for classes, preparation of
papers for publication and maintenance of source code.

In my MSc research | made many improvements to VLAB’s design and added new
functionality to its applications. These will be the topic of this thesis. The rest of this
chapter is organized as follows. In Section 1.1 | discuss the motivation behind VLAB. It
should help the reader to understand the concepts which are implemented in the old
version of VLAB, and also provide a background for the requirements of the new version
of VLAB. In Section 1.2 | introduce VLAB 2.0 and outline its shortcomings, needed later
in the thesis as the basis for describing my own contributions.

1.1. Motivation

Scientists often use computers on a regular basis to perform tasks analogous to
experiments in their fields. Whether this involves running existing experiments, creating
new ones or deriving experiments from existing ones, writing papers, designing
presentations or producing animations, these tasks share many common characteristics.

Maintenance of relationships between programs and data files

All of the above tasks need a group of one or more data files and the related programs to
be run on these files. For example, physically based simulations usually require large
amounts of data (stored in data files) and the simulation programs. Modeling of graphical
scenes is another example, where data files describe the geometry of the models, which
are then used as input to a modeler or a ray-tracer. With a large number and variety of
experiments it becomes difficult to keep track of which programs to run on which data
files, in what order, and with which options. Therefore, relationships between data files
and programs need to be effectively maintained, for example, as a set of actions that can
be performed on an experiment.

CHAPTER 1: INTRODUCTION 3

User definable actions

As scientists experiment with new ideas or simply modify and improve the old
experiments, the related groups of data files are repeatedly worked on. This usually
involves rerunning parts, or whole experiments numerous times. A mechanism for
convenient invocation of actions within an experiment is needed to simplify the work of
users, and thus enhance their efficiency.

The need for such a mechanism also emerges from the fact that live presentations of
computer based experiments require numerous reruns of simulations. If typing is used to
invoke programs, the presenters must concern themselves with command memorization
and possible typographical errors. These can lead to delays, increase the presenter’s stress
factor and be disruptive for the audience.

Parameter editor

For many types of experiments it is very important to thoroughly examine the parameter
space of a problem. When the parameters for the simulation are stored within files, the
search for optimal parameters usually requires editing the appropriate files in a text editor,
and then rerunning the simulation program on the modified data. A tool is heeded which
will allow the users to examine the parameter spaces in a more intuitive manner - using
graphical user interfaces. Using visual controls for parameter exploration will eliminate
much of the tedious and non-productive work spent by typing in a text-editor, giving the
user the possibility to examine the vast parameter combinations faster and in greater
detail. Such a tool can also be utilized for presentation and teaching purposes, since
changing parameters visually is more intuitive for audiences than using a text-editor.

Version management and organization of experiments

Scientists often need to work on different versions of experiments in parallel, while still
requiring easy access to the original versions. Old experiments are constantly being
retrieved, new versions created and documented, bad ideas discarded and appropriate files
deleted. Such activities inherently yield a large number of files which need to be
effectively maintained. Also, as the number of experiments in a scientist’s database grows,
it becomes increasingly important to be able to find the appropriate experiments quickly.
Therefore, a tool is needed to hierarchically organize experiments, while giving the user
an intuitive interface to the database’s management. Such a tool has to provide the user
with a visual representation of the database, where each experiment can be associated with
its own depiction. This tool will also provide functions for modifying the database, such as
addition, deletion, moving, copying, searching, etc.

4 CHAPTER 1: INTRODUCTION

Collaboration

Scientists often collaborate on the same set of experiments, which requires all data related
to these experiments to be transferred several times between different computers. This is
especially true if the group of scientists working on the same problem do not share the

same geographical location. A mechanism providing the scientists with transparent access
to remote databases of experiments is required. This mechanism should offer security to
prevent unauthorized access.

Alternative views of object databases

An object in a database of computer experiments may be of interest in several contexts.
For instance, a mass-spring simulation of a cloth could be developed as a part of a
comparative study of various techniques for simulating physical behaviors of natural
objects, but it may also serve as an example of an animation technique, illustration of data
triangulation or simply as the source of a picture for a publication. A mechanism for
creating alternative views of object databases, reflecting conceptual associations between
the objects is needed.

Support for interaction

One of the main design goals of VLAB is to encourage and support user interaction.
Giving the users freedom to experiment without fear of destroying the originals is a good
approach toward achieving this goal. Once the user decides to experiment with an object,
it should be copied to a temporary location, where modifications can be made to this
temporary copy without affecting the original. After the experimentation is over, the user
must have the option of saving the changes into the database, either by replacing or adding
a new version to the original.

1.2. Overview of Virtual Laboratory 2.0 and its
limitations

VLAB consists of experimental units called ‘objects’ organized in an object oriented
filesystem, and various utility programs (tools) that operate on these objects.

CHAPTER 1: INTRODUCTION 5

1.2.1. VLAB objects and object oriented filesystem

The organization of VLAB's object databases is based oprtitetype-extensiomodel
described by Lieberman [17]. The prototype-extension model is an object oriented
approach for storing knowledge about objects. In this model, a new object (extension) is
created by describing how it differs from an existing objects (prototype), inheriting all
other knowledge from the prototype. Multiple inheritance is also supported.

Each VLAB object represents an experiment by encompassing all of its related
information in files. These files can be divided into two groups: files with data, and a file
containing information about actions which can be performed on the data files. Every
VLAB object is assigned a separate directory, where the object’s data files are stored.
VLAB objects are associated with textual names, as well as graphical icons (for easy
visual inspection while browsing the database).

VLAB objects are organized into hierarchical databases, also referred to as object oriented
file systems (or oofs). In these databases, any VLAB object can have extensions
(children), stored as subdirectories in the directory of the prototype (parent object). This

mechanism for storing object extensions as subdirectories is well supported by the UNIX

hierarchical filesystem.

object A
o ect : .
speci fi cati on i con aafile wafile et/
file

FIGURE 1-1: Example of VLAB object’s directory organization

6 CHAPTER 1: INTRODUCTION

Figure 1-1 demonstrates an example of an object with two data files. Every VLAB object
consists of any numbkof data files, and three special-purpose files:

specifications(a required file for all VLAB objects) This file contains two types of
information: list of data files included in the object and a description of actions
which can be performed on these data files. This list of actions also defines the
layout of the popup menus from which the user can invoke these actions.

icon (an optional file) This file stores an image in the SGI's RGB file format. The icon is
user defined, and is used for visual representation of an experiment in the global
view of the database. Icons are usually chosen by taking snapshots of simulation
results. If an object does not have an icon, a default icon defined for the whole
database is used.

ext (an optional directory) In thext directory the object stores its extensions. Since each
object is stored as a directory, teet directory will only contain sub-directory
entries.

VLAB’s object oriented filesystem supports single inheritance on objects, which means a
user can derive new objects from old ones, inheriting selected data/actions and defining
new ones. Changes in the parent object are reflected in all of its children objects which
inherit the data files to which these changes were applied. Single inheritance in VLAB is
achieved by the following mechanism: whenever an object B is inserted into a database as
a child of object A, all files of object B are compared against As files, and only the ones
that differ are stored in B’s directory. Files that match are stored as symbolic links relative
to As files. Therefore, if an object was to be created as an extension of a prototype without
making any changes to this extension, all files in the new extension’s directory would be
relative symbolic links to the files in the prototype’s directory.

To demonstrate the inheritance mechanism in VLAB, consider the example in Figure 1-2.
Objectmodel_1 has 6 entries in its directory. The first two aregpecifications

andicon files. The last one is the directory for extensions. The remaining entries,
datal ,data2 anddata3 , are user defined data files needed for the experiment. Object
model_1.1 is an extension omodel_1 . It has 7 entries in its directory: it inherits
icon ,data2 anddata3 from its prototyperfiodel_1), redefinespecifications

and datal , and also adds an extra fitklatad . Model _1.1.1 contains modified
specifications andicon , inheriteddatal anddata2 frommodel 1.1 and an

extra filedata5 . Filesdata3 anddata4 are not part omodel_1.1.1

In this scenario, if a user made a change taéta3 in model_1 , such a change would
propagate tonodel_1.1 , butmodel_1.1.1 would be unaffected. If the change was
made tadata2 inmodel_1 , such a change would be reflected in botidel_1.1 and

T only limited by the UNIX operating system

CHAPTER 1: INTRODUCTION 7

model _1
nodel _1.1
nodel _1.1.1
speci ficati ons
i con - -
speci ficati ons
dat al -
i con S
dat a2 speci fications
dat al .
dat a3 rcon
dat a2
et/ dat al
dat a3
dat a2
dat a4
dat a5
ext/
ext/

FIGURE 1-2: Structure of VLAB’s objects

model_1.1.1 objects. Naturally, any modification tatal in model_1 would not
affectmodel_1.1 , normodel _1.1.1 . Any change applied watal of model 1.1
would propagate tmodel _1.1.1 while changes made ttata3 ordata4 would not.

It should be noted that VLAB objects do not inherit extensions.

1.2.2. VLAB 2.0 components

VLAB offers various tools to help access the databases of VLAB objects, and assist the
users in experimenting with these objects. The most important tools are: browser, object
manager, VLAB daemon and panel manager. The remainder of this section describes each
of these components. Their shortcomings are analyzed where appropriate.

Browser

Browser is a VLAB component that provides the user with a visual interface for
navigating through the hierarchy of objects. It can be invoked on any VLAB object
database, displaying its hierarchy as a two dimensional tree graph (Figure 1-3). The user
can expand specific parts of the hierarchy tree by showing or hiding children, show or hide

8 CHAPTER 1: INTRODUCTION

icons for individual objects or entire sub-trees, and textually search for experiments.
Browser also makes it simple to modify the object hierarchy by supporting operations for
cutting, copying, pasting, renaming, dragging & dropping of objects. Browser can be also
used to invoke object manager (described in the text section) on selected objects.

Ll H]

FIGURE 1-3: Snapshot of the VLAB 2.0 browser

The main limitations and shortcomirTgsf VLAB 2.0 browser can be summarized into
three categories: lack of support of collaboration, low performance and user
customization. VLAB 2.0 browser’s lack of support for collaboration can be attributed to
the fact that the entire VLAB up to and including version 2.0 was designed and
implemented as a single user system. Browser’s most important limitation is that it cannot
be used to access databases stored on remote computers, making the collaboration
between scientists at different geographic locations difficult.

Being a prototype implementation, having large parts implemented in Tcl/Tk and relying
on external programs to supplement its internal functionality, browser 2.0 does not provide
the speed needed for browsing in practice. For example, the user has to wait minutes to
recursively display icons in a reasonably sized tree.

As VLAB became a popular environment for experimentation by many researchers, the
drawbacks of its inability to customize its appearance were identified. The default settings
(colors, fonts, tree layout, icon sizes, etc.) were not appropriate for some activities, such as

t 1 use the wordimitation when describing missing concepts or design flaws, and
the wordshortcomingvhen describing flaws in the implementation.

CHAPTER 1: INTRODUCTION 9

interactive demonstrations, where the font and icon sizes must be increased in order for
the audiences to be able to recognize them. Also, different users have different
preferences.

Object manager

Object manager (Figure 1-4) is a tool used to manipulate the internals of a specific object.
When object manager is invoked on a VLAB object, all files constituting this object are
copied to a temporary space, called the “lab table” [21], where the user can safely modify
them without worrying about destroying the original. The set of possible actions on an
object is read from itspecifications file, displayed on the screen as a pull-down
menu. The user can then perform actions on an object by choosing items from this menu,
without any detailed knowledge of the programs and data files involved in these actions.
The changes made to an object while it is on the lab table can be saved back to the
database, added to the database as a new extension, or ignored altogether.

FIGURE 1-4: Snapshot of VLAB 2.0’s object manager

VLAB daemon

The Daemon is a VLAB component which provides a communication mechanism for the
rest of the VLAB components (Figure 1-5). Almost all components of VLAB need to
maintain some sort of inter-client communication in order to preserve consistency of
displayed information. For example, changes to the object database made by one tool need
to be reflected by all other tools displaying the same information. VLAB Daemon is
transparent to the user, as it is invoked automatically by the first VLAB tool that needs it,
and is shut down by the last one to quit.

10 CHAPTER 1: INTRODUCTION

Browser 2

pj ect
Net at ext Manager 1

Daenpn

j ect
Browser 1 Manager 2

FIGURE 1-5: Inter-client communication in VLAB 2.0

Panel manager

Panel manager (Figure 1-6) is a VLAB program used to control simulation parameters
during experiments. The parameters which panel manager can control are usually stored in
text data files, and their locations are specified either by line and column numbers, or by a
prefix string after which the parameter follows. Panel manager therefore acts as an editor
of text data files. The creator of an experiment decides which parameters should be
editable, and constructs a file with the description of a graphical user interface for each of
the editable parameters. This file is used by object manager to display the set of controls
on the screen, presenting the user with a visual interface for parameter modification. In
VLAB 2.0 there are two GUI components available: buttons and sliders. Each of the GUI
components is associated with a message which will be sent by object manager to the
standard output as soon as the component is activated. This message is then translated by a
special-purpose filter program into an appropriate editing action on the specified data file.

Panel manager in VLAB 2.0 has the following shortcomings: the lack of a tool for
building graphical interfaces and one-way communication. The descriptions of panel’'s
user interfaces for panel manager are written in textual form. Designing a graphical
interface for a panel therefore involves editing the textual description and then re-running
object manager on the new description to see the result. Often, this process has to be
repeated until a satisfactory result is obtained. This process is rather inconvenient,
particularly when specifying the layout.

CHAPTER 1: INTRODUCTION 11

FIGURE 1-6: Snapshot of VLAB 2.0’s panel manager

Panel manager 2.0 only supports one way communication - sending messages to the filter
program which performs the editing operations on the actual data files (Figure 1-7). There
is no mechanism to find out the current values of the parameters from the data file,
therefore the values in a newly displayed panel often disagree with the actual values in the
data files. There is only one way to avoid this asynchronism in VLAB 2.0 - the most recent
parameter values have to be manually encoded into the panel’s definition file as default
values for the associated GUI components.

Metatext

Metatext is a tool which makes it possible to access VLAB objects in arbitrary order,
independent of the hierarchical organization of the database [29]. Metatext is invoked on
an index file, which contains a list of entries converted by metatext into a pull-down menu
(Figure 1-8). When the user selects one of these entries from the pull-down menu,
metatext will load and interpret a frame file whose file-name corresponds to the selected
choice. For example, if the user chose the itmyllotaxis metatext would load and
interpret a frame fil®hyllotaxis

The frame files consist of a mixture of textual information, UNIX commands and
messages to the VLAB Daemon. Before interpreting, metatext separates these three types

12 CHAPTER 1: INTRODUCTION

Manager e »
Panel Dat a Si nul ation
Definition File [Program

FIGURE 1-7: Communication in VLAB 2.0’s panel manager

Australia-94 | T

Aife-92 Alife-92

Demo Demo

Deno. ol d % metatext VI ab Demo.ofd

Aants Plants

Phyl | otaxi s Phvliotaxis

Glls Cells

Test

Ale'Vad Heread

Directory I»
Quit

FIGURE 1-8: Metatext in VLAB 2.0

of information. Then the text from the frame is displayed in a separate window, UNIX
commands executed in the order they are found in the frame file, and messages sent to the
VLAB Daemon. UNIX commands are commonly used to spawn other copies of metatext
(on different index files), and the messages to the VLAB Daemon are used to invoke
object manager.

CHAPTER 1: INTRODUCTION 13

Maintaining a large number of metatext index and frame files presents a similar problem
to the one of maintaining a large number of experiments. Organization of metatext nodes,
such as moving, adding, renaming or modifying require the use of a UNIX shell and a text
editor - not a very convenient interface for the user. The most important limitation of
metatext, however, is keeping the links in metatext frames to the VLAB objects up to date
while the object database keeps changing. Because there is no support offered by metatext
to this end, it is the user’s responsibility to manually update the affected frames whenever
the referenced objects are modified (e.g. moved, renamed or deleted).

1.2.3. Portability

In order to prove the usefulness of VLAB as a general tool for performing
experimentation, it is desirable VLAB be tested by users under many different
environments. In order to make VLAB accessible to wider audiences, it is essential that it
is portable to many other operating systems (not all researchers have access to SGI
workstations, and most biologists have primarily PC’s). Implementation of VLAB 2.0
uses many features specific to SGI workstations, making it unportable to other operating
systems. Since the entire VLAB is very closely tied to the UNIX operating system, it
would be a major undertaking to port it to operating systems like OS/2 or Macintosh or
Microsoft's Windows environment. To start addressing the issue of portability, VLAB
should be portable at least to other flavors of UNIX.

1.3. Summary

In this chapter | have introduced the Virtual Laboratory 2.0 - a software environment for
computer based experimentation. Various components of VLAB 2.0 have been discussed
and their limitations pointed out. These limitations are further discussed in the following
chapter, where | present the statement of objectives.

14

CHAPTER 1: INTRODUCTION

CHAPTER 2 Statement of ObjECtiVES

The objective of my research is to extend VLAB 2.0 by designing and implementing more
functionality. | approached this by addressing the limitations and shortcomings of VLAB
2.0, as identified in Section 1.2. This chapter defines the specific goals of my research and
briefly outlines how | accomplished these goals.

2.1. Alternative views of object databases

VLAB users often wish to use their objects in several different contexts. Metatext partially
addressed this need in VLAB 2.0, by providing limited support for creating alternative
views of object databases. Metatext only provides support for traversal of nodes
containing hyperlinks to objects. Metatext nodes have to be created, updated and
organized manually, as Metatext does not offer any mechanism to this end. These
limitations greatly limit Metatext’s usefulness as a tool for creating alternative views of
object databases. A new mechanism, providing all functionality available through
metatext, with support for an automatic update of hyperlinks and a user friendly interface
for management of hyperlink databases was required.

| have designed a new system for hyperlink organization - a hierarchical hyperlink
database. | have also developed a new VLAB application, called hyperbrowser, which
allows users to navigate and effectively maintain such databases. The automatic update of
hyperlinks has been addressed in my implementation by introducing an extra level of
indirection between hyperlinks and objects, using an object lookup table. Hyperlinks point
to objects through this table, which is automatically updated whenever the object database
is modified. Any modifications to the database of real objects are therefore automatically
reflected in the database of hyperlinks.

16 CHAPTER 2: STATEMENT OF OBJECTIVES

2.2. Support for collaboration

In order to improve VLAB's support for collaboration, a mechanism for accessing remote
databases and controlling permissions for modifications to collaborator's databases was
needed.

To allow users to access remote databases (located on remote filesystems), a new daemon
(remote access server) has been designed and implemented. Remote access server runs on
the remote computer and performs actions on the remote database as requested by VLAB
tools accessing the database. Browser, hyperbrowser and object manager have been
modified to take advantage of this new daemon. From the user’'s perspective, access to
remote databases is transparent, since there is almost no difference between working with
objects located in local and remote databases. The objects in remote databases can be
accessed, moved between databases or modified just as they are in local databases. To
make it easy for an application developer to request services from remote access server, a
remote access library has been written. Both remote access server and remote access
library can be easily extended to offer more functionality when needed. Similar to HTTP
daemons used today for WWW access, remote access server has the potential to be used
by scientists to offer information to the general Internet community.

To address the issue of controlling outside access to object databases, RAserver maintains
a list of accounts for each user with access to the database. Each account is protected by an
encrypted password, and is assigned a level of access. Two levels of access are supported
in the current implementation: read-only and full access. The owner of the remote
database can decide which person gets which type of access. With read-only access,
RAserver will not permit any modification to the database for the connected user. With full
access (only given to the most trusted colleagues) the remote user can modify the database
in any way. A facility for maintaining an account list of remote users is part of RAserver.

2.3. Panel manager

The following two goals were to be accomplished with respect to panel manager. First, a
tool was needed for visual design of panels, which would simplify the process of creating
and modifying panels for parameter modifications. Secondly, two-way communication

had to be implemented for automatic synchronization of displayed information and the
contents of the parameters at start-up.

After a detailed evaluation of the existing panel manager and the required extensions, |
decided to redesign and re-implement this tool. The new panel manager allows the user to

CHAPTER 2: STATEMENT OF OBJECTIVES 17

build and modify panels through a visual interface. Eventhough the implemented set of
controls in panel manager 3.0 is small, extensibility was a major issue in its design. When
needed, future developers can easily extended the set of controls. A sample screenshot of
the new panel manager’s user interface builder is presented in Figure 2-1.

Settings for |Range =y
File Create Grid Background: D J
Foreground: l
L E Top Shadow: D
ast Frame Bottom Shadow: D
S0 Trough: D
First Frame Font: ABC| |
N = ide |
Swap Interval B owemsrchme]
10 - I Douhle Buffer iy
Double Buffer Clear Choices:
-- Add
A 0n # On On on Delete
-- Add
~ Off ~ Off off Off Delete
-- Add
Scale File:
file.dat
Yes Field Prefix:
<« Mo Double Buffer: ¥
Hide

FIGURE 2-1: Snapshot of panel manager 3.0 in graphical build mode

The design of panel manager present in VLAB 2.0 focused on flexibility, so that it could
be used for editing of parameters under many different circumstances. This was reflected
in its implementation by separating the visual interface and text editing functionality into
two separate components: panel and parameter editor, described in Section 1.2.2. This
implementation limited the communication flow to one way, causing inconsistencies
between values of parameters being displayed and values of parameters in the data files.
Panel manager 3.0 combines the user interface and text editing functionality into one
application, allowing two-way communication between panel manager and the data files.
When panel manager 3.0 is invoked on a panel definition file, the current parameter
settings are read from the appropriate data files, and the controls are then adjusted to
reflect these values. Integration of user interface and text editing functionality allows panel
manager 3.0 to synchronize the displayed and stored information, similar to the concept
presented in [1]. Although panel manager 3.0 does not achieve the same level of

18 CHAPTER 2: STATEMENT OF OBJECTIVES

flexibility T as the old implementation, it has a wide range of editing functionality built in,
sufficient for the purposes of editing parameters in data files.

The language used by panel manager to specify panels was redesigned into a more
structured language, improving its readability and extensibility. Chapter 5 describes the
design and implementation issues of the new panel manager in greater detail.

2.4. Portability

VLAB 2.0 was developed on the SGI platforms running IRIX (flavor of UNIX) operating
system. It used many IRIX specific features, making it unportable to other operating
systems. To make VLAB accessible to a wider spectrum of users, VLAB has to be
portable to a number of different operating systems. | have addressed this issue in my
implementation of VLAB by developing all of its components in a UNIX-portable manner
[15][35]. | have tested and verified VLAB'’s portability by successfully porting it to two
different flavors of UNIX - SunOS 4.1.4 and Linux 2.0.

2.5. Performance improvements

The main objective in the area of performance improvements was to make the new
implementation of browser work faster, particularly on operations involving subtrees of
objects. The main goal was to guarantee that the user would not have to wait more than a
few seconds for the most common tasks to finish. To this end, browser 3.0 was completely
implemented in C++ in combination with Motif/OpenGl libraries. Many inefficiencies,
such as the use of external programs, were removed from both browser and panel
manager. These changes have brought significant speed improvements over the old version
of browser. Table 2-1 compares the timings | performed on versions 2.0 and 3.0 of
browser. Most importantly, however, browser 3.0 allows its users to display icons for
entire subtrees of objects in a reasonable time. This functionality was not even available in
browser 2.0 - the users could only display one icon at a time.

Tt panel manager 3.0 can only be used for editing data files, while panel manager
in VLAB 2.0 could be used for other purposes - by writing a different filter pro-
gram for responding to the messages sent out by the panel component

CHAPTER 2: STATEMENT OF OBJECTIVES 19

Table 2-1: Performance comparison of VLAB 2.0 and VLAB 3.0, in seconds

Action VLAB 2.0 VLAB 3.0
showing a sub-tree of 1000 extensigns 32 20
searching in a tree of 1000 extensions 45 20
showing an icon 3 0
drag/drop a node 15 1
copy & paste 100Kb 2 2
copy & paste 1Mb 25 2

2.6. User customization

The default visual appearance of VLAB applications is not well suited for some purposes,
such as presentations, because the fonts are too small and the color contrast is low. A
mechanism allowing the users to change the visual appearance of VLAB applications was
needed. To this end | have developed dialog windows through which the look of browser
and hyperbrowser can be easily customized. The user can, for example, choose the color
of various components of the two dimensional rendering of the database, the font size and
type, icon size and even the layout of the graphical tree representation of the object
hierarchy. The various dialogs used in the customization of browser and hyperbrowser are
shown in Figure 2-2. Since all VLAB tools now use Motif library for their graphical user
interfaces, it is also possible to modify their appearances through the standard X-toolkit
application resources mechanism [24].

2.7. Summary

The main goal of my thesis is to implement a new version VLAB, which will address the
shortcomings and limitations of the previous version. Namely, a new mechanism for
creating and maintaining alternate views of object databases will be designed and
implemented. A remote access extension will allow VLAB users to access remote
databases transparently. A new panel manager will allow VLAB users to edit data files
using graphical controls, which can be created and modified visually. The new VLAB will
also improve in the areas of performance, portability and customization.

20 CHAPTER 2: STATEMENT OF OBJECTIVES

e rowercustwkaten |[S Swesemngs

Color Selection Tree Display Icon Display Gilley
fhome/grads/federlivlab/config”
Background | . [F@ i@ 37 || - Diagonal Lines - Builtin (OpenGL) Zoom I el 4
_ Line | JEssT JEEm JBS ||~ HorizontalMertical Lines || < Custom (finer) Zoom Dire"_t\' Files -
| [1s8 [s7 [a7a - by | browser.backup
it . * Parent Centered lcon Size ¥ T
Text [zss " [zap [em T -]
- . Parent On Top \] J -7 browser.monochrome
Box Outsmel . o= e JoT hbrowser
Boxinside | [l FE [65mw || [Compact T RETEGRTGY
metatext
__Lnk | [orT [E@EET feEss Modify Font i metatext?
7 |object 7
ResetSettingsl Save Settingsl Load Settingsl Applyl Cancell ETE =] =
Selection

e w1 ok | _rier | conel

Size

P e S o |||
itc zapf chancery (adobe]

lucida (b&h) regular Options Siiders

lucidabright (b&h)

new century schoolbook (adobe)
palatino (adobe)

times (adobe)

utopia (adobe

regular italic
Current
Color:

Al 7|
Stored
Color:

Hue -
ABCDEFGHIJ kimnopgrstuvwxyz 1234567890 Saturation [3.788.

Value M
e

O = — = = = =
mﬁuwmamc

X

N 1 o=

Default Font| %I AppIyI Cancell ﬁl EI

FIGURE 2-2: Snapshot of browser’s customization dialogs

CHAPTER 3 Survey of related concepts and
previous work

This chapter discusses concepts and previous work related to VLAB, as well as how they
influence and relate to VLAB’s design. The chapter is organized into two sections. In
Section 3.1 | discuss previous work conceptually related to VLAB’s design, while in
Section 3.2 | discuss previous work related to VLAB at the implementation level.

3.1. Concepts related to VLAB

3.1.1. Monolithic versus open hypertext systems

Monolithic hypertext systems are hypertext systems which manage the storage of data as
well as linking information. Their main drawback lies in their fundamental design - being
complete tools they support only a limited range of media types and provide editing
capabilities only through applications that are closely coupled with the underlying
hypertext system. Also, the node data representation in these hypertext systems is
structured and proprietary. As a result, these systems are closed, because if they do not
provide the particular media type editor the user requires, only the system’s developers
can add the required functionality. The inability to link to external objects, as well as the
inability to access the objects in the hypertext from the outside, are other disadvantages of
closed systems.

The drawbacks of monolithic hypertext systems were addressed by Sun’'s Link Service
[26]. Link Service provides support for creation and maintenance of bidirectional
relationships between autonomous front-end applications. It does so by defining a protocol
for open hypertext system. The system only maintains the links, the representation of the
actual endpoints (objects) is left to the actual application. Link Service requires
application side support for hypertext functionality, so it merely supplies the libraries
which makes adding such support easier. For example, if an existing text editor was to be
used in this system, the developers of this editor would have to add a mechanism to its

22 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

internals, which would allow the user to indicate the position in the text composing a new
node. Also, some visual indication would have to be shown on parts of text that contain
links to other nodes. This means existing application that do not support these mechanisms
would have to be patched and recompiled in order to support such hypertext system.
Another drawback of Link Service’s approach is that the data files for nodes do not have to
be stored in a standard place, which would make it nearly impossible to manipulate such
database as a whole, e.g. search for information, delete a group of nodes, move the
database to a different file system, etc.

The design of VLAB objects is based on the open hypertext system model. VLAB objects
contain the necessary data files as well as the linking information between the data files
and related applications. Users can invoke applications on the data files as specified by the
linking information stored with every object. However, the format of data files is not
dictated by the system but rather by the associated applications. Similarly, the applications
are not part of the system, they are entirely user defined, external to the system. This gives
the user absolute freedom to choose any media type for data representation, and freedom
to choose any appropriate editor or any other application for the given media type. Thus,
VLAB does not impose the same limitations on the user as do most monolithic hypertext
systems.

3.1.2. Prototype-extension model

The mechanism for organization of VLAB objects originated from the object oriented
design, namely the prototype-extension model described in [17]. VLAB users can create
new objects as extensions of existing objects (prototypes), where extensions initially
inherit all properties from their prototypes. Any of these properties can be later modified,
for example, by adding new actions or data files, changing simulation parameters, etc. A
similar prototype-extension model was used in the implementation of an interactive
system for simulation, modeling and animation presented in [3]. In this system, all objects
at creation time have the same properties, which change only by receiving messages.
Extensions can be derived from prototypes, and these extensions can then differ from their
prototypes by having received different messages.

3.1.3. Graphical versus command line interfaces

Scientists have often wondered how the world would be affected if some of the basic
assumptions and principles of science were violated. It was these scientists who created
new concepts, like non-Euclidean geometry, positrons and anti-matter. D. Gentner and J.
Nielson tried to explore the types of interfaces that could result if the classical Macintosh

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 23

human interface design principles were reversed [10]. Macintosh interface is a very good
example of the current interface paradigm, often referred to as WIMP (windows, icons,
menus, pointer), which dominates the current user interface world. Undoubtedly, this
paradigm suits the needs of average computer users very well, but does very poorly for
experienced computer users. One of the main drawbacks of pure WIMP models is that
everything has to be done through the point and click interface. Experienced users are
limited to performing complex tasks inefficiently, as many UNIX users have noticed when
exposed to a Macintosh-like user interface. As an example, consider a simple task of
finding all files on a file system that have been modified less than 6 days ago and which
contain the phrase ‘University of Calgary’. This task can be performed on a UNIX
operating system by executing one line at the command prompt, whereas on a standard
Macintosh system each file would have to be inspected indivi&ruﬁﬂye need to support

an experienced user was recognized in VLAB’s design and was addressed in its
implementation. VLAB’s users can switch to a command line mode at any time and
continue working with the objects without the limitations of a point and click model.

3.1.4. Tools

The idea of having tools associated with objects was used in Menv - Modeling and
Animation Environment developed at Pixar [31]. Menv is an environment for developing
production-quality and cost-effective modeling and animation systems. It is based on a
modeling language called ML, used to describe and animate 3D models. Users are
allowed to write their own tools, which can change various aspects of the models. VLAB
users can also associate tools with components of VLAB objects and conveniently invoke
these tools during experimentations.

3.2. Previous work related to the implementation of
VLAB

3.2.1. Two way extensibility

Most inheritance based object oriented models provide support for extending their existing
hierarchy of classes in two ways:

T At the time of writing this theses, the most recent version of MacOS did not pro-
vide any scripting capabilities.

24 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

* by adding a new class which will inherit methods from its superclasses;
* by adding a method to a superclass, which will be inherited by its sub-
classes.

However, in many OO designs this two way extensibility cannot be achieved under all
circumstances. For example, the two way extensibility in C++ is not available when the
sources of an existing class hierarchy are not available to the developer. It is still possible
to create a new class by deriving it from one of the classes in an existing hierarchy.
However, it is very difficult (and many times impractical) to add a new method to one of
the classes in the existing hierarchy.

As an example, consider the following situation: a developer needs to add a new method to
a group of classes distributed as a library. If the user has access to the sources of the
library, the new method can be simply added to a common parent of all affected classes,
the library would be then recompiled, and all classes would inherit the new method.
Unfortunately, if the library is distributed in binary form, this is impossible to do. A work-
around solution exists, where new subclasses are created from all classes that need to have
the new method added, but this is an unattractive and possibly unfeasible solution for large
libraries.

This two way extensibility problem and a reasonable solution was described in a paper by
P. Strauss and R. Carrey [37]. This paper presents an object-oriented toolkit designed for
developers of interactive 3D graphics applications, now known as Open Inventor [42]. The
problem of two way extensibility was solved by using a two dimensional virtual table, in
which each entry is a method that implements a certain action for a particular node.
Therefore adding a new action involves adding a new row to the table, and similarly,
adding a new node is equivalent to adding a new column. Since each action in Open
Inventor is defined as a separate object, adding a new function to all standard nodes in the
system involves creatingreew_actionclass by deriving it from the providedtion class.

The resulting syntax for applying the new action to a node is rle&n action->

apply(node)

VLAB partially manages to address the two way extensibility problem by having a
configuration file for object manager, in which the user can define actions that individual
objects can associate with their data files. For example, an action called ‘EDIT’ could be
defined in this configuration file as a set of sub-menus, each of which would invoke a
different text editor. Then any object can use this EDIT action to be invoked on a data file,
giving the user a choice of an editor to use. When a new editor is installed on a system, the
only change needed to make this new editor available with all existing objects is to add a
new item to the description of ‘EDIT’ in object manager’s configuration file. However,
this assumes that the creator of objects will have to use globally defined functions, such as
EDIT in this example, in order to take advantage of this support for two way extensibility.

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 25

3.2.2. Building graphical user interfaces

A similar idea for building user interfaces as used in VLAB’s panel manager was
described in a system called FormsVBT by G. Avrahami, K, Brooks and M. Brown [2].
This system allows building of user interfaces using a graphical (WYSIWYG) editor, or
using a textual description of the user interface through a special purpose language. The
similarity comes from the fact that the description files for each VLAB panel are also
defined in a special purpose language, which can be edited either by a text editor, or by a
graphical (WYSIWYG) editor. Another system that deals with similar issues of building
graphical interfaces for programs is GROW [3] [32].

The Forms Library (XForms) is a library of C routines that allows the user to build user
interfaces with buttons, sliders, input fields, dials, etc. Every regular XForms distribution
includes a GUI builder utility calleftiesign where interfaces can be visually assembled.

In fdesign, the individual components can be added, deleted, moved, resized, and their
attributes, such as color, font, and appearance, can be edited in option dialogs. Group
manipulation of objects is also possible, although editing of attributes on groups of objects
only works if all objects in a group are of the same type (i.e. buttons). Therefore, there is
no easy way to change an attribute for all components in a window, such as the
background color or the font.

3.2.3. Frameworks for experimentation

In this section | examine three different software environments used in areas of
experimental algorithms, technical computing and 3D modeling, respectively. All of these
environments have some common characteristics with VLAB.

CSLAB

A framework for creation, configuration and execution of experimental algorithms was
implemented in CSLAB [5]. It is a prototype of a simulation environment that is easy to
use, dynamic and WWW accessible. Running and configuring experiments can be done
either through its visual interface or through the use of script files. For managing
experiments and their results, CSLAB provides a workbook. CSLAB is an open
architecture, therefore new building blocks can be added to the system. Since all algorithm
objects in CSLAB are written in Java, they can be easily shared between users around the
world, whether as individual objects, or as whole experiments. This makes CSLAB a great
tool for collaboration and education in the area of experimental algorithms.

26 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

VLAB also provides visual interface for managing and running experiments, through
browser and object manager. Collaboration is encouraged in VLAB by making access to
remote oofs databases transparent to its users.

Mathematica

Mathematica is a fully integrated environment for technical computing [43], extensively
used in research and teaching. It is well suited for various user communities, as its many
specialized toolkits allow for rapid system prototyping and experimentation in areas such
as signal processing and control systems. The most common way to organize work in
Mathematica is through the use of its notebooks. Mathematica notebooks are structured
interactive documents organized into a sequence of cells. Each cell contains information
of certain type, e.g. text, graphics, sounds or Mathematica expressions. Cells are organized
into groups where a group can also include other groups. A group of cells can be either
open or closed. When open, all its cells and groups are visible, when closed, only the first
cell (or the heading cell) is shown. This allows for more comfortable viewing of large
documents. Notebook actions can be programmed, for example by inserting buttons into
cells, and then programming the actions that will be invoked when the button is clicked on.
Buttons can be also organized into palettes, which are shown in Mathematica as floating
windows, and these buttons can then be used in conjunction with any other notebook.
Mathematica notebooks also provide simple hypertext functionality. Hyperlinks can be
inserted into documents, which can take the user to a specific point anywhere in the
notebook. The data in notebooks can be experimentally modified at any time, and the
results can be automatically recomputed and then examined.

VLAB users also organize their work hierarchically, into oofs databases, which can be
visually accessed using browser. Object trees can be expanded or collapsed, allowing the
user to control the level of detail displayed on the screen. Various external tools can be
associated with VLAB objects and invoked in object manager from pull-down menus.
Eventhough VLAB does not provide support for hypertext documents, users can create
alternate views of oofs databases and thus access objects in non-hierarchical fashion.

Alias

Alias from Alias/Wavefront [1] is a powerful 3D modeling environment developed for
industrial designers, with a main focus on creation of mathematically accurate regular-
shaped objects as well as freeform organic shapes, and photorealistic renderings and
animations. Alias organizes its projects with the help of the UNIX filesystem: each project
contains a set of subdirectories, where all files related to a project are stored. There are
separate subdirectories for wireframe models, textures, lights, rendering results,
temporary plot outputs, stages, etc. VLAB users organize their experiments in objects,

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 27

represented as separate directories, where all information pertinent to the experiment is
stored in data files.

User interface in Alias is highly consistent and yet fully customizable. Most functions in
Alias are invoked either through menus, tool palette, tool shelf, marking menus or hot
keys. Menu functions are functions that do not require interaction within the 3D
workspace, while the tool palette contains all functions that do require interaction within
the 3D workspace. Menus and the tool palette cannot be customized by users although it is
possible to change their layout and appearance to a certain extent, i.e. size of icons,
vertical/horizontal organization, and position on the screen. Tool shelf is a fully
customizable version of tool palette - tools in it can be added to, removed from,
rearranged, options set and their icons modified with a paint program. Marking menus are
similar to popup menus, and although they come predefined, they can be modified to
include any functionality. Finally, any action in Alias can be assigned a hot-key, so that it
can be invoked directly using a keyboard. Object manager in VLAB allows users to
perform operations on objects using pull down menus. There are two types of operations
that can be invoked in object manager: predefined actions and user defined actions. User
defined actions can be arranged into sub-menus, and are used to invoke external
applications on data files in objects.

Alias encourages experimentation by offering various tools for flexible management of
objects, e.g. templates, layers and stages. The user can lock any subset of objects on the
screen by putting them into ‘template mode’, and then modify the unlocked objects
without affecting the locked (templated) ones. For a more flexible organization of work,
layers can be used. Any model can include multiple layers of components, and these
layers can be made fully editable, only visible, or completely hidden. Objects can also be
developed independently of each other and then combined together in stage sets using a
stage editor. Each object can be loaded into its own stage, and stages can be then made
active, visible, or invisible. If a stage is active, all of its objects can be modified. If a stage

is in a visible mode, its objects are shown on the screen, but cannot be modified, and when
in invisible mode, the objects are completely hidden from the user. This allows the user to
combine and reuse existing objects in complicated scenes, while keeping the objects as
independent entities. VLAB also allows reuse of existing objects through the prototype-
extension mechanism for object organization. New extensions of objects can be easily
created and modified, while the originals remain intact. Unfortunately, VLAB does not
offer any support for multiple inheritance, and therefore, multiple objects cannot be
combined to create a single new object.

28 CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

3.2.4. External parameter control

This section briefly describes two systems which implement functionality for external
parameter control. Both systems allow their users to change parameters used in
applications at run time through interfaces external to the application. VLAB supports
similar functionality for external modification of parameters at run time, through panel
manager.

UCofA

UCofA is a software environment for creating and running user interfaces used for
external parameter control [14][27]. A visual tool for building interfaces is part of the
system. The controls used for parameter modification are associated with messages. These
messages are sent out by UCofA when the control is manipulated and intercepted by an
interface program. The interface program translates them according to the needs of the
external application whose parameters are being controlled. UCofA can be used for
editing parameters in data files, by writing an interface program which translates UCofA
messages into file editing operations.

Menv

As described earlier (Section 3.1.4), Menv is a modeling and animation environment in
which 3D models are described using ML modeling language [31]. The variables used in
ML programs can be modified by external tools at run time, through shared memory.
These variables are referred to as articulated variables. Users can write their own tools,
which can communicate with each other and also modify articulated variables used in ML
programs. Since various aspects of models can be changed (through articulated variables)
while being animated, animators can achieve a very high level of control.

3.3. Summary

In this chapter | have described previous work related to the Virtual Laboratory. | have
discussed previous work conceptually related to VLAB as well as previous work related to
VLAB's implementation.

This chapter discusses concepts and previous work related to VLAB, as well as how they
influence and relate to VLAB’s design. The chapter is organized into two sections. In

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK 29

Section 3.1 | discuss previous work conceptually related to VLAB’s design, while in
Section 3.2 | discuss previous work related to VLAB at the implementation level.

30

CHAPTER 3: SURVEY OF RELATED CONCEPTS AND PREVIOUS WORK

CHAPTER 4 Remote access server

This chapter describes an extension that adds the capability of accessing remote databases
of objects to VLAB's functionality. The implementation of this extension involved writing

a new VLAB daemon, remote access server (RAserver), and a corresponding library,
RAlibrary. In Section 4.1 | discuss the general problem of accessing remote databases in
VLAB and summarize the issues considered in the design of its solution. In Section 4.2 |
present a feasibility study, in which | evaluate four alternative mechanisms considered for
the implementation of the remote access extension. In Section 4.3 | discuss the design of
RAserver. In Section 4.4 | describe RAserver from the user’s perspective, and in Section
4.5 | discuss its implementation details. In Section 4.6 | describe RAlibrary.

4.1. Background

The support for collaboration in VLAB 2.0 is very limited. Tools in VLAB 2.0 allow users

to access databases of VLAB objects only on local filesystems. Objects have to be
transferred manually (e.g. by FTP or e-mail) between users, making collaboration between
scientists working from different geographic locations difficult. In order to improve the
support for collaboration in VLAB, it is necessary to provide a mechanism for accessing
databases on remote computers over the Internet. The old and the desired implementations
of database access in VLAB are graphically illustrated in Figure 4-1. The dotted lines
between workstations and databases represent supported database accesses under the two
implementations.

At the conceptual level, the purpose of the remote access extension in VLAB is to:

» simplify collaboration (e.g. interchanging objects);

 allow users to modify experiments remotely (e.g. when working from
home),

* make it possible to present research to the public.

At the implementation level, the new extension must fulfill the following goals. The
remote access mechanism should be transparent to the user, so that there will be no

32 CHAPTER 4: REMOTE ACCESS SERVER

System 1 System 1

Verkstation B . Vrkstation B
o'—‘ 1
: ;
] e L)
L,
.
. it
b ect | abas
=T database 1 "l Workstation A Yeem==="""""7] database 1
Wrkstation A }.-=-==7 K)] .
l' l' I} Ay
' 4 '
' s
' ' D 0
' ' K '
' ' K !
' ' B !
\ H S '
[y ' g
[y '
) '
.]
Verkstation X * H Verkstation X
S '
\ : : :
\ : ; . '
. ' D H '
. ' y H '
\J ' . H
s ' D ! '
. ' D i !
. ' . !
S '. B ' :
o B K
) 5 '
) H i
N Virkstation C = Wrkstation C v
djet =77 4
dat abase 2 dat 2 v
K
.
: .
A .
Vérkstation D rkstation 0 pe-===""""

System 2 System 2

FIGURE 4-1: Database access in VLAB 2.0 (left), desired database access (right)

difference between accessing local or remote databases. There should be no limitations
imposed on the user with regard to the functionality available when working on remote
objects, or as few as necessary. The remote access should also be secure. It must be
difficult, if not impossible, for unauthorized users to gain access to the remote databases.
Finally, remote access should be fast and reliable. Waiting for extended periods of time to
obtain information over the network, or having to worry about loosing information when
working with remote objects, would render such a remote access extension unusable for
VLAB's’ users.

It should be mentioned that the goal of this extension is not to re-design the entire VLAB,
nor is it to take a fundamental departure from its old versions. The goal is to build on top
of existing (and most importantly - working) implementation, and to extend it.

Division of work between client and server

One of the most important issues related to the design of the remote access extension is the
division of work between a client and a server. The client is the workstation from which

CHAPTER 4: REMOTE ACCESS SERVER 33

the user accesses a remote database. The server is the computer system on which the
remote database resides. The problem to be addressed in the design of the remote access
extension is in determining which tasks will be performed on the client, and which on the
server.

There are two types of programs executed by a VLAB user: VLAB applications and

external prograrﬁs VLAB applications are used for general management of databases

and objects, and for invocations of objects. External programs are required in order to
experiment with the actual objects.

Execution of &ternal programs

It is desirable that all simulation programs invoked from remotely retrieved objects are
executed on the users’ workstations, as opposed to running the simulation programs on the
computer containing the object. First, the server cannot be assumed to be a powerful
system, able to execute simulation programs of multiple users. Second, a vast majority of
simulation programs used with VLAB to date are graphically intensive. Running
simulations remotely would require the graphical information from these simulations to
travel over a network, considerably inhibiting the user’s interaction even on fast networks.

Execution of VLAB applications

The question regarding which VLAB applications should be run locally and which
remotely is more difficult to answer. The disadvantage of running VLAB applications
locally is related to the amount of data being transmitted over the network. For every file a
VLAB application requires access to, it would need to be transferred over the network -
from the server to the client. Such implementation is likely to cause unnecessary data to
travel over the network. For example, if a user decided to copy and paste part of a remote
database using browser, the information being copied would be sent from the database to
Browser (the copy operation) and then the same information would be sent back from
Browser to the database (the paste operation).

The most obvious disadvantage of running VLAB tools remotely is slow user interaction.
Although the amount of graphical information for most VLAB applications is not large
(such as Object Manager or Metatext), browsing large databases using Browser could
become undesirably slow. Another limitation of this implementation is that its design
would have to include a mechanism to allow VLAB users to run external programs on
their workstations. Also, the distribution of tasks between the client and the server plays
an important role when deciding whether to run VLAB applications locally or remotely. If

t External programs are applications which are not part of VLAB, such as simula-
tion software, compilers, etc. They are required to experiment with objects.

34 CHAPTER 4: REMOTE ACCESS SERVER

VLAB applications were run remotely, the server would have to perform most of the tasks,
while displaying the results would be the client’s only responsibility. Such distribution of
work is unwelcome, since it could imply heavy work-loads on the server.

A compromise must be met to address as many of these problems as possible. Some of the
VLAB applications should be run directly on the server (having direct access to the remote
database), and others on the client (so that the interactivity can be preserved).

Distribution of external programs

It should be noted there is yet another very important issue related to external programs.
VLAB objects do not store the external programs they require, they merely contain
descriptions of how to run these programs on their data files. This raises the question of
how to distribute external applications to the users when objects requiring such programs
are invoked. Some answers can be found by considering the use of languages designed to
be portable across multiple platforms - such as Java or Python, but many questions would
remain unanswered still. Since | have not found a feasible solution to this problem, it will
not be addressed in the implementation of the remote access extension. | look at this issue
in more detail in Section 9.2.10 as suggested future work.

4.2. Requirements

Before a final decision was made regarding which method to use for the implementation
of the remote access extension for VLAB, four five solutions were examined. The subject
of this section is an evaluation of these five implementation types, conducted to determine
how the remote access extension requirements would be met by each. | first describe the
five implementation models, and then evaluate them in ten different categories.

4.2.1. Implementation models

Model 1: X-display redirection This method is based on the capability of X Window
System to run applications remotely, while displaying their graphical user interface on a
local computer [30]. Using this implementation, VLAB users trying to access a remote
database would have to login remotely into the server containing the database. Then all
VLAB tools and external programs would be run on this server, having their user interface
displayed on the local workstation.

CHAPTER 4: REMOTE ACCESS SERVER 35

Model 2: FTP implementation This approach would take advantage of the fact that most
UNIX computers run an FTP daemon at all times [9]. All VLAB'’s accesses to a remote
database would have to be performed by an FTP daemon running on the remote system.

Model 3: rsh/rcp implementation This implementation would require the remote user to
have shell access to the system serving the VLAB object database. With shell access and
an appropriate setup of ttdosts file, it is possible to perform any action on a remote

file using the combination @éh andrcp commands [9].

Model 4: NFS implementationThis model is based on the ability of the UNIX operating
system to mount filesystems across a network, using NFS [34]. Once a filesystem is NFS-
mounted on a workstation, it can be accessed as if it resided directly on the computer. This
implementation type requires the server to be properly configured, so clients can NFS-
mount the part of the server’s filesystem containing the VLAB database. The client must
also be appropriately configured, so users are allowed to NFS mount filesystems on their
workstations. The process involved in accessing a remote database by a user simply
involves NFS mounting the remote filesystem containing this database. VLAB
applications can then access the database as if it resided on a local filesystem.

Model 5: Special purpose daemofor this implementation type, a new VLAB daemon
would be designed and implemented, which would run on the remote computer and
perform actions as requested by other VLAB tools. In essence, this model is similar to the
FTP model, but instead of using a standard FTP daemon, a special purpose daemon would
be written. As | will show in the following section, this approach would bring many
advantages over the FTP implementation.

4.2.2. Evaluation of implementation models

Each of the implementation models were evaluated and compared in ten different
categories. The ordering of implementations from each category are summarized in
Table 4-1.

Table 4-1: Evaluation of implementation models

Implementation Type

Type 1. | Type 2: | Type 3: | Type 4: | Type 5:
X-displ. FTP rsh/rcp NFS daemon
amount of work required 2 3 4 1 5

36

CHAPTER 4: REMOTE ACCESS SERVER

Table 4-1: Evaluation of implementation models

user interface interactivity 2 1 1 1 1
file access speed 1 3 4 2 2
availability of public access 2 1 2 2 1
security 1 1 1 1 1
inter-client communication 2 1 1 1 1
limitations of functionality 3 2 2 1 1
involvement of sys. adm. 2 2 2 3 1
extensibility 1 3 2 1 1
division of tasks 4 3 2 3 1
Total 20 20 21 16 15

Category 1: Amount of work required for implementation

In this category the implementations were evaluated based on the amount of work required
for their development. The winner of this category is the NFS implementation model,
since its implementation does not require changes to any of the VLAB tools. The second
best implementation is the X-display redirection mechanism. Only minor modifications
would be required for some of the VLAB tools, namely, assuring DHePLAY
environment variable is properly propagated to all spawned processes. The other two
implementations would require significant modifications to all VLAB tools which need to
access VLAB databases. rsh/rcp implementation would require slightly more
programming than the FTP implementation, because all remote shell scripts would have to
be written. Finally, the special purpose daemon implementation would require most
amount of work, as all VLAB applications would have to be modified, as well as a new
daemon would have to be written.

Category 2 - Interactivity of the user interface

In this category, | examine the impact these models would have on the interactivity of the
user interfaces of VLAB applications accessing remote databases. X-display redirection is
the only implementation model in which VLAB applications and external programs would
run on the server and display its graphical user interface on the client. This would yield a
significantly inhibited user interface interaction, since all of the graphical information
would have to travel over the network. In the other four models, both the VLAB

CHAPTER 4: REMOTE ACCESS SERVER 37

applications and the external programs would run on the user’s workstation, preserving the
same speed of user interaction as achieved when working with local databases.

Category 3 - File access speed

Here | evaluate each implementation model by how fast VLAB tools could perform file
related operations on remote databases. The speed of such operations determines how fast
VLAB applications can complete database management operations. The fastest file access
would be achieved using the X-display redirection implementation, because all VLAB
tools would be run directly on the server containing the database, thus having direct access
to the database. The second best implementation models are the special purpose daemon
and the NFS approaches. Eventhough all file operations performed on a remote database
have to travel over the network, the NFS communication mechanism is well optimized,
and so could be the communication with the special purpose daemon. File operations in
the FTP implementation model would be slower than in the NFS implementation, mainly
because the messages between an FTP daemon and an FTP client are text-based and
therefore need to be parsed. FTP also requires opening separate sockets for each file
transmission. The rsh/rcp implementation would yield the slowest file operations, as
explained below.

Prototype implementation of the remote accessmsion

| designed, implemented and tested a simple prototype of the remote access extension
using the rsh/rcp implementation model. The main drawback of this implementation
surfaced during the testing period - a very noticeable degradation in performance of
VLAB applications was observed when working with remote objects. Two reasons
causing such degradation of speed were identified. First, a large setup time is required on
the server to execute even a simple script supplied by an rsh command. During this time
the operating system on the server must perform authentication of the connecting user and
then set up the environment for running a shell script. Therefore, this setup time is not
affected by the speed of network. | performed and timed various tests of executing
commands using rsh over a fast local network, and the results revealed that this setup time
was often as long as one second per call. Additionally, there is an overhead associated with
each call tsystem() , needed to execute rsh and rcp commands from within C++ code.
The prototype implementation revealed that the combined setup time required by the
server and the overhead of callisgstem() rendered the rsh/rcp implementation too
inefficient. Common tasks, such as showing extensions of an object and invoking objects,
would require 5 and 20 seconds to complete, respectively.

38 CHAPTER 4: REMOTE ACCESS SERVER

Category 4 - Availability of public access

In this category the evaluation is based on whether the implementation method would
provide public access to remote databases. Special purpose daemon and FTP are the only
implementation models which support public access. Anonymous FTP allows the server
running an FTP daemon to be set up so that certain parts of its filesystem are open for
browsing by general public, without compromising the server's overall security [9].
Similar functionality can be achieved using the special purpose daemon. The other three
implementation types do not provide any reasonable means for public access. NFS is not
suitable for this purpose mainly because its design focused on the use of fast and secure
networks. Allowing to NFS mount parts of the server’s filesystem can introduce various
security holes to the entire system, and result in high loads on the server. The X-
redirection and rsh/rcp models require that the user accessing the remote database has a
shell account on the server. Providing anonymous shell accounts for the general public
also has the disadvantages of possible security holes and high loads on the server.

Category 5 - Security

Here | evaluate the implementation models based on how much they would decrease the
existing level of security for:

» the owner of the remote database,
» the entire system containing the remote database.

If public access is eliminated from the requirements of the remote access extension, none
of the discussed implementation models would reduce the existing security of the
database’s owner, or the existing security of the entire system which contains the remote
database. This statement is based on the fact that all of the described models use
mechanisms (shell access, X-display, FTP and NFS) which are considered secure and are
widely used on most UNIX based systems. All implementations are considered equal in
this category.

Category 6 - Interclient communication

The current implementation of VLAB only supports communication among VLAB
applications running on the same computer. Since inter-client communication among
VLAB tools is necessary for providing functionalities such as cut, copy and paste,
transferring objects between remote and local databases would be impossible without
interclient communication. It would be possible to redesign the inter-client
communication mechanism in VLAB to support applications running on different
systems, but this would eliminate the X-display redirection implementation model from

CHAPTER 4: REMOTE ACCESS SERVER 39

the category of straightforward solutions. The only implementation type under which the
interclient communication would be affected is the X-redirection model, because tools
operating on remote database would be running on a different host than the rest of the
tools. This means that with X-redirection model, operations such as cut, copy and paste
would not work between tools operating on different remote databases.

Category 7 - Limitations of functionality

The evaluation of models in this category is based on the limitations they impose on the
functionality of VLAB when operating on remote databases. The functionality of VLAB
applications would be unaffected using the NFS approach, because the applications would
access remote databases as if they resided on local filesystems. FTP and rsh/rcp models
would preserve the functionality of all VLAB applications. However, it would be
impossible to execute external programs which require direct access to files in remote
databases, such as file managers or shells. The X-display redirection method would
introduce the most limitations to the functionality available to VLAB users when working

on remote databases. This would be caused by broken inter-client communication among
VLAB applications run remotely and those run locally.

Category 8 - System administrator’s involvement

The implementations are evaluated in this category based on the amount of system
administrator’s involvement (root access) necessary to access remote databases. In the first
four implementation models the system administrator of the server has to be involved. For
the NFS method, the system administrator has to add an appropriate entrjeto/the

exports file, so that the server will allow the new client to NFS mount the filesystem
containing the remote database. For the other three methods, the system administrator is
needed to create new accounts on the server for each new user. The NFS implementation
method would also require the system administrator of the client system to mount the
filesystem with the remote database. The only implementation time for which system
administrator is not needed is the special purpose daemon.

Category 9 - Extensibility

It is anticipated that in the future versions of VLAB, a need for new operations on objects
will arise. For example, file locks might be needed to control simultaneous access to
remote databases. The FTP model is the least extensible model, as the operations which
can be performed on remote files would be limited by the functionality of the FTP
daemon. The rsh/rcp implementation takes the second last place in this category, as many
file operations cannot be performed using shell scripts. The other three implementation are
equally extensible.

40 CHAPTER 4: REMOTE ACCESS SERVER

Category 10 - Division of tasks

Here | try to evaluate to what extend it is possible to divide work between the client and a
server in each of the implementation models. The X-redirection model scores most poorly
in this category, since it requires that all tasks be performed on the server. The client is
only responsible for displaying the results of operations. FTP and NFS models are also not
well suited for task division, as both the FTP and NFS daemons provide a fixed and non-
extensible functionality. For example, it would be impossible using these to approaches to
ask the server to scale the icons of objects before they are transferred to the client. The rsh/
rcp approach does support division of tasks, however, the tasks on the remote computer
would have to implemented using scripting languages - i.e. large performance penalty. The
special purpose daemon is a clear winner in this category, as it can be infinitely extended
to perform any task entirely on the remote system.

4.2.3. Conclusion

The NFS model is not well suited for the implementation of the remote access extension,
mainly because one of the requirements of the remote extension is to provide public
access to remote databases. System administrators would be reluctant to allow general
internet community to NFS mount file systems. The X-display redirection cannot be used
for similar reasons - system administrators cannot give out shell accesses to their system to
general public. The rsh/rcp model was rejected on a similar basis, in addition to being too
slow in its prototype implementation. The FTP mechanism seemed to be the most suited
implementation model for the remote access extension. However, the functionality offered
by an FTP daemon is fixed and therefore not extendible. In the future, when VLAB’s
functionality will have to increase, such inability to extend an FTP daemon’s set of
operations could render the whole FTP implementation obsolete. From the above
evaluation, it is obvious that the special purpose daemon is the most suitable choice for
implementing the remote access extension.

4.3. Design

A new VLAB daemon, called Remote Access Server (RAserver) was developed. The most
important advantage of this implementation over the FTP mechanism is its ability to
address the needs for new functionality in future versions of VLAB. Also, RAserver is
entirely managed by the user (such as maintaining his own database of authorized users),
thus removing the need for a system administrator’s involvement. The only significant
disadvantage of the RAserver implementation model is the amount of work required for its

CHAPTER 4: REMOTE ACCESS SERVER 41

implementation. In addition to the work needed to modify all existing VLAB applications
to take advantage of this new daemon, the RAserver daemon itself had to be written.

Originally, RAserver was implemented to operate at the level of individual files, although
its functionality has been later extended to add operations which perform requests at the
level of VLAB objects. This extension can perform certain operations more effectively, as
in the case o0RA_GET_EXTENSIONS REQUES®peration, described in Section 4.5.1.

VLAB applications can request file operations to be performed by RAserver. RAserver
attempts to perform such requests, and then sends the results of these operations back to
the application. The communication flow between two VLAB applications and RAserver

is graphically illustrated in Figure 4-2.

dient Server

...............
ject g
Manager

FIGURE 4-2: Communication flow between two VLAB applications and RAserver

RAserver spawns a separate process for each new client. This multiprocess
implementation of RAserver provides a clean design, consistent with the UNIX
philosophy of multiprocessing. It has very important advantages over a single-process
solution. First, if a process serving one client crashes, the other clients will be unaffected,
since each process runs in a separate address space. Secondly, the utilization of the
server’'s resources will be higher than with a single-process implementation. Most of the
requests made to RAserver daemon require disk access services. In a single process
implementation, if one of the clients requested a lengthy operation, the rest of the clients
would have to wait until such an operation is finished. This problem is avoided in a multi-
process implementation because of the multitasking nature of UNIX operating systems.
Last, multi-process implementation can automatically take advantage of multi-processor
workstations, where each process could be run on a separate processor.

There is one aspect of single-process implementation which could make it favorable over a
multi-process implementation. The single-process solution is less demanding on resources
of the host computer, because with each process running on a UNIX operating system
there is an associated overhead. If the number of concurrent users of a remote database
was to become large, a conversion of RAserver daemon to a single-process

42 CHAPTER 4: REMOTE ACCESS SERVER

implementation would have to be considered, to prevent system loads from becoming too
high.

The level of access to remote files granted to VLAB applications connected to RAserver is
determined by two factors. First, since RAserver is run as a user's process, RAserver
cannot provide functions on files that would not be granted directly to the user that
invoked RAserver. The second factor that determines file access permissions is the level of
access granted to the remote user, specified by the user running RAserver. The user
running RAserver can set up two different levels of access for each remote user: read-only
and read-write. When a new VLAB application connects to RAserver, it has to identify its
user by a login and password. RAserver then looks up the corresponding account in its
own database and determines its level of access. If the account is associated with read-only
level of access, RAserver will refuse to perform any operation which would result in
modifications to the filesystem.

To illustrate how the level of file access using RAserver is determined, consider the
following example. User A has set up two accounts for RAserver: account one with write
permissions, and account two with read-only access. There are three files on user As
computer: filel, file2 and file3. User A has read/write access for filel, read-only access for
file2 and no access to file3. VLAB applications connected to RAserver using account one
will have the same permissions to all three files as user A: read/write for filel, read-only
for file2 and no access for file3. VLAB applications connected to RAserver using account
two have read-only access for filel and file2, and no access for file3. Write access for filel
has been effectively removed for all VLAB applications connected to RAserver using
account two.

The RAlibrary is designed to automatically detect when the VLAB application is
accessing a database on a local filesystem. When accessing a database on a local
filesystem, the operations of RAlibrary are optimized - by directly performing the
requested operations on the database using ordinary system calls, instead of requesting
these operations to be performed by RAserver. This design allows a clean implementation
of all VLAB applications requiring remote access, since the developer of the application
does not have to distinguish between accessing local and remote databases. As long as the
application uses RAlibrary for all its file-related operations, such an application will be
automatically optimized when accessing local databases.

4.4. User's perspective of RAserver

RAserver is a VLAB tool allowing other VLAB applications to access remote databases
through the Internet. A remote database is located on the filesystem of a remote computer,

CHAPTER 4: REMOTE ACCESS SERVER 43

and this filesystem is not shared with the computer from which the user is trying to access

the database. RAserver can be run in two different modes: daemon and setup mode. In the
first mode RAserver acts as a daemon, and serves VLAB applications connected through

the Internet. In the setup mode accounts are created and managed for remote users.

4.4.1. Daemon mode

The user wishing to provide remote access to his/her databases invokes RAserver in the
daemon mode, by issuing the following command at the shell prompt:

% raserver

RAserver then listens for connections from VLAB clients, establishes multiple
connections and provides services to all authorized connections.

4.4.2. Setup mode

To invoke RAserver in setup mode, the following command is typed at the shell prompt:
% raserver -pe

When the user starts RAserver in the setup mode, RAserver presents the user with a
command line interface for editing user accounts. At this prompt commands and their
parameters can be entered, requesting information or changes to the user’s accounts. The
following commands are available: quit, help, Is, add, del, chlog, chpass, toggle. Their
meaning and syntax can be obtained through the on-line help (by typing ‘help’).

4.4.3. Related files

RAserver stores the account information about remote users in the account file determined
at runtime by evaluating the following expression:

$VLABCONFIGDIR/rapasswords

44 CHAPTER 4: REMOTE ACCESS SERVER

The account file is accessed by RAserver in both of its modes. If this file does not exist,
RAserver in setup mode will automatically create an empty one. If RAserver in daemon
mode is invoked while there is no rapasswords file, the user is appropriately notified and
RAserver automatically starts setup mode.

4.5. Implementation details

In this section the implementation details of RAserver are discussed. These details include
information necessary for maintaining the code as well as for adding new functionality to
RAserver.

4.5.1. Overall structure of RAserver

The RAserver daemon works in the following way. When started, RAserver will make
sure that theapasswords file exists. If it does not exist, RAserver will switch to the
setup mode. If the rapasswords file does exist, RAserver starts to listen for new clients on
a port defined isrc/RA/RA.h asRA_PORTWhen a new client is connected, a child
process is spawned to serve the client. The overall algorithm for VLAB daemon can be
described with this pseudocode:

if option ‘-pe’ present on the command line:
start setup_mode

if rapasswords file does not exist:
issue warning to the user
start setup_mode

loop:

accept new connection

spawn a new child process

if child:

serve_client()

serve_client() is a function that serves each client independently, on a separate
socket connection [36]. The input to this function is the socket connection established in
the main code. Beforeerve_client() serves any requests of the client, it will

establish the identity of the user. The VLAB tool connecting to RAserver is responsible
for sending a login request as the very first request, with a login name and a password.
Whenserve_client() receives a login request, the login name and the password are
matched against the entries in thepasswords file. If a match is not found,

CHAPTER 4: REMOTE ACCESS SERVER 45

serve_client() will return a negative response and will terminate the connection.
When authorization is confirmederve_client() will determine whether write
access is granted for the connected user. Thersehe_client() will enter an

infinite loop in which it will accept and perform requests, and return responses.
Performing operations which modify the filesystem are disabled if the connected user does
not have read-write access. In such a case a response indicating a failure of the requested
operation is returned to the client. The pseudo-codseime_client() follows:

serve_client(connection):
receive request
if request is not LOGIN request:
terminate connection
quit
create an encrypted password from password
lookup entry in rapasswords based on login
and encrypted password
if entry not found:
send negative response
terminate connection
quit
if entry indicates writable access:
set writable flag
else:
clear writable flag
while 1:
receive request
if request is a LOGOUT request:
do_logout()
close connection
quit
else if request is an UNLINK request:
do_unlink()
else if request is a RENAME request:
do_rename()
elseif ...

Onceserve_client() establishes an authorized connection it will only quit when a
LOGOUT request is sent, or when the client unexpectedly terminates the connection.
RAserver currently implements 17 requests, designed to mimic the operations which
VLAB applications need to perform on files when operating on databases:

46

CHAPTER 4: REMOTE ACCESS SERVER

RA_COMPFILE_REQUEST

» 2 parameters: file name 1, file name 2
* requests comparison between two local files located on the server

RA_COPYFILE_REQUEST

» 2 parameters: source_file_name, dest_file_name
* requests to perform a copying operation on the server

RA_DELTREE_REQUEST

» 1 parameter: directory name
* requests recursive deletion of a directory

RA_FETCH_REQUEST

» 1 parameter: filename
* requests contents of a file

RA_GETDIR_REQUEST

» 1 parameter: directory name
* requests a list of directory entries

RA_GET_EXTENSIONS_REQUEST

» 1 parameter: path to a VLAB object

* requests a list of extensions and their attributes for a VLAB object.
This request has been added to eliminate unnecessary network traffic
(the same functionality could be achieved by calling
RA_GET_DIR_REQUESHNd therRA_STAT_REQUESHultiple
times).

RA_LOGIN_REQUEST

e 2 parameters: login name, password
* requests access to RAserver

RA_LOGOUT REQUEST

CHAPTER 4: REMOTE ACCESS SERVER

¢ no parameters
+ requests RAserver to terminate connection

RA_MKDIR_REQUEST

» 1 parameter: directory name
* requests creation of an empty directory

RA_PUTFILE_REQUEST

» 2 parameters: file name, contents of a file
* requests creation of a file with supplied contents

RA_READLINK_REQUEST

» 1 parameter: name of a symbolic link
* requests the contents of a symbolic link

RA_REALPATH_REQUEST

» 1 parameter: file or directory name
* requests real path (unique full name) of a file

RA_RENAME_REQUEST

» 2 parameters: file name 1, file name 2
* requests rename

RA_RMDIR_REQUEST

» 1 parameter: directory name
* requests deletion of an empty directory

RA_UNLINK_REQUEST

» 1 parameter: filename
* requests deletion of a file

RA_STAT_REQUEST

» 1 parameter: file or directory name
* requests information about a file, such as file type (regular, directory,
symbolic link, etc), and its attributes (readable, writable, executable)

48 CHAPTER 4: REMOTE ACCESS SERVER

RA_SYMLINK_REQUEST

e 2 parameters: source destination
* requests creation of a symbolic link

Each of the above requests is associated with an appropriate response message, which is
always returned to the client - both in the case of a success and a failure. Some responses
include only information about the success of the requested operation, some also include
data. The format of messages is explained in the next section.

The following C++ classes have been implemented to simplify the development of
RAserver and the associated RAlibrary (RAlibrary is the subject of section 4.5).

class Message;
class MessagePipe;

Message is a data structure implemented for holding information about a single
messageMessagePipe class has been implemented to simplify the process of sending
and receiving objects of typklessage through socket connections. To demonstrate
usefulness of these two classes | will show a complete implementation of
do_unlink() , which is called as a response toftde UNLINK_REQUEST

void do_unlink(const char * fname, MessagePipe & pipe)
{
if(read_only)
{
/I this client does not have a write access
/l send FAILURE to the client
Message m(RA_UNLINK_RESPONSE, “n”, 2);
pipe.send_message(m);

return;
}
if(unlink(fname) // try to unlink the file
{
/I unlink() failed
/I send a FAILURE to the client
Message m(RA_UNLINK_RESPONSE, “n”, 2);
pipe.send_message(m);
}

else

CHAPTER 4: REMOTE ACCESS SERVER 49

{
I/l unlink() was successful
/I send a SUCCESS response to the client
Message m(RA_UNLINK_RESPONSE, “y”, 2);
pipe.send_message(m);

}

4.5.2. Communication mechanism and format of messages

The communication between RAserver and VLAB tools is implemented using TCP/IP
sockets. Each message sent between RAserver and a client, whether the message is a
request or a response, follows the same format, as shown in Figure 4-3.

4

FIGURE 4-3: Message Format in Remote Access Extension

nessage type user data length
(4 btesin (4 btesin
LBfirst LB first

fanat) fornat)

The first four bytes of each message determine the type of the message, for example by
encoding the RA_SYMLINK_REQUEST constant into four bytes. The next four bytes
determine the length of the user data included within the message. The remainder of the
message is composed of user data. The total length of each message is:

4 + 4 + user_data_length

and can be determined by reading the first 8 bytes of the message. The shortest possible
message is therefore 8 bytes (message with no user data), and the longest message could
be approximately 4 GB long (8 + 232 bytes).

Strings are encoded in messages by including the termin@ting more than one string
is to be sent with a message, such strings are simply concatenated, \Dasirep
separators. If a variable number of strings are to be sent, for instance for

50 CHAPTER 4: REMOTE ACCESS SERVER

RA_GETDIR_RESPONSHessage, the strings are also concatenated, and an additional
empty string is included at the end.

Another common convention for all response messages is to set the first byte of the user
data portion of the message to ‘y’ if the request was successfully performed, or ‘n’ if the
request failed.

4.5.3. Implementation of RAserver’s setup mode

The implementation of RAserver’'s setup mode is discussed only very briefly, because it is
simply a command line interface for modification of tapasswords file. RAserver

does not cache any information regardingrdqgasswords file - each time RAserver
needs an account information, it reads the most current information from the
rapasswords file. Also, changes made to the account list in RAserver’s setup mode are
immediately written to theapasswords file. This allows the user to modify the
account list without shutting down the RAserver.

4.5.4. Account file format

The rapasswords file stores the following information about each user: login name,
encrypted password, and file access level. This information is stored one line per account,
where the fields are separated by colons. For example, the account file with three accounts
could contain:

peter:qwZ9JWBYMpS/M:n:
dan:qwDgllgMgxuw?2:y:
guest:qwGiniA4POTqY:n:

4.6. Remote access library

Remote Access Library (RAlibrary) has been implemented to provide an easy way for
developers of VLAB to access the functionality offered by RAserver daemon. RAlibrary
has been written in C++, as a set of functions encapsulated as static methods of a class
calledRA (Appendix A). These methods have been designed to provide the most common
operations which an application performs on files. Each of these methods automatically

CHAPTER 4: REMOTE ACCESS SERVER 51

composes an appropriate request message, sends it over the network to RAserver, waits for
a response, parses the response and returns the decoded result.

4.6.1. Optimization

The methods in RAlibrary were designed to optimize as many operations as possible. For
instance, iCompare_files() method is called on two remote files located on the same
computer, a simpl€EOMPFILErequest is issued to the remote server, which will compare
the files directly on that machine. An alternative solution would be to download both files
to the client and perform the comparison locally. On the other side, if both files are located
on a local host, the operation is performed on a local computer, without accessing
RAserver. Only if the connections point to two different hosts, one (or both) files have to
be transferred over the network. and compared on a local computer.

4.6.2. Return values

The convention for all methods which return type as a result is to return O on success,
and values other than 0 for failure. For functions that return pointers, the convention is to
return NULL in case of a failure, other values indicate success. There is a mechanism
provided in class RA for determining more detailed cause of an error.

4.6.3. Example of using RAlibray

The following is source code of a complete C++ program that uses libRA to obtain a file
from a remote host, display it on the screen, and then delete it from the remote machine.

#include <stdio.h>
#include <stdlib.h>
#include <RA/RA.h>

int main(void)

{

/[open a new connection to RAserver daemon on
/I rikki.cpsc.ucalgary.ca,
/[and login as ‘guest’ with password ‘guest’

RA_Connection * connection = RA::new_connection(

52 CHAPTER 4: REMOTE ACCESS SERVER

“rikki.cpsc.ucalgary.ca”, “guest”, “guest”);
if(connection == NULL)

{
fprintf(stderr, “RA::new_connection() “
“ failed.\n");
exit(-1);
}
/I retrieve the contents of file /tmp/test.txt
I from rikki
char * buff;
long size;
if(RA::Read_file(connection, “/tmp/test.txt”, buff,
size))
{
fprintf(stderr, “RA::Read_file() failed.\n"));
exit(-1);
}

/I display the contents of the received file
for(longi=0;i<size;i++)
putchar(bufff i]) ;

Il delete file /tmp/test.txt on rikki

if(RA::Unlink(connection, “/tmp/test.txt”))

{
fprintf(stderr, “RA::Unlink() failed.\n");
exit(-1);

}

/I logout and close the connection
RA::close_connection(connection);
return O;

4.7. Summary

In this chapter | described a new extension to VLAB, called remote access extension. It
allows users of VLAB to transparently access remote databases, making it easy to invoke
and interchange objects among collaborators. A new daemon, RAserver, has been
developed, which runs on a remote computer and performs actions on the remote database
on request by other VLAB tools. RAserver maintains a list of accounts with encrypted

CHAPTER 4: REMOTE ACCESS SERVER 53

passwords and access levels, thus preventing unauthorized access to remote databases.
RAlibrary was designed and implemented to aid programmers in the development of
applications that require RAserver’s services.

54

CHAPTER 4: REMOTE ACCESS SERVER

CHAPTER 5 Panel manager

Performing computer simulated experiments often involves frequent changes to the
parameter spaces of the inputs to the simulation programs. If these parameters are stored
in data files, such modifications can be done using text-based editors. There are numerous
disadvantages of using text-based editors for parameter modifications, such as:

» text-editing is time consuming,

* text-editing can interrupt the natural flow of a presentation,

» text-editing requires memorization of the location of parameters and
valid options for parameters.

Panel manager 2.0 is a VLAB system tool designed to eliminate the need for text-based
editors for parameter modification. The issues discussed in this chapter are related to the
development of a new panel manager, version 3.0. First, the old implementation of panel
manager is described, and some of its flaws identified. Then, the implementation goals for
the new panel manager are set out, followed by the description of its design. Description
from the user’s point of view is given together with a short example for panel manager’s
usage. Implementation details related to panel manager are included at the end of this
chapter.

5.1. Background - panel manager in VLAB 2.0

Panel manager is a VLAB system program used to control parameters during experiments.
It displays and allows manipulation of a user-defined control panel with graphical user
interface components. Every action performed on a GUI component is translated into a
message, which is sent to a parameter editor. Parameter editor is a separate VLAB
program which listens for messages from the controlling program (such as panel
manager), and performs editing actions based on the received messages. The
communication flow in VLAB 2.0 involving panel manager is shown in Figure 5-1.

Panel manager is invoked as a separate process from the application. The input to panel
manager is a panel definition file, which describes the layout and functionality of the

56 CHAPTER 5: PANEL MANAGER

panel ar anet er o
manager =P editor appl i cation
panel
&firition dat &

file file

FIGURE 5-1: Communication flow in VLAB 2.0’s panel manager

interface panel manager is to display. The panel specification file contains information
about both the appearance of every GUI component, such as size, position, color, text, etc.,
as well as the messages to be sent whenever the GUI component is activated.

Panel manager 2.0 supports five types of components: sliders, buttons, menu items, labels
and pages. Bistable buttons may be grouped so that only one button in the group will be on
at any given time. An example of a panel and its associated specification file is shown in
Figure 5-2.

Controls may all appear in a single window or may be divided among several pages.
Popup menus are used for switching between pages, and may also contain optional user-
defined items. A message format is specified for each control, and may refer to the current
value returned by the control. When a control is modified, the manager will update and
display its value, and send its associated message to the standard outpustdiexite)

Controls are manipulated by the left mouse button, and menus by the right mouse button.

5.1.1. Panel definition file format

The panel definition file contains all necessary information to create, display and
manipulate the control panel. It first describes the window to be used, and then provides a
description of each control (slider, button or menu item). Blank lines may be used to
separate each control's specifications, but the details of a single control must be on
consecutive lines. The panel definition file may contain the following specifications:

CHAPTER 5: PANEL MANAGER 57

panel nane: Ani mate type: BUTTON
background: 0 nanme: dbl buffer
size: 170 400 colors: 7 4
origin: 40 130
type: SLIDER val ue: 1
name: Last frane nessage: o 1 %
colors: 71
origin: 20 330 type: BUTTON
: mn/max: 0 100 nanme: clear
First frame i val ue: 34 colors: 7 4
’ nessage: n 6 1 0 % origin: 40 80
10 : val ue: 1
1 ¢ type: SLIDER nessage: o 2 %
Swap interval : name: First frame
p ! b colors: 71 type: BUTTON
k origin: 20 265 name: scale
mn/max: 0 40 colors: 7 4
value: 0 origin: 40 30
nmessage: n 51 0 %l value: 0
nessage: o 3 %
type: SLIDER
i nanme: Swap interval
clear 1 colors: 7 1
E origin: 20 200
mn/max: 0 20
val ue: 10
nessage: n 410 %

FIGURE 5-2: Example of a control panel and its definition file

* The panel window
» Page definition

» Slider definition

» Button definition
» Group definition
» Label definition

* Menus

5.1.2. Interfacing with an application

Simulation programs in the virtual laboratory are assumed to obtain their initial parameter
values from data files. Panel manager can be interfaced to any such program that has the
ability to reread its data files. The resulting communication flow in such an interface is
shown in Figure 5-1 on page 56.

58 CHAPTER 5: PANEL MANAGER

The parameter editor interprets messages from panel manager and edits the corresponding
parameter in the appropriate data file. The modified data file may be subsequently re-read
by the application program. Thus, the steps involved in modification of the parameters are:

» user applies an action to one of the GUI components in the panel,

* panel manager sends messages to the parameter editor;

 the editor modifies the parameter file according to the messages
received;

» the user instructs the application to reread the modified file.

The advantage of separating the user interface and file editing functionality into two
applications (panel manager and parameter editor), is that only the parameter editor needs
to be modified when connecting a panel to a different appIiJation

5.1.3. Example of usage

Assume a user is running an experiment, in which a simulation pregnautate s to

be invoked with file parameters.dat , where parameters.dat holds the
parameters needed for the simulation. The user wishes to explore the parameter space of
this experiment, and decides to use panel manager to assist him with parameter
modifications. The panel specification file describing the panel’'s layout is created and
stored inparameters.panel . To invoke the experiment, the user would type the
following command at the command line:

% simulate parameters.dat &
To start up panel manager, the user would type:
% panels parameters.panel | awkped parameters.dat &

This command tells panel manager to read in the layout information and the message
formats for each component froparameters.panel file. As the user manipulates

the controls in the displayed panel, panel manager sends its messagdgéa, a
parameter editoawkped then performs editing actions on the fil@rameters.dat

based on the messages it receives from panel manager.

t This assumes that the data file format does not change. If the format of the data
file does change, the parameter editor has to be modified.

CHAPTER 5: PANEL MANAGER 59

5.1.4. Drawbacks of panel manager 2.0

Although panel manager 2.0 has proven to be an invaluable tool for the users of VLAB, it
has a number of shortcomings, which were identified during its frequent use. These
deficiencies were generally summarized in Section 1.2.2, and the following is their
elaboration.

Panel specification files have to be written in a special language using a text editor. In
order to design a control panel the user has to edit the panel definition file, explicitly
reload it in panel manager to see the result, and then repeat the process until a satisfactory
result is obtained.

Panel manager 2.0 only supports one way communication - for sending out the messages
required to perform the editing on the data files. There is no mechanism in panel manager
to determine the current values of the parameters from the data file. Therefore, the values
in a newly displayed panel could disagree with the actual values in the data files. The only
way to avoid this asynchronism when using panel manager 2.0 is to manually store the last
settings of parameters directly to the panel definition file, so that next time the control
panel is invoked, the values shown by the controls will agree with the values of the
parameters in the data file.

The graphical user components are implemented using an IRIS GL library, tying panel
manager 2.0 to the SGI platforms. Another problem stemming from this fact is the lack of
look-and-feel consistency with the rest of VLAB applications. All other VLAB
applications use the Motif library for their user interfaces.

5.2. Requirements and design

5.2.1. Requirements

| have established the design goals for the new version of panel manager in direct
correspondence with the limitations of the old panel manager, as stated in Section 5.1.4.
They are:

60 CHAPTER 5: PANEL MANAGER

A graphical user interface builder for designing panels will be devel-
oped, where the user can design all aspects of the control panel visually
(instead of using a text editor).

* A method for automatic synchronization of displayed information in
control panels and the values of parameters in data files at initialization
time will be incorporated into the design of the new panel manager.

» The new panel manager will provide facilities for editing various types
of parameters, such as numbers and strings.

» Panel manager will allow flexible specification of parameter locations.

» Panel manager will be extensible to include new control types.

» The Motif library will be used in the new implementation for the graph-

ical user interface, to preserve the consistency of GUIs among all VLAB

components.

5.2.2. Parameter types

At the lowest level, all parameter types in ASCII data files can be categorized into two
groups: numeric and non-numeric. Numeric parameters can be further classified as:
integers and real numbers. Panel manager is designed to allow its users to control these
three types of parameters.

Non-numeric parameters

For non-numeric parameters, panel manager provides a control component giving the user
a set of a predefined choices which can be used for the parameter’s value. It is often the
case that the actual parameter values in data files are specified in a form which is non-
intuitive to the user. Consider, for example, a parameter which can contain a value
representing an RGB color, formatted as a hexadecimal number. The possible values for
this parameter could be:

#ff0000 (Red) #ffffff (White)
#000000 (Black) #0000ff (Blue)
#00ff00 (Green) #ff9900 (Orange)
#ffffO0 (Yellow) #7fO0ff (Purple)

It is desirable the panels be constructed in such way, that alternate names for parameter
values are presented to the user. The user makes the selection based on these alternate
names, while panel manager will automatically use the corresponding value to modify the
parameter. In the above example, the user would be given a list of colors (as shown above

CHAPTER 5: PANEL MANAGER 61

in brackets) to choose from. Panel manager would automatically translate these into their
hexadecimal equivalents and set the parameter in the data file using this translated value.

Numeric parameters

In order to use simple sliders for controlling numerical parameters, a valid range for the
parameter must be specified. Panel manager will not allow the user to set the value of the
parameter outside of this range. This design decision was made since the majority of
numeric parameters can be controlled in this way, and Motif does not offer any support for
controlling unbound numerical values. Interfaces, through which a user can set unbound
numeric values, have been previously designed and implemented [33].

5.2.3. Extensibility

The first implementation of panel manager 3.0 only supports a limited number of controls.
However, it was designed to be easily extendible when more control types are needed. To
this end, each component type is defined as a C++ class, derived from a common
superclass. The superclass defines default behavior for all components, as well as a group
of methods which have to be defined when deriving a new component (using pure virtual
functions). The process of adding a new control type to the panel manager’s
implementation simply involves deriving a new class from this superclass.

5.2.4. Component hierarchy

The components of each panel are hierarchically organized into a component tree. The
component at the top of the tree represents the window of the entire panel. The children of
the top component can be:

» control components (used for actual modification of parameters); or
* information components (e.g. labels); or

» decoration components (e.g. frames); or

e ‘group’ components, which themselves contain other components.

This design for hierarchical organization of GUI components stems directly from the
model used in Motif applications for organization of widgets [4][12], and therefore yields
a straightforward implementation. This design has many other good qualities. It is well
suited for automatic inheritance of attributes. For instance, when a component is created
with a specific background, then all children of this component inherit this background

62 CHAPTER 5: PANEL MANAGER

color at their creation time. Another advantage of this design is that components can be
grouped and then manipulated (such as resized or moved) together. It should be noted the
current implementation of panel manager 3.0 only supports the first two types of
components (control and information components), although an infrastructure is provided
for the implementation of the other two types (decoration and group components).

An extension to this design could base the component hierarchy on the prototype-
extension model. Each new component would be created as an extension of an existing
one, only defining how it differs from its prototype. A change made to an attribute of a
prototype would then automatically propagate to all of its extensions (provided the
extensions have not redefined that particular attribute). Such a model for component
organization would allow the user to create similar looking components efficiently.

5.2.5. Specification of parameter location

Flexibility was a very important issue in the design of the new panel manager. In order to
maintain a reasonable flexibility of panel manager, it is desirable that the user can build
control panels which operate on parameters in multiple files. Also, the mechanism for
specifying the location of parameters within data files must accommodate many different
file formats.

Panel manager requires the location of a parameter is specified for each control by:

» the name of the data file containing the parameter,
 the location of the parameter in the data file.

The location of the parameter in the data file can be specified in two different ways:

* by specifying the line number and the field number containing the
parameter, or by

» specifying a prefix (given as a string) which can be found immediately
before the parameter.

The first mode of specifying parameter’s location is suitable for data files storing
parameters in table format. For example, consider a data file with the following
information:

129810035
12.3 20.77

CHAPTER 5: PANEL MANAGER 63

The user would like to assign a control to the parameter whose current \20ue isHe

could do so by specifying its location diste=2, field=2 . The drawback of this
method for giving locations of parameters is that the parameter cannot change its location
within the data file.

The second mode for specifying the location of parameters is suitable for data files which
store parameters together with their textual descriptions, and their position in the file can
vary. For example, consider the case where the user would like to control the gravity
parameter in the following file:

Time Step: 0.00001
Gravity: 9.81
Friction: 1.02

The location of this parameter would be given @efix="Gravity:’ . A control
associated with a parameter whose location has been given in this manner will
successfully locate the parameter even if the parameter’s location is changed - as long as
the string ‘Gravity:’ is positioned directly before the parameter. For example, this method
would allow panel manager to correctly locate the gravity parameter in the following data
files:

. Time Step: 0.00001 .+ Gravity: 9.81
+ Gravity: 9.81 + + Friction: 1.02
. Friction: 1.02 o

© Time Step: 0.00001
. Gravity:

: 9.81

* Friction: 1.02

__

64 CHAPTER 5: PANEL MANAGER

5.2.6. Dual mode of operation

The implementation of panel manager 3.0 consists of two components: the graphical user
interface builder and the visual parameter editor. Both components are combined into a
single application, which can be run in two different modes. These two modes correspond
to whether the user wants to design a panel, or use an existing control panel for
modification of parameters. This dual mode of operation is consistent with the
implementation of RAserver, which can also run in two different modes (described in
Section 4.4).

5.3. User’s perspective of panel manager

Panel manager can be run in two different modes: run mode and edit mode. In the run
mode, the user manipulates the controls displayed in the panel, immediately translated by
panel manager into editing actions. In the edit mode, the user can design new, or modify
existing panels. The rest of this section will describe these two modes of panel manager in
more detail.

5.3.1. Run mode

To invoke panel manager in a run mode, the user enters the following command:
% panels file-name

file-name determines the location of the panel definition file. Figure 5-3 on page 65
shows an example of panel manager in run mode.

Each control in a control panel can be associated with a parameter in a data file. It is
possible to set up a control panel with controls modifying parameters in multiple files. At
the initialization time, panel manager determines the current values of parameters for all
of its controls. These are then reflected in the displayed information. If the values of the
parameters are out of range, the user is notified and the affected controls display no values.

Panel manager currently supports 5 types of controls:

CHAPTER 5: PANEL MANAGER 65

Animate {ail]

FIGURE 5-3: Panel manager 3.0 in run mode

* Integer range,

» Floating point range,
» Choice,

» Label, and

* Panel.

Integer range

Integer range is used to control parameters whose domain is a range of integers. Each
instance of this type must be associated with a minimum and a maximum value for the
parameter it controls. Integer range control is made of three components:

66 CHAPTER 5: PANEL MANAGER

title

Last Frame
all S

\\

current scrollbar
value

Thetitle component shows a user defined text, set at the creation timeurféet value

of the parameter is shown in a separate window in the left lower corner of the irange. The
parameter can be modified by scrollbar, which has 3 different manipulation
mechanisms. The two arrows located at each end of the scrollbar are used to perform
simple increments and decrements on the current value. The amount by which the value
increments or decrements when these arrows are used is defined by the creator of the
panel. Another way to increment and decrement the current value is to use the trough
component of the scrollbar. Trough is displayed as the background of the scrollbar, and
when clicked the value increments or decrements by a user definable amount. Finally, the
user can change the value by dragging the slider left and right. The relative position of the
slider with respect to the size of the scrollbar determines the new value of the parameter.
The parameter is automatically updated in the data file every time the user manipulates the
irange control, even when the change is not completely finalized (i.e. while the user drags
the slider without releasing it).

CHAPTER 5: PANEL MANAGER 67

Floating point range

Floating point range is used to control parameters which can contain real numbers as their
values. It is almost identical in its appearance and functionality to the integer range. The
difference is that floating point range controls floating point numbers.

title

(arawity

0.500

current scrollbar
value

Choice

Choice is a control that allows the user to modify parameters which can only hold one of a
predefined set of possible values. The values (their alternative names) are displayed in the
control panel as a set of radio boxes, of which only one can be set active at any given time.
The choice control consists of two parts:

Rendering hMode - title

™ Phaon
/r g

radio — . Goraud

buttons

68 CHAPTER 5: PANEL MANAGER

The title shows a label that has been defined when the control panel was created. The radio
buttons show the possible choices for setting the parameter’s value. Each radio button is
associated with a string describing the choice.

Label

The label component does not modify any parameters, and hence is not interactive.
Label's sole purpose is to display a user defined text. The label appears in the control panel
as a frame with a text inside:

Animation

Panel

Panel is another non-interactive component. Its function is to hold other components in the
control panel. Panel is usually seen as the background of control panels.

5.3.2. Edit mode

The edit mode of panel manager is used to create or modify the layout and various other
attributes of control panels. The editing actions are associated with controls while the
panel is being built. When the design of the panel is done, the user saves the newly created
control panel into a panel definition file. This panel definition file is then used with panel
manager in a run mode, to modify parameters in data files. To invoke panel manager in
edit mode, the user enters one of the following commands:

% panels -e
% panels -e file-name

The first command will open up an empty window, where a new panel will be created. The
second command will result in opening an already existing panel specificatida-file

name. Panel manager in edit mode has a slightly different appearance than in run mode,
namely, a menu bar is included in its window (Figure 5-4).

CHAPTER 5: PANEL MANAGER 69

FIGURE 5-4: Panel manager 3.0 in edit mode

The menu bar contains three pull down menus:

New deletes all current components and cre-

File | Create Grid ates an empty panel

=

Save... saves the current work into a user
Save... selectable file
Uit

Quit quits panel manager

70 CHAPTER 5: PANEL MANAGER

Label creates a new label component
File Craatﬂ Grid P

A Choice creates a new choice component
Lakbel
E Irange creates a new integer range component
Chioice
123 Frange creates a new floating point range com-
ponent
Irznge
2.2
Frange
Fil c Crid Grid alows he user to contidhe grantar-
Nz G | BT ity of the placement and resizing of the
1 components
2
5
4
a5
10
15
20

When a new component is created, it is given default colors, fonts, size and position. It can
be then moved, resized and have the rest of its attributes modified by the user. To present
the user with a visual identification of the component that is being manipulated, the active
component always changes its border color to yellow.

CHAPTER 5: PANEL MANAGER 71

The first mouse button is used to reposition
an existing or a newly created component in
the panel. No components can be moved ™
completely outside of the panel component - . .
panel manager will make sure that at least a ...
portion of the component will remain visible.

The second mouse button is used to resize a
component. This is achieved by holding FiGURE 5-5: Popup menu for panel

down the middle mouse button while the components

cursor is somewhere in the component, and

then dragging the cursor in whichever

direction the component is to be resized. The

third mouse button is used to display a pop-up menu for a component, as shown in Figure
5-5. Panel manger currently supports only two of the actions offered by the pop-up menu:
DeleteandEdit Attributes The Deletemenu item allows the user to remove the selected
component, but a warning message is first displayed to prevent accidental deletions.

Component

Edit Attributes

Attributes such as background, foreground, font style, title, etc. can be edited for each
component using attribute editors. To invoke an attribute editor for a component, the user
selects theEdit Attributesfunction from the component’s pop-up menu (Figure 5-5).
Attribute editors can be displayed simultaneously for every component in the control
panel.

Attribute editor for panel components

When the attribute editing function is
L invoked on a panel component, a
o, it dialog similar to the one in Figure 5-6

* .J:% is displayed. The current attributes of

o T — the panel are displayed in this dialog.
i 4 To modify the background or the

- «— 5 foregroundcolor, the user has to click

/ the mouse in box 1 or 2 respectively,

— which will pop-up a color-chooser

i Hide | dialog. Clicking the mouse button in

box 3 will bring up a font-chooser

FIGURE 5-6: Attribute editor for dialog. The title and the name of the

panel components data file on which the panel controls

will operate can be changed by

editing text boxes 4 and 5
respectively. The contents of the title will determine the text that will appear in the title bar
of panel manager window when invoked in run mode. Any change made in the attribute
window will be immediately reflected in the panel component (for example when

72

CHAPTER 5: PANEL MANAGER

modifying the background color by clicking on different colors in a color-chooser will
immediately change the background color of the displayed panel).

Attribute editor for label components

The attribute editor dialog for Label
components appears in Figure 5-7. All
attributes can be modified the same way

ey for fabeil] |

| Sewings for Lokel

|

| Eshagreanad

as in the attribute editor for
components. The contents of titée text

box specify the text which will be

displayed in the Label component.

Attribute editor for integer range
components

[= Cpiores Jor iranget?

Sebltgs for Ronge
e |—|
6 FEAFD i .
Top Shadoe []
Boriior Shasdsw .
Trowgh .
s
Trie

Lt i

FIGURE 5-8: Attribute editor for
integer range compo-
nents

IncrementandPage Incremenfields.

Panel | Feregromn

Hde

FIGURE 5-7: Attribute editor for
label components

The attribute editor dialog for integer range
components is shown in Figure 5-8. Integer
Range components have 13 attributes that can
be modified. Besides theBackground
ForegroundandFont, the color of theTop and
Bottom Shadowsas well as th&rough Color
can be modified. Théitle field determines the
text displayed on the top of the Integer Range
control. Min, Max, Increment and Page
Incrementshave been explained on page 65.
The parameter that the integer range
component will modify is specified by two
fields: File and Field Prefix The File field
specifies the name of the file in which the
parameter is located. Theield Prefix field
determines the position of the parameter in the
file by specifying its prefix.

Attribute editor for floating point range
components

The attribute editor for Floating Point Ranges is
almost identical to the attribute editor for
Integer Ranges. The difference is that real
numbers can be entered intvlax, Min,

CHAPTER 5: PANEL MANAGER 73

Attribute editor for choice components

Choice component’'s attribute editor
allows the user to edit 11 different
attributes (Figure 5-9).Background,
Foreground, Top Shadow, Bottom
Shadow, Font, Title, Fileand Field
Prefix attributes have the same meaning
as the ones described with the range
components. The two new attributes are
Toggle ColorandChoicesfields.Toggle

Color defines the color of the toggle of Chaleas

the active radio buttonChoices field ; X
describes the choices available to the |
user. Each choice is described with two | e g
text fields: the left field contains the text |

to be displayed in a radio button, while

the right field determines the value of | #=="=*

the parameter which will be inserted
into the data file when that particular |
radio button is selected. To delete a
choice from the list, the user invokes the FIGURE 5-9: Attribute Editor for Choice
Delete button on the right side of the Components

choice to be deleted. To add a new

choice to the list, one of tHaesertbuttons is used - the position of the newly created entry
will be based on the button’s relative position from the top.

) Elpatierras for cheace !

¥
E-!Z-:!

General comments for all attribute editors

There are two kinds of fields available in attribute editors for direct entering of
information: text and numeric fields. When the information is being changed in text fields,
the attribute editor notifies the associated component immediately with every change
made. However, when the information is being changed in one of the numeric fields, the
user has to press tlemter key to register the changes. The reason for handling text and
numeric fields differently is explained below.

When the user enters an incorrect value for one of the numeric fields, panel manager
issues a warning. For example, the value irMBa& field of both range components cannot

be smaller than the value in the corresponditg field. Since entering numbers usually
requires intermediate states, in which the number might be in an iIIegéLlJ gtatehanges

t Consider entering a value of 100 as an example. When the user starts typing, the
field contains no information, then ‘1’, ‘10’ and finally ‘100’.

74 CHAPTER 5: PANEL MANAGER

are not registered until the user explicitly indicates that the changes are final. This prevents
multiple warning dialogs being displayed while the numbers are being typed in. To
visually remind the user of having to press émer key when the modification of the
number is done, the background of these fields turns pink as soon as the typing starts, and
remains pink until theenter key is pressed. A detailed example of creating a complete
control panel for a sample data file is presented in Appendix B.1.

5.4. Implementation details

5.4.1. Panel definition file format

Every control panel is defined as a tree of components, starting with one root component.
In the panel definition file, the values for attributes for each component are defined first,
and then its children. Syntactically, any component can have any number of children and
attributes of any type. Panel definition files are stored in a structured text format and
parsed by a parser built by yacc [16]. The structure of the file corresponds directly to the
component tree of the control panel which the file represents. The grammar of panel
definition files in yacc format is:

all-> component
components-> |

component components
component-> ID {* assignments components ‘}’
assignments-> |

assignments assignment
assignment-> ID ‘=" value *;’ |

ID ‘=" value
value_list-> ' 7T |

T values T’
values-> value |

values ‘" value
value-> STRING |

INTEGER |

REAL |

value_list

All capitalized tokens above are defined as regular expressions, and are parsed by a lexical
analyzer built by flex [16], using following rules:

CHAPTER 5: PANEL MANAGER 75

LETTER [a-zA-Z]

DIGIT [0-9]

WHITE [\t]+

ALNUM {LETTER}{DIGIT}
COMMENT #.*

ID {LETTER}{ALNUM}/"_")*
INTEGER {DIGIT}+

REAL -?[0-9]+(.[0-9]+)?
STRING V([M\\n]|(W))*(\n|\")

The following is an example of a file that has a valid syntax based on the above grammars:

panel {
width = 260 ; height = 470 ;
title = “Animate” ; background = “gray60” ;

irange {
x =30 ; width =100 ; file = ‘simulation.dat’;
y = 30 ; height = 60; prefix = ‘N-iterations:’;
label = ‘Number of iterations’;
min = 1; max = 100; inc = 1; page_inc = 10;
font = “-adobe-helvetica-bold-r-normal--12-*’;

}

choice {
x =30;y=60;width =100 ; height = 120 ;
choices = [[“Wireframe”, “wire”],

[“Flat”, “flat”],

[“Goraud”, “goraud”],

[“Phong”, “phong”]

I;

A graphical representation of the component tree representing the control panel defined
using the above file is shown in Figure 5-10.

76 CHAPTER 5: PANEL MANAGER

Panel

| nt eger

Range Choi ce

FIGURE 5-10: Example of a component tree

Semantically, the root of the component tree must be of type panel, and it can have any
number of children. Panel's children can be of any type except Panel. In the current
implementation of panel manager only the Panel components can have children, which
effectively limits the depth of the component tree to two.

Syntactically, any type of a value can be assigned to any attribute. Semantically, each
component has a pre-defined set of attributes and their types. Therefore an assignment
‘min = -20’ in a Panel component would cause an error, because panel does not have an
attribute called ‘min’. Also, assignment ‘min = “red™ in the integer range component
would cause an error, because min attribute has been defined as an integer variable. Some
attributes do not have to be defined for a component, while some have to. If an attribute
that does not have to be defined is not specified in the definition file, the value of the
attribute is set to a default one. Similarly, if an attribute has to be specified for a
component but isn’t, a semantic error occurs. Assigning a value multiple times to an
attribute also results in a semantic error. The list of attributes and their types for each
component are compiled in Table B-1.

5.4.2. Implementation of run mode

When panel manager is invoked in a run mode, it first parses the panel definition file
supplied on the command line and creates a component tree corresponding to the parsed
information. Then each component is asked to retrieve its initial settings from the data file
with which it is associated. After all components are successfully initialized, the tree is

CHAPTER 5: PANEL MANAGER 77

recursively rendered on the screen and callbacks are appropriately setup for each
component. When the user starts manipulating the components in the control panel, the
appropriate callbacks are invoked. Each component type defines its own callback methods,
but their functionality is similar. The callback method is first responsible for updating the
interface of the component which triggered the callback, and then for updating the actual
parameter in the corresponding data file.

The following is the algorithm used in panel manager to invoke its run mode:

[/l initialize a new Motif interface

/Il create a new instance of parser

Parser p;

/I parse file_name and create tree of components
Component * top_panel = p.parse(file_name);

Il report errors and warning (stored in p.messages|])

if(top_panel == NULL) {
/[fatal error occurred in parsing - report to
/Il the user and exit

}

// initialize all components

if(top_panel-> init()) {
/[l components could not be initialized (i.e. the
/I data file is missing for one of the components)
/l report to the user and exit

}

/l render the components

top_panel-> render(top_shell);

/I realize the whole Motif application and enter the
Il infinite event loop

Parser is a C++ class which encapsulates code generated by flex and yacc. It has
following methods and variables:

public:

Parser ();
~Parser ();

78 CHAPTER 5: PANEL MANAGER

Component * parse(const char * fname);
long n_errors;

long n_warnings;

char ** messages;

static Parser * curr;

void add_error(const char *);
void add_warning(const char *);
long line_num;

Component * tree;

char * fname;

Theparse() method parses a file defined by the supplied argumante and returns

a pointer to a tree of components. If a fatal error occurs in papgirgg() will return a

NULL pointer. Theparse() method also sets variableserrors andn_warnings

to the number of errors and warnings that occurred during parsing, so that errors and
warnings can be shown to the user. The actual error and warning messages are stored in an
arraymessages of sizen_errors + n_messages

The constructor is responsible for initializing the variables, and the destructor frees up all
memory allocated by the Parser class. The static vagahle was created for a lack of a

better mechanism for incorporating flex/yacc generated code into C++ classes. The code
generated by flex/yacc is a plain C code, and cannot be easily included in a C++ class. To
allow this generated code to access variables and methods of the instance of the Parser
class that invoked this code, a global variable holding a pointer to the class instance had to
be created. Just before the parsing is starteghafs®() method sets theurr pointer

and then calls the yacc generated funcigparse()

this-> curr = this;
yyparse();

The code generated by flex/yacc can access methods and variables of the Parser class by
using thecurr pointer, for instance:

Parser::curr-> add_warning();

or

Parser::curr-> line_num ++;

CHAPTER 5: PANEL MANAGER 79

The variableline_num is used at parse time to store the current line number, and
fname contains the copy of the file name passepatise() . These two variables are
needed byadd_error() andadd_warning() methods to format the messages to
include the file name and the line number on which a parse error or warning occurred. The
variabletree is set in the code generated by yacc when the top panel component is
parsed in, and then used as a return valpaiise()

Component is a C++ class, from which all other component types in panel manager
have to be derived. It defines a base set of types, methods and variables common to all
other components, such &vent type, foreground variable andadd_child()

method. Some of the methods in the Component class are declared to be pure virtual, so
that every derived class has to implement such methods. The list of Component’s types,
methods and variables with appropriate descriptions can be found in Table B-2.

All five controls currently supported by panel manager have their own classes, derived
from the Component clastRange , FRange, Panel , Choice andLabel . These

classes define some new attributes and methods and override some of the inherited ones.
As an example, consider the Label class definition - the simplest component of panel
manager:

class Label : public Component {

public:

Label(AssignmentList * al);
Label();

virtual ~Label();

virtual char * to_str(void);

virtual void render(Widget parentw);

virtual void set_geometry(long x_ret,

long y_ret,

long width_ret,
long height_ret);
virtual void get_root_xy(long & X,
long & y);
virtual Widget get_rwidget(void);
virtual void edit_settings(void);
virtual void redraw(void);
virtual void dump(Mem_I0O &,
long indent = 0);
char label[256];

private:

80 CHAPTER 5: PANEL MANAGER

/I callback for the EDIT mode event handler
static void xtEventHandlerProc(Widget,

XtPointer,
XEvent *,
Boolean *);
void CommonConstructor(void);
void _set_highlight(Boolean h);
/I callback for the options dialog
static void options_cb(const char *,
const void *,
void *);
Widget label_w;
Widget frame;

8

Label only overrides the pure virtual methods of the Component class, and adds a few new
methods needed in the edit mode. KiEventHandlerProc() is installed as an

event handler for all widgets of the Label component. dgtens_ch() is a callback
needed by the OptionsDialog class. Both are only needed in edit mode, and are therefore
explained in Section 5.4.3.

5.4.3. Implementation of edit mode

Panel manager’s setup procedure for invoking the edit mode is similar to the procedure for
setting up the run mode, which was described in Section 5.3.1. If a file-name is supplied
on the command line, the component tree is created by parsing this file, otherwise an
empty tree is created. Then each component in the tree is setup for the edit mode, by
calling theset_edit_mode() method of the root component of the tree. After that the
menu bar is created and the whole tree rendered. Then the control is given to the infinite
Xt event loop:

if(file_name was specified) {
Il create a new instance of parser
Parser p;
/I parse file_name and create tree of components
Component * top_panel = p.parse(file_name);
/l report errors and warnings

if(top_panel == NULL) {
/[fatal error in parsing - report to the
Il user and exit

CHAPTER 5: PANEL MANAGER 81

}
}
else
top_panel = NULL;

Il create the interface (menu-bar, etc.)

// initialize all components
if(top_panel '= NULL) {
top_panel-> set_edit_mode(handler);
if(top_panel-> init()) {
/l report initialization failure to the user
/[and exit

-

/[render the components

top_panel-> render(top_shell);
}
/Il display the entire interface and give up control
/Il to Motif. Callbacks will be called automatically
I/ whenever the user invokes any action.

Calling set_edit_mode() of the root component puts every component in the tree
into an edit mode. When a component is in edit mode, all mouse actions applied to the
component are intercepted by the componextEssentHandlerProc() method.

This method will then call the function specified in the cafiéb edit_mode() , and

pass to it an instance of tlhent class (Table 5-1). Therefore in the edit mode, panel
manager is notified of any mouse events which occur anywhere in the component tree.
These events are then translated into editing actions (such as move and resize).

The type of the handler function is defined as:
void handler(Component & ¢, Component::Event & ev);

The first argument which is passed to iaadler() is the reference to the component
which sent the event. The second argument contains the details about the event itself.

Table 5-1: Class event

int type;

82 CHAPTER 5: PANEL MANAGER

Table 5-1: Class event

/[This variable describes the type of the event. Possible values are:
/[ButtonPress , ButtonRelease andMotionNotify

int mouse_x, mouse_y;
/I coordinates of the mouse cursor
long button_num;
/[number of the button pressed or released
Event();
/I constructor
XEvent * xevent;

/I xevent contains a copy of the original event as sent to the
/I component’s event handler by the Xt toolkit.

Widget widget;

/I widget contains the widget which triggered the event. For example,
/I the label component is made of three different components:
/I XmFrame XmFormandXmLabel .

Now | discuss the implementation details for every function available to the user in panel
manager’s edit mode:

Save...

Saving is implemented by first obtaining the description of all components in the tree by
calling thedump() method of the root level component. This information is then stored
in a file specified in the Motif’s file-chooser dialog. A warning is issued if an existing file
is to be over-written.

New

The existing component tree is first destroyed by calling the destructor of the root level
component, and then a new Panel component is created with no children. Before the old
panel is destroyed, the user is notified and given a chance to cancel the operation.

CHAPTER 5: PANEL MANAGER 83

Quit
The user is asked for a confirmation, and then the program exits.
Create

When one of the four component types is selected for creation, panel manager makes sure
that the currently selected component can accept children. If not, its closest ancestor that
can have children is found, and the new component is added to this component. Creation
of a component involves constructing it, adding it to the parent, setting it to an edit mode,
initializing and rendering.

Grid

Selecting a new grid results in setting a global varighte size to a new value. Grid
size affects only move and resize functions. For moving, the left upper corner always
snaps to the closest grid point. Resize snaps the resized edge to the closes grid line.

Move

Moving involves three events received by ltfedler() function. Moving is initialized
with a ButtonPress event with thebutton num set to 1. Then a series of
MotionNotify events follow. Moving operation is finished wheBw@tonRelease
event is received.

ButtonPress event is handled by storing the pointer to the component which sent this
event, its original geometry and the coordinates of the mouse cursor in state variables. The
selected component is also highlighted, by first caltigiplight_off(True) on

the root component, and thaighlight_on(False) on the component that sent

the event. WherMotionNotify event is received, the displacement between the
original and the new position of the mouse cursor is added to the stored geometry of the
component, then snapped dad_size and applied to the component by calling its
set_geometry() method.ButtonRelease event will cause a reset of the state of
thehandler() , so that furtheMotionNotify events will not result in moving of any
components.

Resize

Resizing is also implemented as a response to the three events mentioned with the
description of the move operation. The response to BugtonPress and

84 CHAPTER 5: PANEL MANAGER

ButtonRelease is almost identical as with the move operation, except that with
ButtonPress , an additional state variable indicating which edges are being resized is
initialized. When a MotionNotify event is received, depending on which edges are being
moved, the geometry of the selected component is updated, or new edges are added to the
ones being moved. When the set of edges being moved is updated, the mouse cursor
changes the shape appropriately, as shown in Figure 5-11.

N2 21

None Top Top- R ght Bot t om Right
Bot t om Bot t om Left Top- Left

FIGURE 5-11: Resize cursors

Delete

The delete operation is executed by destructing the selected component. The destructor of
the component is responsible for releasing all resources allocated by the component, such
as colors, fonts, widgets, other dialogs (color choosers, font choosers), etc. Since the
destructor in the base cla@®mponent includes a call tsemove_child() method

of the parent component, the parent component will be automatically notified about the
deletion of its child.

Edit Attributes

Edit attributes is performed by calling the selected componedits settings()

method. This method in turn creates an instance of a@latssnsDialog , which will
create a user interface for editing all component’'s attributes. The following is the
implementation of théabel::edit_settings() method.

void Label::edit_settings(void)

CHAPTER 5: PANEL MANAGER 85

{

/I if options dialog not created, create:
if(this-> options_dialog == NULL)
{
char title[4096];
sprintf(title, “Options for %s”, name);
options_dialog = new OptionsDialog();
options_dialog-> init(
top_shell,
“label_settings”,
title,
options_cb,
(void *) this,
“1”, OD_LABEL, *“Settings for Label”,
“--" OD_SEPARATOR,
“c1”, OD_COLOR, “Background:”,
background.get(),
“c2”, OD_COLOR, “Foreground:”,
foreground.get(),
“f1”, OD_FONT, “Font:”,
font.get(),
“--". OD_SEPARATOR,
“t1”, OD_TEXTFIELD, “Title:”, label,
NULL);
}
options_dialog-> manage();
return;

}

The options-dialog is only created once per component. At all subsequent times it is only
managed. The above code makes it possible for the user to modify four attributes of the
label component (as shown in Figure 5-7 on page 72). The options-dialog will be
responsible for calling theptions_cb() method of the Label component any time the
user makes a modification to one of the four attribudpsions_cb() will be then
responsible for updating the current rendering of the Label component. The
OptionsDialog class is explained in more detail in Section 5.4.4.

5.4.4. Options dialog

The OptionsDialog class has been developed to simplify the development of new
components, namely for providing of user interfaces needed for modification of the
various attributes of components (Attribute Editors). OptionsDialog has been designed in

86 CHAPTER 5: PANEL MANAGER

such way that the programmer simply lists all attributes (their names, types, and default
values) when the dialog is being created, and supplies a function which will be called
every time one of these attributes changes. OptionsDialog is responsible for management
of the user interface allowing modifications of these attributes and also for calling the
supplied callback function with the new values of the attributesiniiife = method has

the following type:

void OptionsDialog::init(Widget parent,
const char * widget_name,
const char * title,
OptionsCallback callback,
void * user_data,

SO

parent is usually the top shell widget of panel manager and is used in options dialog as
a parent of its own widget hierarchwidget name specifies the name which the
options dialog will assign to its top level widget's instance, so that the dialog can be
customized through the standard X-resources mechatiikm. specifies the name to
appear at the top of the options dialog’s windoallback is a pointer to the function
which will be called whenever one of the parameters is modified by the user, and
user_data is a user supplied data which will be passed to this callback. The rest of the
parameters is a list of interfaces to be created in the dialog, terminatéd iy pointer.

The format of each entry in this list is:

name, type, arguments

wherename is a user defined name of the interfagpe determines the type of the
interface, andarguments is a list of parameters (depending type , zero or more
parameters can follow). The interfaces requested in the list are rendered in a column, with
an optional scrollbar displayed on the right side of the dialog when the combined size of
the entire dialog would exceed 1/2 of the screen <i@ionsDialog currently
supports 8 types of interfaces:

OD_SEPARATOR

This interface is used to separate other interfaces in the OptionsDialog by a horizontal
line. It does not generate any callbacks.

OD_LABEL, title(char *)

Label is used to add text between interfaces. The text is determined by the supplied
parametetitle . Label does not produce callbacks.

CHAPTER 5: PANEL MANAGER 87

OD_TEXTFIELD, title(char *), default(char *)

Textfield is used to modify stringstle specifies the text to be displayed in the
interface, whiledefault is used as an initial value of the text to be modified. When
the user modifies the text (displayed inanTextFieldWidget), the user callback
function is called with the value of the new text.

OD_COLOR, title(char *), default(char *)

Color interface is used to modify colotgle is a string which is displayed in the
interface, andlefault is the initial value of the color. The current value of the color

is displayed in the interface as a square of that color. When clicked in this box, a
ColorChooser dialog is displayed which will allow the user to modify the color.
When the color is modified using ti@olorChooser , the OptionsDialog will

invoke the callback function with the new value of the color.

OD_FONT, title(char *), default(char *)

This interface is used to select different fotitle specifies the text to be displayed

in the interface, whilelefault determines the initial font. The current font is shown

in the dialog as a rectangle displaying the letters ABC in the currently selected font.
Clicking anywhere in this rectangle will bring ug-antChooser dialog , Where

the user will be able to modify the font. Any change to the font will result in a callback,
passing the new value of the font as a parameter.

OD_INTEGER, title(char *), default(long)
OD_REAL, title(char *), default(double)

These two interfaces are used to modify integer and real vaillees. specifies the

label of the interface, andefault is the initial value of the number. As with the
OD_TEXTFIELDinterface, the current values are displayed and can be modified in an
XmTextFieldWidget . The changes made to the numbers are however not sent
automatically to the callback function, instead, they are sent only when the user presses
the ENTER Kkey.

88 CHAPTER 5: PANEL MANAGER

OD_DOUBLE_LIST, title(char *), n_values(long),
listl(char **), list2(char **)

This interface is used to modify two lists of strings. The two lists are specified in
listl andlist2 parameters, and their lengthrinvalues . The current values of

both lists are displayed in two columns XiTextFieldWidget s. Buttons for
insertion and deletion anywhere in these lists are also created. When a change is made
to the double list, the callback function is called with the new contents of the lists
passed as a pointer toRoubleListCBD structure with fieldssize(long)
listl(char **) andlist2(char **)

The type of the callback function used by options dialog is defined as:

void callback(const char * comp_name,
const void * data,
void * user_data);

When this function is called by tl@ptionsDialog as a result of a change to one of the
values,comp_name contains the user defined name of the component, data points to the
new value, and user_data contains the data as passed to
OptionsDialog::init()

5.5. Summary

The design of panel manager has been improved, resulting in the implementation of a new
version. Panel manager now allows users to create and modify panels visually. The new
panel manager also supports two-way communication, thus removing the inconsistency
between the information displayed in the panel and the information contained in the data
files.

CHAPTER 6 Browser

Browser is a VLAB program which allows easy browsing and modification of oofs
databases. This chapter describes my implementation of browser 3.0, whose design was
largely based on the functionality provided by browser 2.0. Browser 3.0 implements new
design concepts, namely support for collaboration and external references to objects. Also,
compared to version 2.0, the new version improves the areas of portability, performance
and customization.

6.1. Design

Browser 2.0 was designed and written by Earle Lowe. Since it was never developed past
the prototypical stage, large parts of it remained implemented using Tcl/Tk (language/
library combination). Browser 2.0 was noticeably slow, unreliable and did not provide a
consistent user interface with the rest of the VLAB tools. Browser 3.0 is a complete re-
implementation of version 2.0, with many additional features.

6.1.1. Support for external references to VLAB objects

There is no support in VLAB 2.0 for maintenance of external references to objects in oofs
databases. External references have to be stored as UNIX paths, often rendered invalid
with the smallest organizational change made to an oofs database (e.g. by renaming an
object). This problem has been addressed in VLAB 3.0 by assigning an identification
number (ID) to each object, unique within its oofs database. Once generated, the ID for an
object does not change. External references to objects can now be stored as the IDs of the
referenced objects. This new support for external references is used in the implementation
of a mechanism for creating alternate views of object databases, described in Chapter 8.

90 CHAPTER 6: BROWSER

6.1.2. Objects and oofs databases in VLAB 3.0

Organization of data in objects and overall structure of oofs databases in VLAB 3.0 are
almost identical to those implemented in VLAB 2.0, described in Section 1.2.1. Two
changes have been introduced in VLAB 3.0 to accommodate the support for external
references:

 addition of an identification number to all VLAB objects;
» addition of an object lookup table for each oofs database.

Identification numbers
The ID number is stored in textual form in a filk located in the object’s directory.
Object lookup table

Given the ID of an object, it is inefficient to traverse the entire oofs database to locate the
matching object. To this end, VLAB 3.0 maintains the list of objects and their IDs for
every oofs database in an object lookup table. The object lookup table is stored in a file
.dbase , located in the directory of the root object and has the following format:

number-of-objects
ID1 location_1
ID2 location_2
ID3 location_3

Object locations in an object lookup table are stored as their relative paths from the root of
the oofs database. This makes it possible to move the entire oofs database to a new
location without rendering the contents of.dbase file invalid. Whenever a change is

made to an oofs database, .ibase file is automatically updated to reflect such a
change.

CHAPTER 6: BROWSER 91

6.2. User’s perspective of browser

Browser provides the user with a two-dimensional view of the database (Figure 6-1). Each
object is represented by a folder symbol, object name, and an optional icon. Prototypes
and extensions are connected by lines forming a tree structure. Objects with folder
symbols of type 3 have extensions, while objects with folder symbols type 1 represent
leaves of the tree. Folder symbols that contain the letter ‘L’ indicate symbolic links to
different object databases (usually the object oriented file systems of other users).
Whenever objects are created, copied, moved, or deleted, browser dynamically updates the
displayed tree. If the tree of the object hierarchy does not fit into the window, the
scrollbars can be used to adjust the view in both horizontal and vertical directions.

object symbol type 1 object name menu bar
(no extensions
)\ object symbol type 2
(symbolic link)
File View Ohjeot
v X]
i s b= 0 e
I S
Frenne | e
i_leeropets
[cala— i iac-conga
| —— icon
-
{ i plaris——_J Hac-rix

SLnIoANEr

object symbol type 3
(extensions) scrollbars

FIGURE 6-1: Browser’s window

92 CHAPTER 6: BROWSER

6.2.1. Start-up information

Browser is usually invoked from the command line, using the following syntax:
browser [-p password] [[[login@]hostname:]dirname]
Valid examples of invoking browser are:

browser

browser ~/vlab/oofs

browser acs6.acs.ucalgary.ca:/scratch/vlab/oofs
browser joe@cs2:/usr/u/vlab/oofs

browser -p ecret678 joe@cs2:/usr/u/vlab/oofs

Browser assigns the following default values for unspecified parameters:

password = NULL (unspecified)

login = the current user name (whoami)
hostname = localhost

dirname = $(VLABROOQOT)/oofs

When browser is invoked on a remote database, the user is prompted to enter his login
name and password (Figure 6-2), unless both the login name and password are specified
on the command line. If the authentication process with RAserver fails, the user is notified
and prompted for the login information again.

—_ shere | a
Lughs ndwe ||'H|-II'|

Farowsrd |“-'[j

FIGURE 6-2: Browser’s login window

CHAPTER 6: BROWSER 93

Menu bar

The menu bar provides an interface to most of the functionality available in browser. The
File menu groups actions related to general operations of browserViégivemenu
contains operations used to change the view of the databas€@bjdw menu groups
actions for database management and object invocationsFifitiebutton is used for
searching through object databases. H&#p menu contains operations for invoking
browser’s on-line documentation. A detailed description of the operations available
through these menus follows:

File: New brownser

i

Invokes a new browser window with the initial view of the same g ibrmser

oofs database. Oypen shell
D e

File: New hbravser Com—
it

Invokes a new hyperbrowser window with a view of the hofs
database associated with the oofs database currently being dis-
played by browser.

File: Open shell

Opens a UNIX shell window. The directory in this window is
automatically set to be the directory of the selected object. This
is a useful feature for users wishing direct access (command
line) to the internals of objects.

File: Open file

Displays a file selection dialog, listing files in the directory of
the selected object. If no object is selected, the files in the direc-
tory of the root object are listed. When a file is selected from the
file selection dialog, browser invokes a text editor on this file.

File: Customize

Opens a dialog window where the user can customize the visual
appearance of browser, i.e. change the colors, font, etc.

File: Exit

Exits browser.

94 CHAPTER 6: BROWSER

View: Shav extensions/Hide xensions Viewd
VT T ITAIOATS
Toggles the display of immediate extensions of the selecte s s ssemsinmn
object. FRE S
Micke i ians
. . lrws W heees
View: Shaw all extensions Cntet gl
Reqln Tree Hore
Shows (recursively) all extensions for this object. Symbolic e e fre mor

links to objects are not expanded, unless the currently selected
object is a symbolic link. This prevents browser from entering an
infinite loop when owners of oofs databases have cyclical links
to each other’s databases.

View: Shav icon/Hide icon

Toggles the display of the thumbnail icon for the selected object.

View: Shaw all icons

Recursively shows thumbnail icons for the highlighted object
and all of its displayed extensions.

View: Hide all icons

Recursively hides all thumbnail icons of the selected object and
all of its displayed extensions.

View: Center object

Adjusts the view of the database so that the position of the
selected object in the browser’s window is as close to the center
as possible.

View: Begin tree here

Hides all ancestors of the selected object. After this operation is
applied, only the tree starting at the selected object remains visi-
ble. This operation can be reversed by the following operations.

View: Shav parent

The immediate parent of the selected object and all of the par-
ents extensions are displayed.

CHAPTER 6: BROWSER 95

View: Begin tree from root

Shows the tree beginning at the root of the object hierarchy inde-
pendently of the currently selected object.

Object: Get Oyt
L)
Invokes the object manager on the selected object. ﬁ:’"
. Loy el
Object: Rename AERERAR
Puste
Allows the user to rename the selected object. The user is Dk
prompted for a new name which has to be entered in a dialog e h-iimks]

window. If the selected object cannot be renamed as requested,
the user is notified appropriately.

Object: Cut

After a confirmation is obtained from the user, the selected
object and all its extensions are recursively copied into a tempo-
rary space (clipboard) and then deleted from the original loca-
tion. This entire tree can be later copied into any other location
(including different databases) using ®Pestefunction.

Object: Cop node

Copies a single object (without its extensions) to the clipboard,
from where it can be pasted.

Object: Cop subtree

Copies the selected object and its entire subtree to the clipboard
for a subsequent paste operation.

Object: Rste

The object and its extensions, if any, stored in the clipboard
become an extension to the selected object. The user is notified
if the paste operation cannot be completed.

Object: Delete

After a confirmation from the user, the selected object and all of
its extensions are removed from the object oriented file system.
If the delete operation cannot be completed, the user is notified.

96 CHAPTER 6: BROWSER

Object: Keep h-links/M®e h-links

The state of this toggle button determines how the object IDs are
affected when objects are copied. When the toggle button is set
to ‘Keep h-links’, the IDs remain associated with the original
objects and new IDs are created for the new copies. When the
toggle button is set to ‘Move h-links’, the IDs are re-assigned to
the copies, while new IDs are generated for the original objects.

Makes it possible to search for an object in the object tree by
specifying a substring of the name that is being looked for.
When a match is found, the object is located in browser’s win-
dow by expanding the appropriate branches of the database tree,
and the user is given the option to either continue searching for
the next match, or to abort the search completely. The choice of
whether the find algorithm will expand symbolic links when
searching for the object is selectable by the user (Figure 6-3).

L iy

Suacion
[t |

7 tolicss Enis

Stan Search | Mest Sesrch | Gut Seanh |

FIGURE 6-3: Browser’s find dialog

Help: About e
Aboist
Displays general information about the current version of Civaline Fueidp

browser.

Help: On-line help

Invokes an on-line documentation using SGI's showcase.

CHAPTER 6: BROWSER 97

Mouse operations

In addition to selecting menus from the menu bar, the mouse can also be used to perform a
number of actions.

Left Button

» Clicking on an object's folder symbol, name or icon selects the object.

» Double clicking on the object's folder symbol places the object on the
lab table by invoking the object manager on the object.

» Double clicking on the object's name shows or hides object extensions.

Middle Button

» Selects an object and makes it possible to copy it usindyéigeand
drop operation. The user selects an object and drags it to a new location,
where a new child is created. The view of the object hierarchy is auto-
matically scrolled if the destination object is located outside the viewing
area.Drag and dropoperation only copies the object, not the object's
extensions. Its functionally is equivalent to perform@apy nodeand
Pasteoperation. Dropping an object on itself or releasing the mouse but-
ton with no object selected cancels tinag and dropoperation.

Right Button

» Clicking on the object's name or folder symbol shows or hides the
object's thumbnail icon (toggle action).

Advanced features

In order to allow the user to simultaneously view different parts of a database, multiple
copies of browser can be invoked and each browser can then display different parts of the
database. Similarly, multiple copies of browsers can be invoked on different databases,
allowing the user to easily transfer objects between databases through the use of drag/drop

or cut/copy/paste functions. All instances of browser invoked by the same user can
communicate using VLAB daemon, described in Section 1.2.2. Changes made to a
database in one browser are broadcasted to all other browsers to maintain consistency
between the real and displayed information. It should be noted that if more than one user
accesses the same database at the same time, changes made to this database by one user
are not automatically reflected in browser invoked by the other users.

98 CHAPTER 6: BROWSER

Customization

The look of the visualized object database can be customized by the user through a
customization window. The customization window (Figure 6-4a), is invoked by selecting
the Customizemenu item. The user can choose various colors used in browser’s display,

Backgruni | . [ET] E] [ET] ~ Dniagonal Lias - Bt in (O paaial) Zoos
Lt | . [= [23 & Hermelabvaricsl Lissi | 4 Cuiton @iner) Zoan
_surcd | [l FEET T [& Pt Corerad ioen Sire

e | [[T [N R
o | [T [ET [gt =

(e | [l T G @ | oo [Fart Selechin]
bk | rlu- |-_ IH‘I-_ IT Wty Fend |

e

= B En
Cxarier [nczae N oo— o [
5orca s [ee— [e
hricda A | el bdlrp 1
Bt BT Ll T |l|
P (e sy T | R R Il
o (RO el s ML TS L
inrrirenl gl e bl :-
iy {mcicba | e ohiipe neTos :'I
|5
i gl R
= I = 7 HIF

KOCCEFGHY dmraoporeiovs o 1238235 7EE]

i-m-ﬂ-r—rnrll—lf-lm-lm-lm-p-rﬂlm-'

FIGURE 6-4: Browser’s customization dialogs: a) main dialog, b) color chooser dialog, c)
font chooser dialog

change the format of the tree display, modify fonts and select icon size and icon zoom
methods. Colors and fonts can be changed using color and font chooser (Figure 6-4b and
Figure 6-4c). Push-buttons are located in the bottom of the window for saving or loading
the selected settings, and to apply or cancel the selections. By default, custom settings are
saved in a file specified B{VLABCONFIGDIR)/browser . A different file can be
specified by the user for saving and loading settings for browser.

The appearance of browser can also be changed by modifying its application resource file
[6][24][30]. This file is stored in a filapp-defaults/Browser

CHAPTER 6: BROWSER 99

6.3. Implementation details

Since the implementation of browser consists of over 12,000 lines of C++ code, not all of
its implementation details can be covered in this thesis. Only the essential aspects of
browser’s implementation are discussed.

Remote access

To take advantage of the functionality provided by RAserver, browser performs all
filesystem operations on the object databases using methods from RAlibrary. Since
RAlibrary is optimized for performance when operating on local filesystem, browser’s
performance is not affected by this design. Also, when the network connection between
browser and the remote database is fast, the speed of browsing remote databases is
comparable to the speed of browsing local databases. Accessing a remote database on a
server connected to the client on a fast local network is even faster then accessing the
database using NFS. Such speed improvement can be attributed to a better distribution of
tasks between a client and a host when using RAserver, especially when RAserver is
performing tasks at an object level as opposed to at a file level (e.g. the operation
associated witlRA_GET_EXTENSIONS_REQUESIEscribed in Section 4.5.1).

Support for external references

Every time an object database is modified, the object lookup table for that database has to
be appropriately updated. In some casesithefiles for each involved object have to be
adequately adjusted. For example, when an object is cut from an object database, its entry
has to be removed from the object lookup table. But when the object is pasted back into
the database at a different location, its .aid file has to be re-used and re-entered into

the object lookup table. Otherwise external references to the modified object would
become invalid. However, if an object is cut and pasted between two different object
databases, thed file cannot be reused, because each object database has a different
numbering scheme.

Drawing trees

Two distinct algorithms for graphical tree layout have been implemented (Figure 6-5). The
sparselayout algorithm allocates a separate vertical space for each sibling’s subtree, so
that other siblings cannot intersect this vertical space. This vertical space is recursively
determined by summing up the heights of each subtree of a node. The second algorithm is
based on the algorithm developed by Moen [22], which allows the trees of siblings to
intersect each other’s vertical space, as long as the actual nodes and interconnecting lines

100 CHAPTER 6: BROWSER

do not cross. This algorithm is based on calculating and merging contours of trees, where
the contours are represented as poly-lines.

£

FIGURE 6-5: Two different tree layout methods: sparse (left) and compact (right)

Some minor options for tree renderings have also been added, namely diagonal versus
vertical lines, and parent positioning center versus top. Figure 6-6 illustrates these various
modes of rendering using the compact layout. These rendering methods, together with
selectable font styles and sizes, colors and icon sizes make browser highly customizable.

S g g B

FIGURE 6-6: Different tree drawing methods

To increase the performance of browser, OpenGL display lists have been used for drawing
of all folder symbols, icons and texts. The tree is drawn into a double buffered 24 bit
OpenGL widget. Double buffering was used to create the effect of smooth scrolling
through large trees.

Clipping

Browser uses OpenGl library for drawing the graphical tree representation of object
databases. Every OpenGl function call is associated with a certain amount of overhead. If
every node of the tree was to be drawn for a reasonably sized tree, such overhead could

CHAPTER 6: BROWSER 101

easily accumulate into a few seconds. In order to keep browser’s interactivity at a
reasonable level, as many OpenGl function calls had to be eliminated as possible. To this
end, a customized clipping mechanism has been implemented, where only parts of the tree
that are potentially visible are drawn. The rendering of trees in browser is performed
recursively, using the following pseudo-code:

void render(NODE * node):
render_folder(node)
render_name(node)
render_icon(node)
for all children of node:
render_line(node, child)
for all children of node:
if(! out_of_view(child))
render(child)

First, the folder, name and the optional icon for a node is rendered. The next step involves
drawing a line between the node and each of its children. At last the children of the node
are rendered recursively. However, before a child is rendered, the bounding box of the
subtree starting at that child is checked for intersections with the viewing area. If the
bounding box of the subtree does not intersect the viewing area, then no part of this
subtree will be visible to the user and the entire subtree is skipped (not rendered). Figure
6-7 demonstrates clipping of trees on a sample tree: the shaded objects represent nodes
that are rendered (i.eender() is called upon these nodes), while the empty objects
depict nodes which are not rendered.

Support for multiple instances of the browser

For certain operations browser requires unigue access to a database. If the database is
modified by another application while browser is performing such an action, some of the
information could be inadvertently lost. As an example, consider the actmppihga

subtree of objects. If the subtree is sufficiently large, such an operation could take several
seconds to execute. The copy operation is performed by archiving the contents of the
subtree into an external file, as described in the previous section. If another instance of
browser attempted to change the same subtree while the first browser was creating the
archive file, some of these changes could be reflected in the archive file. This would result
in inconsistencies between the contents of the source and destination subtrees.

To prevent corruption of databases resulting from simultaneous access, browsers
synchronize themselves by sending each other messages through VLAB daemon.
Whenever one instance of browser needs unique access to a database, it broadcasts this
request too all other browsers. Upon receiving such a message, all other browsers suspend

102 CHAPTER 6: BROWSER

FIGURE 6-7: Tree clipping in browser

their user interfaces, so the user cannot invoke any actions. When the browser with unique
database access completes its operation, it issues the second broadcast to notify all other
browsers that the database is unlocked. At this point, all browsers resume their normal
mode of operation. It should be pointed out that this mechanism only works among
browsers run by the same user on the same workstation. No mechanism has been
implemented for locking access to databases for remote users. Also, it is possible that race
condition occurs among browser instances run by the same user.

Communication between instances of browser is also used to notify other browsers about
updates to databases. Each time a database is modified, the responsible browser broadcasts
a message identifying the affected database and includes details about the operation it
performed. This ensures all other browsers can update the displayed information to reflect
the real contents of the database. However, if a database is modified without the use of
VLAB tools (e.g. through a UNIX shell), such changes will not be automatically reflected

in browser.

Speed improvements

Browser 3.0 is implemented entirely in C++. It uses Motif library for its graphical user
interface, and OpenGl library for rendering graphical representations databases. This
combination of a fast language and efficient libraries delivers the performance needed for
browsing in practice.

CHAPTER 6: BROWSER 103

The most evident speed bottleneck in browser 2.0 is the mechanism it implements to read
in and display the thumbnail icons for objects. The icon files stored with objects are in
IRIS RGB format. Since browser 2.0 does not understand this format, it uses an external
utility to convert the icon file to a GIF file. Now that the format of the image is understood
by browser, it is read in and displayed. The process of invoking external programs within
other programs is associated with large amounts of overhead, since it usually involves
spawning a new UNIX process and loading a new program. Showing icons for a
reasonably sized subtree of objects in browser 2.0 can easily take several minutes to
complete.

Browser 3.0 implements a native support for IRIS RGB files. To speed up the drawing

process, it also adds support for scaling of icons. The routines for reading IRIS RGB

pictures and scaling of images have been acquired from the sources of the XV program
and adequately modifiéd

Implementation of cut, copy and paste

The cut, copy and paste operations have been implemented in browser 3.0 as follows.
When a copy or cut operation is applied to an object, its contents are stored in a temporary
location (and in the case of cut, the object is also removed from the database). At the time
of paste, the object stored in the temporary location is copied into its new location as an
extension of the selected object.

Objects are stored in the temporary location as archive files. A customized archiving
library has been developed to this end, which has very similar functionality to the standard
UNIX utility tar . The reason for developing a new archiving library instead of using tar is
two-fold. First, for performance reasons it is desirable to avoid using external utilities
whenever possible. Second, tar does not archive symbolic links in a suitable way for use
with oofs databases. In order to properly archive a subtree of VLAB objects, all relative
symbolic links of the top level object have to be expanded, while all other objects in the
subtree have to be archived as symbolic links.

The archived subtree is stored in a file determined by evaluating the expression:
${VLABTMPDIR}/cutCopyPaste< userid >/data.ar

The name of the top level object in the above file is stored in a separate file given by the
expression:

T with the permission from John Bradley, author of XV

104 CHAPTER 6: BROWSER

${VLABTMPDIR}/cutCopyPaste< userid >/---FILENAME---

The reason for storing the name of the root object in a separate file is to be able to quickly
determine whether an object can be pasted as an extension to the selected object. An
object subtree from the archive cannot be pasted if the selected object already has an
extension with the same name as the archived object.

The oofs format would be an alternative way to store temporary copies of objects. An
archiving library would not have to be developed, as a simple recursive algorithm could be
used for such an implementation. However, the advantage of using an archive file for
storing temporary copies of files can be seen in the performance of cut, copy and paste
operations. The cut and copy operations need only create twadeikesar and---
FILENAME--- , independent of the size of the object subtree being copied. This saves
browser a lot of the overhead associated with creation of files. Similarly, the paste
operation only needs to read two files, saving browser many file opening operations.

Another benefit of this implementation is the possibility of speeding up the cut, copy and

paste operations when working with remote databases. RAserver could be extended with
high-level operations allowing the transfer of entire subtrees of objects as archives, as
opposed to the current implementation where individual files are being sent over the

network.

6.4. Summary

This chapter described the design and implementation of the new version of browser - a
VLAB tool assisting users in navigation and management of object databases. An object
lookup table is maintained with every oofs database - to support external references to
VLAB objects. Browser also takes advantage of the new remote access extension and
allows users to browse and modify remote object databases.

CHAPTER 7 Metatext

VLAB users often need to access objects in an order different from the hierarchical
organization of the databases in which they reside. For example, a user may want to
present the results of his work - a number of different models of plants, each developed
and located in its own object subtree. Metatext is a VLAB utility which allows access to
VLAB objects in an arbitrary order, independent of the hierarchical organization of the
databases [13][29]. Using metatext, it is possible to create many different views of the
same object database.

This chapter describes my implementation of metatext 3.0, based on the functionality
provided by the previous version 2.0. A small sub-section (Section 7.2) describing
metatext from the user’s point of view is included. Eventhough metatext 3.0 is only a re-
implementation of version 2.0 using C++ and the Motif library, its description is included
here as the basis for the discussion of hyperbrowser (Chapter 8).

7.1. Structure of metatext

A metatext database, as shown in Figure 7-1a, consists of two types of files: frames and
index files. A frame is the basic information unit in metatext. It contains links to other
metatext nodes as well as links to objects in oofs databases. A frame also includes a
textual description and a list of commands. This text is displayed and commands executed
when the frame is invoked.

An index file is a list of names grouping related frames into a section. A frame can be
listed in several index files and an index file can be included in several frames. This allows
metatext users to build graphs of any shape, not restricted to tree structures as oofs
databases.

Metatext runs as a number of concurrent processes (Figure 7-1b), which can be divided
into four classes:

* metatexprocesses, which read index files and allow the user to interac-

106 CHAPTER 7: METATEXT

tively select a frame,

 text displayprocesses, which display the frame text,

» object manageprocesses corresponding to the links to objects listed in
the frame,

» applicationprocesses, corresponding to the commands in the frame.

j ect
Text Manager
i ever

Appli cation

/ \ Text
M ever
Frame A Frame B Frame C

j ect
Manager

Mab
daenon

Application

Met at ext

Frame D Frame E

FIGURE 7-1: Structure of a) metatext database, b) metatext processes

Metatext processes are created in the same way as any application process, by executing
the commands as extracted from frames. Many instances of metatext can be running at the
same time, offering the user alternative views of the database.

CHAPTER 7: METATEXT 107

7.2. User’s perspective of metatext

A running metatext process is manifested by a

WA]
small window (Figure 7-2) with 4 buttons and the =
name of the current index file. The right most
button is a down arrow, which is used to create an Flime Foe ok [v]
extended window (Figure 7-2) with the metatext : —
menu. The extended menu may also be displayed
as a popup style menu, using the right mouse e .
button. This menu includes an item for each frame
in the section, plus several additional items. The W
other three toggle buttons tuom or off operations Pl M [dnd o
invoked automatically when a frame is selected, v ot
specifically: - S
20-piants
« Exec - turns on or off execution of i
UNIX commands extracted from the i
frame’ raroom—moss
* View - turns on or off display of text B
extracted from the frame, | Bedify
» Edit - turns on or off automatic invoca- Aercad
tion of a text-editor in which the frame A
can be edited. e

FIGURE 7-2: Snapshot of
metatext without
(top) and with
(bottom)
* Next- selects the next item on the menu. expanded menus
Allows stepping through the frames in
forward order. The button associated
with the last invoked frame has a distinct color in the extended window,
giving the user a visual clue as to what frame will be invoked next.
* Previous- selects the previous item on the menu, allowing stepping
through the frames in reverse order.

Two additional buttons are included in the
extended window:

Metatext menu

The metatext menu contains the list of frames as specified in the index file, as well as four
additional menus:

108 CHAPTER 7: METATEXT

* Modify - gives the user a shell window with the current working direc-
tory set to the one of the index file, so that the user can modify the
index/frame files with his favorite editor,

* Reread- rereads the index file and updates the menu,

» Restart- restarts the metatext process,

* Quit - quits the metatext process.

7.2.1. Start-up information

Metatext is invoked from the command line using the following syntax:

metatext [-e] [-exec] [-view] [-edit]
[-md|-mc|-mt]
[-rootdir oofs] index_file

The following settings determine the state of metatext when invoked:

* -emetatext is open with the extended menus
» -execset the executable toggle

» -view set the view toggle

» -edit set the edit toggle

* index_file the name of the index file

In addition, the following settings are provided for backwards compatibility:

» -md demo mode (equivalent to -exec -view)

* -mc command mode (equivalent to -exec)

* -mt text mode (equivalent to -view)

» -rootdir specifies the location of the default oofs database. When an
object manager is invoked, it needs to know where the root of the oofs
database resides, so that tibase can be updated if needed. In the
previous version of VLAB, .dbase file did not exist and therefore old
frames contain links to objects which do not provide the root directory
of their oofs databases. If such a link is found, object manager is
invoked with root directory set to the value specified with this command
line option.

CHAPTER 7: METATEXT 109

7.3. Implementation Details

7.3.1. Index file format

An index file is a text file that contains the names of some or all frames in the metatext
database. Each name must be listed on a separate line; these frame names are then
included in the metatext menu. For example, the following index file Demo resulted in the
menu shown in Figure 7-2:

2D-plants
barentree
lychnis-demo
random-moss
cypress

7.3.2. Frame file format

Frame files contain a mixture of text and UNIX commands. When the user selects one of
the menu items read from the index file, the text portion of the corresponding frame file is
displayed in a window and the included UNIX commands are executed. Syntactically,

every line that does not start with a *:’ is considered part of the text and every line that
starts with a ‘.’ is assumed to include a UNIX command. For example, the frame file 2D-

plants could contain the following information:

Understanding A Formalism

2D Plants

:xclock

:object /usr/u/vlab/oofs/ext/plants/ext/2D-plants

If the user now selects tl2®-plantsitem in the menu shown in Figure 7-2, then a window
including the descriptive text associated with the object will be displayed, and the UNIX
commands embedded in the frame file will be executed. The resulting display is shown in
Figure 7-3. Window 2D-plants shows the obje2Zb-plants ' as a result of the last
command :object °’'. The xclock window is a consequence of theclock
command. The xless window displays the text from2eplants frame file.

110 CHAPTER 7: METATEXT

FIGURE 7-3: Example of metatext display

It should be noted that all commands which invoke object manager (commands starting
with :object) are treated as special cases in metatext 3.0. In the old version of metatext
such commands were simply executed as any other commands extracted from the frames.
Since, in VLAB 3.0, it is VLAB daemon’s responsibility to invoke object manager,
metatext must send a message to VLAB daemon whenever such a command is found.
Furthermore, metatext also sends a message to all currently running blowsamsver

object manager is invoked. Browsers respond to this message by updating the displayed
database tree, so that the invoked object is selected and centered in the browsers’
windows. This allows the metatext user to see automatically where the demonstrated
object is located in the object database.

t this is done by sending the message to VLAB daemon, which re-distributes it to
all running browsers

CHAPTER 7: METATEXT 111

7.3.3. Organization of metatext databases

Metatext does not enforce any restrictions on the organization of nodes and frames.
However, it is common to organize related index frame files into sub-directories, and these
sub-directories into tree hierarchies. Cyclic references between metatext nodes are also
possible.

7.3.4. Customization

Users may specify which external applications to use for performing editing and viewing
functions by editing the ${VLABCONFIGDIRnetatext file. For example, the file
could contain the following information:

Editor xwsh -e vi
Viewer xless -auto

The first line tells metatext how to invoke an external text-editor on the frame file.
Metatext invokes a text-editor on a frame file when the frame is selected from the list of
frames while thé&dit toggle is set. The second line specifies the external application to be
used to view the textual contents of frames.

7.4. Summary

Metatext is a VLAB utility which allows access to VLAB objects in an arbitrary order,
independent of the hierarchical organization of the databases. Using metatext, it is
possible to create many different views of the same object database. This chapter
described my re-implementation of metatext, based on the functionality provided by the
previous version. The main difference between the new and the old version is the use of
the Motif library for the graphical user interface in my implementation.

112 CHAPTER 7: METATEXT

CHAPTER 8 Hyperbrowser

An object in the database may be of interest in several contexts. For instance, a model
originally developed as a part of a comparative study of lilac inflorescences for
horticultural purposes may also serve as an example of a particular branching architecture,
an illustration of model construction according to field data, an instructional example of
programming using L-systems, a realistic model available for incorporation in complex
scenes, and the source of an image for a paper. To facilitate the presentation of a VLAB
object in several different contexts, a new mechanism for maintaining alternative views of
oofs databases was designed and implemented. This chapter describes its design and
implementation.

8.1. Requirements and design

In this section | describe the design for VLAB’s new support for alternate views of
databases. First | look at the shortcomings of the hypertext functionality offered by
metatext in VLAB 2.0. Then | describe the requirements for the new system and two
potential implementation methods. Lastly, | detail the overall design of the current
implementation.

8.1.1. Shortcomings of metatext

Basic functionality for creating alternative views of object databases is provided in VLAB

1.0 and 2.0 by metatext. Unfortunately, metatext imposed significant limitations on the
user, which narrowed its usefulness as a tool for maintaining alternative views of oofs
databases. The most visible drawback of metatext is that it does not provide a clear visual
representation of the organization of metatext databases, and it does not offer any support
for the management of metatext databases. The user has to organize metatext databases
manually, from the UNIX shell prompt, and a text editor has to be used to create and
update links to VLAB objects. Another important drawback which metatext users are
exposed to is the issue of dangling links. Whenever an object in the oofs database is
moved or renamed, all metatext frames referring to this object become out of date and

114 CHAPTER 8: HYPERBROWSER

hence unusable. These frames have to be laboriously found and fixed. Another, minor

limitation of metatext, is related to the fact that each representation of metatext nodes is

displayed on the screen in a separate window. This often becomes a problem when

browsing large databases of metatext nodes, as the screen becomes cluttered with a
multitude of windows.

8.1.2. Design goals

A new mechanism for supporting alternative views of oofs databases in VLAB was
developed. The design goals for such a system were mostly derived based on the
limitations of metatext, as identified in the previous section:

» The new system should implement a well organized structure for storing
hyperlinks. It should also provide an intuitive interface for the manage-
ment of such databases.

* Hyperlinks in the database should be automatically updated whenever
the objects they refer to change their locations.

» The new system should provide a convenient visual representation of
hyperlink databases.

8.1.3. Implementation models

Two models for representing alternate views of object databases have been considered.
Under the first model, the alternate views would be represented as hypertext documents,
where textual information is mixed with hyperlinks in a single flow. The hyperlinks would
represent pointers to other hypertext documents, or pointers to the actual objects in oofs
databases. This model is similar to the design used in HTML documents. A simplistic
mechanism for invoking VLAB objects from HTML pages has been successfully
developed, verifying that an implementation of this model is possible.

Using the second approach, hyperlinks would be organized in a hierarchical fashion. In
this model, each hyperlink can be associated with a textual description which contains
information pertinent to the linked object in its current context. This design is compatible

with the organization of objects in oofs databases.

Since both models could be developed to satisfy the design goals stated in Section 8.1.2, |
have chosen the second approach, the easier one to implement. A similar hierarchical

CHAPTER 8: HYPERBROWSER 115

model has already been implemented in VLAB for storing objects in oofs databases and
has proven successful.

8.1.4. Hyperobjects

To accommodate the information needed to be stored with each hyperlink, a new VLAB
entity, called hyperobject, has been designed. The following information is stored with
each hyperobject:

* hyperlinkto an object in an oofs database. Not all hyperobjects need to
point to an object in an oofs database. Those that do not contain a hyper-
link are used as place-holders for other hyperobjects.

» textual descriptiorof the hyperobject. This description is usually related
to the object the hyperlink points to under the given context.

» nameof the hyperobject. If a hyperobject does not specify its name, the
name of the object it points to is used instead. If the object later changes
name (e.g. is renamed in the oofs database), the hyperobject automati-
cally changes its name as well.

» children Each hyperobject can contain other hyperobjects, forming a
tree structure, as described in the following section.

» orderof children. The order of children in a parent can be changed,
which affects the traversal of hyperobject databases.

Hyperobjects take advantage of VLAB’s new support for external references to objects,
described in Section 6.1.1 The hyperlink in a hyperobject is specified #3 tbkthe

object to which the hyperobject points, allowing hyperlinks to stay intact as long as the
objects to which they point remain in the oofs database. Quick access to objects from
hyperobjects is made possible by using the object lookup table.

8.1.5. Hyperobject file system

Hyperobjects are organized hierarchically into an hyperobject file systems (hofs). At the
implementation level, the structure of hofs is similar to the structure of oofs - it is a
hierarchy of UNIX directories and files forming a directory tree. It is possible to think of
hyperobjects as symbolic links in a UNIX file system, and of hofs databases as directory
hierarchies entirely composed of symbolic links associated with textual descriptions.

116 CHAPTER 8: HYPERBROWSER

However, there is a very important conceptual difference between oofs and hofs databases.
Hofs databases are not based on the prototype-extension mechanism. The reason for this
design decision is simple - the prototype-extension mechanism is not needed for
hyperobject databases. The prototype-extension model is advantageous when extensions
share data with their prototypes, but this is uncommon for hyperobjects.

The hierarchical organization of hyperobjects allows VLAB users to create and describe
various conceptual relations between objects.

8.1.6. Hyperbrowser

Hyperbrowser is a VLAB program designed and implemented to assist users in creating,

modifying, and navigating through hyperobject databases. The rest of this chapter

describes hyperbrowser. The user’s perspective of hyperbrowser is presented, and its
implementation details follow.

8.2. User’s perspective of hyperbrowser

Both hyperbrowser and browser operate on databases which store information using the
same file structure. To preserve consistency between VLAB applications, hyperbrowser
offers the same interface for database manipulating functions as browser. To avoid
unnecessary repeating, | will only describe the features of hyperbrowser that are different
from those of browser.

8.2.1. Overview

Hyperbrowser is manifested on the screen as a window displaying a hierarchy of
hyperobjects (Figure 8-1). Notice the evident similarity between browser's and
hyperbrowser’s appearances. To avoid confusion between browser’s and hyperbrowser’s
windows, the user may customize hyperbrowser differently than browser, for example, by
changing its background color and the icon size.

The title of the window indicates the location of the hypertext database displayed in
hyperbrowser. The location is given in a forrhast:path where the host is the name of

the computer on which the database resides, and path indicates the root level object in the
database. The bottom part of the window contains linking information about the selected

CHAPTER 8: HYPERBROWSER 117

File View Olbject Action Find Help
A
dge
moofs*E%se
Bark-Demo—
= =

FIGURE 8-1: Example snapshot of hyperbrowser’'s window

object, i.e. the name of the associated object in the oofs database. If the hyperobject is not
associated with any object in oofs, this field is empty. The middle part of hyperbrowser’s
window graphically depicts the hypertext database. Similar to browser, each hyperobject
is represented by a folder symbol, object name and an optional icon. Parents and children
are connected by lines forming a tree structure. Hyperobjects with folder symbols that are
filled have children, while objects with single folder symbols represent leaves of the tree.
The graphical tree is automatically modified whenever a change is introduced to the
hypertext database. Scrollbars can be used to shift the displayed tree to display hidden
parts of the database.

8.2.2. Start-up information

The syntax used to invoke hyperbrowser is identical to the syntax for invoking browser:
hbrowser [-p password] [[[login@]hostname:]dirname]

The meaning of the command line parameters has been described in Section 6.2.

118 CHAPTER 8: HYPERBROWSER

8.2.3. Invoking hyperobjects

The most obvious difference between interfaces of
browser and hyperbrowser is the additional pull-down ”:;
menuAction in hyperbrowser’s menu bar (Figure 8-2). s
Functions available from this pull-down menu are = e s
related to the traversal of hypertext databases and th =i s

way hyperobjects are invoked. L P
r Gt ahject
a4 Sifpri feat

Hyperbrowser allows its users to systematically _s&# e |
traverse the hierarchies of hyperobject databases. 'II—'IGURE 8-2- Action menu in
does so through the use Néxt andPreviousbuttons. '
When the user invokes tidext button, hyperbrowser
automatically highlights the neTxhyperobject in the
hofs hierarchy, and invokes this hyperobject. Invoking
a hyperobject in hyperbrowser results in performing a combination of the three actions
described below. This combination of actions is determined by the state of the toggle
buttons at the bottom of thction pull-down menu. The algorithm for selecting the next
hyperobject is depth-first traversal. Figure 8-3 shows an example of an hofs tree and the
order in which the hyperobijects in this tree would be selected Nekebutton was used

in succession. Thereviousbutton would access the hyperobjects in the reverse order.

hyperbrowser

The Get objectfunction is used to invoke a panel manager on the object associated with
the selected hyperobject. When the selected hyperobject is not associated with any object
in an oofs database, this button is grayed out and not available to the user. The user can
view the textual description associated with the selected hyperobject usiBlgaivetext

button. When the selected hyperobject does not contain a description, this button is grayed
out and not available to the user. THdit text button is used to create a new description,

or to modify an existing description of the selected hyperobject. When invoked on a
selected hyperobject, hyperbrowser spawns an external text editor on the description file.

There are three toggle buttons at the bottom ofAitten pull-down menu, specifying

what are the default actions performed on a hyperobject when it is invoked. Hyperobjects
can be invoked either by double-clicking on their folder icon, or by usingiéxéand
Previous buttons.Get objecttoggle specifies whether object manager is invoked on the
object associated with the selected hyperobftiudw textandEdit texttoggles determine

how the textual description associated with the selected hyperobject will be displayed (it

T If the next hyperobject is hidden, the currently selected object is automatically
expanded by one level.

CHAPTER 8: HYPERBROWSER 119

intid
ol ect

19

FIGURE 8-3: The order of database traversal using the Next and Previous functions in
hyperbrowser

can be: not shown at all, displayed in a text dialog window, or displayed in a text editor
where it can be edited).

8.2.4. Changing the order of hyperobjects

A method for changing the order of hyperobjects is needed for hyperobject databases,
because this order determines their traversal. Hyperbrowser allows the users to change the
order of children of a hyperobject using the keyboard. To change the position of a selected
child, theUP andDOWN arrow keys are used. The UP arrow key is used to move the
selected child one position upwards, and the DOWN key is used to move the selected child
one position downwards.

8.2.5. Invalid hyperobjects

To indicate invalid hyperobjects in hofs databases, hyperbrowser displays three question
marks in the name field of invalid hyperobjects. Invalid hyperobjects are hyperobjects
which contain pointers to nonexisting objects. Invalid hyperobjects result as a

120 CHAPTER 8: HYPERBROWSER

consequence of deleting information from oofs databases. Unfortunately, there is currently
no mechanism implemented in browser to warn the user when an operation on an oofs
database results in making some of the hyperobjects invalid.

8.2.6. Renaming hyperobjects

A hyperobject can be renamed in hyperbrowser using the same interface as browser uses
to rename objects. However, the user can specify an empty name for a hyperobject,
indicating that the hyperobject should inherit the name from an object it points to.

8.2.7. Adding hyperobjects to hofs databases

The user can create a new hyperobject in an hofs database in one of the following ways:

* by copying a (single) object from browser, and pasting it into a hyper-
browser; or
* by dragging an object from browser into hyperbrowser.

Hyperbrowser will respond to both of these actions by creating a new hyperobject in the
selected destination, with a hyperlink pointing to the source object. No textual information
will be associated with this new hyperobject, and the name of the newly created
hyperobject will be empty (i.e. inherited from the source object). A description can be then
added to the hyperobject by invoking tBdit text function from theAction pull-down

menu.

It is also possible to transfer a hyperobject from hyperbrowser into browser, using either
the copy and paste, or the drag and drop operations. Such transfer results in creating an
extension of the destination object, where the extension is the object linked with the
source hyperobject. This operation is therefore identical to copying the object to which the
source hyperobject points to using a browser, and pasting it into an oofs database. Notice
that hyperobject which do not contain hyperlinks cannot be transferred to oofs databases.

CHAPTER 8: HYPERBROWSER 121

8.3. Implementation details

8.3.1. Structure of hyperobjects

Similar to VLAB objects, hyperobjects are represented as directories. All information
pertinent to a hyperobject (as described in Section 8.1.4) is stored in the hyperobject’s
directory. The textual description associated with the hyperobject is stored iteatfile

This file can be missing, indicating no description has been provided with the hyperobject.
The children of a hyperobject are stored in thé subdirectory. The rest of the
information is stored in a fileode .

8.3.2. Format of the node file

Thenode file, present in every hyperobject, contains three components: hyperlink to an
object, name of the hyperobject, and order of children. The format nbttee file is:

ID

name
number-of-children
child1

child2

ThelD is an integer, specifying the object in the oofs database to which the hyperobject
points. If the ID contains a value df , the hyperobject does not point to any objects. This

is useful for creating a parent for a number of children, without associating the parent with
any object from the oofs database. It should be noted that all hyperobjects in an hofs
database can point to object located within only one oofs database. The oofs database
associated with an hofs database is assumed to reside in the same directory as the root-
level hyperobject of the hofs database.

The name field in thenode file determines what textual name will hyperbrowser render

in its graphical view of the object. If this field is empty, the name of the object in the oofs
database will be used. If it is non-empty, the contents of the field will be used, no matter
what the corresponding object in the oofs database is called. Fib af -1 the
hyperobject always has to have a non-enmgatye field.

122 CHAPTER 8: HYPERBROWSER

After thelD andname fields, a list of children follows. The order of children in this list
determines in which order the children are rendered by hyperbrowser. The order of
children is important when traversing an hofs database systematically, ushhgxttaand
Previousfunctions.

8.3.3. Implementation of hyperbrowser

Most of the functionality offered by hyperbrowser is related to the management of hofs
databases. Since the organizational structure of hofs and oofs databases is so similar and
browser provides all database management functionality on oofs databases, hyperbrowser
was implemented by adopting a majority of browser’s code. Some adjustments were
needed to convert browser’s code into hyperbrowser.

Names and icons

Hyperbrowser displays textual names for hyperobjects based on the contentsanh¢he

field in theirnode files, as described in Section 8.3.2. The icons which hyperbrowser
displays with hyperobjects are loaded from their linked object’s directories in the oofs
database. If a hyperobject is not associated with any object, a default icon for the entire
hofs database is used. This default icon is stored in the root level objecthcédled

Ordering of children

Hyperbrowser determines the order in which the children of a hyperobject are displayed
based on the order given in iiede file, whereas browser displays them in alphabetical
order. Hyperbrowser also implements a mechanism for modifying the order of children,
accomplished by using the keyboard’s arrow keys.

Rename

The implementation of the rename operation in hyperbrowser is quite different from that
of browser’s. When a hyperobject is renamed, onlynduee field in its node file is
affected, while the name of the hyperobject’s directory remains unchanged. Hyperbrowser
allows the user to specify empty names for hyperobjects, indicating that the name to be
displayed for the hyperobject should be obtained from its linked object). Also, the
specified name for a hyperobject does not have to be unique among its siblings.

CHAPTER 8: HYPERBROWSER 123

Paste and drop operations

In order to allow transfer of objects into hofs databases, hyperbrowser has to distinguish
whether the data being pasted is an object or a hyperobject. If the data represents a
hyperobject, a new copy of the source hyperobject is simply created and added as a child
to the destination hyperobject. However, if the data represents an object (originated in
browser) a new hyperobject has to be created, with a hyperlink to the source object.

The implementation of the paste and drop operations in browser also had to be extended,
to allow transfer of hyperobjects from hyperbrowser to browser. When a hyperobject is
transferred to browser, it is first asserted that the hyperobject contains a valid hyperlink. If
this is not the case, the user is properly notified and the transfer is aborted. If the
hyperobject contains a valid link, the object associated with this link is then used to finish
the paste (or drop) operation.

8.4. Summary

A new mechanism that allows the creation and maintenance of alternate views of object
databases has been designed and implemented. A new system for hierarchical
organization of hyperlinks was designed. Hyperlinks point to objects in oofs databases by
using the unique IDs stored with each object. A new VLAB application, hyperbrowser
was developed, allowing VLAB users to visually manage and navigate hyperobject
databases.

124 CHAPTER 8: HYPERBROWSER

CHAPTER 9 Conclusion and future work

9.1. Conclusion

9.1.1. Accomplishments

A new mechanism that allows the creation and maintainance of alternate views of object
databases has been designed and implemented. First, support for maintaining external
references to VLAB objects has been implemented, by assigning unique IDs to objects.
Secondly, a new system for hierarchical organization of hyperlinks was designed. Finally,
a new VLAB application, hyperbrowser was developed, allowing VLAB users to visually
manage and navigate hyperobject databases.

The remote access extension to VLAB has been designed and implemented to improve
VLAB'’s support for collaboration. This extension allows users of VLAB to transparently
access remote databases, making it easy to invoke and interchange objects among
collaborators. A new VLAB tool, RAserver, has been developed. RAserver is a daemon
running on a remote computer, performing actions on the remote database on request by
other VLAB tools accessing the database. RAserver maintains a list of accounts with
encrypted passwords and access levels, thus preventing unauthorized access to remote
databases. Browser, hyperbrowser and Object Manager are capable of accessing remote
databases using the services provided by RAserver. RAlibrary was designed and
implemented to aid programmers in the development of applications that require
RAserver’s services.

The design of panel manager has been improved and a new version implemented. Through
its new GUI builder facilities panel manager now allows users to create and modify panels
visually. The new panel manager also supports two-way communication, thus removing
the inconsistency between the information displayed in the panel and the information
contained in the data files. Panel manager 3.0 uses the Motif library for its user interface,
making its look and feel consistent with the rest of the VLAB components.

126 CHAPTER 9: CONCLUSION AND FUTURE WORK

Performance related limitations associated with the earlier version of Browser have been
eliminated, allowing it users to fully explore its capabilities. Speed improvements were
mainly achieved by re-implementing Browser in C++, by using faster GUI libraries, and
also by reducing its dependence on external utilities.

Various customization mechanisms were implemented. The users are allowed to change
the visual appearances of most VLAB applications.

VLAB's portability was improved to make it accessible to a wider range of users. Its
portability was successfully tested by porting it to three different UNIX operating systems
on four architectures. A project is presently under way which will make VLAB available

on personal computers.

9.1.2. Impact of VLAB 3.0

VLAB 3.0 has been installed in many places and with great success used to support
scientific research for over one year. The new support for alternate views of object
databases and for customizing appearances of VLAB applications has been successfully
used to give live presentations. Hyperbrowser allows scientists to conveniently design the
order of their demonstrations and to add descriptions to the presented objects. During the
actual presentations, hyperbrowser is used to systematically invoke the prepared objects
together with their descriptions.

Older versions of VLAB have been successfully used to support individual research of
many users around the world. With the new support in version 3.0 for accessing remote
databases, many researchers use VLAB for collaboration purposes. For instance, VLAB is
currently being used for collaborative work between users in Calgary and Australia.

Thanks to the improved portability of all VLAB components, version 3.0 has been
compiled and installed in France on a previously untested platform - DEC Alpha running
Linux 2.0. Also, unmodified sources of VLAB 3.0 successfully compile and execute on a
new version of the IRIX operating system (6.2).

9.2. Limitations and future work

In this section | discuss ideas to be considered for future work. Most of these ideas stem
directly from the limitations of VLAB 3.0 and from the lessons | learned during its

CHAPTER 9: CONCLUSION AND FUTURE WORK 127

implementation. Some of these ideas introduce new concepts, while others would
contribute to VLAB by merely increasing its functionality.

9.2.1. Find

The find operation in the current implementation of browser does not take advantage of
the object lookup tables available in every oofs database. It uses a recursive algorithm to
traverse object trees to search for a match, and is therefore inefficient. A more efficient
solution should be implemented, where the search would be performed by examining the
contents of thedbase file.

9.2.2. Improved GUI designer for panel manager

A number of improvements are needed to improve the support for visual building of
control panels in panel manager 3.0. Support for changing attributes for multiple
components is desired. For example, it is tedious to change the background of all
components in a control panel to the same color, as this can only be done one component
at a time. The user should be able to select multiple components and then invoke an
attribute editor, where common attributes for all selected components could be modified.

Panel manager also needs a better selection of components. For example, the choice
control is not well suited for long lists of selections. A combo-box or a scrolled list would

be more appropriate for this purpose. Also, group components are desired, So components
can be organized and manipulated in groups. Text box would be another useful
component, which could allow the users to edit blocks of text using the keyboard.

9.2.3. Undo

One of the most important features which unfortunately all VLAB applications lack is an
undo function. The undo functionality is mostly needed in Browser and hyperbrowser for
operations involving database management, as it could revert accidental, or no longer
wanted, modifications.

The need for an undo mechanism has been identified shortly after the release of the first
version of VLAB. Unfortunately, no acceptable solution has been found to this date.
Undoing changes made to VLAB oofs and hofs databases is equivalent to undoing

128 CHAPTER 9: CONCLUSION AND FUTURE WORK

changes made to a UNIX filesystem, because VLAB databases are stored as a hierarchy of
directories and files. Most flavors of UNIX operating system do not offer any means for
reverting modifications of filesystems. Without support from the operating system,
programs implementing undo would have to record all changes made to the filesystem, so
that they could be undone. The mechanism for recording such changes has to be efficient
if the performance of VLAB is not to suffer.

The implementation of an undo mechanism is complicated even in a single-user
environment. The difficulties arise, for example, when one application cannot complete an
undo request because the database has been further modified by another application. For
instance, consider a scenario where the user is running two copies of Browser on the same
oofs database. The user deletes an extension of a prototype using the first Browser,
followed by moving the prototype to another location using the second Browser. Undoing
the last operation in the first Browser involves recreation of the removed tree. However,
this is now impossible, as the prototype was moved to another location.

The issues concerning the implementation of undo functionality increase in complexity
when a multi-user environment is considered. Now one has to contemplate the possibility
of other users (possibly connected remotely) modifying the same database and thus
impeding the execution of an undo operation. A simple solution (from the implementation
point of view) is to report to the user whenever undo cannot be completed. However, such
solution would give the user a false sense of security, because the undo command could
fail to work in some cases.

9.2.4. Extended objects

For many classes of experiments, such as development of source code, it is natural to
organize information in sub-directories. VLAB’s extension which would allow sub-
directories to be stored within objects, is therefore imperative if VLAB is to be
successfully used for the management of experiments of this kind. Although it is possible
to manually store subdirectories with objects in oofs database, all VLAB tools assume that
objects only contain regular files. Consequently, the information stored in subdirectories
could get lost if the object was manipulated by any of the VLAB tools.

Many of the tasks invoked by users at the beginning and at the end of experimentation are
routine. For example, it is common to store large text data files in a compressed form to
save space. Every time an object containing such compressed data is invoked, the data
needs to be un-compressed before it can be used. Examples of routine tasks performed
when the user is finished with an experiment include: compression of large files, clean-up
of temporary data files, etc. VLAB should allow each object to be associated with user
definable actions, executed when an object is invoked and closed.

CHAPTER 9: CONCLUSION AND FUTURE WORK 129

9.2.5. Extended hyperobjects

The current design of VLAB’s hypertext system has an important limitation: each hofs
database is associated exactly with one oofs database, and all hyperobjects in this hofs
database must point to objects its associated oofs database. It is impossible to have two
hyperobjects in the same hofs database pointing to objects in two different oofs databases.
This means, in particular, that users are not allowed to create hyper-links to other user’s
objects, and that they are not allowed to copy hyperobjects between two different hofs
databases. The current design of hypertext system needs to be extended so that
hyperobjects can point to objects in any oofs databases.

9.2.6. Unified oofs and hofs databases

The only difference between objects and hyperobjects is that objects contain real
information and hyperobject contain pointers to other objects. There is no need to manage
these entities in two separate databases. The current design can be extended by unifying
oofs and hofs databases into a single database. In this new database an object would either
represent a real information, or contain a hyperlink to another object in the database. This
would eliminate the need for two separate VLAB applications - a browser for oofs
databases and a browser for hofs databases. Their functionality could be combined into a
single application. Several issues would have to be, however, addressed in such design.
There is no equivalent of object manager for hyperobjects - how can a user manipulate the
internals of a hyperobject? Could hyperobjects become prototypes for objects?

9.2.7. Unique access to databases

It is a known fact in computer science that simultaneous modifications of a shared
resource may result in an unexpected corruption of information. The present
implementation of VLAB does not prevent concurrent access to databases, and therefore
does not protect its users against such damage. A possible solution is to ‘lock’ the entire
database whenever an application is accessing the database, so that all other applications
have to wait. Such locking could be implemented for example using file locks [35]. The
disadvantage of this simple implementation is that in some cases the performance of other
concurrently running applications unnecessarily suffers. Some operations can be
performed on a database concurrently, without the fear of damaging any information (such
as invoking two objects, or performing two different searches). A mechanism is needed
which will guarantee unique access to databases but will affect the performance of VLAB
applications to a minimum.

130 CHAPTER 9: CONCLUSION AND FUTURE WORK

9.2.8. Multiple inheritance

The inheritance mechanism adopted by VLAB allows only one prototype per object. It is
impossible to create an extension which would inherit from more than one object
simultaneously. This limitation of VLAB has been identified in its early design stages
[21], however no satisfactory mechanism for implementing multiple inheritance has been
found to this date. Having the possibility to create extensions inheriting from a number of
prototypes would be appreciated in many areas of computer based experimentation. For
example, in biological modeling of plants multiple inheritance could be used to create
gardens, where the prototypes would represent individual plants and the extension the
complete scene. In source code management domain, the prototypes could represent
various libraries, while the extension could represent a program that uses these libraries.

9.2.9. Alternate methods for storing databases

In the current implementation of VLAB, both the oofs and hofs databases are stored as
hierarchies of files and subdirectories in a UNIX filesystem. The most important
advantage of this design is the fact that the user is able to manually access and modify
databases using standard UNIX tools, allowing him to augment the functionality of
existing VLAB tools. This design has proven to be beneficial in the early stages of
VLAB’s development, when the functionality offered by VLAB tools was limited. With

the increased database management capabilities provided by the current version of VLAB,
occasions when the user has to resort to a command line are very rare. Another important
advantage of the current design is the simplicity of its implementation. The UNIX
hierarchical filesystem and symbolic links lent themselves extremely well to this design.

The disadvantages of the current design are related to the fact that even moderately sized
databases are usually composed of a large number of directories and small files. Many
operations on databases need to examine contents of several files, which is translated into
a number of system calls, such as opening and closing files. The action of opening and
closing files under UNIX operating systems is generally associated with a significant
amount of overhead, resulting in performance penalties for VLAB applications. Also, disk
controllers usually read and write data in chdnKshe data files are smaller than the size

of these chunks, most of the I/O time is spent by reading and writing unnecessary
information. Another disadvantage of storing a small amounts of information in many files

is the waste of available resources - in this case the resource is the disk space. Independent
of its size, every file on a UNIX filesystem occupies a minimum amount of space,

t determined by the hardware - usually the size of the disk’s sectors, which is
approximately 512 bytes

CHAPTER 9: CONCLUSION AND FUTURE WORK 131

equivalent to one bIo&k[35]. If the size of an information to be stored is 1Kb, but the
information is split and stored in 10 different files, the total disk space used to store this
information is 10Kb - ten times as much as is required.

As an alternative to the current design, the oofs and hofs databases could be stored in a
single file using one of the general purpose database engines, such as Oracle [39], or a
custom build database engine. The advantages of such design would be visible in many
areas. For example, the speed of Browser and hyperbrowser would increase, as the work
would be more efficiently distributed between the database engine and the VLAB
applications. Most of the system calls performing file related I/O operations in Browser
and hyperbrowser could be eliminated, reducing the amount of overhead associated with
many operations. Another advantage of such new design is that some of the limitations of
the current design would be easier to remove, such as guaranteed unique access to a
database, or the undo functionality. Many database engines have such functionality built
in.

RAserver can be considered to be a very primitive database engine, providing a set of low-
level database operations. If an existing database engine (such as Oracle) was to be used
for storing of oofs and hofs databases, the need for RAserver is likely to be completely
eliminated, as such database engine could easily perform the duties of RAserver. If a
custom based database engine was to be designed, large parts of RAserver’s design and
implementation could be reused for such purpose.

9.2.10.Distribution of external programs

The information contained in a VLAB object is comprised of data files and a description
of actions which can be invoked on these data files. The description of actions specifies
how to run external programs (e.g. plant generation software, raytracers, compilers, etc.)
on the particular data files. The external programs, however, are not part of the object. It is
assumed that the user invoking an object has all the necessary programs properly installed
and setup. VLAB itself does not support any mechanism for distributing these external
programs.

Since VLAB is to this date mostly used for plant modeling, the problem of distributing
programs is ‘solved’ by bundling the distribution of VLAB with the plant generating
software. Unfortunately, this does not eliminate the problem when VLAB is used for
managing other types of experiments. For example, if VLAB is used to manage
experiments requiring some non-standard simulation software, the majority of users won’t

t the smallest number of bytes that can be read and written at one time, usually
about 1Kb

132 CHAPTER 9: CONCLUSION AND FUTURE WORK

be able to invoke such experiments as the non-standard simulation software will most
likely not be installed on their systems. This limitation of VLAB is most visible when
users try to make the results of their research available to the general public.

The distribution of programs used by VLAB objects has to be properly addressed to
improve VLAB's flexibility and usability in areas other than biological plant modeling.
VLAB users should be able to invoke any objects from any database, without having to
manually obtain, install and setup the software needed to experiment with these objects.
The process of acquiring and installing external software should be either completely
automated, or at least adequately assisted by VLAB.

The design of a mechanism for external program distribution has to address several
important issues. For example, how to deal with incompatibility of binaries among
different architectures and versions of operating systems? Do we distribute external
programs as sources or as binaries? Using programming languages designed to be portable
across multiple platforms, such as Java [8][11] or Python [19][40], might help to solve this
problem to some extent, but other issues would have be addressed still. How, if at all, do
commercial programs get distributed? How does VLAB enforce that the proper version of
Java an Python is installed on the client?

Other questions which need to be answered in the design of mechanism for distribution of
external software include: where is the external software going to be installed? Does it
remain installed after the experimentation with the particular object is finished? How is the
mechanism going to deal with software dependencies - e.g. one program may need other
programs in order to function correctly, which in turn can require special libraries. When
does the transfer of external programs occur? If the process of distributing the external
programs is automated, how can the user downloading the software protect his system
from harmful programs such as viruses?

References

[1] Anderson, P., Baran, C., Flanagan, J., Ford, L., Hiyatee&ning Alias V8R.R.
Donnelley, 1996.

[2] Avrahami, G., Brooks, K. P., Brown, M. KA Two-View Approach to Constructing
User InterfacesComputer Graphics, Volume 23, Number 3, July 1989, pp. 137-
146.

[3] Barth, P. SAn Object-Oriented Approach to Graphical InterfacA€M Transac-
tions on Graphics, Vol 5, No. 2, April 1986. pp. 142-172.

[4] Bernstein, D. JUsing Motif with C++. SIGS Books. March 1995. ISBN 1-
884842-06-2.

[5] Chatterjee, S., Paramasivam, M., Yakowenko, Mirdhitecture for a Web-Acces-
sible Simulation EnvironmenComputer, June 1997, pp. 88-91.

[6] Cutler, E., Gilly, D., O'Reilly. T.The X Window System in a Nutsh@iReilly &
Associates, second edition, April 1992. ISBN 1-56592-017-1.

[7] Federl, PBrowser and Landscape Editor for Virtual Laboratory in BioloG2SC
502 Final project report. University of Calgary. April 1995.

[8] Flanagan, DJava in a NutshellO’Reilly & Associates, first edition, 1996. ISBN
1-56592-183-6.

[9] Garfinkel, S., Spafford, Qractical UNIX & Internet SecurityO’'Reilly & Asso-
ciates, 2nd edition, April 1996. ISBN 1-56592-148-8.

[10] Gentner, D., Nielson, J'he Anti-Mac InterfaceCommunication of the ACM
August 1996, pp. 70-82.

[11] Harold, E. RJava Network Programmin@’Reilly & Associates. February 1997.
ISBN 1-56592-227-1.

[12] Heller, D. Motif Programming ManualO’Reilly & Associates. February 1994.
ISBN 1565920163.

134

REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

Hernadi, I. The Virtual Laboratory.http://www.cpsc.ucalgary.ca/Redirect/bmv/
vlab. March 1996.

Knelsen, CA multipurpose interface for interactive control of multiple parame-
ters.Master’s thesis. University of Regina. 1988.

Lehey, G.Porting UNIX SoftwareO’Reilly & Associates. November 1995. ISBN
1-56592-126-7.

Levine, J. R., Mason, T., Brown, [@x & yacc.O'Reilly & Associates second edi-
tion, 1995. ISBN 1-56592-000-7.

Lieberman, HUsing prototypical objects to implement shared behavior in object
oriented systemsn Proceedings of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (New York, 1986), Association
for Computing Machinery, pp. 214-223.

Lowe, E. M.Extensions to the Virtual Laboratorllaster’s thesis. University of
Calgary, 1995.

Lutz, M. Programming PythonO’Reilly & Associates. October 1996. ISBN 0O-
937175-75-7.

Mercer, L., Prusinkiewicz, P., Hanan,The concept and design of a virtual labo-
ratory. In Proceedings of Graphics Interface ‘90 (1990), CIPS, pp. 149-155.

Mercer, L.The virtual laboratoryMaster’s thesis. University of Regina. 1991.
Moen, S.Drawing dynamic treedEEE Software (July 1990), pp. 21-28.

Nardi, B. A. Asmall matter of programming: perspectives on end user computing.
MIT Press, 1993.

Nye A., O'Reilly T. X Toolkit Intrinsics Programming ManuaD’Reilly & Asso-
ciates, second edition, 1990. ISBN 0-937175-62-5.

Nye, A. Xlib Programming ManualO’Reilly & Associates, third edition, 1993.
ISBN 1-56592-002-3.

Pearl, A.Sun’s Link Service: a Protocol for Open Linkimtypertext'89 Proceed-
ings, pp. 137-146, 1989.

Prusinkiewicz, P., Knelsen, Gdrtual control panels.Proceedings of Graphics
Interface ‘88, pp. 185-191.

REFERENCES 135

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Prusinkiewicz, P., Lindenmayer, A. &halgorithmic beauty of plantSpringer-
Verlag, New York, 1990 (second printing 1996). With J. S. Hanan, F. D. Fracchia,
D. R. Fowler, M. J. M. de Boer, and L. Mercer.

Prusinkiewicz, P., Hanan, J. Wypertext environment for UNIX Proceedings of
Graphics Interface ‘88 (Edmonton, Canada, June 6-10). pp. 50-55, Canadian Infor-
mation Processing Society, 1988.

Quercia, V., O'Rellly, T. X\Window System User’s Guide'Reilly & Associates,
4th edition, May 1993. ISBN 1-56592-014-7.

Reeves, W. T., Ostby, E. F., Leffler, SThe Menv Modeling and Animation Envi-
ronment. The Journal of Visualization and Computer Animation, Vol. 1: 33-40,
1990.

Smith, R. G., Barth P. S., Young, R. L.Substrate for Object-Oriented Interface
Design. A Substrate for Object-Oriented Interface Design, pp. 253-315. MIT
press, 1987. ISBN 0-262-19264-0.

Snider, A.An interactive, physically-based simulation system. Master’s thesis.
University of Regina, Regina, Canada. 1992.

Stern, H.Managing NFS and NISO'Reilly & Associates. June 1991. ISBN 0-
937175-75-7.

Stevens, W. RAdvanced Programming in the UNIX EnvironmeXxddison-Wes-
ley. June 1992. ISBN 0201563177.

Stevens, W. RUnix network programmingPrentice-Hall, Englewood ClIiffs,
1990.

Strauss, P. S., Carey, Rn Object-Oriented 3D Graphics Toolki€Computer
Graphics, 26, 2, July 1992, pp. 341-349.

Stroustrup, BThe C++ Programming Languag@Addison Wesley, second edition,
1991. ISBN 0-201-53992-6.

Urman. S.Oracle PL/SQL Programming; The Essential Guide for Every Oracle
ProgrammerOsborne, April 1996. ISBN 0078821762.

Watters, Alnternet Programming with Python, with CD-ROM.& T Publishing.
September 1996. ISBN 1558514848.

136

REFERENCES

[41]

[42]

[43]

[44]

Wegner, PThe Object-Oriented Classification Paradigm. Research Directions in
Object-Oriented Programmingpp. 479-560. MIT press, 1987. ISBN 0-262-
19264-0.

Wernecke, JThe Inventor Mentordddison-Wesley, 1994. ISBN 0-201-62495-8.

Wolfram, S.The Mathematica BooRMNolfram Media & Cambridge University
Press, 1996.

Zeleznik, R. C., Conner, D. B., Wloka, M. M., Aliaga, D. G., Huang, N. T., Hub-
bard, P. M., Knep, B., Kaufman, H., Hughes, J. F., DamAmObject-Oriented
Framework for the Integration of Interactive Animation Technigqu@smputer
Graphics, Volume 25, Number 4, July 1991, pp. 105-112.

APPENDIX A RA class

static RA_Connection * new_connection (

const char * host_name,
const char * login_name,
const char * password);

Establishes a new connection to RAserver daemon running on a
computerhost_name . Then aLOGIN request witHogin_name
andpassword is sent. If the response received from RAserver is
positive, a valid connection is returned. The result of this function is
a pointer to an object of tyg®A_Connection , which has to be
supplied to all other methods of tRé class.

If new_connection() is called with éhost_name that repre-

sents a local machine, then RAserver is actually not accessed, but a
special type oRA_Connection is created and flagged local. Oth-
erwiseRA_Connection is flagged remote. When performing
operations on a file through a local connection, the requests are actu-
ally not sent over a network to RAserver, but rather invoked locally,
directly from the called method. This allows for a consistent mecha-
nism for accessing any VLAB object files using the same calls,
whether in a local or a remote database.

static void close_connection (

RA_Connection * connection);

Closes an existing connection. If connection type is remote, first a
LOGOUTequest is sent, and®GOUTesponse received. Then the
socket connection is shut down. If the connection type is local, noth-
ing happens.

138 APPENDIX A: RA CLASS

static int Compare_files (
RA_Connection * connectionl,
const char * fnamel,
RA_Connection * connection2,
const char * fname2);

» Compares two remote files to each other. If the two connections point
to the same RAserver, a single RA_ COMPFILE_REQUEST is sent
to RAserver, which will complete the operation by performing the
file comparison on the server.

 If the connections are not on the same host, but they are both remote
connections, both files are first downloaded to a local computer,
compared and then deleted. If one of the connections is remote and
the other local, only one file is downloaded to the local computer. If
both connections are local, a local comparison is performed.

static int Copy_file (
RA_Connection * src_connection,
const char * src_fname,
RA_Connection * dst_connection,
const char * dst_fname);

» Copies filesrc_fname fromsrc_connection todst_fname
ondst_connection . If both files are on the same remote com-
puter,RA_COPYFILE_REQUESIE sent to RAserver instructing it
to perform the operation directly on the server, without downloading
any data to the client. Otherwise #re_fname is downloaded
from src_connection , and then uploaded dst_fname
throughdst_connection

static int Unlink (
RA_Connection * connection,
const char * fname);

» Deletes a file specified bgame on the server.

static int Deltree (
RA_Connection * connection,
const char * dirname);

* Recursively removes a directory on the server specified by
dirname .

APPENDIX A: RA CLASS 139

static int Symlink (
RA_Connection * connection,

const char * src_fname,
const char * dst_fname);

* Creates a symbolic link betwesrc_fname anddst fname on
the server.

static int Rename (
RA_Connection * connection,

const char * src_fname,
const char * dst_fname);

* Renames a file specified byc_fname todst_fname

static int Stat (
RA_Connection * connection,

const char * fname,
RA_Stat_Struc * stat_struc);

» Obtains various information about a file specifiedriame . The
results are stored stat_struc

static int Get_dir (
RA_Connection * connection,

const char * dir_name,
char *** [ist);

» Obtains a list of entries in a directory specifieddbyname . The
result is stored itist ~ as an array of strings. The end of the list is

denoted by &ULL pointer.

static int Readlink (
RA_Connection * connection,

const char * fname,
char * (& result));

» Returns the file to which a symbolic liftkame points.

static int Is_link (
RA_Connection * connection,

const char * fname);

Finds out whetheiname on a remote host is a symbolic link.Calls
Stat() to do the actual work.

140 APPENDIX A: RA CLASS

static int Write_file (
RA_Connection * connection,
const char * fname,
const char * buffer,
const long size);

» Creates a filéname on the server. The contents of this newly cre-
ated file will be taken from the supplied paramétgfer . The
parametesize specifies the number of byteshaffer

static int Put_file (
const char * local_fname,
RA_Connection * connection,
const char * remote_fname);

» Copies a local fildbocal_fname into a fileremote_fname
located on the server. This function is implemented by first reading
the contents of the local file into memory, and then calling the
Write_file() method.

static int Read_file (
RA_Connection * connection,
const char * fname,
char * (& buffer),
long & size);

* Retrieves the contents of the filmme on the server. The contents
of the file are returned to the calledanffer and the size of the
contents irsize .

static int Fetch_file (
RA_Connection * connection,
const char * remote_fname,
const char * local_fname);

» Copies the contents of a filemote_fname located on the server
into a local fildocal_fname . This method is implemented by first
using theRead_file() method to read the contents of the remote
file into memory, and then the local file is created with these con-
tents.

APPENDIX A: RA CLASS 141

static int Get_file_type (
RA_Connection * connection,
const char * fname,
RA_File_Type & type);

» Determines the type of a remote fi,mme . Uses metho&tat()
to retrieve the information about the remote file, from which the file-
type is determined.

static int Mkdir (
RA_Connection * connection,
const char * path,
mode_t mode);

» Creates a directonyath with permissionsnode on the server.

static int Rmdir (
RA_Connection * connection,
const char * path);

* Removes an empty directopath on the server. If the directory to
be removed is not empty, the operation will fail.

static int Access (
RA_Connection * connection,
const char * fname,
const int amode);

» Determines a possible access to a remoténtilime . For example,
this method is used to determine whether a directory is writable.
UsesStat() method to obtain the necessary information.

static int Realpath (
RA_Connection * connection,
const char * path,
char * (& result));

* Returns a real path to the remote filgh in result

static int Get_extensions (
RA_Connection * connection,
const char * path,
char ** (& list));

* Returns a list of extensions and their attributes of a remote object
specified bypath . The result is stored iist as a list of strings.
Each string is composed of two parts, extension name and exten-
sion’s attribute, separated by(a character.

142 APPENDIX A: RA CLASS

APPENDIX B More on panel manager

B.1. Example of creating a control panel

In this section | present an example, in which a complete control panel is created. Imagine
that the user wants to design a control panel for a data file which is to be used by some
physically based simulation program. The data file is cadietulate.dat , and
contains the following information:

Gravity: 9.81
N-iterations: 10
Rendering: gouraud

The user would like to control three parameters: gravity (ranging between -100.0 and
100.0), number of iterations (ranging between 1 and 100), and the rendering method
(available options being: wire, flat, gouraud and phong).

The user creates the control panel from scratch, by invoking panel manager in the edit
mode without specifying any file-name (Figure B-1). Since no file-name was specified on
the command line, panel manager shows an empty window with no components. Before
the user can start adding new components into the control panel, he has to first create a
new panel by choosinfgle-> Newmenu from the menu bar. After the panel is created, he
sets the title of the panel fmimation in its attribute editor (invoked from the Panel’'s
pop-up menu) as seen in Figure B-2. After the title is set, the user disposes of the attribute
editor by clicking itsHide button, located at its bottom edge.

Now the user creates a floating point range control which will be used to modify the
gravity parameter - by choosirgreate-> Frangefrom the pull-down menus. This will
position a new floating point range (frange) at the left top corner of the empty panel. The
user drags the new frange into the top center of the panel, and resizes it so that it spans
from the left edge to the right edge. Then he invokes its parameter editor (Figure B-3) and
sets its Font to familyhelvetica(adobe) , Style:medium normal and sizel4.

After that theMin, Max, IncremenandPage Incrememntalues are set to -100.0’, ‘100.0’,

-0.01’ and ‘0.25’. Then the user sets the value ofRite field to simulate.dat , and

theField Prefixto ‘Gravity: .

144 APPENDIX B: MORE ON PANEL MANAGER

% panels -e

Figure B-1: Invoking panel manager in edit mode

Figure B-2: Setting the panel’s title in panel’s attribute editor

APPENDIX B: MORE ON PANEL MANAGER 145

Figure B-3: Using the floating point range’s attribute editor and the font chooser

Now the user creates an integer range control
(irange) for modifying the number of iterations
and position/resize it to fit under the frange
component. Then the attribute editor is
invoked, and the fields are set to the following
values:Min: 1, Max 100, Increment 1, Page

Increment 10, Title: ‘Number of
iterations ', File: simulate.dat , Field
Prefix ‘N-iterations: ". Figure B-4 shows

panel manager after these steps are performed.

Figure B-4: Panel manager in
edit mode with two
components

146 APPENDIX B: MORE ON PANEL MANAGER

Finally, the user creates the choice component [= Gptins For ool

choosing th&Create-> Choicanenu. After resizing | s it

and placing the choice component to be aligne == L]

with the previous two components, he invokes i :::":1 H

attribute editor and set the fields toitle: . s (]

‘Rendering Model ', File: ‘simulate.dat 7, | e s }

and Field Prefix ‘Rendering: . Since four ™* L=

options are needed for the rendering type and s ——

default the choice control comes with only thre Choscas

choices, the user adds one more entry to the list| ... o i

choices by clicking on any of thadd buttons. oo e

Then he initialize the list to values as shown i _ - i

Figure B-5. - as
ik g e
Fix

The design of the control panel is now complete, ¢ srmiave da

the user saves the panel into a file calle ™ ™

‘panel.pnl . He choose#ile-> Save..from the e

pull-down menus, which will display a file
selection dialog. In this dialog he entersigure B-5: Editing choice’s

panel.pnl into theSelectionbox, and click the attributes
OK button.
To modify the parameters in a file calle(= Awmaion <0
simulation.dat using the control panel that
was just created, the user would invoke pan &g @ o =
manager using the following command:
Phmsber of Reratang
o R
% panels panel.pnl o
w Wirgfrang

Panel manager would then read the current valu| . fw
of the parameters and display the control panel | Guae
shown in Figure B-6. Modifying the values througl - Fhes
the displayed controls in the control panel wil
automatically result in changing the values of th
parameters in the filsimulation.dat . If the
user wants to change the interface of the contr
panel, he would invoke panel manager in the eqﬂ
mode on the panel definition file, i.e.:

gure B-6: Final appearance of
the control panel

% panels -e panel.pnl

APPENDIX B: MORE ON PANEL MANAGER 147

B.2. Component attributes

The following table summarizes the attributes and their types for each control supported
by panel manager 3.0.

Table B-1: Component attributes

Component| Attribute Attribute Attribute Attribute
Type Name Type Name Type
width integer file string
© height integer foreground string
g ; ; ;
Q title string background string
name string font string
X integer label string
y integer field_prefix string
o width integer file string
% height integer background string
o name string foreground string
o ; ; ;
= min integer trough_color string
max integer bottom_shadow string
inc integer top_shadow string
page_inc integer font string

148

APPENDIX B: MORE ON PANEL MANAGER

Table B-1: Component attributes

Component| Attribute Attribute Attribute Attribute
Type Name Type Name Type
X integer label string
y integer field_prefix string
qé" width integer file string
,g height integer background string
S name string foreground string
% min double trough_color string
= max double bottom_shadow | string
inc double top_shadow string
page_inc double font string
X integer label string
y integer background string
% width integer foreground string
- height integer font string
name string
X integer file string
y integer background string
width integer foreground string
3 height integer toggle_color string
% name string bottom_shadow string
label string top_shadow string
choices list font string
field_prefix | string

APPENDIX B: MORE ON PANEL MANAGER 149

B.3. Class component

The following table describes the cl&smponent .

Table B-2: Class component

class Event;
typedef void (* Handler) (Component &, Event &);

* These two types are used for the callback function in edit mode.
They are explained in Section 5.4.3.

enum ComponentType type;
 stores the type of the component
char name[256];

» stores the name and number of the component (for example, choice
components would be named choiceO, choicel, ...)

long X, y, width, height;

* [x,y] defines the position of the left upper corner of the component
when rendered, with respect to the parent compomadth and
height define the component’s dimensions.

Component * parent;
» stores the pointer to the parent component

Component();
virtual ~Component();

* constructor & destructor

static Component * create(const char * name,
AssignmentList * al);

» Constructor used by the Parser class to build a new component with
attributes gathered in the the paramaterAssignmentList is a class
that holds a list of attribute names and their values as parsed in from
the file.

virtual void add_child(Component * ¢);

* Adds a component to the list of children. This method is declared vir-
tual, but it should not be modified by the derived class, unless the
class needs to be able to do some geometry restraints on its children
at their creation time.

150 APPENDIX B: MORE ON PANEL MANAGER

Table B-2: Class component

virtual char * to_str(void);
virtual void print(long indent = 0);

» Used to access the information about a component in a printable text
format.
virtual void render(Widget parent) = 0;

* Renders the component by creating and managing Xt widgets. The
top-level widget is created as a child of the supplied parameter par-
ent. After the component is rendered, tieader() @ method is
called for every child. Every derived subclass has to define its own
method for rendering.

virtual int init(void);

e Callscommon_init() of the component, and thamt() on all
children. This method is supposed to be overloaded by all derived
classes, but if overloaded, it should still include a call to
common_init()

void highlight_off(Boolean recursive);
void highlight_on(Boolean recursive);

» Sets/unsets the highlight for a component, amelafirsive is set,
then for all children as well.

Component * get_root(void);

» Convenience function - locates and returns the root component of the
tree which the component is part of.

int common_init(void);

* Makes some of the current attributes to inherit the values from the
parent (i.ebackground ,font). Then the current parameter value
is extracted intdoken - the parameter location is definedname
andfield_prefix

void set_run_mode(void);

» Sets the mode of all components in the tree to the run mode. This
function should be called only on the root component of the tree.

void set_edit_mode(Handler handler);

APPENDIX B: MORE ON PANEL MANAGER 151

Table B-2: Class component

» Sets the mode of all components in the tree to edit mode, and assigns
to each component an event handler as defined by the parameter
handler . This function should be called only on the root compo-
nent of the tree.

virtual void get_geometry(long & x_ret, long & y_ret,
long & width_ret, long & height_ret);

* Returns the geometry of the component.
virtual void get_root_xy(long & x_ret, long & y_ret) = 0;

* Returns the coordinates of the left upper corner of the rendered com-
ponent with respect to the root window (screen).

virtual void set_geometry(long x, long y,
long width, long height) = 0;

» Every derived component has to define this function to be able to
accept resize/re-position requests. These requests can be granted or
refused.

virtual Widget get_rwidget(void) = 0O;

* Returns the top-level widget used to render this component.in the
current implementation, this widget is of tygenFrameWidget-
Class for all components.

virtual void remove_child(Component * comp);

* Removes a child from the list of children. This method should be
called in the destructor of any component on the parent component.

virtual void edit_settings(void);
» Displays the attribute editor for the component.
virtual void redraw(void);

* When attributes of a component are changed, this method has to be
called in order to synchronize the changes made to the component
with its visual appearance.

virtual void dump(Mem_I1O &, long indent = 0);

» Dumps all information about the component into memory. This func-
tion is called by the main program when the user decides to save the
control panel into a file. This method also calisnp() on every
child, and therefore the calling program should onlyaathp() on
the root-level component.

152 APPENDIX B: MORE ON PANEL MANAGER

Table B-2: Class component
virtual void _set_highlight(Boolean highlight) = O;

» All derived classes have to define this method. This method will
change the appearance of the cldasghfight specifies whether
the border of the component should be of distinct color or not). This
method is called biighlight_on()

Color select_color;
» Defines the color of the highlight.
Handler callback _handler;

» Pointer to the user defined callback function. This is only used in edit
mode, and therefore will be described in the next section.

Color background;
Color foreground;
FontStyle font;

char file_name[4096];
char field_prefix[4096];

» Basic attributes for every component.

Boolean highlighted;
Boolean rendered,;
char edit_mode;

» \Various state variables.
Mem token;
» The value of the parameter as extracteddiymon_init()

long n_children;
Component ** children;

» Stores the list of all children.
OptionsDialog * options_dialog;

» A pointer the attribute editor, created dit_settings()

	THE UNIVERSITY OF CALGARY
	Design and Implementation of Global Virtual Labora...
	by
	Pavol Federl
	A THESIS
	SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
	IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE...
	DEGREE OF MASTER OF SCIENCE
	DEPARTMENT OF COMPUTER SCIENCE
	CALGARY, ALBERTA
	DECEMBER, 1997
	(c) Pavol Federl 1997

	THE UNIVERSITY OF CALGARY
	FACULTY OF GRADUATE STUDIES
	Abstract
	Acknowledgments
	Chapter 1: Introduction 1
	Chapter 2: Statement of objectives 15
	Chapter 3: Survey of related concepts and previous...
	Chapter 4: Remote access server 31
	Chapter 5: Panel manager 55
	Chapter 6: Browser 89
	Chapter 7: Metatext 105
	Chapter 8: Hyperbrowser 113
	Chapter 9: Conclusion and future work 125
	Appendix A: RA class 137
	Appendix B: More on panel manager 143
	Chapter 1: Introduction
	Chapter 2: Statement of objectives
	Chapter 3: Survey of related concepts and previous...
	Chapter 4: Remote access server
	Chapter 5: Panel manager
	Chapter 6: Browser
	Chapter 7: Metatext
	Chapter 8: Hyperbrowser
	Chapter 9: Conclusion and future work
	Appendix A: RA class
	Appendix B: More on panel manager

	Chapter 1 Introduction
	1.1. Motivation
	1.2. Overview of Virtual Laboratory 2.0 and its li...
	1.2.1. VLAB objects and object oriented filesystem...
	Figure 1-1: Example of VLAB object’s directory org...
	specifications
	icon
	ext
	Figure 1-2: Structure of VLAB’s objects

	1.2.2. VLAB 2.0 components
	Figure 1-3: Snapshot of the VLAB 2.0 browser
	Figure 1-4: Snapshot of VLAB 2.0’s object manager
	Figure 1-5: Inter-client communication in VLAB 2.0...
	Figure 1-6: Snapshot of VLAB 2.0’s panel manager
	Figure 1-7: Communication in VLAB 2.0’s panel mana...
	Figure 1-8: Metatext in VLAB 2.0

	1.2.3. Portability

	1.3. Summary

	Chapter 2 Statement of objectives
	2.1. Alternative views of object databases
	2.2. Support for collaboration
	2.3. Panel manager
	Figure 2-1: Snapshot of panel manager 3.0 in graph...

	2.4. Portability
	2.5. Performance improvements
	Table 2-1: Performance comparison of VLAB 2.0 and ...

	32
	20
	45
	20
	3
	0
	15
	1
	2
	2
	25
	2
	2.6. User customization
	Figure 2-2: Snapshot of browser’s customization di...

	2.7. Summary

	Chapter 3 Survey of related concepts and previous ...
	3.1. Concepts related to VLAB
	3.1.1. Monolithic versus open hypertext systems
	3.1.2. Prototype-extension model
	3.1.3. Graphical versus command line interfaces
	3.1.4. Tools

	3.2. Previous work related to the implementation o...
	3.2.1. Two way extensibility
	3.2.2. Building graphical user interfaces
	3.2.3. Frameworks for experimentation
	3.2.4. External parameter control

	3.3. Summary

	Chapter 4 Remote access server
	4.1. Background
	Figure 4-1: Database access in VLAB 2.0 (left), de...

	4.2. Requirements
	4.2.1. Implementation models
	Model 1: X-display redirection
	Model 2: FTP implementation
	Model 3: rsh/rcp implementation
	Model 4: NFS implementation
	Model 5: Special purpose daemon

	4.2.2. Evaluation of implementation models
	Table 4-1: Evaluation of implementation models

	2
	3
	4
	1
	5
	2
	1
	1
	1
	1
	1
	3
	4
	2
	2
	2
	1
	2
	2
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	3
	2
	2
	1
	1
	2
	2
	2
	3
	1
	1
	3
	2
	1
	1
	4
	3
	2
	3
	1
	20
	20
	21
	16
	15
	4.2.3. Conclusion
	4.3. Design
	Figure 4-2: Communication flow between two VLAB ap...

	4.4. User’s perspective of RAserver
	4.4.1. Daemon mode
	4.4.2. Setup mode
	4.4.3. Related files

	4.5. Implementation details
	4.5.1. Overall structure of RAserver
	4.5.2. Communication mechanism and format of messa...
	Figure 4-3: Message Format in Remote Access Extens...

	4.5.3. Implementation of RAserver’s setup mode
	4.5.4. Account file format

	4.6. Remote access library
	4.6.1. Optimization
	4.6.2. Return values
	4.6.3. Example of using RAlibray

	4.7. Summary

	Chapter 5 Panel manager
	5.1. Background - panel manager in VLAB 2.0
	Figure 5-1: Communication flow in VLAB 2.0’s panel...
	Figure 5-2: Example of a control panel and its def...
	5.1.1. Panel definition file format
	5.1.2. Interfacing with an application
	5.1.3. Example of usage
	5.1.4. Drawbacks of panel manager 2.0

	5.2. Requirements and design
	5.2.1. Requirements
	5.2.2. Parameter types
	5.2.3. Extensibility
	5.2.4. Component hierarchy
	5.2.5. Specification of parameter location
	5.2.6. Dual mode of operation

	5.3. User’s perspective of panel manager
	5.3.1. Run mode
	Figure 5-3: Panel manager 3.0 in run mode

	5.3.2. Edit mode
	Figure 5-4: Panel manager 3.0 in edit mode
	Figure 5-5: Popup menu for panel components
	Figure 5-6: Attribute editor for panel components
	Figure 5-7: Attribute editor for label components
	Figure 5-8: Attribute editor for integer range com...
	Figure 5-9: Attribute Editor for Choice Components...

	5.4. Implementation details
	5.4.1. Panel definition file format
	Figure 5-10: Example of a component tree

	5.4.2. Implementation of run mode
	5.4.3. Implementation of edit mode
	Table 5-1: Class event
	Figure 5-11: Resize cursors

	5.4.4. Options dialog

	5.5. Summary

	Chapter 6 Browser
	6.1. Design
	6.1.1. Support for external references to VLAB obj...
	6.1.2. Objects and oofs databases in VLAB 3.0

	6.2. User’s perspective of browser
	Figure 6-1: Browser’s window
	6.2.1. Start-up information
	Figure 6-2: Browser’s login window
	Figure 6-3: Browser’s find dialog
	Figure 6-4: Browser’s customization dialogs: a) ma...

	6.3. Implementation details
	Figure 6-5: Two different tree layout methods: spa...
	Figure 6-6: Different tree drawing methods
	Figure 6-7: Tree clipping in browser

	6.4. Summary

	Chapter 7 Metatext
	7.1. Structure of metatext
	Figure 7-1: Structure of a) metatext database, b) ...

	7.2. User’s perspective of metatext
	Figure 7-2: Snapshot of metatext without (top) and...
	7.2.1. Start-up information

	7.3. Implementation Details
	7.3.1. Index file format
	7.3.2. Frame file format
	Figure 7-3: Example of metatext display

	7.3.3. Organization of metatext databases
	7.3.4. Customization

	7.4. Summary

	Chapter 8 Hyperbrowser
	8.1. Requirements and design
	8.1.1. Shortcomings of metatext
	8.1.2. Design goals
	8.1.3. Implementation models
	8.1.4. Hyperobjects
	8.1.5. Hyperobject file system
	8.1.6. Hyperbrowser

	8.2. User’s perspective of hyperbrowser
	8.2.1. Overview
	Figure 8-1: Example snapshot of hyperbrowser’s win...

	8.2.2. Start-up information
	8.2.3. Invoking hyperobjects
	Figure 8-2: Action menu in hyperbrowser
	Figure 8-3: The order of database traversal using ...

	8.2.4. Changing the order of hyperobjects
	8.2.5. Invalid hyperobjects
	8.2.6. Renaming hyperobjects
	8.2.7. Adding hyperobjects to hofs databases

	8.3. Implementation details
	8.3.1. Structure of hyperobjects
	8.3.2. Format of the node file
	8.3.3. Implementation of hyperbrowser

	8.4. Summary

	Chapter 9 Conclusion and future work
	9.1. Conclusion
	9.1.1. Accomplishments
	9.1.2. Impact of VLAB 3.0

	9.2. Limitations and future work
	9.2.1. Find
	9.2.2. Improved GUI designer for panel manager
	9.2.3. Undo
	9.2.4. Extended objects
	9.2.5. Extended hyperobjects
	9.2.6. Unified oofs and hofs databases
	9.2.7. Unique access to databases
	9.2.8. Multiple inheritance
	9.2.9. Alternate methods for storing databases
	9.2.10. Distribution of external programs

	References
	[1] Anderson, P., Baran, C., Flanagan, J., Ford, L...
	[2] Avrahami, G., Brooks, K. P., Brown, M. H. A Tw...
	[3] Barth, P. S. An Object-Oriented Approach to Gr...
	[4] Bernstein, D. J. Using Motif with C++. SIGS Bo...
	[5] Chatterjee, S., Paramasivam, M., Yakowenko, M....
	[6] Cutler, E., Gilly, D., O’Reilly. T. The X Wind...
	[7] Federl, P. Browser and Landscape Editor for Vi...
	[8] Flanagan, D. Java in a Nutshell. O’Reilly & As...
	[9] Garfinkel, S., Spafford, G. Practical UNIX & I...
	[10] Gentner, D., Nielson, J. The Anti-Mac Interfa...
	[11] Harold, E. R. Java Network Programming. O’Rei...
	[12] Heller, D. Motif Programming Manual. O’Reilly...
	[13] Hernadi, I. The Virtual Laboratory. http://ww...
	[14] Knelsen, C. A multipurpose interface for inte...
	[15] Lehey, G. Porting UNIX Software. O’Reilly & A...
	[16] Levine, J. R., Mason, T., Brown, D. lex & yac...
	[17] Lieberman, H. Using prototypical objects to i...
	[18] Lowe, E. M. Extensions to the Virtual Laborat...
	[19] Lutz, M. Programming Python. O’Reilly & Assoc...
	[20] Mercer, L., Prusinkiewicz, P., Hanan, J. The ...
	[21] Mercer, L. The virtual laboratory. Master’s t...
	[22] Moen, S. Drawing dynamic trees. IEEE Software...
	[23] Nardi, B. A. A small matter of programming: p...
	[24] Nye A., O’Reilly T. X Toolkit Intrinsics Prog...
	[25] Nye, A. Xlib Programming Manual. O’Reilly & A...
	[26] Pearl, A. Sun’s Link Service: a Protocol for ...
	[27] Prusinkiewicz, P., Knelsen, C. Virtual contro...
	[28] Prusinkiewicz, P., Lindenmayer, A. The algori...
	[29] Prusinkiewicz, P., Hanan, J. A hypertext envi...
	[30] Quercia, V., O’Reilly, T. X Window System Use...
	[31] Reeves, W. T., Ostby, E. F., Leffler, S. J. T...
	[32] Smith, R. G., Barth P. S., Young, R. L. A Sub...
	[33] Snider, A. An interactive, physically-based s...
	[34] Stern, H. Managing NFS and NIS. O’Reilly & As...
	[35] Stevens, W. R. Advanced Programming in the UN...
	[36] Stevens, W. R. Unix network programming. Pren...
	[37] Strauss, P. S., Carey, R. An Object-Oriented ...
	[38] Stroustrup, B. The C++ Programming Language. ...
	[39] Urman. S. Oracle PL/SQL Programming; The Esse...
	[40] Watters, A. Internet Programming with Python,...
	[41] Wegner, P. The Object-Oriented Classification...
	[42] Wernecke, J. The Inventor Mentor. Addison-Wes...
	[43] Wolfram, S. The Mathematica Book. Wolfram Med...
	[44] Zeleznik, R. C., Conner, D. B., Wloka, M. M.,...

	Appendix A RA class
	Appendix B More on panel manager
	B.1. Example of creating a control panel
	Figure B-1: Invoking panel manager in edit mode
	Figure B-2: Setting the panel’s title in panel’s a...
	Figure B-3: Using the floating point range’s attri...
	Figure B-4: Panel manager in edit mode with two co...
	Figure B-5: Editing choice’s attributes
	Figure B-6: Final appearance of the control panel

	B.2. Component attributes
	Table B-1: Component attributes

	B.3. Class component
	Table B-2: Class component

