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ABSTRACT 

In this paper we present a method for modeling herbaceous plants, suit- 
able for generating realistic plant images and animating developmental 
processes. The idea is to achieve realism by simulating mechanisms 
which control plant growth in nature. The developmental approach to 
the modeling of plant architecture is extended to the modeling of leaves 
and flowers. The method is expressed using the formalism of L-systems. 

CR Categories and Subject Descriptors: F.4.2 [Mathematical Logic 
and Formal Languages]: Grammars and Other Rewriting Systems: 
Parallel rewriting systems. 1.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling: Curve, surface, solid and object 
representation. 1.3.7 ]Computer Graphics]: Three-Dimensional Graph- 
ics and Realism. J.3 [Life and Medical Sciences]: Biology. 

Keywords: realistic image synthesis, L-system, parallel graph grammar, 
turtle geometry, developmental morphology and physiology of plants, 
scientific visualization. 

1. INTRODUCTION,  

In recent years, the modeling of plants has received considerable 
attention. The problem was approached from two directions. Kawagu- 
chi [21], Aono and Kunii [2], Reeves and Blau [36], Bloomenthal [7] 
and Oppenheimer [31] defined branching structures primarily in 
geometrical terms, such as the lengths of  branches and branching angles. 
Smith [39, 40], Prusinkiewicz [33, 34], Beyer and Friedel [6] and 
Eyrolles [10] concentrated on the specification of plant topology. In all 
cases, plants were defined by a small number of rules applied repeti- 
tively to produce complex structures. Some approaches made it possible 
to create forms which looked "younger" or "older", and even produce an 
impression of plant growth, as witnessed in the f i l l s  of  Aono and Kunii 
[3] and Smith [41]. However, the simulation of development was not a 
focal point of  any of these methods. 

We present a plant modeling method in which the simulation of 
development is the key to realism. Thus, in order to model a particular 
form, we attempt to capture the essence of the developmental process 
which leads to this form. The view that growth and form are interre- 
lated has a long tradition in biology. D'Arcy Thompson [44] traces its 
origins to the late seventeenth century, and comments: 

The rate of  growth deserves to be studied as a necessary 
preliminary to the theoretical study of form, and organic 
form itself is found, mathematically speaking, to be a func- 
tion of time... We might call the form of an organism an 
e v e n t  in space-time, and not merely a configuration in space. 

This concept is echoed by Hallt, Oldeman and Tomlinson [16]: 

The idea of the form implicitly contains also the history of 
such a form. 
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The developmental approach to plant modeling has two distinctive 
features: 

• Emphasis on the space-time relation between plant parts. In 
many plants, various developmental stages can be observed at the 
same time. For example, some flowers may still be in the bud 
stage, others may be fully developed, and still others may have 
been transformed into fruits. If the developmental technique is 
consistently used down to the level of individual organs, such 
phase effects are reproduced in a natural way. 

• Inherent capability of growth simulation. The mathematical 
model can be used to generate biologically correct images of 
plants of  different ages and to provide animated growth sequences. 

We reenact plant development by simulating natural control 
mechanisms. Emphasis is put on the modeling and generation of growth 
sequences of  herbaceous or non-woody plants, since the internal control 
mechanisms play a predominant role in their development. In contrast, 
the form of woody plants is determined to a large extent by the environ- 
ment, competition between trees and tree branches, and accidents [47], 
which are unrelated to the mechanisms considered in this paper. 

We express control mechanisms and simulate developmental 
processes using the formalism of L-systems [24]. In this sense, our 
approach to the modeling of plants has its origin in biological studies 
expressed in terms of L-systems [11-14, 20, 28]. Other approaches using 
L-systems for modeling purposes are also possible. For example, 
Hogeweg and Hesper [19] and Smith [40] searched a particular class of  
context-sensitive L-systems and selected those which generated interest- 
ing shapes. 

2. BRANCHING STRUCTURES AND L-SYSTEMS, 

2.1. Graph-theoretical and botanical trees, 
In the context o f  plant modeling, the term "tree" must be carefully 

defined to avoid ambiguity. To this end, we introduce the notion of an 
axial tree (Fig. 1) which complements the graph-theoretic notion of a 
rooted tree [32] with the botanically motivated notion of branch axis. 

A rooted tree has edges which are labeled and directed, and form 
paths from a distinguished node called the root or the base to the termi- 
nal nodes. In the biological context, these edges are referred to as 
branch segments. A segment followed by at least one more segment in 
some path is called an internode. A terminal segment (with no follow- 
ing edges) is called an apex. 

An axial tree is a special type of rooted gee. At each of its nodes 
we distinguish at most one outgoing straight segment. All remaining 
edges are called lateral or side segments. Within an axial tree, a 
sequence of segments is called an axis if: (a) the first segment in the 
sequence originates at the root of the tree or as a lateral segment at 
some node, Co) each subsequent segment is a straight segment, and (c) 
the last segment is not followed by any straight segment in the tree. 
Together with all its descendants, an axis constitutes a branch. A 
branch is itself an axial tree. 

Axes and branches are ordered. The axis originating at the root of  
the entire plant has order zero. An axis originating as a lateral segment 
of  an n-order parent axis has order n+l.  The order of a branch is equal 
to the order of  its lowest-order or main axis. The terminal node of this 
axis is called the branch top. 
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Figure I. An axial tree. 

Axial trees are purely topological objects. The geometric connota- 
tion of such terms as straight segment, lateral segment and axis should 
be viewed at this Ixfint as an intuitive link between the graph-theoretic 
formalism and real plant structures. 

2.2. Definition of tree L-systems. 
An essential aspect of  plant development is the process in which 

some segments (usually the apices) are transformed into more complex 
structures. We  model this process by a graph-rewriting mechanism 
which operates on axial trees. From the viewpoint of  graph grammar 
theory, this is a special case of  edge rewriting [15] .A rewriting rule, or 
tree production,  replaces an edge, specified as the production predeces-  
sor, by an axial tree called the successor, in such a way that the starting 
node of  the predecessor is identified with the successor's base and the 
ending node is identilied with the suecessor 's top (Fig. 2). 

In the case o f  context-free rewriting the label of  the replaced edge 
determines the production to be applied. In contrast, a context-sensitive 
production requires context, or the neighbour edges of the replaced edge, 
to be tested as well. Thus, a predecessor of  a context-sensitive pr(xluc- 
tion p consists of  three components: a path ! called the left context, an 
edge S called the strict predecessor,  and an axial tree r called the right 
context (Fig. 3). The asymmetry between the left context and the right 
context reflects the fact that there is only one path from the root of  a 
tree to a given edge, while there can be many paths from this edge to 
various terminal nodes. Production p matches a given occurrence of  the 
edge S in a tree T if I is a path in T terminating at the starting node of  
S, and r is a subtree of T originating at the ending nede of  S. The pro- 
duction can then be applied by replacing S with the axial tree specified 
as the production successor. 

A rewriting system can operate either in a sequential or in a paral- 
lel manner. The former type of  rewriting is found in Chomsky gram- 
mars. However, parallel rewriting is more appropriate for the modeling 
of biological development, since development takes place concurrently 
in all parts of  the organism. 

Parallel rewriting systems are. commonly referred to as L-systems. 
Specifically, a tree L-system G is specified by three components: a set of  
edge labels called the alphabet  and denoted by V, an axial tree m with 
labels from V called the axiom, and a set of  tree productions P. If for 
any edge label A and any context (l, r) there exists exactly one applica- 
ble production in P, the L-system is deterministic; otherwise it is non- 
deterministic. Nondeterministic L-systems provide a convenient tool for 
representing general features of  a developmental process without consid- 
ering mechanisms which control production selection (Section 4.3). 

Given an L-system G, an axial tree T2 is directly derived from (or 
generated by) a tree Tl, T r o T 2 ,  i f  T 2 is obtained from T I by s imultane-  
ously replacing each edge in T1 by its successor according to the pro- 
duction set P. A tree T is generated by an L-system G in a derivation 
o f  length n if there exists a developmental  sequence of  trees 
To,T 1 . . . . .  T .  such that T O = 0), T. = T and T o - ~ T i ~ - ' . ~ T  A (see 
Section 2.4 for examples). 

End 
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Figure  2. A tree production p and its application 
to the edge S in a tree T~. 
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Figure 3. The predecessor of  a context-sensitive production (a) 
matches the edge S in a tree T Co). 

2.3. Repr~en ta f ion  of  tree L-systems.  

The definition of a tree L-system docs not specify the data struc- 
tare for representing axial trees. One possibility is to use a list represen- 
tation with a tree topology. A different representation makes use of  
bracketed strings as introduced by Lindenmayer [24]. In this case, a tree 
with edge labels from alphabet V is represented by a string over alpha- 
bet V ~ {[, ]}, where the bracket symbols [ and ] enclose branches. For 
example, the tree shown in Fig. 3b is represented by the bracketed 
string: . 

ABC[DE] [SG [HI[JKIL]MNO] (*) 

A context-free production is denoted A ~ w, where A belongs to 
V and w is a (tmssibly empty) bracketed suing over V. A derivation 
step from string x = ala  2 . • - a n to string y = w l w  z • • • w~ is performed 
by concatenating terms wl,w2 . . . . .  w.  obtained from productions with 
predecessors al,a2 . . . . .  a.. The  brackets are rewritten into themselves. 
In the case of  a context-sensitive production, symbols < and > separate 
the strict predecessor from the left and fight context, respectively. Since 
the string representation of  axial trees does not preserve segment neigh- 
bourhood, the context matching procedure must  skip over branches or 
branch portions when necessary. For example, a production with the 
predecessor B C  < S > G[H]M can be applied to symbol S in the string 
(*) (compare with Fig. 3). 

2.4. L-systems and control mechanisms in plants. 
The mechanisms which control plant development in nature can be 

divided into two classes, called lineage and interactive mechanisms. 
The term lineage refers to the transfer of  genetic information from an 
ancestor cell to its descendants. Interaction is a mechanism in which 
information is exchanged between neighboufing cells (for example, in 
the form of  nutrients or hormones). Within the formalism of L-systems, 
lineage mechanisms are represented by context-free productions, while 
interactive mechanisms correspond to context-sensitive productions. 
Two simple L-systems which simulate development controlled by 
lineage mechanisms are given below. 

L-system (a) L-system (b) 
co: S o: A 
p: S ~ S[S]S[S]S Pl: A --) S[A]S[A]A 

P2: S --> SS 
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Figure 4. Structures which branch everywhere (left) 
and branching structures with a subapicaI growth pattern (fight). 

In case (a) all segments S branch. Only primitive organisms (for exam- 
ple, some bacteria and algae) develop this way. Herbaceous plants 
employ subapical growth mechanisms, in which new branches are 
created exclusively by apices. L-system (b) provides a simple example 
of such development. Production Pl simulates the creation of new 
branches by apices A. Production P2 simulates the gradual elongation of 
internodes, represented by sequences o f  symbols S. The resulting struc- 
tures are shown in Fig. 4. 

In the simulation of  interaction between cells, the left context 
represents control signals which propagate acropetally, i.e. from the root 
or the basal leaves towards the apices of the modeled plant, while the 
right context represents signals which propagate basipetally, i.e. from the 
apices towards the root. The following L-systems simulate signal propa- 
gation in non-growing branching structures as illustrated in Fig. 5. 

L-system (c) 
co: J[ /] t[f l l [ /] t  
p: J < l - - )  J 

C 

I I I I J d  J l  

L-system (d) 
co: l[/]/[/]/[/]J 
p: l > J--~ J 

d 

I I d I J I  J |  

Figure 5. Acropetal (c) and basipetal (d) signal propagation. 

The symbol J represents an internode already reached by the signal, 
while 1 represents an internode which has not yet been reached. In 
order to keep the specification of these (and subsequen0 L-systems 
short, the following two conventions are observed: (I) if no production 
applies to a given symbol, this symbol is replaced by itself, and (2) if a 
context-free production and a context-sensitive production both apply to 
a given symbol, the context-sensitive production is chosen. 

3. G E O M E T R I C A L  I N T E R P R E T A T I O N  OF AXIAL TREES.  

The L-systems (a)-(d) considered above specify branching struc- 
tures on a topological level. For the purlx)se of image synthesis, it is 
also necessary to specify geometric and graphical aspects of  the modeled 
objects. Some previous approaches to the geometrical interpretation of 
L-systems are presented in [5, 17, 19]. Our approach was originally 
introduced to generate geometric patterns and fractals [43, 33] and was 
extended to describe three-dimensional plant structures in [34]. The 
method is as follows. After a string has been generated by an L-system, 
it is scanned from left to right and the consecutive symbols are inter- 
preted as commands which maneuver a LOGO-like turtle in three 
dimensions [1]. The turtle is represented by its state which consists of  
turtle position and orientation in the Cartesian coordinate system, as 

well as other attribute values, such as eta'rent color and line width. The 
orientation is defined by three vectors //~, ~, ~ ,  indicating the turtle's 
heading and the directions to the left and up. These vectors have unit 
length, are perpendicular to each other, and satisfy the equation 
I~ x i f=  ~.  Rotations of the turtle can then be expressed by the equa- 
tion [ f f "  ~ "  U '  ] = [ f f  ~ ~ ] R, where R is a 3x3 rotation matrix. 

Segment symbols such as S, A, I and J in L-systems (a)-(d) move 
the turtle forward by a distance d and cause a line to be drawn between 
the previous and the new position. 
control turtle orientation given an 

U 

Figure 6. Turtle interpretation 
of geometric attribute symbols. 

Seven attribute symbols are used to 
angle increment 8. Symbols + and - 
turn the turtle left and right around 
the vector/.7, " and & pitch the tur- 
tle up and down around the vector 
~, and I and \ roll the turtle left and 

ght around its own axis, the vector 
(Fig. 6). The symbol I is used to 

turn the turtle 180 ° around the vec- 
tor ~ regardless of  the value of ~. 
Branches are created using a stack; 
[ pushes the current state on the 
stack, while ] pops a state from the 
stack and makes it the current state 
of  the turtle. No line is drawn in 
this case, although the position of 
the turtle usually changes. 

Figure 7. A bush. 

Figure  g. A comparison of branching structures 
modeled without tropism (left) and with tropism (right). 
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The list of  attribute symbols can be augmented to contxol color, 
diameter and length of segments, incorporate predefined surfaces and 
objects in the model, and perform other functions as required. The 
extensions related to organ definition are discussed further in Section 6. 
Symbols without a specified interpretation are ignored by the turtle, 
which means that they can be used in the derivation process without 
affecting the interpretation o f  the resulting string. 

Geometric extensions of L-systems (a) and (e) actually used to 
generate the left-hand structures in Figs. 4 and 5 are given below. 

L-system (a') L-system (c') 
~: S o: J[+fl / [- /y[+fl /  
p: S ~ S[-'S]S[+'S]S p: J < I ~ J 

In case (a'), the edge length d is constant, the angle increment 
8 = 27.5 °, and the derivation lengths n are equal to 4 and 5. The auri- 
bute symbol ' increments the index to the color table. In case (e'), d is 
constant, 8 = 45 ° and n = 0-3 .  The symbols + and - are ignored while 
context matching. 

A more complex L-system generating the three-dimensional bush 
taken from [34] and shown in Fig. 7 is given below. 

¢o: /la 
Pt: a ~ [[&sl[a]l/lll'[&sl!a]l/t/I//'[&sl!a]] 
P2: s ----> SI 
P3: S ----> S/H/Is 
p,: l ~ [ '~{-S+S+S-I-$+S+S]] 

The attribute symbol t decreases the diameter of  segments S. The sym- 
bois a, s and l are not interpreted geometrically. The system operates as 
follows. Production p~ creates three branches from an apex a. A branch 
consists of  a stem s, a leaf l and an apex a which will subsequently 
create three new branches. Productions P2 and P3 specify the growth 
process of  a stem; in subsequent derivation steps it gets longer by 
acquiring new segments S and produces new leaves I (in violation of  the 
subapical growth rule, but with an acceptable visual effect in a still pic- 
ture). Production P4 describes the leaf as a filled polygon with six edges 
(see Section 6). More examples of  completely specified L-systems 
which generate two-dimensional figures and three-dimensional objects 
are given in [33, 34, 35]. 

A characteristic feature of  turtle interpretation is that directions axe 
relative to the current orientation. However, absolute directions play an 
important role in the development of  plants. For example, the axes may 
bend up towards the source of  light, or down due to gravity. We simu- 
late these effects by rotafinng the Imtle slightly in the direction of a 
predefined tropism vector T after drawing each selzment (Fig. 8). The 
angle a is calculated using the formula a = e i f ×  ~. where e is a 
parameter capturing axis susceptibility to bending. This heuristic for- 
mula has a physical tutti_ration;if T is interpreted as a force applied to 
the endpoint of  segLnent H and H can rotate around its starting point, the 
torque is equal to H x T. A detailed analysis of  tree dynamics for simu- 
lation purposes is presented in [41. 

4. D E V E L O P M E N T A L  MODELS OF PLANT A R C H I T E C T U R E .  

In this section we use the formalism of L-systems to present 
developmental models of herbaceous plants on the topological level. 
The geometric aspects are discussed in sections 5 and 6. We put partic- 
ular emphasis on the modeling of  compound flowering structures or 
inflorescences. As there is no commonly accepted terminology referring 
to inflorescence types, we chose to follow the terminology of Ml~ller- 
Doblies [29], which in turn is based on extensive work by Troll [45]. 
Our presentation is organized by the comrol mechanisms which govern 
inflorescence development. 

4.1. Racemes,  or  the phase beauty of sequential  growth.  

The simplest possible flowering structures with multiple flowers 
are those with a single stem on which an indefinite number of  flowers 
are produced sequentially, lnflorescences of  this type are called 
racemes. Their development can he described by the following L- 
system: 

to: A 
P1: A ~/o[IoFo]A 
P2: Ii "-'> Ii+1 i _> 0 
P3: Fi -~ F~+1 i _> 0 

The symbol A denotes the apex of the main (zero-order) axis, li denotes 
the i-th stage of interuode elongation, and F i is the i-th stage of flower 
development. The indexed notation, such as Fi ~ Fi+l, stands for a set 

of  productions F 0 ~ Fi, F i ~ F2, F 2 ~ F3, " • • • The developmental 
seqt~ence begins as follows: 

A 

lo[/oF0]A 

11[llF1]lo[loFo]A 

12[12Fz]11 [11F1][o[loFo]A 

13[13F3]12[12Fz]ll[ltF1]lo[loFo]A 

At each developmental stage, the inflorescence contains a sequence of 
flowers of  different ages. The flowers newly created by the apex are 
delayed in their development with respect to the older ones situated at 
the stem base. This effect is illustrated in Fig. 9, to which the following 
quotation from d 'Arcy Thompson [44] applies: 

A flowering spray of lily-of-the-valley exemplifies a 
growth-gradient, after a simple fashion of its own. Along 
the stalk the growth-rate falls away; the florets are of  des- 
tending age, from flower to bud; their graded differences of  
age lead to an exquisite gradation of size and form; the 
time-interval between one and another, or the "space-time 
relation" between them all, gives a peculiar quality - we 
may call it phase-beauty - to the whole. 

A similar phase effect can be observed in other plants. For exam- 
ple, consider the fern-like structure shown in Fig. 10. In this case, nine 
zero-order branches grow subapically and produce new first-order 
branches, which also grow suhapically and produce leaves. These 
processes are described by the following L-system: 

~: [A][A][A][A][A][A][A][A][A] 
Pl: A ----> Io[B]A 
P2: B ~/0[Lo][Lo]B 
P3: li ~ li+l i _> 0 
P4: Li ~ Li+l i >_ 0 

A and B denote apices of  zero-order and first-order axes, Io,11,12,... 
denote the internodes, and Lo,L~,L2, • • • denote the subsequent stages of  
leaf development. 

4.2. Cymose inflorescences, or the use of delays. 
In racemes the apex of the main axis produces lateral branches 

and continues to grow. In contrast, the apex of the main axis in cymes 
turns to a flower shortly after a few lateral branches have been initiated. 
Their apices turn into flowers as well and second-order branches take 
over. In time, branches of higher and higher order are produced. Thus, 
the basic structure of  a cymose inflorescence is captured in the produc- 
tion 

A ~ I[A][A]IF 

According to this de~ription, the two branches are identical and grow in 
concert. In reality, this need not be the case, and one lateral branch 
may start growing before the other. This effect can be modeled by 
assuming that apices undergo a sequence of state changes which delay 
their further growth until a particular state is reached. For example, the 
development of  the rose campion (Lychnis coronaria) shown in Fig. 11 
is described by the following L-system: 

oo: A 7 
Pl: A7 ~ Io[Lo][Ld[Ao][Aa]loFo 
P2: Ai ~ Ai+l O ~_ i < 7 
P3: Xi ~ Xi+l i -> O, X~ {I, L, F} 

Production pl specifies that, at their creation time, the lateral apices have 
different states A0 and A 4. Production P2 advances the apex states. 
Thus,  the first apex requires eight derivation steps to produce a flower 
and new branches, while the second requires only four steps. Con- 
currently internodes elongate, leaves grow and each flower undergoes a 
sequence of changes, progressing from the bud stage to an open flower 
to a fruit. These processes are captured in production P3. For a further 
analysis of the above model see [37]. 

4.3. Modeling qualitative changes of developmental processes. 
The developmental sequences considered so far are homogeneous 

in the sense that the same slxucture is produced repeatedly at fixed time 
intervals. However, in many cases a qualitative change in the nature of  
development can be observed at some point in time. For example, con- 
sider the shepherd's purse (Capsella bursa-pastoris) shown in Fig. 12. 
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Figure 9. Lily-of-the-valley. Figure 12. I~velopment of a shepherd's purse. 

Figure 10. A fem. 
Figure 13. Acropetal (top) and basipetal (bottom) flowering 

sequences generated by the model with a single acropetal signal 
(shown as yellow-colored segments). 

Figure 11. Development of a rose campion. Figure 14. Two developmental stages of an aster. 
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In principle, its development can be described as follows: 

co: A 
Pt: A --> Io[Lo]A 
P2: A ~ to[LoW 
P3: B ~ lo[[oFo]B 
P4: Xi ---> Xi+l i ~ O, X~ {1, L, F] 

The initial vegetative growth is represented by production p~ which 
describes creation of successive internodes and leaves by apex A. At 
some point in time, production P2 changes the apex from the vegetative 
state A to the flowering state B. From then on, flowers are produced 
instead of  leaves (production P3), forming a raceme as discussed in Sec- 
tion 4.1. However, the moment in which this change occurs is not 
specified; the L-system is a nondeterministic one. Thus, for modeling 
purposes it must be complemented with an additional control mechanism 
which will determine the developmental switch time. Three applicable 
mechanisms are outlined below. Each of  them is biologically motivated, 
and corresponds to a different class of  L-systems. 

4..3.1, A delay mechanism.  The apex undergoes a series o f  state 
changes which delay the swimh until a particular state is reached: 

o3: A o 
Pl: A i -->/0[L0]A/+i 0 _< i < n 
P2: A, ---> Io[Lo]B 
P3, P4: as before 

According to this model, the apex counts the leaves it produces. While 
it may seem strange that a plant counts, it is known that some plant 
species produce a fixed number of  leaves before they start flowering. 

4.3.2. A stochastic mechanism. The vegetative apex has a probability 
nl of  staying in the vegetative state, and r~ of transforming itself into a 
flowering apex: 

o3: A 
Pl: A ~ "I Io[Lo]A 
P2: A ~ ~/o[Lo]B 
P3, P4: as before 

For a formal definition of stochastic L-systems see [8, 46]. 

4.3.3. Environmenta l  change. Many plants change from a vegetative to 
a flowering state in response to an environmental factor (such as the 
number of  daylight hours or temperature). We can model this effect by 
using one set of  productions (called a ruble) for some number of deriva- 
tion steps before replacing it by another table. 

Table 1 
co: A 
Pl: A ~ lo[Lo]A 
P2: Xl ~ Xi+l i -> O, X~ {I, L} 

Table 2 
P1: A ~ 10[Lo]B 
P2: B ~ IO[IoFo]B 
P3: Xi ~ Xi+ l i _> O, X e  {L L} 

The concept of  table L-systems is formalized in [28, 38]. 

The developmental switch mechanism can also be applied to 
transform an apex from producing lateral flowers to producing a terminal 
flower which stops axis development. A raceme with a terminal flower 
is called a closed raceme, in contrast to the open racemes considered so 
far. 

4.4. Inflorescence development with interactions. 

Even in the presence of delays, the phase effects discussed so far 
reflect the sequential creation of  branches, flowers and leaves by the 
subapical growth process. Consequently, organs near the plant roots 
develop earlier and more extensively than those situated near the axis 
ends. Such development results in basitonic plant structures (heavily 
developed near the base) with acropetal flowering sequences (the zone 
of blooming flowers progresses upwards along each branch). However, 
nature also creates acrotonic structures (heavily developed near the 
apex) and basipetal flowering sequences (progressing downwards). 
These structures and developmental patterns cannot be viewed as a sim- 
ple consequence of subapical growth; for example, basipetal flowering 
sequences progress in the direction which is precisely opposite to that of  
plant growth. An intuitively straightforward and biologically wall 
founded explanation can be given in terms of signals (Section 2.4) 

which propagate through the plant and control the timing of develop- 
mental switches. Below we consider two developmental models with 
signals. The first model employs a single acropetal signal, while the 
second one uses both acropeml and basipetal signals. 

4.4.1. Developmental model with a single aeropetal signal. 

Let us assume that a flower-inducing signal (which represents the 
hormone florigen) stops axis development and causes production of a 
terminal flower upon reaching the apex. In this case, the overall phase 
effect results from an interplay between growth and control signal propa- 
gation [25, 20]. Assuming that only the first-order lateral branches ale 
present, the development can be described by the following L-system: 

m: DoAo 
Pl: Ai ~ Ai+l 0 _< i < m-1  
P2: A,,,-1 --> I[Lo][Bo]Ao 
P3: Bi --> Bi+l 0 _< i < n - I  
P4: B,,-4 ~ J[Lo]Bo 
Ps: Di ~ Di+l 0 _< i < d-1  
Pr: Dd--~ SO 
t77: Si ---> S/+1 0 -< i < max{u, v} - 1 
Ps: S, ~ e z = max{u, v} - I 
Pg: Su-I < I ~ IS 0 
P10: S~-1 < J ~ YSo 
Pll: So < Ai ~ Fo  0 _< i _< m-1  
P12: So < Bi --> Fo 0 -< i S n -1  
P13: Xi --> Xm i _> 0, Xe {L, F} 

This L-system operates as follows (Fig. 13). The apex A produces seg- 
ments of  the main axis I, (optional) leaves L and the lateral apices B 
(Pb P2)- The time between the production of  two consecutive segments 
of  the main axis, called its plastochron, is equal to m units (derivation 
steps). In a similar way, the first-order apices B produce segments J of  
the lateral axes and leaves L with plastochron n (P3, P4). After a delay 
of d time units a signal S is sent from the tree base towards the apices 
(p~. The signal is Wansported along the main axis with a delay of u 
time units per internode 1 (PT, Pg), and along the first-order axes with a 
delay of v units per internode J (PT, Pro)- Production Ps removes the 
signal from a node after it has been transported further along the slruc- 
ture (e stands for the empty string). When the signal reaches an apex 
(either A or B), the apex is transformed into a terminal flower 
F (PH, Pl~.  Leaves and flowers undergo the usual developmental 
sequence (P13). 

In order to analyze the plant structure and flowering sequence 
resulting from the above development, let us denote by tt the time at 
which the apex of the k-th first-order axis is Iransformed into a flower, 
and by I t the length o f  this axis (expressed as the number of internodes) 
at the traifsformation time. Since it takes km time units to produce k 
internodes along the main axis and 1~ time units to produce l, inter- 
nodes on the first-order axis, we obtain tt = kra+ltn. On the other hand, 
the transformation occurs when the signal S reaches the apex. The sig- 
nal is sent d time units after the development starts, uses /a t  time units 
to travel through k zero-order internodes and ltv time units to travel 
through Ik first-order internodes, resulting in & = d+ku+lkv. Solving the 
above system of  equations for lk and tk (and ignoring for simplicity some 
inaccuracy due to the fact that this system does not guarantee integer 
solutions), we obtain: 

& = k  un-vm + d n , & k m-___y~ + 
I'l--V n - v  II ll--V I'l--V 

In order to analyze these solutions, let us first notice that the signal u'an- 
sportation delay v must  be less than the plastochron of the first-order 
axes n (if this were not the case, the signal would never reach the 
apices). Under this assumption, the sign of  the expression A = un-vm 
determines the flowering sequence, which is acmpetal for A > 0 and 
basipetal for A < 0 (Fig. 13). If A = 0, all flowers occur simultaneously. 
The sign of  the expression m - u  determines whether the plant has a hasi- 
tonic (m-u < 0) or acrotohic (m-u  > 0) structure. Two stages of  the 
development of  an aster, modeled using the above L-system with A < 0, 
are shown in Fig. 14. 

4.4.3. Developmental model with several signals. 
The development of  some inflorescences is controlled by several 

signals, which may propagate with different delays and lrigger each 
other. The use of  more than one signal is instrumental in the modeling 
of a large class of  inflorescences (found, for instance, in the family 
Compositae) characterized by terminal flowers on all apices, indefinite 
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order of branching and basipetal flowering sequence. Figure 15 illus- 
trates this type of development with an example of wall lettuce (Mycelis 
muralis). The underlying L-system operates as follows. First, the main 
axis is formed in a process of subapieal growth which produces subse- 
quent internodes and lateral apices. At this stage further development of  
lateral branches is suppressed (in botany, this effect is known as apical 
dominance). At some moment a flowering signal $1 is sent from the 
bottom of the inflorescence up along the main axis. When this signal 
reaches its apex, the terminal flower is initiated and a basipetal signal $2 
enabling the growth of lateral axes is sent down the main axis. After a 
delay, a secondary basipetal signal $3 is sent from the apex of the main 
axis. Its effect is to send the flowering signal S~ along subsequent first- 
order axes as they are encountered on the way down. This entire pro- 
cess repeats recursively for each axis: its apex is transformed into a 
flower, the growth of lateral axes of the next order is successively 
enabled, and the secondary basipetal signal is sent to induce the flower- 
ing signal $1 in these lateral axes. The resulting structure depends 
heavily on the values of plastochrons, delays, and signal propagation 
times. In the example under consideration, signal $2 travels faster than 
$3. Consequently, the time interval between the arrival of siguals $2 and 
$3 increases while moving down the plant, potentially allowing the lower 
axes to grow longer then the upper ones. On the other hand, the lower 
branches start developing later, so in younger plants (in the middle of 
Fig. 15) they have not yet reached their full length. A detailed biologi- 
cal analysis of the above developmental pattern is given by Janssen and 
Lindenmayer [20]. 

4~,  Adding variation to models. 
All plants generated by a deterministic L-system are identical. An 

attempt to include them in the same picture would produce a striking, 
artificial regularity. In order to prevent this effect it is necessary to 
introduce specimen-to-specimen variation which preserves the general 
aspects of a plant while modifying its details. We employ stochastic L- 
systems [8, 46] for this purpose. For example, Fig. 16 presents a field 
consisting of sixteen flowers generated by an L-system in which inter- 
node elongation is described by three stochastic rules: 

to: A 
Pt: I ~ ~1 1 
P2: [ ~ ~ [1 
P3: 1" ~ ~ IiL][LII 

where the probabilities nl,  ~2 and n3 ure equal to 1/3. The resulting 
field appears to consist of various specimens of the same (albeit ficti- 
tious) plant species. For more details on the use of stochastic L-systems 
for plant modeling purposes see [30, 34]. 

5. A NOTE ON PHYLLOTAX1S. 
The longitudinal and angular displacement of consecutive branches 

or appendages with respect to each other is an important attribute of 
plant form, known as phyllotaxis [9, 42, 44]. In terms of the turtle 
interpretation of axial trees, these parameters represent the segment 

length and the divergence angle 

o* 

Figure 18. Branch 
arrangement in 

lilac inflorescences. 

corresponding to the turtle's rotation 
about the heading vector/7. Abstracting 
from the mechanisms which govern the 
formation of phyllotactic patterns, two 
situations can be distinguished. In alter- 
hating patterns and whorls the angular 
positions of branches are repeated after 
a few nodes. In these cases, the diver- 
gence angle is equal to 360°/n, where n 
is a small integer. This type of arrange- 
ment occurs in lilac (Fig. 17), where 
consecutive pairs of (n+l)-order axes lie 
in the planes passing through the n-order 
axis and perpendicular to each other 
(Fig. lg). The divergence angle of  90 ° 
is also found in the rose campion (Fig. 
11). On the other hand, in spiral pat- 
terns repetition occurs after a long 
period or cannot be detected at all. In 
these cases, the divergence angle is 
often close to the Fibonacci angle 
(approximately 137.5°). For examples, 
see shepherd's purse (Fig. 12), aster 
(Fig. 14) and wall lettuce (Fig. 15). 

6. MODELING OF ORGANS. 
So fur we have discussed the modeling of "skeletal" trees with 

branches consisting of mathematical lines. In this section we extend 
the model to include surfaces and volumes. 

Conceptually, the simplest approach is to incorporate predefined 
surfaces in the tree, with positions and orientations specified by the tur- 
tle. For example, leaves of the lily-of-the-valley (Fig. 9), buds, flowers 
and fruits of the rose campion (Fig. 11), buds, petals and fruits of the 
aster (Fig. 14) as well as leaves and flowers of the lilac (Fig. 17) were 
modeled using bicubic patches, Bicubic surfaces were also applied to 
model cylindrical stem segments in all these structures. Patches make it 
easy to manipulate and modify surface shapes interactively, but are 
incompatible with the developmental approach to modeling since they 
do not "grow". Consequently, each developmental stage of an organ 
must be modeled separately. 

In order to fully simulate plant development and model phase 
effects present in plant structures, it is necessary to provide a mechanism 
for changing the size and shape of surfaces in time. A simple approach 
is to fill a polygon made of lines defined by an L-system. For example, 
leaves of the fern (Fig. 10) the shepherd's purse (Fig. 12) and the aster 
(Fig. 14) were modeled using the following L-system: 

to: L 
Pl: L ~ {-SX+X+SX-I-SX+X+SX} 
P2: X ~ SX 

Production Pt defines a leaf as a closed planar polygon. The parentheses 
{ and } indicate that the polygon should he filled. Production P2 linearly 
increases the lengths of the polygon edges. 

The tracing of  polygon boundaries leads to acceptable effects in 
the case of small, fiat surfaces. In other cases it is more convenient to 
define surfaces using an underlying tree structure as the frame. The 
entire surface consists of  polygons bounded by tree segments and extra 
edges inserted between appropriate terminal nodes of the tree to form 
closed contours. The three leaf shapes shown in Fig. 19 were obtained 
by modifying branching angles and growth rates of axes. Specifically, 
the blade of the cordate leaf (the leftmost one) was generated by the fol- 
lowing L-system: 

00: [a][8] 
Pl: A ~ [+A?]C# 
P2: B ~ [-B?]C# 
P3: C ~ IC 

The axiom contains symbols A and B which generate the left-hand side 
and the right-hand side of the blade. Each of the productions Px and P2 
creates a sequence of  axes starting at the leaf base and gradually diverg- 
ing from the midrib. Prodnetion P3 increases the axis lengths. The axes 
close to the midrib are the longest since they were created first (thus, the 
leaf shape is yet another manifestation of the phase effect). The sym- 
bols ? and # indicate the endpoints of edges to be inserted while forming 
closed polygons. The following string represents the left-hand side of 
the leaf after four derivation steps: 

[+[+[+[+A ?]C#?]1C#?]11C#?]111C# 
L.~ L.~ L_ . /  k__d  

The arrows indicate the inserted edges (the first one has zero length, the 
second is collinear with an axis, and the subsequent ones bound trian- 
gles). The developmental sequence is shown in Fig. 20. Leaves gen- 
erated in a similar way were incorporated in the model of the rose cam- 
pion (Fig. 11). 

The frame-based approach can he extended to three-dimensional 
organs. The right-hand images in Fig. 19 illustrate construction of the 
flowers for the lily-of-the-valley in Fig. 9. The L-system generates a 
supporting framework composed of five curved lines which spread radi- 
ally from the flower base and are connected by a web of inserted edges. 

• In this ease each polygon is a trapezoid bounded by two "regular" and 
two inserted edges. 

Another developmental approach to leaf modeling was recently 
proposed by Lienhurdt and Fran~on [23] and Lienhurdt [22]. 

7. IMPLEMENTATION. 
The concepts described in this paper were implemented using a 

modeling program called pfg designed for an IRIS 3130 workstation. 
The input to the program consists o f  an L-system specified in the brack- 
eted string notation and approximately 30 parameters, most of which 
control rendering and ,viewing. Additionally, an urbitrary number of 
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Figure 15. Development of  a wall lettuce. 
Figure 19. Developmental models of  leaves and a flower. The 
top row shows the underlying tree structures (yellow lines) and 
the edges inserted to form closed polygons (white lines). The 
bottom row shows the same structures with filled polygons. 

Figure 16. A flower field. Figure  20. Developmental sequence of a cordate leaf. 

Figure 17. A lilac twig. 

files containing patch descriptions can be read in (patches are edited out- 
side of PfS). The animation of developmental processes is controlled 
interactively. The total simulation and rendering time for plants images 
shown in this paper ranges from one to five minutes. The consecutive 
frames of schematic developmental sequences (such as shown in Fig. 13) 
are generated a few seconds apart, which is sufficient for analysis of  
development using animation. 

8. CONCLUSIONS.  

In this paper we presented guidelines for modeling herbaceous 
plants and simulating their development. Plant structures have been 
described in terms of developmental processes controlled by lineage and 
interactive mechanisms. The developmental approach was extended to 
model plant organs. 

In computer imagery applications, construction of a developmental 
model is an intermediate step leading to the final goal, a realistic image 
of a synthetic plant. To a biologist the model itself can be of  primary 
interest as a formal description of a developmental process. The notion 
of L-systems makes it easy to specify a model in terms consistent with 
those used in developmental morphology and physiology, and to experi- 
ment with a wide range of processes and structures. Thus, the modeling 
methods presented in this paper can be used as a research tool for 
visualizing scientific hypotheses related to development in nature. 
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A number of problems are open for further research. 
• Addition of texture. The surfaces shown in this paper lack tex- 

ture. Specifically, a major component of leaf texture is its vena- 
tion. For consistency with the developmental approach to model- 
ing, the venation itself should be generated by a developmental 
algorithm. The problem is that veins may form closed cycles and 
therefore cannot be described in terms of axial trees. An exten- 
sion of tree L-systems to graphs with cycles (map L-systems) was 
proposed by Lindenmayer [26, 27] bnt has not been applied yet to 
model venation. 

• Improved surface models. The described model of surface 
development is difficult to apply to complex three-dimensional 
surfaces, such as snap-dragon flowers or wrinkled petals of 
petunias. A difficult situation also occurs when organs composing 
a larger structure are crowded, for example cabbage leaves, or the 
petals in rose and peonia flowers. More flexible developmental 
surface models would be very useful in these cases. 

• Time step control. The formalism of L-systems is discrete in 
nature. A developmental model can be const;ucted assuming 
longer or shorter time intervals, but once the choice has been 
made, the time step is a part of the model and cannot be changed 
easily. From the viewpoint of computer animation it would be 
preferable if the time step were controlled by a single parameter, 
deconpled from the underlying L-system. 

• Analysis of simulation complexity. Various data structures can 
be used to represent axial trees and carry out the derivation pro- 
cess (Section 2.3). Although bracketed strings appear to be more 
memory-efficient than list representations, no formal analysis of 
time and space trade-offs related to the choice of data structure 
has been made. Such analysis could lead to optimal algorithms. 

• Addition of a graphical interface. In the present implementation 
of the pfg program, input L-systems are specified in the bracketed 
string notation. In some applications, such as computer-assisted 
inslruction of developmental morphology, it may be preferable to 
avoid the textual interface and define productions graphically, as 
shown in Fig. 2a. The formalism of lree L-systems, which disso- 
ciates the grapb-theoretie concept from the sUing implementation, 
could lend itself to such an interface. 
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