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Abstract

Like all forms in nature, plants are subject to the properties of space. On the one hand, space prevents

configurations that would place more than one component in the same location at the same time. A generalization

of this constraint limits proximity and density of organs. On the other hand, space provides a means for a plant to

create three-dimensional forms by differentially controlling their growth. This results from a connection between the

metric properties of surfaces and their Gaussian curvature. Three strategies used by plants to develop within the

constraints of space are presented: expansion to another dimension, egalitarian partitioning of space, and
competition for space. These strategies are illustrated with examples of curved surfaces of leaves and petals, self-

similar branching structures of compound leaves and inflorescences, and tree architecture. The examples highlight

the fundamental role of the constraints of space in plant development, and the complementary role of genetic

regulation and space-dependent emergent phenomena in shaping a plant.

Key words: Competition for space, curvature, dimension, fractal, genetic regulation of form, leaf margin, metric, plant modelling,

tree architecture.

Introduction

Constraints on form imposed by obstacles in space are

fairly intuitive. For example, the border of a pool table

prevents the balls from moving outside the table. Players

can turn this constraint to their advantage and create an
otherwise impossible path by bouncing a ball off the

border. The border thus both limits and extends the range

of possible paths. Even empty space, however, puts

constraints on the forms embedded in it. Like the border

of the pool table, these constraints play the dual role of

making some forms impossible while providing a means

for creating other forms. The fundamental constraint is

the subject of Aristotle’s exclusion principle, which states
that material objects extend in space, and no two objects

can be in the same place at once (Aristotle, 350 BC, Book

IV; Morison, 2002). Taken literally, this principle prevents

interpenetration of colliding objects competing for physi-

cal space. Interpreted more broadly, it provides a geometric

abstraction of spatial interactions mediated by diverse

phenomena, such as red/far red ratio signalling and

competition for spatially distributed resources including

light, water, and mineral nutrients. Space itself can be

viewed as a resource and an object of resource-mediated

competition, since, when ‘consumed’ by one plant or plant
organ, it becomes unavailable to other plants or organs

(Stoll and Weiner, 2000).

A more subtle constraint is a consequence of Gauss’s

Theorema Egregium (Gauss, 1902, p. 20; Vaisman, 1984,

p. 122), which relates the metric properties of surfaces—

distances, areas and angles—to the surface curvature. A

precise statement of the Gauss theorem is mathematically

involved, but its essence can be illustrated using a simple
geometric construction. Consider a regular hexagon: it is

a planar figure that can be divided into six equilateral

triangles (Fig. 1A). Remove one of them and glue

together the free edges of the triangles on both sides

of the resulting gap. The glued surface will consist of

five equilateral triangles arranged around a common

vertex, and will no longer be planar, but will form a cup
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(Fig. 1B). Conversely, if an additional triangle is inserted,

so that the resulting surface consists of seven equilateral

triangles arranged around a common vertex, the resulting

surface will have a saddle-like shape with a wavy border

(Fig. 1C). Thus (in the presence of many assumptions

implied in this example) an excess of surface area

with respect to the border length will produce a cup-like

shape (a surface with positive Gaussian curvature),
whereas an excess in border length with respect to the

area will imply a saddle form (negative curvature). The

impact of these relations on natural forms was succinctly

characterized by Stevens (1974, pp. 8–9): ‘No matter how

we try, we cannot make a saddle from five equilateral

triangles or a simple cup from seven. Nature, too, is

similarly constrained: she makes cups and saddles not as

she pleases but as she must, as the distribution of material
dictates.’

Selected examples of the roles that Aristotle’s exclusion

principle and Gauss’s Theorema Egregium play in shaping

plants are discussed below.

Growth and form of surfaces

Relations between growth and form can be considered at

different spatial scales and levels of abstraction. For
example, the growing thin tissue of an organ, such as

a leaf or a petal, can be viewed as an assembly of

individual cells or approximated as a continuous surface.

The latter approach provides a convenient framework for

explaining the form of biological surfaces at macroscopic

scales, where properties of individual cells can be aver-

aged out (Coen et al., 2004).

Conceptual frameworks for relating growth to form have
been proposed by Rodriguez et al. (1994) (see also Goriely

and Ben Amar, 2007) and, in the case of thin sheets, by

Klein et al. (2007). Here we focus on the latter framework

due to its emphasis on geometry. As shown in Fig. 2,

growth or shrinkage changes the surface metric (distances

between points). This change may induce positive or

negative Gaussian surface curvature, as prescribed by the

Gauss theorem. In some cases (closed convex surfaces),
Gaussian curvature distribution uniquely defines the overall

form of the surface (Cauchy and Alexandrov–Pogorelov

theorems, Alexandrov, 2005). In general, however, the

definition of a surface in terms of its metric may be under-

or overconstrained, which means that there are many

solutions or none, respectively1. Elastic properties of thin

tissues are then called upon to address both problems. In

the former case, elasticity introduces additional factors,

such as minimization of stretching and bending energy, to

reduce the number of solutions. In the latter case, it resolves

contradictions present in the overconstrained systems by

allowing solutions that are ‘close enough’. The final forms

may have residual stresses, which implies that their actual
metrics differ to some extent from the target metrics

prescribed by growth.

The interplay between metric and elastic properties in the

shaping of surfaces has been studied in physical experi-

ments. Sharon et al. (2002, 2004) considered thin rectangu-

lar sheets of plastic that were torn by pulling from the sides.

The high stresses near the propagating crack irreversibly

stretched the adjacent material, with the greatest deforma-
tions occurring in the immediate proximity of the crack.

After the stresses were removed and the torn sheet was free

to relax, the cracked edge spontaneously buckled, forming

a fractal cascade of waves built upon each other. Sharon

et al. conjectured that a similar buckling is caused by the

differential growth of biological surfaces, and supported

this conjecture with many examples of biological surfaces

that are strikingly similar to those obtained in their experi-
ments (Sharon et al., 2004). They concluded that ‘no genetic

coding is needed to instruct pieces of a leaf to curl up and

curl down. All that is required is a growth process to

elongate the sheet along its edge – elasticity takes care of the

rest’ (Sharon et al., 2002).

More recently, Klein et al. (2007) designed experiments in

which thin gel sheets shrank when temperature was in-

creased above a threshold value. The shrinkage ratio was
controlled locally by regulating the concentration of poly-

merizing monomers in the gel. Depending on the distribu-

tion of shrinking ratios, this process yielded a variety of

Fig. 1. Illustration of Gauss’s Theorema Egregium. Change of metric in a regular hexagon (A), induced by the removal of a triangle,

produces a cup-like shape (positive Gaussian curvature) (B). Conversely, insertion of a triangle produces a saddle shape (negative

curvature) (C).

1 Studies of the existence and uniqueness of the embeddings of surfaces with
a given metric have an extensive and illustrious history (Han and Hong, 2006).
The resulting theorems depend on the degree of the continuity of the metric and
the surface, and—in a more abstract setting—on the number of dimensions of
the surface and the ambient space. Solutions need not exist if growth
specification calls for different growth rates in adjacent regions, and thus for
a discontinuous resulting metric. Biologically, this case corresponds to non-
symplastic growth (Priestley, 1930; Romberger et al., 1993), during which cells
slide with respect to each other. In the modelling practice, overconstraining may
also occur while approximating curved surfaces with (straight-edge) polygon
meshes.
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shapes including cups and saddles with smoothly waving or

fractal margins, again resembling those found in plants.

Similar results have been obtained using computer

simulations. Prusinkiewicz and Streibel (1986) proposed

a purely geometric method for generating surfaces by the

prescription of distances, and illustrated it with examples of

simple surfaces with positive and negative curvature. They

also identified problems caused by the presence of multiple
solutions. Dimian (1997), Matthews (2002), and Combaz

and Neyret (2002, 2006) developed computational counter-

parts of the physical experiments on programmable gels.

Changes of metric were specified interactively, by painting

morphogens that induced stretching or shrinking of an

elastic surface model. For example, the model by Matthews

(2002) visualizes the basic properties of a physical sheet

undergoing differential growth: the production of a cup-like
shape when the surface expansion is not matched by the

expansion of the border; the production of a saddle shape

when the border expands more than the interior and the

decrease of expansion rates towards the interior is slow; and

the emergence of waves at the expanding border when the

decrease of expansion rates towards the interior is fast

(Fig. 3).

The relations between growth distribution, mechanical
properties of the sheet, and the form of waves emerging at

the sheet border have been the subject of several theoretical

analyses (Audoly and Boudaoud, 2003; Marder et al., 2003;

Sharon et al., 2007). A simulation model that elucidates the

factors controlling the frequency of simple waves such as

found in Asplenium australasicum (bird’s nest fern) (Fig. 4A,

B) was proposed by Dimian (1997). In its essence, the model

is a rectangular surface approximated by a sequence of

parallel rods (Fig. 4C). At one end, the rods are attached to

an axis about which they can rotate. At the other end, the

rods are connected by growing edge segments (stiff linear
springs), which cause the surface to buckle as their length

increases. The system is complemented by two types of

rotational springs. Type 1 springs are located at the axis

and counter out-of-plane dislocation. Type 2 springs are

located along the growing edge and counter its bending

(Fig. 4D). Simulations show that if Type 1 springs are

relatively weak compared with Type 2, the system settles in

a configuration with a small number of large waves
(Fig. 4D). Conversely, if Type 2 springs are relatively weak

compared with Type 1, the final configuration consists of

a larger number of small waves (Fig. 4E,F). Thus, in this

model, the departure from a planar configuration is a geo-

metric necessity imposed by the extension of the growing

edge with respect to the rigid axis, while the frequency and

amplitude of the emerging waves are determined by the

elastic properties of the system.
The emergence of fractal cascades of waves of decreasing

amplitude and increasing frequency is illustrated in Fig. 5,

using kale leaves (a variety of Brassica oleracea, Fig. 5A, B)

Fig. 3. Snapshots from an interactive program illustrating relations between growth, metric, and form (Matthews, 2002). The simulation

begins with a relaxed square shape. Deposition of a growth-inducing morphogen (blue) in the central parts of the surface causes the

formation of a cup-like shape (A). Deposition of the morphogen at the margin, with the concentrations slowly decreasing towards the

centre, induces a saddle shape (B). Deposition of the morphogen along the margin, with the concentration quickly decreasing towards

the centre, results in a wavy border (C).

Fig. 2. Relation between growth, metric and form of surfaces according to the conceptual model of Klein et al. (2007).
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as a reference. In the model, a square surface is divided into

rows of geometrically similar rectangles, each of which is

further subdivided into three triangles (Fig. 5C). Beginning

with a single rectangle at the top, the number of rectangles

in each row increases by a factor N¼2. Initially the

structure is embedded in a plane, which requires that the

length of the horizontal edges of the rectangles decrease by
the scaling ratio r ¼ Siþ1

Si
¼ 0:5 between consecutive rows.

Growth is modelled as a change of metric such that r >0.5.

A geometric construction shows that cross-sections of

the resulting surface then form a cascade of wedges of

decreasing size, each supported by the previous wedge

(Fig. 5D). The length of the polygonal lines representing

consecutive sections is equal to s0(2r)i, and thus increases

exponentially with i for r > 0.5. The fractal dimension D of

these lines can be calculated by solving the equation NrD¼1

(Falconer, 1990, p. 117) and is greater than 1 for r between

0.5 and 1, indicating that the cross-sections are indeed

fractal. The scaling ratio r ¼
ffiffi

2
p

2
� 0:707 represents the limit

case for which the fractal dimension D is equal to 2. With
i/N, the margin of the surface would then fill a portion of

the plane within gaps. To avoid self-intersections of the

surface, buckling directions have been imposed correspond-

ing to the space-filling dragon curve (Mandelbrot, 1982,

p. 66) (Fig. 5E) on the model. The resulting surface

(Fig. 5F) resembles kale leaves. Other changes of metric

Fig. 4. Simulation study of wavy leaves. A photograph (A) and a simulation model (B) of Asplenium australasicum leaves showing simple

waves along the margin. The model was constructed by joining surface models representing the left and right parts of the blade along

the midrib. Each surface was represented as a sequence of rods spanning the area between a fixed axis and a growing edge (C). An

increase in the growing edge length causes buckling, which is controlled by the relative strength of springs that counter out-of-plane

dislocation and springs that counter bending of the growing edge (D). Simulations show that increasing the strength of the former type of

springs compared to the latter type decreases the wavelength and amplitude of the waves (E). This effect is amplified as the ratio of

spring strengths increases (F). In the leaf model (B), waves are an emergent property of the surface metric and the buckling process,

while the overall leaf shape, tapered towards the base and near the tip, was specified explicitly. Image (B) from Dimian (1997) courtesy of

Daniel Dimian, (C–F) courtesy of Steven Longay.
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produce surfaces with a larger amplitude of waves (Fig. 5G)

or with serrated margins (Fig. 5H).
The uses of the dragon curve to resolve buckling

directions may appear to be a purely heuristic technique for

creating non-self-intersecting fractal surfaces and surface

margins. It raises, however, interesting questions regarding

physical and biological mechanisms that create such forms.

One possibility is that non-self-intersecting fractal surfaces

may represent a minimum-energy state of buckling elastic

plates. Such plates might have non-uniform mechanical
properties, reflecting, for example, the presence of veins in

a leaf. Another possibility, applicable to leaves that develop

within buds (Couturier et al., 2009), is that buckling

directions are predetermined by the pattern in which young

leaves are folded in the buds. The fractal character of
repetitive folding has been revealed in previous mathemat-

ical studies (Dekking et al., 1982).

The above examples support the two-stage model of plant

surface development, according to which the form of some

biological surfaces is not genetically programmed in detail,

but results from a coarse genetic control of growth rates,

complemented by emergent processes induced by geometric

constraints of space and elasticity (Green 1996, 1999). The
plausibility of this model is further corroborated by recent

genetic experiments. Nath et al. (2003) explained the

difference between the flat leaves of wild type Antirrhinum

Fig. 5. Simulation study of surfaces with a fractal cascade of waves at the margin. (A) A kale (a variety of Brassica oleracea) leaf showing

a superposition of waves with a decreasing amplitude and wavelength towards the leaf margin. (B) The fractal character of the leaf

margin. (C) A computational representation of a leaf. The surface is divided into rows of geometrically similar rectangles, each row with

twice the number of rectangles as its predecessor. The first two rows are highlighted in green. Each rectangle is further subdivided into

three triangles. Proportions are controlled by the scaling ratio r, initially set to 1
2
, such that si+1¼hi¼rsi and di¼r

ffiffiffi

2
p

si for i¼0,1,2,..

(D) The highlighted portion of the surface (C) after increasing the scaling ratio to r¼
ffiffi

2
p

2
. Arrows indicate buckling directions imposed on

the surface to avoid self-intersections. The resulting cross-sections (bold lines) correspond to consecutive generations of the dragon

curve (Mandelbrot, 1982, p. 66). (E) Several generations of the dragon curve (black lines) and their smooth approximations (magenta

lines). (F) The model of a kale leaf, generated using 10 rows of smoothed rectangles with r¼
ffiffi

2
p

2
. (G) The surface obtained by increasing

the scaling ratio r to 0.8. (H) The surface generated with r¼
ffiffi

2
p

2
and di¼rsi. In the simulations, all edges were represented as springs with

the rest lengths defined by the target metric. The final forms exhibit no residual stresses.
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majus (snapdragon) (Fig. 6A) and the negative-curvature

leaves of its cincinnata mutant (Fig. 6B–D) in terms of

delayed growth arrest on the margin of mutant leaves

causing their excessive expansion. Efroni et al. (2008)

analysed and provided a similar explanation for the

wrinkled form of Arabidopsis leaves with a reduced activity

of CINCINNATA-TCP growth regulators (Fig. 6E). Some

of these leaves resemble kale (Fig. 6F), which suggests
a general mechanism involved in producing wrinkled leaf

shapes across different taxa. The distinction between saddle

surfaces (Fig. 6B, C), simple waves (Figs 4A, 6D) and

fractal cascades of waves at the margin (Figs 5A, B, 6E, F)

can be attributed to the different distributions of growth

rates. Simulations show that a slow increase of growth rates

towards a margin transforms a flat surface into a saddle

(Fig. 3B), a faster increase localized near the margin

produces simple waves (Figs 3C, 4D–F), and exponential

expansion towards the margin produces fractal cascades of

waves (Fig. 5F–H) (see also Sharon et al., 2007, Fig. 2).

Space constraints and branching forms

The constraints of space discussed in the previous section

manifest themselves by expanding flat surfaces into a third

dimension and result in surfaces with negative when the

Gauss theorem does not allow them to remain flat.

Constraints of space are not limited to surfaces, however.

Fig. 6. Genetic basis of the emergence of negative curvature in leaves. (A–D) Sample leaves of wild type (A) and cincinnata mutants

(B–D) of Antirrhinum majus. (E) Leaf of Arabidopsis thaliana with reduced CIN-TCP levels. (F) A young kale leaf. Images (A) and

D courtesy of Enrico Coen and John Innes Centre; (B, C) courtesy of Utpal Nath, (E) from (Efroni et al., 2009) courtesy of Yuval Eshed,

copyright American Society of Plant Biologists, reprinted with permission.
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In particular, they also play an important role in the

development of branching structures.

The relations between branching angles, branch segment

lengths, and the occupancy of space by small branching

structures with a fixed topology were examined in the

pioneering studies by Honda and Fisher (1978, 1979). Using

simulation models, they found that the values of these

parameters observed in nature approximately maximize the
coverage of space. Further insights into the interplay

between branching structures and space can be obtained by

considering compound forms with a more repetitive struc-

ture (Fig. 7A–D).

Regular arrangements of modules of the same size along

an axis extending in one dimension can be characterized by

the symmetries of the pattern. A single translational

symmetry underlies monopodial structures, which extend in
one spatial dimension (Fig. 7A, E). Additional translational

symmetries of the lateral axes produce double-compound

structures that occupy a portion of the plane (Fig. 7B, F).

Likewise, triple-compound structures may fill a three-

dimensional volume (not shown). However, if the branch

order is not limited, the resulting branching pattern no

longer fits in the available space: the modules intersect and

overlap (Fig. 7G).

The following reasoning (Borchert and Slade, 1981)

shows that the impossibility of embedding an indeterminate

recursively-branching structure with equally-sized branch

segments is a consequence of the properties of space.

Consider a rhythmically developing tree that, in each

season, creates two new branches at each terminal node.
After n seasons, this structure would have N¼2n terminal

nodes. Assume that all branch segments are of approxi-

mately equal length l, such that all terminal nodes, and

leaves that they may bear, are arranged in a hemisphere.

After n seasons, this hemisphere will have radius nl and

surface area A¼2p(nl)2. As age n increases, the area

allocated to a leaf, AL¼A/N, will thus asymptotically

decrease to 0. This decrease is caused by a disparity between
the exponentially growing number of elements to be placed

and the much more slowly growing available space.

A similar disparity would occur if the distribution of

internodes and leaves was considered throughout the

volume of a tree crown, or if the discussion was restricted

to planar branching patterns.

Fig. 7. Selected branching patterns (A–D) and their idealizations (E–H). Pinnate (A), bi-pinnate (B), and recursively compound (C) fern

fronds. (D) An approximately self-similar inflorescence of Astilbe sp. with a spiral phyllotaxis. This inflorescence can be viewed as

a three-dimensional counterpart of the planar frond (C). (E) Single-compound monopodial structure. Red circles denote organs,

e.g. pinnae, leaves or flowers, and the triangle denotes an apical meristem. (F) A double-compound structure. (G) A hypothetical

structure with indeterminate recursive branching and all segments of the same order having the same size. Note intersecting and

overlapping segments in the basal part of the structure. (H) Self-similar branching structure with the same topology as (G), but with the

branch segment size decreasing exponentially towards the extremities.
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There are two ways in which this disparity can be

resolved: a gradual decrease in the size of elements or in

their number. The first strategy can be analysed most

easily assuming shortening of child internodes with

respect to their parent internode by a constant factor

r <1. The structure obtained for r2D¼
ffiffi

2
p

2
and a branching

angle of 90� describes the limit case, in which a rectangular

area is uniformly filled by a branching structure with-
out collisions and intersections (Fig. 8A) (Mandelbrot

1982, pp. 164–165; MacDonald, 1983, pp. 140–143). Like-

wise, the structure obtained for r3D¼ 2�1
3 describes the

limit case of a repetitive branching pattern filling a volume

(Fig. 8B). The ratios r2D and r3D are the solutions to the

equation NrD¼1, discussed in the previous section. In this

case, N¼2 is the number of child segments produced in

one generation, and D is the dimension of space: either
2 or 3. The formula NrD¼1 can be generalized to the case

where the daughter branch segments are shortened by

different ratios, r1 and r2, then adopting the form

+ N

k¼1
rDk ¼ 1 (Mandelbrot, 1982, pp. 56–57; Falconer,

1990, Chapter 9.2). Approximating this equation for D¼2

and various values of rates r1 and r2 creates—for suitably

chosen branching angles—fractal structures (Fig. 7H) that

resemble highly compound fern leaves (Fig. 7C). While the

possibility of generating fern-like structures using fractal
methods is well known (Barnsley, 1988; Prusinkiewicz

and Lindenmayer, 1990), the above analysis puts it in the

context of strategies that plants employ to deal with the

constraints of space. We can call this strategy egalitarian,

as it treats equally all segments: they support smaller

child branches unless their size falls below a threshold

value.

Observations and models of highly compound inflores-
cences suggest that the egalitarian strategy can also explain

the form of some three-dimensional branching structures

(Figs 7D, 9A–D). In both the planar and three-dimensional

cases, the constraints of space manifest themselves in the

shortening of the child segments with respect to the parent

segment that subtends them. It is an interesting question,

however, whether a similar analysis applies to the branching

structure of trees. Such an hypothesis was first advanced by
Honda (1971), and subsequently pursued in many tree

models developed for computer graphics purposes, for

instance (Oppenheimer 1986). Examples of trees created

using Honda’s model are shown in Fig. 10. Although

resembling trees at first sight, they exhibit a highly re-

petitive, self-similar structure that is significantly different

from the branching pattern of typical temperate-climate

trees.
To provide a more realistic explanation of tree form,

Sachs and Novoplansky (1995) (see also Sachs, 2004)

proposed a different strategy for accommodating the

constraints of space, in which competition between

branches is the key. The idea of competition for space as

a driving force defining trees was also the cornerstone of

early computer models by Ulam (1962) and Cohen (1967),

but its significance was obscured by the limited power of the

computational models of the time and the restriction of the

models to two dimensions. It was recently re-examined by

Runions et al. (2007) and Pa1ubicki et al. (2009).

In the space-colonization model of Runions et al. (2007),

the available space is represented as a set of attraction

points for which developing branches compete. The Aristo-

telian exclusion principle is reflected in the assumption that

each attractor can be allocated to at most one branch. The

tree structure is generated in an iterative growth simulation.

In each iteration, attractors are assigned to the branch

segments that are closest to them (Fig. 11A). Each segment

that is associated with at least one attractor then produces

a new segment in the average direction of all attractors

assigned to it (Fig. 11B). A new segment may extend an

existing axis at its tip, or initiate a new branch (Fig. 11C).

An attractor is removed once a tree node comes too close

to it: the space associated with this attractor is then

consumed and is no longer available for other branches

(Fig. 11D, E). With the attraction points distributed in

three dimensions, the above process results in a gradual

occupation of the free space, represented by attractors, by

an emergent tree structure (Fig. 11F–H). In spite of its

extreme simplicity, this model appears to capture the

irregular yet harmonious structures of temperate-climate

trees (Fig. 11I, J).

Extensions of the above model were studied by Pa1ubicki

et al. (2009). The modified model introduces an explicit

representation of buds and simulates apical control of

development as a competitive advantage of some buds with

respect to others. Furthermore, the model makes use of

light as a spatially distributed resource for which the buds

Fig. 8. Self-similar branching patterns optimally filling an area (A) and a volume (B).
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and branches compete; this facilitates the simulation of the

shedding of branches that are no longer beneficial to the

tree. A wide range of plausible temperate-tree forms can be
obtained by changing parameters of this model (Fig. 12).

These results support the conjecture of Sachs and Novo-

plansky that, as in the case of the wavy surfaces of leaves and

petals, genetic mechanisms do not control tree form in detail.

Instead, they set the stage for a competitive, self-organizing

process through which branching forms emerge. In their own

words, ‘The form of a tree of a given species is generated by

self-organization in which alternative branches inhibit or
compete with one another following no strict plan or pre-

pattern’ (Sachs 2004). This perspective differs from the

widely known notion of architectural tree models (Hallé

et al., 1978), according to which, ‘Organization in plants

reflects the precisely controlled genetic program which

determines their development. [.] Precise growth patterns

of trees are much disrupted by exogenous, environmental

factors’ (Hallé et al., 1978, p. 74). The recognition of spatial
constraints has thus a profound impact on the conceptual

models of trees and their development.

Discussion

According to Aristotle’s exclusion principle, two objects

cannot occupy the same space. As long as this constraint is

satisfied, developing plants may, however, maximize the

usage of space. The first strategy is to acquire more space by

extending the structure to another dimension. In the case of

surfaces, the underlying relationship between growth and

form is a consequence of the Gauss theorem, which implies

that a flat object must extend to the third Euclidean

dimension if it grows disproportionally fast near the centre

or at the margin of the surface. Growth at the margin is

often associated with the breaking of symmetry, as a wavy

margin may no longer have the radial symmetry of an initial

flat disc. When growth rates increase exponentially towards

the margin, the waves acquire a fractal character.

The second strategy is an egalitarian partitioning of space

between components. Considered in the context of repeti-

tive branching patterns of unlimited order, it also leads to

the formation of fractal patterns, best exemplified in nature

by self-similar compound leaves and inflorescences. In this

Fig. 10. Sample structures generated using Honda’s (1971) self-similar tree model, assuming monopodial (A) and sympodial (B)

branching.

Fig. 9. Approximately self-similar 3D structure of Syringa vulgaris inflorescences. (A, B) A photograph and a simulation model of S.

vulgaris cv. Congo. (C, D) A photograph and a simulation model of S. vulgaris cv. Etna. The difference in the form of these cultivars is due

to different scaling ratios along the main and lateral branches.
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case, the constraints of space are manifest in the ratios of

branch segment lengths formed in consecutive generations,

beyond which the structures become too dense to fit in the
available space.

Finally, the third strategy is the competitive partitioning

of space. It satisfies the constraints of space by bringing into

existence or maintaining only some of the potential elements

of the structure. This strategy appears to play an important

role in the development of temperate-climate trees.

Examples of processes and forms induced or constrained by

the properties of space appear at various spatial scales. In
addition to those discussed above, they encompass the

shaping of single-cell organisms (Dervaux and Ben Amar,

2008), the emergence of fruit forms (Yin et al., 2008), the

development of phyllotactic patterns (Dosio et al., 2006;

Hotton et al., 2006), the differentiation of ray florets at the

boundary of a capitulum (Battjes and Prusinkiewicz, 1998),
the development of leaf venation patterns (Runions et al.,

2005), the self-thinning patterns of plant distribution

(Firbank and Watkinson, 1985), and the shapes of vegetation

boundaries in plant ecosystems (Gastner et al., 2009). A

further synthesis of these diverse examples is possible due to

an extension of the notion of curvature to discrete objects,

such as trees, which makes it possible to consider both

wrinkled surfaces and branching structures as manifestations
of negative curvature (Cannon et al., 2000). This wide range

of forms and scales points to the pervasive role of space

constraints in plant development. In particular, space

Fig. 11. The space-colonization model of tree development (Runions et al., 2007). (A–E) One iteration of the generative algorithm. (A)

Attractors representing available space (blue circles) are associated (blue lines) with the segments of the growing tree (black circles) that

are closest to them. (B) Average directions towards the attraction points (red lines) are then calculated, defining positions of new

segments (red circles). (C) The growing tree after the addition of new segments. (D) Calculation of the proximity of the tree to the

attraction points. Continuous-line blue circles surround attraction points that are closer to the growing tree than the threshold distance

(the circle radius), dashed circles surround attraction points that are farther than the threshold. (E) Attraction points closer than the

threshold distance are removed, and the remaining attraction points are associated with tree segments, thus initiating next iteration of the

algorithm in the state corresponding to (A). (F–H) Example of tree generation. Beginning with an initial segment representing the trunk

base (arrow) and a cloud of attraction points (F), the tree grows through an iterative application of steps (A–E). As the tree grows, the

attraction points are consumed (G) until the final form is reached (H). (I, J) Examples of trees generated using this model for different

parameter values. Images (A–H, J) from (Runions et al., 2007), all images courtesy of Adam Runions.
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constraints provide a mechanism through which details of

form can be elaborated in an emergent fashion on the basis

of a relatively coarse genetic-level specification of growth.

This mechanism can be further extended to include a feed-

back through which geometric or mechanical clues provide

input to the molecular level processes of morphogenesis
(Green, 1996, 1999; Hamant et al., 2008; Newell et al., 2008).

The resulting forms are sensitive to changes in temporal

growth co-ordination and growth rates (heterochronic

changes of developmental processes, Li and Johnston, 2000),

which suggests a mechanism through which relatively small

genetic modifications may induce evolutionary novelties.

Given their importance, why are the properties of space,

subject of philosophical and mathematical thought for
millennia, only now attracting considerable attention in plant

biology? The reasons may be technical. Emergent phenom-

ena, such as fractal wrinkling or competition for space, are

difficult to conceptualize without the aid of computer

models, a relatively new addition to the repertoire of

biological research tools. The acquisition of spatial data,

such as the distribution of light, water or nutrients, may

require complex experimental techniques. The incorporation
of spatial phenomena, even as intuitive as the detection of

mechanical collisions and prevention of component intersec-

tions, complicates computational models, and therefore has

often been avoided. Finally, the mathematical apparatus of

differential geometry needed to describe and analyse curved

surfaces is considered to be ‘among the most complicated

and inaccessible of all the formal systems in mathematics’
(Henderson, 1998, p. xv). In particular, the relation between

the curvature of surfaces, the discrete structure of surfaces

and trees, and their fractal character is a very recent object

of advanced mathematical investigations (Cannon et al.,

2000). The discrepancies between what is easy for nature to

do and what is easy for us to conceptualize, measure, model,

and analyse, may have concurred in turning the research

focus away from considerations of space. Further progress
in developmental plant biology requires, however, taking

into account that ‘of all the constraints of nature, the most

far-reaching are imposed by space’ (Stevens, 1974, p. 5).

Materials and methods

Figures 1 and 5C, D, F–H were generated using the tissue-
modelling program VVE, based on the earlier program VV (Smith
and Prusinkiewicz, 2004; Smith et al., 2004). The leaf surface

Fig. 12. Sample models generated using an improved model of branch competition for space (Pa1ubicki et al. 2009). All images from

Pa1ubicki et al. (2009), courtesy of Wojciech Pa1ubicki, Kipp Horel, and Steven Longay.
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models shown in Fig. 5F–H were obtained by smoothing a polygon
mesh generated by a mass-spring model with two iterations of
Loop subdivision (Loop, 1987; Smith et al., 2004), modified to
preserve the course of the main veins. Figure 3 was generated with
Canvas, an interactive program for visualizing growing surfaces
(Matthews, 2002). Figure 4B–F were obtained using special-
purpose programs as described by Dimian (1997). Figures 5E,
7E–H, 8, 9B, D, and 10 were generated with the L-system-based
modelling software L-studio and vlab (Prusinkiewicz, 2004), using
L-systems and modeling methods described by Prusinkiewicz
and Lindenmayer (1990). Figure 9B and D were synthesized with
L-systems using methods described by Prusinkiewicz et al. (2001).
Figures 11F–J were obtained using VV (Smith et al., 2004), and
Fig. 12 was generated using special-purpose programs described
by Pa1ubicki et al. (2009); these results were also reproduced with
L-systems.
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