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Abstract We consider computational modeling of biological systems that consist
of discrete components arranged into linear structures. As time advances, these
components may process information, communicate and divide. We show that: (1)
the topological notion of cell complexes provides a useful framework for simulating
information processing and flow between components; (2) an index-free notation
exploiting topological adjacencies in the structure is needed to conveniently model
structures in which the number of components changes (for example, due to cell
division); and (3) Lindenmayer systems operating on cell complexes combine the
above elements in the case of linear structures. These observations provide guidance
for constructing L-systems and explain their modeling power. L-systems operating
on cell complexes are illustrated by revisiting models of heterocyst formation in
Anabaena and by presenting a simple model of leaf development focused on the
morphogenetic role of the leaf margin.

1 Introduction

There is a feedback between mathematics and studies of nature. On one hand,
mathematical concepts—even though they may eventually be formalized in an
axiomatic way—are often inspired and motivated by studies of nature. On the other
hand, they facilitate these studies by providing proper mathematical tools (Fig. 1).

In this context, we consider computational methods needed to model the develop-
ment of multicellular structures, in particular plants. We show that these methods are
not merely a new application of partial differential equations, traditionally used to
model spatio-temporal phenomena in mathematical physics. Instead, developmental
modeling of multicellular structures requires an integration of tools rooted in dif-
ferent branches of mathematics and computer science. This combination includes
L-systems [1], ordinary differential equations, and the topological notion of cell
complexes [2].
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Fig. 1: A conceptual model of relations be-
tween natural science and mathematics.
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The structures we consider are the spatial arrangements of discrete components
that process information and communicate. These structures are dynamic, which
means that not only the state of the components, but also their number can change
over time. The development is symplastic: the neighborhood relations can only be
changed as a result of the addition or removal of components (in contrast to animal
cells, plant cells do not move with respect to each other). We limit our examples to
linear structures consisting of sequences of cells, although similar problems occur
in the modeling of branching plant structures at the larger scale of architectural
modules: branch and root segments, buds, leaves, flowers and fruits. The insights we
obtain also extend to models of two- and three-dimensional structures.

2 Computation in Cell Complexes

Let us consider the fundamental process of diffusion in a filament as a running
example. At any point in time, the distribution of the diffusing substance can be
visualized by plotting concentration c as a function of position x along the filament
(Fig. 2a):

How can we model changes in concentration due to diffusion over time? The first
impulse may be to apply the well known partial differential equation for diffusion:

∂c
∂ t

= D
∂ 2c
∂x2 . (1)

Unfortunately, there is a problem with this approach. To derive partial differential
equation (1), one starts with a discrete description of diffusion, then passes to the
limit in space and time ([3], Chap. 9). When ascribing this equation to a multicellular
structure, we go back to the discrete version. Such circular thinking should be
avoided [4].

One step towards a solution is to ignore (1) and directly write the set of ordinary
differential equations that describe the changes in concentration in each cell without
going to the spatial limit (Fig. 2b):

dci

dt
= ki (ci−1− ci)− ki+1 (ci− ci+1) , i = 2,3, . . . ,n−1. (2)
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Fig. 2: Sample distribution of a diffusing substance in a spatially continuous (a)
and spatially discrete (b) model of a multicellular filament.

According to this system of equations, the concentration of the diffusing sub-
stance in each of the n− 2 cell interior to the filament changes proportionally to
the difference in concentrations across cell walls (a version of Fick’s law [3]). For
simplicity, we do not consider here the boundary cells 1 and n. We assume that the
concentration of the diffusing substance is approximately uniform within each cell.
This is a reasonable assumption as it is the cell walls, rather than the cells themselves,
that present a significant obstacle to diffusion. The system of equations (2) highlights,
however, another problem, which becomes apparent when we compare the equations
for adjacent cells, e.g. i and i+1:

dci

dt
= ki (ci−1− ci)− ki+1 (ci− ci+1)

dci+1

dt
= ki+1 (ci− ci+1)− ki+2 (ci+1− ci+2)

(3)

The term ki+1 (ci− ci+1) is calculated twice, first to determine the amount of
the diffusing substance exported from cell i to cell i+ 1, and a second time to
determine the amount of the substance received by cell i+1 from cell i. Superficially,
performing the same calculation twice may seem merely redundant: computationally
inefficient, but without any effect on the final result. However, the problem created
by repeating this calculation is deeper. Suppose that the diffusion coefficients are
random variables, which is well justified if the number of diffusing molecules is
small. Calculating an expression with random variables twice will likely produce
different results, and the amount of substance exported by cell i will be different
from the amount received by cell i+1, violating the law of mass conservation.

We can solve this problem by computing fluxes between any pair of adjacent
cells only once and using the result twice, to update concentration in each cell. While
implementing this solution, we need to properly recognize the topology of the mod-
eled structure, which is a sequence of cells separated by walls. This topology offers
placeholders for all variables inherent in diffusion: concentrations c are associated
with cells, and fluxes J with walls (Fig. 3). The system of equations (4) results:
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Fig. 3: Modeling a filament as a
cell complex. x

c
ci-1 ci+1ci

i)i(J →−1 )i(iJ 1+→

J(i−1)→i = K(i−1)→i (ci−1− ci)

dci

dt
= J(i−1)→i− Ji→(i+1)

 i = 2,3, . . . ,n−1 (4)

Although the flux through each wall is computed the same way as in (2) and
(3), it is now computed only once. Consequently, mass is conserved even in the
presence of random fluctuations of flux. Furthermore, if the system of equations (4)
is evaluated numerically, for example using the forward Euler method with time step
∆t,

Jt+1
(i−1)→i = Kt

(i−1)→i

(
ct

i−1− ct
i
)

ct+1i = ct
i +
(

Jt
(i−1)→i− Jt

i→(i+1)

)
∆t

 i = 2,3, . . . ,n−1
t = 0,1,2, . . .

(5)

mass will be conserved exactly in spite of the errors in estimating fluxes over finite
time intervals that are inherent in numerical methods.

A sequence of cells separated by walls is an example of a one-dimensional cell
complex [2]. Formally, such a complex is an interwoven sequence of objects of
two types: line segments (cells) and points at which these segments meet (walls).
Thinking in terms of cell complexes facilitates proper definition of discrete models,
especially in higher dimensions. For example, in three-dimensional tissues built from
polyhedral cells we distinguish three-dimensional cells, two-dimensional polygonal
faces that are shared by pairs of cells, one-dimensional edges that bind these faces,
and zero-dimensional vertices in which the edges meet. Each of these objects may
provide a placeholder for different variables, organizing simulations of multicellular
organisms in a systematic manner [5].

3 L-systems

Do cell complexes provide a good framework for describing processes such as
diffusion or genetic regulation in multicellular systems? They are certainly a step
in the right direction, but many problems remain. The key issue is how to identify
the components of a cell complex, the variables related to each component, and
the equations that relate these variables. One method is to use indices and specify
neighborhood relations between the components with index arithmetic. For instance,
if n components are arranged into a sequence indexed from 1 to n, the neighbors of
component i ∈ {2, . . . ,n−1} will have indices i−1 and i+1. Equations (4) and (5)
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Fig. 4: Inadequacies of cell identification with indices in a growing filament. (a)
Assignment of an arbitrary number to a newly created cell breaks index arithmetic.
(b) Renumbering dissociates indices from the identity of cells.

are examples of this notation. It is so standard in mathematical practice that we tend
to use it without much thought. Unfortunately, it does not work well for developing
systems.

To see the problem, let us consider a filament with consecutively numbered cells
[6]. A cell, say number 9, divides and becomes two cells. What indices should
they have? One possibility would be to pass number 9 to one of the child cells and
assign some arbitrary number that has not yet been used, say 42, to the other cell
(Fig. 4a). Each cell will then have a unique identifier, but we can no longer rely on
index arithmetic to find who is the neighbour of whom: it no longer suffices to add
one to find the neighbour to the right, or subtract one to find the neighbour to the left.

Another possibility is to preserve index arithmetic (Fig. 4b). We can accomplish
this, for example, by assigning the second new cell number 10, and renumbering all
of the remaining cells to the right. The old cells 9-10-11 now become cells 10-11-12.
In this case, we can perform index arithmetic on the new filament, but the identity
of cells is no longer maintained. For example, cell 10 has become cell 11, and may
become cell 12, 13 or higher in the future.

Analyzing these problems, we conclude that their source is not merely one or
another indexing scheme, but the very attempt to use indices to identify cells in a
growing organism. Paraphrasing Hermann Weyl, who said “The introduction of
numbers as coordinates [...] is an act of violence” [7, p. 90], we can say “...and so is
the introduction of indices.”

An alternative idea is to exploit the topological structure of the filament and
introduce operators that will return the informational content of the neighbours. The
possibility of accessing such context in a local manner, without globally indexing
all components of the modelled structure, is one of key ideas behind L-systems, the
formalism for describing and simulating development introduced in 1968 by Aristid
Lindenmayer [1]. Using the notation for (context-sensitive) L-systems presented in
[8], we can write (5) as:

C(cL) < W (J) > C(cR) → W (K · (cL− cR))

W (JL) < C(c) > W (JR) → C (c+(JL− JR)∆t)
(6)

L-system expressions are called rewriting rules or productions, as in the theory
of algorithms and formal languages. The first production above states that wall W
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is associated with a single variable, noted J. This variable represents flux though
the wall. Its value is updated (arrow →) considering concentrations cL and cR of the
diffusing substance in cells C on the left and right side of wall W . These cells are
indicated by the operators < and > , respectively. The variable identifiers cL and
cR are local to this production and can be arbitrary, but must be distinct. Given the
wall and its context (i.e., the adjacent cells), the updated flux is calculated using the
expression K · (cL− cR).

The second production works in a similar way. In order to update the concentra-
tion c of the substance in cell C, the walls W that delimit this cell on the left and right
sides are considered. Each wall is characterized by a flux: JL and JR, respectively.
Within time ∆t associated with a single simulation step, concentration c changes by
(JL− JR)∆t. The L-system productions (6) thus express the same idea as Equation
(5), but without involving indices or any other global enumeration of cells and walls.
Instead, they use the operators that look for the context, or neighbourhood, of cells
and walls.

Summarizing the ideas presented so far, we have introduced three notions of key
importance to the modeling of multicellular structures. First, we formalized these
structures as cell complexes. This notion provides a vehicle for assigning variables to
proper elements of the structure, in our example concentrations to cells and fluxes to
walls. Second, we used locally defined context, rather than globally defined indices
(or any other global enumeration) to access information about the neighbours of any
element in the complex (Figs. 4a and 4b). The third point is a little more subtle, but
equally true: the arrow is an operator that relates what was before to what will come
next, and thus indicates the neighbourhood in time. Thus, in contrast to Equation (5),
L-system (6) needs no indices for time as well. An additional benefit of L-systems is
that they naturally extend to another type of productions, which capture cell division.
For example, the following production:

C(c) : condition → C(c)W (0)C(c) (7)

says that, if some condition is met, cell C will divide into two child cells with the
same concentration c as the parent cell, separated by a wall.

4 Heterocyst Differentiation in Anabaena

To illustrate the presented concepts in a biological context, we will apply them to
model morphogenesis in a growing filament. The chosen organisms, representing
genus Anabaena, integrate some of the most fundamental processes linking patterning
and growth. Consequently, they have been repetitively used to illustrate both the
basic mechanisms of morphogenesis and diverse aspects of modeling with L-systems
[9–15]. Here we focus on the integration of L-systems and cell complexes.

Anabaena is a genus of cyanobacteria, organisms that have been on Earth for
over 3 billion years and are responsible for the introduction of oxygen into the atmo-
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sphere [16]. It creates multicellular filaments consisting of two basic types of cells.
Vegetative cells are capable of photosynthesis and produce sugars. Heterocysts are
capable of fixing nitrogen from the atmosphere, and produce nitrogenous compounds
that the bacterium needs. Photosynthesis and nitrogen fixation are biologically diffi-
cult to reconcile, because the enzyme crucial to the fixation is inhibited by oxygen.
Consequently, some cyanobacteria separate photosynthesis and nitrogen fixation in
time: they photosynthesize during the day and fix nitrogen at night. Others, including
Anabaena, separate these tasks in space [16].

On the average, consecutive heterocysts in an Anabaena filament are separated
by about ten vegetative cells [17]. Heterocysts cannot divide, but vegetative cells do
divide and grow, causing the filament to elongate. As the existing heterocysts are
moved apart by the growing vegetative segments, new heterocysts differentiate in-
between. The process that controls this differentiation has been extensively studied.
A small protein called PatS is produced by heterocysts and diffuses through the
vegetative segments of the filament, inhibiting the differentiation of new heterocysts
[18]. As the existing heterocysts move apart, the concentration of PatS in the
vegetative segments gradually decreases, eventually falling below a threshold near
the center of the segment. This decline is detected by the genetic regulatory circuit
that triggers the differentiation of a new heterocyst.

The maintenance of approximately constant spacing between heterocysts in a
growing filament can be captured and explained using computational models that
may represent different tradeoffs between biological accuracy and simplicity. Here
we present a very simple L-system illustrating the use of cell complexes.

#define H 0 // Heterocyst cell type
#define V 1 // Vegetative cell type
#define K (ran(2.0)) // Diffusion coefficient
#define ν 0.5 // Turnover rate
#define R 1.1 // Cell growth factor
#define Θ 0.1 // Threshold for heterocyst differentiation
#define sMAX 0.8 // Cell size at division
#define ∆t 0.01 // Time step

Axiom: C(H,1,1) W(0) C(V,1,1) W(0) C(H,1,1)
p1: C(aL,cL,sL) <W(J) >C(aR,cR,sR) →W(K · (cL− cR))
p2: C(a,c,s) : a = H → C(H,1,1)
p3: W(JL) <C(a,c,s) >W(JR) :

{ c � c+((JL− JR)−νc)∆t; s � sR∆t ; }
c < Θ → C(H,1,1)

p4: W(JL) <C(a,c,s) >W(JR) :
{ c � c+((JL− JR)−νc)∆t; s � sR∆t ; }
s > sMAX → C(V,c,s/2) W(0) C(V,c,s/2)

p5: W(JL) <C(a,c,s) >W(JR) :
{ c � c+((JL− JR)−νc)∆t; s � sR∆t ; }
→ C(V,c,s)
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Fig. 5: Snapshots of a simulation of heterocyst differentiation in a growing An-
abaena filament. Non-differentiated vegetative cells are shown in blue and hetero-
cysts are shown in red. Vertical bars indicate concentration of a diffusing inhibitor
produced by the heterocysts. The red horizontal line indicates the threshold of
heterocyst differentiation.

The axiom specifies that the initial structure consists of three cells C separated by
walls W . The cells are characterized by three parameters: type a (H for heterocyst,
V for a vegetative cell), inhibitor concentration c, and cell length s. Productions are
ordered, and the first applicable production is used for each cell or wall. Production
p1 determines flux J of the inhibitor across a wall, as in L-system (6). Production
p2 , applicable to heterocysts, sets both the inhibitor concentration and heterocyst
length to 1. Productions p3 to p5 apply to vegetative cells. They describe changes in
inhibitor concentration due to its diffusion and turnover, and changes in cell length
due to growth. In addition, production p3 specifies that the vegetative cell in which
the inhibitor concentration falls below threshold Θ will differentiate into a heterocyst.
Likewise, production p4 states that a vegetative cell which exceeds maximum length
sMAX will divide.

Fig. 5 shows selected steps of a simulation using this L-system. As time pro-
gresses, the vegetative cell and its descendants divide, pushing the heterocysts apart.
Concentrations of the inhibitor in the vegetative cells decreases with their distance
from the heterocysts, as the diffusive supply of the inhibitor diminishes. When
the concentration of the inhibitor falls below a threshold, the corresponding cell
differentiates into a heterocyst. The average distance between heterocysts is thus
maintained in spite of the filament’s growth.

5 Leaf Development

The previous example was focused on the arrangement of cells of different types
within a growing filament. This filament was visualized by placing cells along a line,
as its overall form was not important. In the next example we use a more complex
geometric interpretation of an L-system operating on a cell complex. The resulting
computational model plausibly explains the form of a lobed leaf.
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Fig. 6: A conceptual model of
auxin flow in a growing leaf. Po-
larized auxin transport at the leaf
margin (black arrows) leads to the
emergence of auxin convergence
points (blue rectangles). Canal-
ized auxin flow from these points
defines the pattern of main veins.

Convergence points

Many aspects of plant development are regulated by the plant hormone auxin [19],
which is actively exported from cells by a family of proteins called PINFORMED—
in short, PIN. Within this family, the PIN1 protein [20] plays the dominant role in leaf
development. Confocal microscopy images of diverse plants show that PIN1 proteins
at the leaf margin export auxin towards discrete locations, called convergence points
[21, 22]. From there, auxin propagates into the leaf blade, forming streams, or
canals, which define the paths of future veins [23]. The first convergence point in
a young leaf primordium is at the leaf tip. As the leaf grows, the distance between
this convergence point and the leaf base increases, and new convergence points are
gradually formed in the available space [23] (Fig. 6).

The above process can be compared to the differentiation of heterocysts in the
growing filament of Anabaena. However, while the positioning of new heterocysts
can be intuitively explained by the depletion of the diffusively transported inhibitor
(PatS) between heterocysts moving apart, the molecular mechanism defining the
spacing of convergence points on the leaf margin is not yet fully understood. The
key assumption is that the concentration of PINs in the membrane of cells at the leaf
margin depends on the concentration of auxin in the adjacent cells. The higher this
concentration, the more PINs will be allocated to the abutting cell membrane [24,
25]. This feedback between PINs and auxin is illustrated in Fig. 7.

Here cells are represented schematically as black contours, with auxin concen-
trations shown as filled blue squares. The size of these squares is proportional to
the concentration of auxin within the cells. Auxin fluxes are shown as black arrows
between the cells: the wider the arrow, the larger the flux. PIN concentrations are
visualized as red rectangles running parallel to cell edges; the wider the line, the
larger the PIN concentration at the corresponding cell membrane. The feedback loop
of interactions is indicated by the green arrows. The top arrow shows that PINs in
the membrane of cell i abutting cell j pump auxin towards cell j. The bottom arrow
shows that the concentration of auxin in cell j affects the allocation of PINs in the
membrane of cell i, and thus controls further flow of auxin into cell j.

To show that the postulated interactions between auxin and PINs can produce
a pattern of approximately equidistant convergence points in a file of cells, we
construct a simple computational model governed by three equations (for related
models and their analysis see [23–27]). The first equation describes the flux Ji→ j of
auxin from cell i to the adjacent cell j as the sum of active and diffusive transport:
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Fig. 7: Up-the-gradient model of PIN polarization and
auxin transport. Green arrows indicate the feedback of
interactions: PINs (red rectangle) promote auxin efflux
from cell i (black arrow), while high auxin concentration
in cell j (blue area) polarizes PINs in cell i toward j.

i j

Ji→ j = T ci [PIN]i→ j−T c j [PIN]i← j +K(ci− c j). (8)

The active transport from cell i to cell j is assumed to be proportional to the
auxin concentration ci in cell i, multiplied by the concentration [PIN]i→ j of PINs
in the membrane of cell i abutting cell j. The coefficient of proportionality is T .
An analogous term describes active transport of auxin from cell j to cell i. The last
term represents diffusive transport with the diffusion coefficient K, as in Equation (4,
top). The second equation describes the allocation of PINs to the membrane of cell i
abutting cell j. It has the form

[PIN]i→ j ∼ [PIN]i · f (c j) . (9)

where [PIN]i is the overall concentration of PINs in cell i, and f is some increasing
function of auxin concentration c j in cell j.

The third equation adds to the law of mass conservation (Equation (4), bottom)
terms representing local auxin production with a constant absolute rate σ and local
turnover with relative rate µ:

dci

dt
= Ji−1→i− Ji→i+1 +σ −µci. (10)

To model a sequence of cells and walls obeying the above equations, we express
them as an L-system operating on a cell complex:

#define T 1.2 // Polar transport coefficient
#define K 0.02 // Diffusion coefficient
#define σ 0.1 // Auxin production
#define µ 0.005 // Auxin turnover
#define ∆t 0.05 // Time step

Axiom: C(0,0,0) W(0) C(0,0,0) · · · C(0,0,0) W(0) C(0,0,0)
p1: C(↼pL,cL,

⇀pL) <W(J) >C(↼pR,cR,
⇀pR)

→W(T
(
cL

⇀pL− cR
↼pR
)
+K (cL− cR))

p2: C(↼pL,cL,
⇀pL) W(JL) <C(↼p,c,⇀p) >W(JR) C(↼pR,cR,

⇀pR) :
→ C( f (cL),c+(JL− JR +σ −µc)∆t, f (cR))
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Fig. 8: The initial state and three stages of simulation of convergence point forma-
tion in a file of cells.

Fig. 9: Shape formation through boundary propaga-
tion. The outer shape results from the propagation
of the inner shape in the normal directions, with a
variable velocity depicted by red arrows.

Assuming uniform distribution of auxin throughout the file of cells, the initial
state of the system can be visualized as the first row of Fig. 8. As expected, a
stable pattern of discrete convergence points—maxima of auxin concentration with
PINs oriented towards them—emerges as the simulation progresses. Three stages of
simulation in a file of constant length are shown in Fig. 8.

We will now apply the above process to model the development of leaf form.
Hay et al. [21] postulated that the convergence points on the leaf margin define the
positions of accelerated leaf outgrowth. A limited but simple method for modeling
such outgrowth is the boundary propagation method ([28], Chap. 1). It operates
by moving the boundary of a shape in the normal direction in each simulation step
(Fig. 9).

We model the leaf margin as a single file of cells, initially in a shape resembling
a leaf primordium. The propagation rate of each cell is proportional to the concentra-
tion of auxin. In addition, we assume that cells reaching the threshold length divide
as in the case of Anabaena. Fig. 10 shows an example of the resulting progression of
the shapes of the growing margin and compares the final stage of the simulation with
an ivy leaf.

The molecular details of ivy leaf development are not yet known. Nevertheless,
a closely related model has been constructed and supported by experiments for
Arabidopsis leaves [23] and it is likely that it extends to other plants, such as ivy. In
summary, both the model of heterocyst differentiation in Anabaena and the model of
leaf development illustrate the principles of computational model construction using
L-systems and cell complexes. In spite of their simplicity, these models provide
insights into pattern formation in nature.
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(a) (b)

Fig. 10: A model of leaf development using the boundary propagation method.
(a) Superposition of selected simulation steps. Propagation speed is controlled by
auxin concentration and is the highest at the convergence points. (b) Comparison
of the final shape generated by the model with an ivy leaf.

6 Conclusions

Mathematics of multicellular development. Modeling multicellular systems in
development requires a spatially discrete formalism, which sets it apart from the
continuous treatment of time and space in classical mathematical physics. Cell
complexes provide a convenient abstraction for representing topological relations
between components of discrete structures. Variables describing a system can be
associated in a natural manner with components of different dimensions within a cell
complex, allowing for convenient storage of these variables in their topologically
meaningful location [29]. Respecting the principle of locality, equations relating
these variables may only refer to the variables in the neighboring components of the
structure. The notion of cell complexes makes it possible to access these variables
using an index-free notation. This is particularly important when dealing with
systems in which structure changes dynamically, for example as a result of cell
division. In the one-dimensional case, such changes can be conveniently expressed
using the notion of L-systems. This provides an explanation of why L-systems work
so well in modeling applications.

Molecular processes and pattern formation. We have illustrated modeling
with cell complexes using examples of pattern formation in growing sequences of
cells. Maxima of the concentration of a morphogen arise from an interplay between
its local production and passive, diffusive transport, as in the model of Anabaena, or
by reshuffling an existing or diffusely produced substance through active transport,
as in the model of leaf margin. One question is whether these molecularly different
mechanisms represent fundamentally different paradigms of pattern formation, or
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different implementations of a common principle. From the biological perspective it
would also be interesting to know why such different mechanisms have evolved to
create similar patterns.

Open problems. The confluence of L-systems and cell complexes provides a
convenient framework for modeling one-dimensional developing structures. Model-
ing of higher-dimensional structures with dynamic cell complexes is substantially
more difficult, and is a subject of ongoing research [5]. Difficulties extend to the
visualization of three-dimensional models, where representations of the model’s
surface only provide partial information about the entire structure, and volumetric
representations are often visually confusing.

Another problem open for further research concerns numerical methods for
modeling structures with dynamic topology. Traditional formalisms for specifying
and solving large systems of equations are based on matrix notation, which is not well
suited for modeling multicellular organisms. First, matrices have fixed dimensions,
so each time a cell divides, matrices describing the system globally have to be
redefined. Second, the matrices are very sparse, since each cell can only be affected
by a small number of neighboring cells due to the locality of interactions. General-
purpose algorithms for solving systems of sparse equations use automatic techniques
to identify which variables are connected through equations. However, constructing
a sparse matrix and then identifying these connections represents unnecessary work,
because a precise description of the connections between variables is already present
in the topology of the complex. Thus, instead of expressing a structure using a matrix,
and applying general methods for dealing with sparse matrices, it is better to operate
directly on cell complexes [4, 29, 30]. The appropriate numerical methods have been
devised in some contexts [12, 31–33], but a more complete toolbox of numerical
methods designed for dynamic cell complexes is needed.
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