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The original method for approximating the attractor A of an iterated function sys­
tem F = { F1 , • . .  , Fn } consists of selecting a starting point x0 and applying se­
quences of transformations from F to it. These sequences may be chosen at random 
or in a deterministic fashion, but regardless of the approach used, any sequence 
applied to x0 E A yields a point y that also belongs to A. In contrast, the gen­
eralization of IFS's discussed in these notes introduces a control mechanism that 
restricts the set of applicable transformations to a (regular) language L over the 
alphabet F. Thus, in language-restricted iterated function systems (LRIFS's), only 
some sequences of transformations applied to x0 E A yield points y in A. LRIFS's 
are more powerful than the ordinary IFS's, in the sense that some attractors of 
LRIFS's cannot be generated by IFS's. In addition, restrictions on transformation 
application make it possible to avoid non-invertible affine mappings which are in­
compatible with the escape-time method for visualizing the attractors. These notes 
describe the concept of LRIFS, illustrate it using examples, and relate it to other 
methods for generating fractals, such as the Koch construction and L-systems: The 
bibliography lists recent papers on the topic. 
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2 Iterated function systems 

Let X be a complete metric space with distance function d. The distance between 
point a E X and set B C X is defined as: 

d(a, B) = inf d(a, b). 
bEB 

The half-distance between set A C X and set B C X is equal to: 

d'(A, B) = sup d(a, B). 
aEA 

Note that, in general, d'(A, B) -=/ d'(B, A). The distance between sets A and B is 
the greater of the two half-distances: 

p(A,B) = ma.x{d'(A,B),d'(B,A)}. 

The function p(A, B) satisfies the distance axioms in the space H(X) of all closed 
nonempty bounded subsets of the space X and is called the Hausd orff metric on 
this space. 

A function ( transformation) F : X -+ X is called a contraction, if there is a 
constant r < 1 such that 

d( J;;(;x ), F).y)) ::; r d( x ,  y) 

for allx,yEX. 
A transformation F : X -+X is extended to the domain H(X) of subsets of X: 

F(A) = {F(x): x EA}. 

Since the values of F are sets, it is possible to perform set-theoretic operations on 
them. Let F = { F1 , ... , FN} be a set of functions Fi : X -+ X, extended to the 
domain H(X) as described above. The equation 

N 

S(A) = LJ Fi(A) 
i=l 

defines a function S : H(X) -+ H(X) associated with the set F. Hutchinson (21, 
page 728] showed that if all functions Fi are contractions in space X with metric d, 
then S is a contraction in the space H(X) with the Hausdorff metric p. 

The space H(X) and the transformation S satisfy conditions of Banach 1s fixed 
point theorem (10, page 778], presented here in a narrowed version. 

Banach's fixed point theorem. Let M be a complete metric space, and suppose 
that T: M-+ M is a contractive transformation in M. Then for any initial element 

xo E M, the iterative process Xn+i = T(xn), n = 0, 1, 2, ... , can be continued 
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indefinitely, and the sequence { Xn } converges to an element x E M, which is the 
unique solution of the equation x = T( x). 

According to this theorem, there is a unique set A E H(X), such that 

N 

A= S(A) = LJ Fi(A). (1) 
i=l 

The set F of contractive mappings F1 , F2, •.• , FN is called an iterated function sys­

tem, and the set A is called the attractor of F. 

Let 5n denote then-fold power of the transformation S, defined recursively by 
the formulae S0(A) = A and Sn(A) = 5n- 1 (S(A)), where n = 1, 2, 3, .... The fixed 
point theorem states that, for any compact set A, the sequence Sn(A) converges to 
the attractor A in the space (H(X), p), 

(2) 

Let S* denote the iteration of the transformation S, 

00 

S*(A) = LJ sn(A).
n=O 

We will show that S*(A) = A for any A� A. Taking the definition of transformation 
S into account, the following inclusions hold: 

A C A 

S(A) C S(A) = A 

sn (A) C A for all n = 0, 1, 2, ...

S*(A) C A.

On the other hand, 
A= lim sn(A) � S*(A), 

n-+oo 

thus, in conclusion, 
A= S*(A). 

The above equation provides the basic method for constructing the attractor 
A, by selecting a starting point x0 E A and applying all possible sequences of 
transformations from F to it. Of course, in practice it is impossible to consider 
the infinite number of sequences, and the construction ends after a finite number of 
steps. Various strategies for choosing subsequent transformations and terminating 
the approximation of the attractor are discussed in [16, 19]. 

In the scope of these notes, we are interested in iterated function systems con­
sisting of linear functions Fi in the plane. A legible method for expressing them is 
important in practice, since it can make IFS's easier to specify and understand. We 
will express transformations by composing operations of translation, rotation, and 
scaling. The following notation is observed: 
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• t( a, b) is a translation by vector ( a, b ):

x' x + a
y' X + b 

• r( a) is a rotation by angle a with respect to the origin of the coordinate
system:

X
1 

X COS Q'. - y Slil Q'. 

y' = x sin a + y cos a

• s(rx , r
y
) is a scaling with respect to the origin of the coordinate system:

If r = rx = r
y
, we write s(r) instead of s(r,r). 

We compose transformations from left to right. For instance, if F1 = t( a, b ), F2 =

r(a), and F3 = s(r), then 

x o t(a, b) o r(a) o s(r) = x o F1 o F2 o F3 = F3(F2(Fi(x))).

The operator of composition is often omitted without ambiguity, 

Whenever a transformation cannot be (conveniently) represented in terms of trans­
lations, rotations, and scalings, we can use matrix notation. 

Example. Figure la shows transformations that take vector A to vectors Band C.
Using the notation introduced above, these transformations can be expressed as: 

J2 
s(2)r(45)

s(�)r(l35)t(O,l) 

The attractor of the IFS :F = {F1 , F2 } is shown in Figure lb. 

We are now well positioned to characterize the modification of iterated function 
systems introduced in this paper. The main idea is to limit the set of allowable 
sequences of transformations to a subset of S*. We proceed by identifying sequences 
of transformations from :F using words over the alphabet of transformation labels 
V. In consequence, sets of sequences of transformations can be viewed as formal
languages over the alphabet V. The necessary notions of the formal language theory
are recalled in the next section.
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' (0, 1) 

(0,0) 

(a) (b) 

Figure 1: Two contractions ( a), and the attractor of the resulting IFS (b) 

3 Formal languages 

An alphabet V is a finite nonempty set of symbols or letters. A string or word over 
alphabet V is a finite sequence of zero or more letters of V, whereby the same 
letter may occur several times. The string consisting of zero letters is called the 
empty word and is denoted by €. The concatenation of words x = a1 a2 ••• am and 
y = b1b2 ... bn is the word formed by extending the sequence of symbols x with the 
sequence y, thus xy = a1 a2 ... am b 1 b2 ... bn , 

The set of all words over V is denoted by V*. A formal language over an alphabet 
Vis any set L of words over V, hence LC V*. Since formal languages are sets, the 
set-theoretic operations can be performed on languages. In addition, concatenation 
is extended to languages by the formula: 

The n-th power of a language L is defined recursively as L0 
= €

1 
Ln = LLn-l for 

n = 1, 2, 3, .... The iteration of language L is the union of all its powers, 

The problem of providing finite specifications for infinite languages takes a cen­
tral place in formal language theory. The two main techniques are grammars and 
automata. In these notes we focus on regular languages, which can be specified using 
finite-state automata. 
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A nondeterministic finite-state (Rabin-Scott) automaton is a quintuplet: 

Jvt = < V,S,s0,E,I >, 

where: 

• V is a finite set of symbols, called the alphabet,

• S is a finite set of states,

• s0 E S is a distinguished element of the set S, called the initial state, 

• E C S is a distinguished subset of S, called the set of final states,

• I C V x S x S is a state transition relation.

Instead of (a, Si, sk) E J, we often write (a, Si) - Sk, 

At the beginning of the operation, the automaton is in initial state s0• It pro­
cesses a word w = a1 a2, ... , an E V* letter by letter, arriving at successive states 
s1, s2, ... , Sn, according to the state transition relation: 

Processing stops when the string of symbols is exhausted. If the sequence of states 
s1, s2, ... , Sn can be chosen in such a way that Sn is a final state, Sn E E, then the 
word w is accepted by the automaton M, otherwise it is rejected.

Formally, the state transition relation is extended to words as follows: 

• (€,si)-* Si for all Si ES,

• if there exists such an Sj E S that (w,si) -* Sj and (a,sj) - sk, then
(wa, Si)-* Sk

The set 
L(sk) = {w EV*: (so,w) -* sk} 

is called the language associated with the state sk. The language accepted by the

automaton M is defined as: 

L(M) = LJ L(sk) = {w EV*: (:lsk EE) (so,w) -* sk}.
SkEE 

Let I(sk) C I denote the set of all transitions to the state Sk. For any state Sk 
other than so, the following equality holds: 

u L(si)a.

6 



a,b 

c,d c,d 

Figure 2: A sample finite automaton 

The empty word must be added in the case of the initial state: 

L(so) = u 
(a,s;,so)El(so) 

Finite state automata are commonly represented as directed graphs, with the 
nodes representing states and arcs representing transitions. The initial state is 
indicated by a short arrow. If E =/- S, the final states are distinguished by double
circles. A sample finite automaton is shown in Figure 2. The languages associated 
with the states s0 and s 1 satisfy the following equations: 

L(so) 
L(si) 
L(M) 

L(so)(a U b) U €
= L(so)(c U d) U L(s 1 )(c U d) 
= L(so)UL(s1) 

These equations can be solved, yielding an algebraic description of the language 
L(M) in the form of a regular expression. The algebra of regular expressions 
furnishes the set of allowable operations on expressions. Intuitively, the solution 
proceeds by substituting expressions for variables and performing set-theoretic op­
erations. These operations may lead to equations of the form X = X AU B, which 
have solutions X = BA*. For the example under consideration, we obtain: 

L(so) 
L(si) 
L(M) 

(a U b)* 
= ( a U b )*( c U d) UL( s 1 )( c U d) = ( a U b )*( c U d)( c U d)* 
= (a U b)* U (a U b)*(c U d)(c U d)* = (a U b)*(c U d)* 

We will now apply these notions to iterated function systems. 

4 Language-restricted iterated function systems 

A language-restricted iterated function system (LRIFS) is a quintuplet :Ii = 

(X,:F, V,h,L), where:

• X is the underlying metric space,
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• :F is an iterated function system in space X,

• V is an alphabet,

• h : V .- :F takes letters of the alphabet V to mappings of the IFS :F,

• L C V* is a language over the alphabet V.

The domain of the mapping h is extended from the set of letters V to the set of 
words V* using the equation: 

According to this definition, the extended function h is a homomorphism from the 
monoid generated by the alphabet V with the operation of concatenation to the 
monoid generated by the iterated function system :F with composition. The final 
extension of h from the domain of words to the domain of languages over V is given 
by the equation: 

h(L) = LJ h(w). 
wEL 

Thus, H(L) is a function defined in the domain H(X) of subsets of the space X. 
If the language L consists of all words over alphabet V, then h( L) = h(V*) is 

the set of all sequences of transformations in the IFS :F, and 

In contrast, if L is a subset of V*, then only some composite transformation from 
S* belong to h( L ), hence h( L) C S*. If x0 belongs to the attractor A of the IFS :F, 
and AL( x0 ) denotes the image of the set { x0} with respect to the transformation 

h( L), the following inclusion holds: 

Thus, the set AL(x0 ) generated by the LRIFS :FL with the starting point x0 E A is 
a subset of the attractor A. 

Example. Consider an LRIFS :FL = (X, :F, V, h, L}, where: 

• the space X is the plane,

• the IFS :F consists of four transformations:

F1 s(0.5) 

F2 s(0.5)t(O, 0.5) 

F3 s(0.5)r(45)t(0,1) 

F4 s(0.5)r(-45)t(0, 1), 

• the alphabet V consists of four letters a, b, c, d,
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( a) (b) 

Figure 3: Attractor A and its subset AL (xo) 

• the homomorphism h is defined by:

h(a) = Fi, h(b) = F2, h(c) = Fa, h(d) = F4, 

• the language L is defined by the regular expression

L = ( a U b )*( c U dt 

which corresponds to the automaton from Figure 2. 

Figure 3 compares the attractor A of the IFS :F with the set AL (xo) generated by 
the LRIFS FL using the starting point x0 = (0, 0). Clearly, the branching structure 
of Figure (b) is a subset of the original attractor (a). 

Example. Figure 4 shows six sets AL(xo) generated by LRIFS's with the same set 
of transformations :F, but with different languages L. It is assumed that: 

• X is the plane,

• :F consists of four transformations:

• V = {Ti, T2, Ta, T4} ,

• h(Ti)=Tifori=l,2,3,4,

T1 = s(0.5)t(0.0, 0.5) 
T2 s(0.5)t(0.5,0.5) 
Ta s(0.5) 
T4 s(0.5)t(0.5,0.0) 
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a b 

C d 

e f 

Figure 4: Sample sets AL( x0), generated using the same set of transformations :F. 
Figure (b) is the Sierpinski gasket [22], figures ( c) and ( d) are from [8], figure ( e) is 
from [27]. 
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a b 

T,. T2, T3, T4 T,. T:i, T4 

⇒@
⇒@ 

C d 

e f 

Figure 5: The automata used to create images in the previous figure 
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The languages L are defined using finite automata shown in Figure 5. 

Examination of this example leads to the following observations: 

• In contrast to the "ordinary" IFS's where the variety of generated figures is
obtained by changing the set of transformations, LRIFS's make it possible
to generate various figures using the same transformations, by changing the
language L.

• The underlying IFS recursively subdivides a square into four smaller squares.
Consequently, the languages L1 to L6 are related to the quad-tree representa­
tion of the figures shown. This relation is explored in [8, 9].

5 The recursive structure of the generated sets 

Consider an LRIFS :FL = (X, :F, V, h, L), where L is a regular language, and let 
M = (V, S, E, s0, I) be the finite automaton that accepts L. According to Section 3, 

L(so) u 
(a,s;,so)El(so) 

u 

After applying homomorphism h to both sides of these equations, for an arbitrary 
Xo E X we obtain: 

xoh( L( so)) LJ xoh(L(si))h(a) U {xo}, 
(a,s;,so)El(so) 

LJ xoh(L(si))h(a) for sk =/- so. 
(a,s;,sk)El(sk) 

Let Ak = xoh(L(sk)) denote the image of the set {xo} with respect to the transfor­
mation h(L(sk)), and suppose that Fa = h(a) is the transformation of F, represented 
by symbol a. We obtain: 

Ao u Ai o Fa U { Xo} = u Fa(Ai) U {xo}, (3) 
(a,s;,so)E/(so) (a,s;,so)El(so) 

Ak - u Ai o Fa
= u Fa(Ai) for Sk =/- So. (4) 

(a,s;,sk)El(sk) (a,s;,sk)El(sk) 

This system of equations describes the recursive structure of the set AL(x0), gener­
ated by the LRIFS FL, It can be compared with the equation 

that characterizes the attractor A of an IFS F. The attractor of an IFS is the union 
of its images with respect to all transformations in F. In contrast, an LRIFS divides 
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the set A into a finite number of subsets Aki each of them is the union of the images 
of selected subsets Ai sets with respect to selected transformations Fa , 

Example. Figure 5 shows a structure that exhibits an alternating branching pattern 
along the main axis and an opposite branching pattern along the first-order lateral 
axes. Figure 5 partitions this structure into four subsets Ai, i = 112, 3, 4, and 
reveals their relationships. They are captured by the following equations: 

Ao Ao(T1 U T2 U T3 U T4) U {xo} 
A1 = Ao(Ts U T6 u T1) U A1Ts U A3(T6 U T1) 
A2 Ao(Tg U T10 U T11) U A2T12 U A3(T10 U Tu) 
A3 AoT13 U A1 T13 U A2T13 U A3T13 

A = Ao u A1 u A2 u A3. 

The corresponding automaton is shown in Figure 5. The transformations used to 
generate structure Figure 5 are specified below: 

T1 s(0.5)t(-0.002, 0) 
T2 s(0.5)t(0.002, 0) 
T3 s(0.5)t(-0.002, 0.13) 
T4 s(0.5)t(0.002, 0.13) 
Ts s(0.42)r(45) 
T6 s(0.2)r(90)t(-0.05, 0.05) 
T1 s(0.2)t(-0.05, 0.05) 
Ts = t(0.3, -0.3)s(0.74)t(-0.3, 0.3) 
Tg s(0.37)r(-45)t(O, 0.14) 
T10 s(0.172)r(-90)t(0.05, 0.19) 
T11 s(0.172)t(0.05, 0.19) 
T12 t(-0.265, -0.405)s(0.74)t(0.265, 0.405) 
T13 t(0, -l)s(0.74)t(0, 1) 

6 Attractors of LRIFS 's 

According to Section 2, the attractor A of an IFS F does not depend on the selection 
of the initial point x0• Furthermore, the set S*(x0) is equal to the attractor A, as 
long as x0 E A. In contrast, the equations 3, which relate subsets Ak associated 
with an LRIFS Fi, include a term representing the initial point. In general, its 
choice affects the set AL (x0). 

Example. Consider an LRIFS Fi = (X, F, V, h, L), where X is the Euclidean 
plane and the alphabet V is equal to { a, b}. The transformations Fa and A are 
given below: 

Fa s(0.5) 
Pb s(0.5)t(0.5, 0) 
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Figure 6: A structure A with an alternating-opposite branching pattern 
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Figure 7: The recursive structure of the alternating-opposite branching pattern 
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Figure 8: The automaton M capturing the recursive structure of the alternating­
opposite branching pattern 

(0,0) 

F, 

� ,.,.---. 

• • • 

Xo 
•• ., ► 

(1,0) 

Figure 9: Example of a set generatd by an LRIFS. No smallest closed set exists in 
this case. 

The larJ.guage L consists of words of the form ai or bi: 

L = a* U b*. 

The sets generated by this LRIFS depend on the choice of the starting point x0 

(Figure 9). 

Below we give a sufficient condition for the existence of the smallest compact set 
generated by an LRIFS. This is similar to the case of "ordinary" IFS's, where the 
attractor A can be defined as the smallest set satisfying the equation 

A= LJ Fi(A). 
F;E:F 
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Theorem. Consider an LRIFS :FL = (X, :F, V, h, L), and assume that L has the 
prefix property (there exists a nonempty word v E V* such that vL C L). Denote 
by xo the fixed point of the transformation h(v), and let A= x0h(L). Then for any 
x E X, the inclusion A C xF( L) holds. 

Proof. From the inclusion vL C L it follows that vn L C L for any n = 0, l, 2, .... 
Thus, for any x, 

xoF(L) = lim xF(vn)F(L) = lim xF(vnL) C xF(L). 
n-oo n--+oo

By analogy with "ordinary" IFS's, we call the set A the attractor of the LRIFS

fL , 
In the case of regular languages L, the prefix property means that the graph of 

the automaton M that defines L has at least one cycle including the initial state. 
If v is a word such that ( s0, v) -+* s0, the fixed point of the transformation h( v) can 
be used as the starting point x0. For example, in the case of automaton M shown 
in Figure 2, v can be chosen arbitrarily from the set ( a U b )*, thus the initial point 
Xo = h( v) for generating the branching structure shown in Figure 3b can be chosen 
anywhere on the main (vertical) stem. 

A popular method for generating attractors of IFS's is Barnsley's chaos game (3]. 
While the fixed point theorem suggests the iterative construction of an attractor by 
exploring the tree of composite transformations and applying them to the initial 
point, the chaos game makes it possible to pursue only one path in this tree, pro­
vided that the transformation applied in each step is chosen at random. Using the 
terminology of Markov processes instead of automata, Barnsley, Elton, and Hardin 
showed that the chaos game can also be used to generate the attractors of LRIFS's, 
if the language L is defined by a strongly connected automaton M (5]. (An automa­
ton is strongly connected if, for any pair of states Si, Sk E S, there exists a word 
v E V* such that (Si, v) -+ * Sk,) Given a ·state Si, the transformation is chosen at 
random from the set of transformations h(a) such that (a,si)-+ sk for some state Sk. 
For example, Figure 6 shows two attractors of LRIFS's generated using the chaos 
game method. The images correspond to Figure 4, c and e. The automata defining 
languages L are similar to those shown in Figure 5, c and e, except that states s0 

with related transitions have been removed, and states s 1 are considered initial. 

7 Iterated function systems, Koch construction, 

and L-systems 

According to Section 5, construction of an LRIFS proceeds by partitioning the at­
tractor A into subsets Ak, and finding transformations Ti that relate them. Another 
possibility occurs if a description of the set A is already known, for example, in terms 
of a Koch construction or an L-system. A method for obtaining an iterated function 
system equivalent to a given Koch construction is described formally in (25]. The 
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Figure 10: Sample attractors of LRIFS's, generated using the chaos game method. 

T1 s(t/3) 

T2 = s(1/3)r(60)t(1/3,0) 
T3 s(1/3)r(-60)t(1/2, -./3/6) 
T4 s(1/3)t(2/3,0) 

Figure 11: Koch construction of the snowflake curve, and the associated iterated 
function system 

main idea is as follows. The Koch construction is viewed as a rewriting system that 
takes the predecessor vector pinto a successor polygon if1 fh ... ifn. If Fi denotes the 
similarity that takes p to i, then the attractor A of the iterated function system 
:F = { F1, F2 , ... , Fn } is the same as the curve resulting from the Koch construction. 
For example, Figure 11 shows the production p _. ift ifiif.J� and the resulting IFS for 
the snowflake curve. 

Figures 12, 13 and 14 compare branching structures generated using Koch con­
struction with those generated using iterated function systems. Since the limit 
curves are the same, structures obtained in a small number of steps are shown as 
well. Koch constructions are specified and implemented using the formalism of 
L-systems with turtle interpretation [23, 24].
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The limit structure 

w: F 

Pt : F -+ F[+F]F[-F] 

L-system

T1 s(0.5)r(30)t(0.0,0.5) 
T2 = s(0.5)r(-30)t(o.o, 1.0) 
T3 - s(0.5)
T4 - s(o.s)t(o.o, o.s)

IFS 

Figure 12: A comparison of structures generated using an L-system and the equiv­

alent IFS 
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The limit structure 

w: F 

Pt : F - F[+F]F[-F]F 

L-system

T1 - s(0.33)r(30)t(0.0, 0.33)
T2 s(0.33)r(-30)t(o.o, 0.67) 
T3 = s(0.33) 
T4 = s(0.33)t(o.o, o.33) 
Ts s(0.33)t(o.o, 0.67) 

IFS 

Figure 13: A comparison of structures generated using an L-system and the equiv­

alent IFS 
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The limit structure 

w: F 

P1 : F -+ F[+FF]F[-FF]F 

L-system

T1 s(0.33)r(30)t(0.0,0.33) 
T2 - s(0.33)r(30)t(-0.17, 0.62)
T3 s(0.33)r(-30)t(0.0, 0.67) 
T4 s(0.33)r(-30)t(0.16, 0.62) 
Ts s(0.33) 
T6 = s(0.33)t(0.0, 0.33) 
T7 s(0.33)t(o.o, 0.6 

IFS 

Figure 14: A comparison of structures generated using an L-system and the equiv­
alent IFS 
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L-systems have capabilities extending beyond Koch constructions. For example,
Figure 15 shows a structure obtained in a simple simulation of plant growth. In 
the L-system, letters X describe apices that yield new branches according to pro­
duction p1; production p2 describes the exponential elongation of branch segments. 
Each letter X on the right side of production p1 yields a branch similar to the entire 
"plant

,,
, but twice as small, since the branch starts developing one step after the 

plant. Thus, the production reveals self-similarity in the generated structure, which 
is the basis of the corresponding LRIFS. Figures 16 and 17 provide additional ex­
amples. Figure 18 uses parametric L-systems to capture situations where the delay 
D + 1 in the development of lateral branches may be greater than one, and segments 
may elongate by a noninteger factor R in each derivation step. A formal analysis 
of the relationship between L-systems, applied to model simple growing structures, 
and iterated function systems is given in [24, Chapter 8). Curves obtained by Koch 
constructions and models of growing structures are the only fractals for which the 
equivalence between L-systems with turtle interpretation and (language-restricted) 
IFS's has been shown. Future work should generalize these results. 

8 A guide to the references 

Iterated Function Systems (IFS's) are among the basic methods for generating frac­
tals. The term itself was introduced by Barnsley and Demko [4), but the essential 
concept is usually attributed to Hutchinson [21). Vrscay [27) traces the idea further 
back to Williams [28), who studied fixed points of finite compositions of contractive 
maps. A detailed introduction to IFS's is presented in [3]. 

Barnsley, Elton and Hardin [5] introduce recurrent iterated function systems 
(RIFS) using Markov chains to control the order in which (affine) transformations 
are applied. The relation to finite automata is not mentioned directly, but it is 
not necessary to use a stochastic algorithm (the chaos game) to traverse the graph 
representing the Markov chain; various deterministic algorithms can also be used. 
This paper is well known and often cited, but concepts similar to RIFS's were around 
before. 

Berger [7) wrote a popular article in the same vein as Barnsley's paper. Appar­
ently, Womack's M.S. thesis [29] is an independent (re)discovery of the concept. 

In a paper which focuses on fractal generation by substitutions, Dekking pro­
vides a one-paragraph survey of the global construction of fractals, exemplified by 
recurrent IFS's [15], and credits Bedford [6) with the first results relating these two 
methods. Bedford's paper is rather difficult to follow. In contrast, Gilbert [18] and 
Bandt [1, 2) provide very legible presentations of the extensions of IFS's based on 
equations similar to those used in these notes: 

u 

22 



The limit structure 

w: X 

Pt : X -t F[+X]F[-X] + X 
P2: F -t FF 

L-system

(Q 1 U Q2)*(T1 U T2 U T3)* 

Q 1 - s(0.5)
Q2 = s(0.5)t(0.0, 0.5)

T1 - s(0.5)r(30)t(0.0, 0.5)
T2 - s(0.5)r(-30)t(o.o, 0.5)
T3 = s(0.5)r(-30)t(0.O, 1.0) 

LRIFS 

Figure 15: A comparison of structures generated using an L-system and the equiv­
alent LRIFS 
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The limit structure 

w: X 

P1 : X -+ F(+X][-X]FX 

P2 : F -+ FF 

L-system

Q1 s(0.5) 
Q2 - s(0.5)t(0.0, 0.5)

T1 s(0.5)r(30)t(0.0,0.5) 
T2 s(0.5)r(-30)t(0.0, 0.5)
T3 - s(0.5)t(0.0, 1.0)

LRIFS 

Figure 16: A comparison of structures generated using an L-system and the equiv- · 

alent LRIFS 
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The limit structure 

w: X 

P1 : X ---+ F[+X]F[-X]FX 

P2 : F ---+ FF 

L-system

s(0.5) 
s(0.S)t(0.0, 0.5)

s(0.5)r(30)t(0.0,0.33) 
s(0.5)r(-30)t(o.o, 0.67)
s(0.5)t(0.0, 1.0) 

Figure 17: A comparison of structures generated using an L-system and the equiv­

alent LRIFS 
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D = 0, R = 2 D = 2, R = 1.36 D =7,R=1.17 

#define D 0 

#define R 2.0 

I* apical delay *I 

I* internode elongation rate *I

w: A(0) 
Pt : A( d) : d > 0 

P2 : A( d) : d = 0 
p3: F(a) :* 

-+ A(d - 1) 
-+ F(1)[+A(D)]F(1)A(0) 
-+ F(a * R) 

Parametric L-system 

(Q1 U .Q2)*(T 1 U T2 U T3 )* 

Q1 s(0.5) 
Q2 = s(0.5)t(o.o, o.5) 

T1 s(1/(R j (D + 1)))r(45)t(0.0,0.5) 
T2 s(1/(R j (D + 1)))r(-45)t(0.0, 0.5) 
T3 = s(1/R)t(0.0, 1.0) 

LRIFS 

Figure 18: A comparison of structures generated using an L-system and the equiv­
alent LRIFS. Numbers D and R are parameters of the model. 
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A paper by Feiste [17], closely related to those by Bandt, relaxes the assumption 
that all maps Fa must be contractions. 

Although the ideas of Brandt could be described using the language of the theory 
of automata, he uses a notion of a "sofic system" instead. The relation between 
IFS's and formal languages is pursued explicitly by Culik and Dube [11, 13, 12, 14]. 
Berstel and his co-workers approach IFS's from the language-theoretic point of view 
as well, although papers [8, 9] are not deeply rooted in the existing literature of the 
topic. Examples of the application of finite automata to control the application of 
transformations are given in Master's theses by Sandness [26) and Hepting [20]. 

Vrscay [27] gives a very thorough survey of IFS's, then presents recurrent IFS's 
according to the definition by Barnsley, Elton and Hardin, gives collage theorems 
for recurrent IFS's, and considers the inverse problem (how to construct a recurrent 
IFS for a given image). The last problem also reoccurs on other papers by Vrscay. 
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