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ABSTRACT 

This paper presents two methods for generating Koch 
curves, analogous to the commonly used iterative methods 
for producing images of Julia sets. The attractive method is 
based on a characterization of Koch curves as the smallest 
nonempty sets closed with respect to a union of similarities 
on the plane. This characterization was first studied by 
Hutchinson. The repelling method is in principle dual to the 
attractive one, but involves a non trivial problem of selecting 
the appropriate transformation to be applied at each iteration 
step. Both methods are illustrated with a number of 
computer-generated images. The mathematical presentation 
emphasizes the relationship between Koch construction and 
formal languages theory. 

RESUME 

Dans cet article nous presentons deux methodes pour pro­
duire des images des courbes de Koch. La methode par 
attirance est fondee sur une etude des ensembles autosimi­
laires inauguree par Hutchinson. Une courbe de Koch est 
consideree comme le plus petit ensemble non-vide ferme par 
rapport a l'union des similarites dans la plaine. La methode 
par repulsion est une reciproque a la methode par attirance. 
On observe alors une analogie avec les methodes a 
engendrer des ensembles de Julia qui, elles aussi, peuvent 
etre soit attirantes, soit repoussantes. Les deux methodes 
sont illustrees par plusieurs images produites a l'aide de 
l'ordinnateur. La presentation mathematique se sert d'un 
lien entre la construction de Koch et la theorie des langages 
formels . 

KEYWORDS: fractal, attractor, repeller, Koch construc­
tion, rewriting system, iterative function system, dynamic 
process. 

1. INTRODUCTION 

In recent years the beauty of fractals has attracted wide 
interest among mathematicians, computer scientists and 
artists. A number of techniques for generating fractal shapes 
were developed and used to produce fascinating images. 
Two techniques, popularized by Mandelbrot's book [1982], 
have gained a particular popUlarity. These are the Koch 
construction, and function iteration in the complex domain. 
According to Mandelbrot's generalization, the Koch con-

struction consists of recursively replacing edges of an 
arbitrary polygon (called the initiator) by an open polygon 
(the generator), reduced and displaced so as to have the 
same end points as those of the interval being replaced. 
(The original construction [Koch 1905] was limited to the 
definition of the now famous "snowflake" curve.) As pointed 
out by A.R. Smith [1984], this is a language-theoretic 
approach: the fractal is generated by a rewriting system (a 
"grammar") defined in the domain of geometric shapes. In 
contrast, the method of function iteration refers to notions of 
complex analysis. The main idea is to analyze sequences of 
numbers {xn} generated by the formula x,.,.l = j(xn), where f 
is a complex function. The fractal , called a J ulia set, is a set 
invariant with respect to f Sequences of points originating 
outside the fractal may gradually approach it - in which 
case the Julia set is said to be an attractor of the process f­
or they may diverge from the fractal, and the set is then 
called a repeller of f A discussion of fractal generation 
techniques using attractive and repelling processes was 
presented, among others, by Peitgen and Richter [1986]. 

According to the above descriptions, the methods for 
generating Koch curves and Julia sets appear totally unre­
lated to each other. But is this the case indeed? From the 
theoretical point of view, an answer to this question was 
given by Hutchinson [1981]. He studied sets closed under a 
union of contraction maps on the plane (specifically, similar­
ities), showed their fractal character, proved that they can be 
considered as attractors, and indicated the relationship 
between these sets and Koch curves. Our paper applies 
Hutchinson's theory to computer graphics. We present two 
algorithms for generating images of Koch curves. The 
attractive method is similar to a method for generating 
images of Julia sets termed the inverse iteration method 
(IIM) by Peitgen and Richter [1986] . An image is obtained 
by plotting consecutive points attracted by the fractal. This 
method is relatively fast and particularly useful when study­
ing the impact of parameter changes on the curve shapes. 
Numerical parameter modifications make it easy to generate 
new variants of known curves. Continuous parameter 
changes allow for animating transformations of Koch curves 
in a way similar to the transformations of Julia sets [Norton 
1986]. On the other hand, the repelling method makes it 
possible to obtain colorful images of the entire plane con­
taining a Koch curve. This method is analogous to the 
method for creating colorful images of Julia sets. However, 
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in the case of Koch curves a specific new problem occurs. 
There are a number of similarities involved in the iteration 
process, and only one should be applied at each iteration 
step. The problem is to select the correct transformation. 

Our paper extends Hutchinson 's results in three direc­
tions: 

• We analyze the relationship between Koch construction 
and iteration of similarities in a formal way, based on a 
definition of the Koch construction in terms of formal 
languages theory. Our analysis is not restricted to the 
limit Koch curves, but also includes their finite approxi­
mations. 

• In addition to the attractive algorithm for generating 
images of Koch curves, which is a straightforward 
consequence of Hutchinson's paper, we introduce a 
repelling algorithm. 

• We illustrate both algorithms on a number of examples 
using computer-generated images. 

The paper is organized in the following manner. Sec­
tion 2 presents a formal definition of the Koch construction 
expressed in terms of formal languages theory. Section 3 
shows the equivalence between the Koch construction and 
iteration of a set of similarities on the plane. The discussion 
is limited here to curves which can be constructed in a finite 
number of steps. An extension to infinite-order curves is 
presented in Sections 4 and 5. Section 4 recalls the standard 
notion of the topological limit of a sequence of sets. Section 
5 applies this notion to define limit Koch curves, and pro­
vides their algebraic characterization. Section 6 presents the 
corresponding method for generating approximations of limit 
Koch curves, with examples of fractal images. Section 7 
introduces a dual description of the limit Koch curves which 
characterizes them as repellers rather than attractors. The 
resulting method for generating limit Koch curves is also 
discussed and illustrated. 

2. THE KOCH CONSTRUCTION. 

In order to accurately state and prove theorems related 
to the Koch construction, we must substitute a formal 
definition for its intuitive description usually presented in the 
literature. A fundamental notion is that of a vector, 
specified as an ordered pair (x, y) of points in the plane. 
(Note that throughout this paper, unless otherwise noted, the 
symbols x, y, z refer to points rather than coordinates.) 
Unless stated otherwise, we operate on fixed vectors, which 
means that two vectors a= (Xl' Y1) and l! = (X2, Y2) are 
considered equal if and only if their respective endpoints 
coincide: Xl = x2 and Y1 = Y2' (In contrast, free or abstract 
vectors are considered equal if they can be made to coincide 
by a translation.) As usual, it is convenient to identify a vec­
tor (a pair of points) with its graphical representation (a line 
segment in the plane). Consequently, we write that a point X 

belongs to a vector a if X belongs to the line segment 
representing et. This convention extends to sets of vectors. 
Thus, we assume that point X belongs to a set {J71' ... ,If,.} 
when x belongs to the figure formed as the union of the line 
segments of the component vectors. 

Definition 2.1. A polyvector is an ordered set of vectors on 
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a plane. We write: A = {aI' .. . ,an}, or A = a1 . .. an in 
short. Given the plane, we denote by W and W* the set of 
all vectors and the class of all polyvectors, respectively. 

Definition 2.2. A Koch system is a pair K = < I, P > where 
1 = it1 ... 0} E W* is called the axiom or initiator, and 
P = (Po 711 ... qm) E Wx W* is called the production. To 
specify a production, we use the notation J! -+ qj ... qm' 
The vector J! is called the predecessor of production P, and 
the polyvector 711 ... qm is called the successor or genera­
tor. 

Remark 2.1. Definition 2.2 extends Mandelbrot's [1982] 
description of the Koch construction in three directions: 

• The basic elements of the construction are vectors, not 
line segments. 

• The initiator and the production successor are arbitrary 
sets of vectors. They need not be of equal length, form 
a polygon or even be connected. 

• The predecessor of the production is an arbitrary vec­
tor. It need not be connected to the successor. 

The above extensions have the following justification: 

• Vector orientation plays an essential role in the Koch 
construction. Two Koch systems which differ only by 
the orientation of vectors in the initiator and/or produc­
tion may generate totally different fractals . Thus, a 
definition of a Koch system which makes no reference 
to line orientation is incomplete. 

• When describing the construction of some fractals - for 
example the dragon curve and the Gosper curve - Man­
delbrot complements the specification of the initiator 
and the generator with additional rules of application. 
These rules require the starting point and the end point 
of the generator to exchange their role in some 
derivation steps. By expressing productions in terms of 
vectors instead of line segments it is possible to incor­
porate the rules of application into the formal definition 
of the Koch system. 

• Interesting modifications of fractal shapes can be 
obtained by allowing the vectors in the generator to be 
of different lengths. 

In the following definitions we will refer to the notion 
of direct similarity. A direct similarity is a transformation 
on the plane which may change the position and size of 
geometric figures , but preserves their shape and orientation 
(which can be either clockwise or counterclockwise) as 
shown in Fig. 2.1. Such similarity can be expressed as a 
composition of scaling, rotation and translation; no 
reflections are allowed. 

If a transformation T takes figure A to the figure B, we 
will write AT = B. 

Definition 2.3. Let J! -+ 711 ... qm be the production of a 
Koch system K. Consider an arbitrary vector a and denote 
by T the direct similarity which takes vector J! to the vec­
tor et: J!T = et. (Obviously, T is unique.) We will say that 
poly vector ~ . . . b;" is directly derived from the vector a 
and write et::::) ~ . . . b;" iff ~ . . . b;" = ( 711 . . . qm) T. 

Remark 2.2. In the case of rewriting systems which operate 
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B B" 

C ' 
C 

~ 
C" 

A' B' 

A A" 

Triangle A'B'C' is related to ABC by a direct similarity 
Triangle A"B"C" is not directly similar to ABC because 
the mapping of ABC to A"B"C" involves a reflection. 

Fig. 2.1. Illustration of the notion of direct similarity. 

on strings (for example, context-free grammars), the result of 
applying a production p ~ ql . . . qm to the letter p is ident­
ical with the production's successor: ql '" qm' Conse­
quently, there is no need for distinguishing between produc­
tion p ~ ql ... qm and the derivation p => jl .. . qm' In 
contrast, in a Koch system the result ~ . .. bm of applying 
production p ~ ifJ . . . ctm to a vector (/ is, in general, 
different from the successor ifJ .. . ctm (since, in general, 
(/~ p.) 

Corollary 2.1. Consider a Koch system K with production 
p ~ ifJ ... ctm' and let (/ ~ ~ . .. z;:,. be a derivation in K. 
Denote by Sj the direct similarity which takes vector pto the 
vector ~ : pSj = ~ (j = 1, . .. ,m). In an analogous way, 
denote by ~ . the similarity which takes vector (/to the vector 
bj : (/ Sj =~. If T is the similarity which takes vector pto 
a, then Sj = rls7 
Proof. According to Definition 2.3, if (/= pT then 
bj = ~ T. Thus, 

p(T S) = (JYT)Sj = (/Sj = I! = ~ T = (JYS}T = p(SjT) 

or Sj = rlSjT . 0 

Remark 2.3. In the following sections we will focus on 
Koch systems with the axiom limited to a single vector if. 
In this case the derivation zt => q . . . c;,. starting from the 
axiom zt plays a particular role which justifies the use of 
special symbols Rand <P in place of T and S. Thus, by 
definition, PR = zt and zt <Pj = ej. The relationship between 
different vectors and transformations discussed above is 
represented diagramatically in Fig. 2.2. Note that the map­
pings Si' <Pj and R are completely defined by the Koch sys­
tem K, while the mappings Sj and T vary from one argument 
vector itto another. 

- T _ R _ 

a .... ------ p -----_ .. 0 

l~ l~ l~ 
- T - R _ 
b .... f------- q -----_ .. C 

Fig. 2.2. Relationship between mappings Sj' <Pj' Sj' Rand T. 
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The next definition extends the notion of direct deriva­
tion to the predecessors which are not single vectors. 

Definition 2.4. Let itl '" aj be a poly vector and 
P ~ ifJ . . . g;,. the production of a Koch system K. The 
poly vector bll ' " ~m . .. ~I . .. ~m is directly derived 
from the polyvector (/1 '" aj in the system K iff 
ai => ~I ... ~m for all i = 1, .. . ,I. We write: 

.". ... a.-I! .. . I! .. . I!/ .. · If/ UI /...... 11 Im I m' 

Remark 2.4. Note that in the derivation 

.". .. . (/ - If ... If .. . If/I .. . If/ UI /...... 11 Im m 

all vectors ai (i = 1, . .. ,f) are substituted by their succes­
sors in a single derivation step. Consequently, Koch sys­
tems belong to the class of parallel rewriting systems. In the 
domain of strings, the analogous derivation type character­
izes L-systems [Lindenmayer 1968, see also Rozenberg and 
Salomaa 1980]. The relationship between Koch systems and 
L-systems is quite close: in fact, many Koch curves can be 
generated using L-systems with a geometric interpretation of 
string symbols [Szilard and Quinton 1979, Dekking 1982a 
and 1982b, Prusinkiewicz 1986]. However, a discussion of 
the formal aspects of this relationship is beyond the scope of 
this paper. 

Definition 2.S. The notion of the direct derivation is 
extended to the derivation of length n ~ 0 in the usual recur­
sive way: 

• For any polyvector C, C =>0 C, 

• If Co =>n Cn and Cn => Cn+1 then Co =>n+1 Cn+l . 

Definition 2.6. A polyvector Cn is the Koch curve of order 
n generated by a Koch system K = < I , P > if Cn is derived 
in K from the axiom I in a derivation of length n: I =>n Cn. 

3. FINITE-ORDER KOCH CURVES. 

This section presents a characterization of Koch curves 
in terms of algebra of relations. We show that any Koch 
system K corresponds to a geometric relation <l> in such a 
way that the Koch curve of order n generated by K can be 
represented as I~. The formal discussion is limited to the 
Koch systems in which the initiator I is a single vector. A 
method for removing this limitation is outlined in Section 8. 

Theorem 3.1. Consider a Koch system 
K = < it, P ~ ifJ ... ctm >. For any sequence of indices 
h, . . . In : he p, .. . ,m} the following equality holds: 

zt Sit . . . Sj. = zt <Pj • . .. <Pjt 

where mappings Sj and <Pj are defined as in Corollary 2.1 and 
Remark 2.3. The operation Sj is assumed to be left­
associative: zt Sjt . . . Sj. = ( ... (zt Sit) . . . Sj). 

Proof - by induction on n. 

• Assuming that the sequence of zero transformations is 
equal to the identity mapping, for n = 0 the thesis is 
obvious. 

• Assume the thesis true for an n ~ 1 and consider a vec­
tor c= zt'l' · ... '1' . '1' . • According to the inductive 

~Jl "-JJ,,"-J}II+-l 

assumption, the vector (/ = zt Sit .. . Sj. can be 
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expressed as cf= o'Tl, where Tl = 4>j • ... 4>h' Further­
more, from the Corollary 2.1 it follows that the vector 
l! = cf ~i can be expressed as arls,' T, where T is 

~ ~ 

the direct similarity which takes the production prede-
cessor p to the vector a. The transformation T is in 
turn equal to the composition of the direct similarity R 
which takes the predecessor p to the axiom iT, and the 
transformation Tl which takes axiom 0' to the vector a. 
Consequently, we obtain: 

l!=a~. =arls· T=ct(Tl-lR-1)S· (RTl) = 
~" .. l Jtt+l }lI+l 

Interpretation. According to the above theorem, associated 
with a Koch system K is a set of direct similarities q,j' A 
vector l! can be derived from the axiom in a sequence of 
production applications if and only if it can be also obtained 
by transforming the axiom vector using a sequence of direct 
similarities q,j' The similarities 4>j must be applied in the 
reversed order compared to the corresponding ~j mappings. 

Example 3.1. In order to illustrate Theorem 3.1, let us 
introduce the following notation: 

• Sea) - scaling with respect to the origin of the coordi­
nate system where parameter a > 0 is the scaling ratio, 

• R(a) - rotation by angle a with respect to the origin of 
the coordinate system, 

• M(u,v) - translation by vector (u, v). (Note that in this 
case u and v are coordinates of a free vector, not end-

y 

a) 

x 
y 

b) lL-===-=O==_. C," 

y 

c, 

x 
y 

1~---=--=-. x 

Fig. 3.1. a) The production of a Koch system. 
b) Two methods for obtaining a vector l! E C2 : 

a sequence of productions and a 
sequence of similarities. 
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points of a fixed vector.) 
The similarities corresponding to the Koch system presented 
in Fig. 3.1a can be expressed as follows: 

1 
411 = S('3) 

1 1t 1 
4>2 = S('3) R('3) M('3'O) 

1 1t 1...[3 
4>3 = S('3) R(-'3) M("2'·'6) 

1 2 
4>4 = S('3) M('3'O) . 

Figure 3.1 b shows that a vector l! E C2 can be derived from 
the axiom using mappings ~2~4' or obtained as the image of 
the axiom using similarities 4>44>2' Operations 4>j are applied 
in the reversed order compared to the corresponding opera­
tions ~j' 

Remark 3.1. The specification of similarities 4>j by a com­
position of more primitive operations has an intuitive 
geometric appeal - it is conceptually close to the 
specification of symmetries in terms of rotations, transla­
tions, reflections and glide reflections. This emphasizes the 
relationship between fractal and "classic" geometry: Koch 
curves can be perceived as symmetric patterns which admit 
similarities as symmetries. The concept of considering simi­
larities as symmetries is certainly not new. The extensive 
study of "patterns and tilings" by Grlinbaum and Shephard 
[1987] provides several examples of so-called "similarity 
patterns" obtained by overlaying smaller and smaller copies 
of a given motif. However, all these patterns use exactly 
one similarity. The possibility of generating an abundance 
of interesting patterns using two or more similarities went 
unnoticed there. 

Since each sequence of n similarities q,j takes the axiom 
a to a vector l! which belongs to the Koch curve Cn and 
each vector of Cn corresponds to some sequence of such 
transformations, the following corollary holds. 

Corollary 3.1. Consider a Koch system 
K = < et, p ~ eft . . . qm >, and let <l> denote the union of 
the similarities q,j associated with K: 

m 
<l> = U 4>j . 

j=l 

For any n = 0,1,2,... the Koch curve of order n generated 
by K can be expressed as Cn = a~. 

Interpretation. According to the above Corollary, a Koch 
curve of order n can be obtained recursively, starting from 
Co = cf and using the relation Ci+l = Ci <l> to progress 
through the sequence of Koch curves of consecutive orders. 
Note that in general the relation <l> is not monotonic, i.e. 
Ci <l> is not a superset of Ci . Consequently, the curve Ci+1 
cannot be simply obtained by adding new vectors to Ci . 

Some, if not all, vectors of Ci must also be erased. 

In the following sections we will introduce the notion 
of a limit Koch curve and we will show that, by operating 
on points instead of vectors, it is possible to generate the 
limit Koch curves in a monotonic process with no erasing. 
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4. THE TOPOLOGICAL LIMIT OF A SEQUENCE OF 
SETS. 

In this section we recall some basic topological notions 
according to Kuratowski [1972] and Hutchinson [1981]. 

Let us assume that all sets considered are closed sets on 
the plane P. 

Definition 4.1. Let p(x,y) denote the Euclidean distance 
between points x,y. The distance between point x and set Y 
is defined as: 

p(x,Y) = inf p(x,y) . 
yeY 

The half-distance between set X and set Y is equal to: 

p'(X,Y) = sup p(x,Y) . 
xeX 

Note that, in general, p'(X,Y)"# p'(y,x). The distance 
between sets X and Y is the greater of the two half-distances: 

p(X,Y) = max {p'(X,Y), p'(y,xn . 

The function p(X,Y) satisfies the distance axioms in the 
space of all closed nonempty subsets of the plane P and is 
called the Hausdorff metric on this space. It is easy to 
notice that for any set families Xl' .. . ,xm and Yl, . .. .Yn 
the following inequality holds: 

p [~Xi , U Yj ] ~ max {p(Xi, YJ) : I~i~, I~j~n} (*) 
i=l Fl 

Definition 4.2. A set A such that 

lim p(An,A) = 0 
n->-

is called the topological limit of the sequence of sets 
AO,Al,A2' . . ' . It is known that if a topological limit exists, 
it is unique. Consequently, we can use notation A = Lt An' 

Definition 4.3. Consider a function f: P ~ P. The 
Lipschitz constant of f is defined as 

Lip if) = sup p(ftx), fly)) . 
XcIy p(x,y) 

We will use the following properties of Lip (j): 

• For any points x, y e P 

p(ftx), fly)) ~ Lip if) p(x,y) 

• If f: P ~ P and g: P ~ P then 

Lip ifg) = Lip (j) Lip (g) 

• If f is a similarity then 

L · if-I) 1 
Ip = Lip (j) (**) 

A function f is called a contraction if Lip (j) < 1. 

s. THE LIMIT KOCH CURVES. 

This section characterizes limit Koch curves as sets 
invariant with respect to unions of similarities. The material 
of this section is based on [Hutchinson 1981]. 
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Definition 5.1. The spread CJ of a Koch system K is the 
distance between the axiom 0' and its direct successor 
cj ... 0n: 

CJ = p(i7, ~ ... 0n) where o'~ ~ .. '?m . 

Lemma 5.1. The distance between two consecutive curves 
Cn and Cn+l generated by a Koch system K with production 
p ~ ql ... qm satisfies the the inequality: 

length(a'max) 
dn~CJ-----

length(o') 

where a'max is the longest vector in the poly vector Cn. 

Proof. Consider derivation a'~ ~ .. . h;,. which results 
from the application of production P ~ th . . . qm to a vec­
tor a'. According to Fig. 2.2, the vectors et, ~, ... ,h;,. are 
related to the vectors i7,~, . . . ,0n by a similarity R-lT, 
hence: 

p (et, ~ . . . h;,.) length(a') 

p(i7, ~ . . . 0n) length(o' ) 

The longer vector et, the bigger is the value of both ratios. 
Taking into account the inequality (*) from Section 4, we 
obtain: 

P(CmCn+l) ~ 

max {p(aj, ~, .. . ~): aj eCn 

length(a'max) 

& 'lt~11 .. · l!'J'} 
J " m 

=CJ----- o 
length(o') 

Definition 5.2. The contraction ratio of a production 
P ~ th . . . qm is defined as: 

length(qmax) 
y=----

length<p) 

where qmax is the longest vector of the generator th . .. qm' 
Lemma 5.2. Assuming the notation of Corollary 2.1 and 
Remark 2.3, the following equality holds: 

y = max {Lip (8): I~j~} = max {Lip (<I>}: I~j~} 

= max {Lip (~j): I~j~} . 

Proof. The equality y = max {Lip (8j ): I~j~} results 
directly from the Definition 5.2. Furthermore, taking into 
account the property (**) in Section 4, we obtain: 

Lip (<I>j) = Lip (R-18j R) = Lip (8j ) . 

Using the same argument for ~j' we conclude that: 

Lip (8j ) = Lip (<I>j) = Lip (~j) 

for any j e {I, ... ,m}, so the thesis holds. 0 

Lemma 5.3. The length of any vector l! in the polyvector 
Cn satisfies the inequality: 

length(l!) ~ length(u)y" . 

Proof. According to Theorem 3.1, if l! eCn then there 
exists a sequence of n transformations <1>,' ... <1>,' such that ,... . , 
b = o'<I>j • ... <l>j,. From Lemma 5.2 it follows that 
Lip (<I>j) ~ y for ,!ll functions <l>j under consideration. Conse­
quently, length(b ) ~ length(U)yn. 0 
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Definition 5.3. Consider a sequence of polyvectors C" gen­
erated by a Koch system K using derivations of length 
0,1,2,... . A set C_ = Lt C" is called the limit curve gen­
erated by the system K . 

Theorem 5.1. Consider a Koch system 
K = < et, jY ~ ih . . . l/m >. If the contraction ratio 'Y of the 
production jY ~ l/I .. . l/m is less then 1, then the limit curve 
C_ exists and is bounded. 

Proof. Consider a sequence C",CII+ I ' ... ,Cp of polyvectors 
generated by the Koch system K. According to the Lemmas 
5.1 and 5.3, the distance dj between consecutive poly vectors 
C j and C j+1 satisfies the inequality d j ::;; C'J"(-. The distance 
between polyvectors C" and Cp does not exceed the sum of 
distances dn + d,,+1 + . .. + dp-l : 

p-I 1-'VP-" 
p(CmCp ) ::;; LC'J"(- = crY'~ 

j=n 1-"( 

Since 'Y < 1 and p > n, we obtain: 

p(Cn,Cp ) ::;; crY'_1_ 
1-"( 

The above formula shows that the distance P(CmCp) tends to 
zero with n~oo, hence according to the Cauchy criterion 
there exists the limit set C_ such that 

lim p(CmC_) = 0 
n ....... 

Or, C_ = Lt Cn • Furthermore, 

so C_ is bounded. 0 

Theorem 5.2. Consider a Koch system 
K = < et, jY ~ l/I ... l/m >. The contraction ratio 'Y is 
assumed to be less then 1. Let <1> denote the union of the 
similarities <!lj associated with K: 

m 

<1> = U <!lj 
j=1 

The limit curve C_ generated by K has the following proper­
ties: 

a) C_<1> = C_ , 

b) For any nonempty set X on the plane, if X<1> c X then 
C_ cX, 

c) For any point x in the plane limp'(x<l>'" C_) = O. 

Proof. 

a) C = Lt zt~ = Lt zt<1>lI+l = ( Lt zt~) <1> = C_<1> . 
n~~ n~~ n~ 

b) Let X be an arbitrary nonempty set closed with respect 
to <1>. In order to show that C_c X we will consider a 
point XEX and a vector F! cCn (n~). According to .,... 
the Theorem 3.1, b is the image of the axiom 0' with 
respes.; to some sequence of transformations included in 
<1>n : b = o'<!lj.<!lj_t ... <!lit' Let y denote the image of x 
with respect to the same sequence of transformations, 
y = x<!lj.<!lj_t . .. <!ljt' and assume that the distance 
between the axiom 0' and the set {x} is equal to do. 
According to Lemma 5.2, the distance between the vec­
tor F! and the set {y} satisfies the inequality 
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p( F!, {y}) ::;; doi'. Since the set X is assumed to be 
closed with respect to all transformations included in <1>, 
y belongs to X. Thus, the half-distance d" = p'( F!, X) is 
less then or equal to doi'. Considering that the con­
traction ratio 'Y is less then one, the half-distance d 

.,... " 
between an arbitrary vector b cC" and the set X tends 
to zero when n tends to infinity. Thus, the limit set C_ 
is a subset of X. 

c) Consider an arbitrary point x in the plane, and a point z 
which belongs to C_. Denote by do the distance 
p(x, z). Following the same arguments as in a previous 
part of this proof, we obtain: 

P(x<!lj •... <!>it' z<!lj • ... <!lit) ::;; doi' , 

where <!lj • .. . <!lit is an arbitrary sequence of transforma­

tions included in <1>". According to part (a), 
z<!>j • ... <!lit E C_, thus p(x<!lj.· · · <!ljt' C_) ::;; doi', or 
p'(x<l>", C_) ::;; doi'. Considering that the contraction 
ratio 'Y is less then one, the thesis is obtained. 0 

Corollary 5.1. For any Koch system K with a contraction 
ratio 'Y < 1 and any point x in the plane, 

C_ = Lt x<l>n . 

Proof. Following the same argument as in the proof of 
Theorem 5.2a, we find that the set X = Lt ~ has the pro­
perty X<1> = X. Thus, according to part (b), C_c X. On the 
other hand, from part (c) it follows that Xc C_. Thus, 
X= C_.D 

Interpretation. Parts (a) and (b) of the Theorem 5.2 
characterize the limit Koch curve C_ as the smallest 
nonempty set invariant with respect to a union of similari­
ties. Part (c) characterizes a set C_ as an attractor. The 
iterative application of the transformations included in <1> can 
be considered as a dynamic process [Mandelbrot 1982, Peit­
gen and Richter 1986] which describes evolution of the set 
of points S" in time. The process starts with a one-element 
set So = {x}. The subsequent sets S" get closer and closer to 
the limit set C_ regardless of the selection of the initial 
point x. Thus, C_ attracts points from the entire plane. 
Corollary 5.1 further specifies that all points of C_ will by 
reached by applying some (possibly infinite) sequences of 
transformations from <1> to an arbitrary starting point x. 

6. THE ATTRACTIVE METHOD FOR KOCH CURVE 
GENERATION. 

Theorem 5.2 and Corollary 5.1 suggest a simple 
method for generating finite approximations of the limit 
Koch curves. 

• Start from a set So = {z} where point z is known to 
belong to C_, 

• Given set S", construct set S,,+I by applying all transfor­
mations <!lj c <1> to all points z" E Sn. Repeat this step 
for consecutive values of n until the desired number of 
points approximating C_ is reached. 

Note that all generated points z" belong to the limit curve 
C_, so all calculated points contribute to the approximation 
of C_ and no erasing occurs. 
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The above method assumes that an initial point Z E C_ 
is known. Two approaches can be used to find such a point. 

• Solve for z any of the equations z4>j = z, where 4>j c <1>. 
Since each mapping 4>j is a contraction, it has a unique 
fixed point z. Furthermore, z=z4>J for any n ~ 0, thus 
according to the Corollary 5.1, Z E C_. 

• Choose an arbitrary point x in the plane, and apply to it 
a sequence of transformations 4>h .. . 4>j. c<I>". Accord­
ing to the Theorem 5.2(c), if n is sufficiently large, the 
resulting point z will be arbitrarily close to the curve 
C_. Consequently, z can be used as the starting point 
for curve generation. Because of the attractive nature 
of the process <1>, the impact of the error in choosing 
the initial point will further decrease as the iteration 
continues. 

Example 6.1. Figure 6.1 shows two approximations of one 
branch of the snowflake curve. The relation <1> used for itera­
tion is the union of similarities 4>1 - 4>4 from Example 3.1. 

Example 6.2. Plate 6.2 shows four curves generated by a 
pair of mappings: 

. 37t 
1-

4>2(z) = rye 4 + i 

for different values of parameter y. A point is colored red if 
4>1 is the last transformation used, otherwise it is colored 
green. The area in which green and red points are adjacent 
to each other appears as yellow. Modification of the numer­
ical parameters reveals interesting variations of the basic 
dragon curve shape. 

Remark 6.1. The use of complex variables emphasizes an 
analogy between the Koch curves and the Julia sets. For 
example, a Julia set can be generated using the inverse itera­
tion method, by iterating two mappings: 

I1 (z) = +..JZ+f h(z) = -,rz:t:f 

The particular mappings generating a Koch curve and a Julia 
set are different, but the underlying iterative algorithm is the 
same. 

Example 6.3 (Based on [Demko et al. 1985]). Plate 6.3 
shows the curve generated by the union of three transforma­
tions: 

.5 1 1 -1-7t 

4>2(z) = -z+-e 6 
2 2 

. 1 1 1 -1-7t 

4>3(z) = -z+-e 6 
2 2 

As previously, the point colors indicate the last transforma­
tion used. Note that the figure obtained is the Sierpinski 
gasket [Mandelbrot 1982]. Transformations 4>1~3 provide 
an interesting characterization of this well-known curve: the 
Sierpmski gasket is the smallest nonempty set closed with 
respect to three scaling transformations. Their centers (fixed 
points) lie at the vertices of an equilateral triangle and the 

al· , al I sc mg ratios are equ to "2 . 
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a) 

(:~:: .. ::.:... \:. :.:.:~::~:~ 

. .... :.:. ':.::.: 
'.::.::\ ... :.:' ':.::.::"-.: :. :: 

Fig. 6.1. Two approximations of the limit snowflake curve 
obtained by the attractive method. Approximation (a) 

consists of lOO points. Approximation (b) has 10,000 points. 

Example 6.4. Figure 6.4 shows the production of a Koch 
system generating twig-like shapes [Prusinkiewicz 1986]. 
The corresponding similarities are given below: 

4>1(Z) = Ylz 

4>2(z) = Y2z + Yli 

4>3(z) = (l-'YcYz}z + (YI-+'Y2)i 

4>4(Z) = Y2zeia + y1i 

4>s(z) = (l-'YI-'Y2)ze- ia + (YI-+'Y2)i 

Figure 6.5 presents the images resulting from iterating the 
similarities 4>1 - 4>5 for three different values of parameters 

1t 
YI and Y2' In all cases, (l = "6 ' As in Example 6.2, 

modification of the numerical parameters reveals interesting 
shape variations. 

7. THE REPELLING METHOD FOR KOCH CURVE 
GENERATION. 

The sets of equations considered in the previous section 
defined Koch curves as attractors of dynamic processes. In 
this section we address the problem of describing Koch 
curves as repellers. The basic concept is to use reciprocal 
mappings 4>jl instead of the functions 4>j [c.f. Mandelbrot 
1982]. However, the repelling algorithm for Koch curve 

(0,1) (0 , 1 ) 

-
(0,0) (0,0) 

Fig. 6.4. Production of the Koch system generating 
twig-like shapes. 
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Fig 6.5. "Twigs" generated using the attractive method. 
a) 'Yl = 0.5, 'Y2 = 0.3. b) 'Yl = 'Y2 = 0.5. 

c) 'Yl = 0.2, 'Y2 = 0.3. 
:n; 

In all three cases, a = 6"' 
generation is more complicated than its attractive counter­
part: for all points and at all iteration steps it requires a care­
ful selection of the applicable mapping. 

Theorem 7.1. Consider a Koch system K with the contrac­
tion ratio 'Y < 1 and let <l> denote, as previously, the union 
of similarities CPl ' ... 'CPm associated with K . A point x 
belongs to the limit curve C_ if and only if there exists a 
function CPj C <l> such that xcpjl E C_. 

Proof. According to the Theorem 5.2a, C_ = C_<l>. Thus, 
for any point x E C_ there exists a point Y E C_ and a 
transformation CPj C <l> such that YCPj = x, or xcpjl = Y E C_. 
On the other hand, if xcpjl E C_ then xcpjlcpj = x E C_. 0 

Theorem 7.2. Consider a Koch system K with the contrac­
tion ratio 'Y < 1 and let <l> denote the union of similarities 
CPl , ... 'CPm associated with K. If a point x does not belong 
to the limit curve C_ then for any infinite sequence of 
transformations n.-;- l n.-;- l •.. 

'l'h '1'" 
lim p(xcpj,l ... cpl.l , C_) = 00 • 

n-->oo 

Proof. Consider a sequence of similarities CPj • ... CPj, and a 
point v E C_. Since the set C_ is closed with respect to all 
similarities CPj C <l> (Theorem 5.2a), the point u = vCPj • ... CPj, 
also belongs to C_. Now, let us consider point 
Y = xcpj,l ... cpl.l . According to the Definition 4.3 and 
Lemma 5.2, p(x, u) ~ y"p(y, v) , or: 

p(y, v) ~ ynp(x, u) . 

The distance p(x, u) is greater then zero, because XE C_ and 
the set C_ is closed. Thus, ynp(x, u) ~ 00 with n ~ 00, 

and consequently p(y, v) ~ 00. Since v E C_ and C_ is 
bounded (Theorem 5.1), the distance between 
Y = xcpj,l . . . cpl.l and C_ tends to infinity with n ~ 00 . 0 

From Theorems 7.1 and 7.2 it follows that a point x 
belongs to the curve C_ if and only if there exists an infinite 
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sequence of transformations cpj,lcpj,l . .. which does not take 
x to infinity. This observation can be used a basis for gen­
erating images of Koch curves, although only finite transfor­
mation sequences and finite distances on the plane can be 
considered in practice. The algorithm proceeds as follows. 

• Define a window on the image plane to establish the 
area of interest within which the curve will be traced. 
Subdivide this window into an array of sample points 
which will correspond to the pixels on the screen (for 
example, each sample will represent one pixel if no 
oversampling is used.) Assume the maximum length N 
of the transformation sequence considered. Define a 
"large" circle n (including the curve C_) which will be 
used to test whether points tend to infinity. 

• Partition the plane into regions Dj such that for any 
x E C_ (') Dj the function cpjl C <l>-l takes point x to 
some point of C_: xcpjl E Cw According to the 
Theorem 7.1 , at least one such function cpjl exists, 
hence this partition is feasible. 

• For each sampling point Xo calculate a sequence of 
points xO,xl,x2,'" according to the rule: 

if xn EDj then xn+l = xn cpjl 

Stop this iteration if the index n reaches limit N or xn 
falls outside of the circle n. Assign a color to the 
point Xo according to the final value of n. 

The justification of the above method is straightfor­
ward. If, after N iterations, a point x is taken out of the cir­
cle n which contains the curve C_, x does not belong to C_. 
On the other hand, if after N iterations x stays within n, it 
is assumed that x E C_. In fact, in this latter case x can be 
at some small distance from C_, but if the parameters are 
properly chosen, the error will be negligible compared to the 
screen resolution. 

Example 7.1. Let us apply the repelling method to generate 
an image of the Sierpifiski gasket. According to Example 
6.3, the gasket is invariant with respect to three scalings 
CPCCP3' with centers at the vertices of an equilateral triangle 

and the scaling ratios equal to t. Obviously, the reciprocal 

P, 

Fig. 7.1. Relative position of the scaling centers PI - P3 

and domains Dl - D3 for generating the Sierpifiski 
gasket using the repelling method. All scaling ratios 

are equal to 2. 
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Fig. 7.2. The Sierprnski gasket generated using 
the repelling method. 

transformations 4>"11-4>"13 are also scalings, with the same 
centers and the scaling ratio equal to 2. In order to deter­
mine their domains Dj, let us refer to Plate 6.3. It shows 
that the gasket can be divided into three subgaskets (the red 
one, green and yellow) which belong to different domains. 
Thus, the domain boundaries can be defined as the bisectors 
of the line segments connecting pairs of the scaling centers 
(Fig. 7.1). The resulting image of the Sierpiflski gasket 
obtained using the repelling method is shown in Fig. 7.2. 

Example 7.2. The concept of using sets of scalings can also 
be used to generate other fractals . Figures 7.3 and 7.5 
define the scalings and their respective domains which were 
used to generate images shown in Plates 7.4 and 7.6. The 
fracta! in Plate 7.4 corisists of an infinite number of 
snowflake curves. The fractal in Plate 7.6 is the Sierpiflski 
carpet. Note that in this latter case two different scaling 
ratios were used. 

Example 7.3. Plate 7.8 shows the repelling version of a 

"twig" from Example 6.4, with parameters 11 = 12 = t and 

Cl = ~. Partition of the plane into domains D1 - Ds is 

given in Fig. 7.7. The exact positions of domain boundaries 
were arbitrarily chosen from the range of possibilities which 

Fig. 7.3. Relative position of the scaling centers PI - P6 

and domains D1 - D6 for generating the 
"multi-snowflake" of Plate 7.4. 
All scaling ratios are equal to 3. 
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D7 D, 

P, 

Fig. 7.5. Relative position of the scaling centers PI - Pg 
and domains D1 - Dg for generating the Sierpiiiski carpet. 

The scaling ratios for D1, D3, Ds and D7 are 
equal to 2..fi. The scaling ratios for D2, D 4, D 6 

and Dg are equal to 2. 

satisfy the condition: 

if Z EDj n C_ then Z 4>j1 E C_ . 

In principle, the repelling method for generating Koch 
curves is analogous to the widely used method for generat­
ing colorful images of Julia sets. However, the necessity of 
partitioning the plane into domains Dj can make it difficult 
to apply to some Koch curves. For example, refer to the 
Example 6.2 and Plate 6.2. According to the coloring rules 
assumed, red points belong to the domain D1 and green 
points belong to the domain D 2• Plate 6.2b indicates that 
the boundary between these two domains can itself be a 
fracta! line. Domain definition in the cases (c) and (d) 
appears to be even more enigmatic. 

If the plane cannot be easily subdivided into domains, 
the fracta! can be still generated using a "brute force" variant 
of the repelling method. The idea is to keep track of all 
points resultinf from the repetitive application of transforma­
tions 4>j1C <1>- to the sampling point xo, as long as they stay 
within the circle n. Formally, if Xo is the initial sampling 

Fig. 7.7. Partition of the plane into domains D1 - Ds 
for generating a twig using the repelling method. 

Transformations 4>"11 - 4>"51 are the reciprocals 
of the transformations from Example 6.4. For orientation, 

the dashed lines show the corresponding first-order 
curve Cl . 
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point, the set Xn of points considered after the nth iteration 
step is given by the recursive formula: 

Xo = {xo} 

Xn+1 = Xi $-1(,) n 
The iteration stops if the set Xn becomes empty or the index 
n reaches a limit N. As previously, the final value of n 
determines the color of the point xo. 

Example 7.4. Plate 7.9 shows the repelling version of the 
dragon curve from Plate 6.2b. 

8. CONCLUSIONS. 
This paper presents two methods for generating Koch 

curves. They are analogous to the commonly used iterative 
methods for producing images of Julia sets. The attractive 
method is based on a characterization of Koch curves as the 
smallest nonempty sets closed with respect to a union of 
similarities on the plane. This characterization was first stu­
died by Hutchinson. The repelling method is in principle 
dual to the attractive one, but involves a non trivial problem 
of selecting the appropriate transformation to be applied at 
each step. Both methods are illustrated with a number of 
computer-generated images. 

The Koch systems discussed in this paper have the 
axiom limited to a single vector and use only one produc­
tion. These restrictions can be removed by grouping all vec­
tors into classes. The applicable production is then deter­
mined by the class a given vector belongs to. Each produc­
tion also specifies the target classes for all resulting vectors. 
A corresponding approach can be applied to generate Koch 
curves by function iteration. In this case, a point in the 
plane is characterized by its position and an attribute or 
state. A typical transformation $j has a form "if point x is in 
state sp than take it to point y and make the state of the 
result equal to Sq." For an example of an image generated 
using this technique, see Fig. 8.1. This branching shape 
belongs to a class termed "nonuniform fractals" by Mandel­
brot [1982] and cannot be generated by a Koch system with 
a single production. A formal characterization of Koch sys­
tems with multiple productions is left for further research. 

There are also many other problems open for further 
research. Some of them are listed below. 

• The repelling method for generating Koch curves 
. presented in Section 8 relies on a partition of the plane 
into domains Dj' However, domains Dj are defined 
only for the points which belong to the curve C_, and 
an arbitrary partition can be assumed outside of it. Are 
some of these partitions more "natural" then others? 
What is the impact of the partitions used on the images 
generated by the repelling method? 

• The correspondence between Koch curves and Julia sets 
would be even more convincing if it could be illus­
trated by a continuous transformation of a Koch curve 
(such as the dragon curve) into a Julia set (such as the 
self-squared dragon). 

• This paper focused on the correspondence between the 
generative and the algebraic characterization of Koch 
curves. Consequently, the class of transformations con-
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Fig. 8.1. An example non uniform fractal 
generated using the attractive method. 

sidered was limited to the direct similarities. It would 
be interesting to remove this limitation and investigate 
the class of curves generated by arbitrary linear 
transformations on the plane. While the straightforward 
correspondence with the Koch curves will probably be 
lost, new interesting fractal images may be produced. 

• This paper shows that the usual description of the Koch 
curves in terms of an iterative geometric construction 
can be replaced by an algebraic characterization. A 
"dual" question applies to the Julia sets. Their known 
descriptions refer to the function iteration. Is it possi­
ble to define Julia sets by geometric constructions? 

• Our results appear to be related to the theory of iterated 
function systems originated by Bamsely and Demko 
[1985] (for further results, see [Demko, Hodges and 
Naylor 1985, Levy-Vehel and Gagalowicz 1987]). 
However, these systems operate in a probabilistic 
manner, while our approach is purely deterministic. It 
would be therefore interesting to investigate the role of 
probability in iterative function systems, and conse­
quently establish their relation to the "attractors and 
repellers of Koch curves" presented in this paper. 

Finally, we would like to convey our impression on the 
general character of the reported research. We find it 
remarkable that it combines notions from areas of mathemat­
ics and computer science which traditionally have been per­
ceived as quite unrelated. To name a few, we draw on 
results of the theory of formal languages, geometry, topol­
ogy and complex analysis, and we illustrate them using 
computer-generated images of fractals. Extrapolating this 
experience, we believe that fractals may have great yet 
largely unexploited educational potential as a visually 
appealing method for illustrating various concepts of 
mathematics and computer science. Interestingly, the educa­
tional applications were also presented as the original 
motivation of Koch ' s work. 
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Plate 6.2. Variations of the dragon curve. a) 'Y = 0.65. 
b) 'Y = 0.7071 = ..[2/2. c) 'Y = 0.75. d) 'Y = 0.85. 

Plate 7.4. The "multi-snowflake" curve generated 
using the repelling method. 

Plate 7.8. A "twig" generated using the repelling method. 
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Plate 6.3. The Sierpinski gasket approximated 
using the attractive method. 

Plate 7.6. The Sierpiftski carpet generated 
using the repelling method. 

Plate 7.9. The dragon curve generated 
using the repeIJing method. 
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