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1 Introduction 

The purpose of this paper is fo outline a technique for simulating the evo­
lution of plants. The problem is addressed using genetic algorithms (GA's) 
[3, 5] operating on L-systems [ 12], with fractal dimension of the resulting 
structures serving as the fitness criterion. In physical terms, fractal dimen­
sion correlates with the "bushiness" or "fullness" of a. plant. A plant with 
low fractal dimension ( close to one) may have insufficient surface area to cap­
ture ample amounts of light. On the other hand, a plant with high fractal 
dimension ( close to two in the case of planar structures) may be excessively 
bushy, causing substantial self-shading. Ultimately, plants which are bushy 
to the extent that they shade other plants but not themselves should be given 
evolutionary preference. 

The idea of simulating evolution of plants captured by mathematical mod­
els was first explored by Niklas [9, 10]. He considered the abilities to capture 
light, sustain vertical growth, and to reproduce, as the main factors guiding 
plant evolution. According to these criteria, optimal plants would be tall 
branching structures capable of capturing an abundance of light. Qualita­
tively, the combination of fractal dimension and plant height represents th� 
same evolutionary features as those considered by Niklas. 

Computer simulation of evolutionary processes was also investigated by 
Wilson [16], who applied GA 's to production rules describing the devel­
opment of simple multicellular organisms. Wilson's approach involved a 



formally defined fitness function. In contrast, Dawkins [L] simulated the 
evolution of insect-like "biomorphs'' using a computer program to generate 
options, from which a human operator selected forms that were to survive 
and reproduce. A similar technique was applied by Sims [13] and Todd and 
Latham [15] to create abstract forms for artistic purposes. Smith [14j orig­
inated the application of genetic algorithms to L-systems, and introduced 
fractal dimension as a fitness criterion. The present paper is a continuation 
of his work. Our experiments involving chromosomes of fixed length (Section 
2) rely on the original formulation of L-systems by Hogeweg and Hesper [4j,
making it easier to compare the evolved structures with their results. In ad­
dition, a different (more natural) class of L-syst.ems is chosen for experiments
involving chromosomes of variable length (Section 3).

2 Fixed Length Codings 

Hogeweg and Hesper [4] described an experiment in which they searched a 
restricted class of bracketed deterministic 2L-systems, trying to identify those 
which generated plant-like structures. The successful structures were selected 
by a human operator from the set of designs presented by a computer. In 
this section we want to discover whether similar structures can be obtained 
without human intervention. The class of L-systems considered by Hogeweg 
and Hesper is suitable for this investigation since: 

• it is rich in plant-like branching structures, and

• all productions follow the same format, and are therefore easy to code
for use in genetic algorithms.

The productions defined by Hogeweg and Hesper are of the form: 

which means that symbol a produces string x if and only if a has left context 
a, and right context ar , The successor x may include brackets, delineating 
branches in a tree structure. The following four production types are allowed: 
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l. a1 < a > ar --+ 0

2. a1 < a > ar --+ I

3. a1 < a > ar --+ 11

4. a1 <a> a r --+ l[l]

where a1,a,ar E {O, l}. 
The axiom (starting symbol of the L-system) is 1; and any missing context 

is implicitly assumed to be 1. Specifically, the left context is missing at the 
root, and the right context is absent at branch endings. There are eight 
possible predecessors: 0 < 0 > 0, 0 < 0 > l, ... , and l < l > 1. Consequently, 
any L-system in the considered class can be specified as an ordered list of 
successors. For example, the list O.ll.1.1.0.l[l].l.O represents an L-system 
with the productions O < 0 > 0 --+. 0, 0 < 0 > l --+ 11, 0 < I > 0 --+ l, etc. 

In order to apply genetic algorithms to these L-systems, we represent 
the production successors by single character codes: 0 � a, 1 � b, 11 � c,

l[l] � d. Thus, the system 0.11.1.l.0.l[l].l.O is represented by string 
X = acbbadba. We think of X as a chromosome providing a genetic description 
of an organism in terms of a sequence of genes. Depending on their position 
in the chromosome, genes a and b cause the replacement of any symbol by 
a O or a 1, respectively. Gene c causes branch elongation by substituting a 
sequence of two l symbols for a single O or 1. Gene d initiates a new branch. 

Chromosomes are subject to the genetic operations of mutation and cross­
over, which control the transfer of genetic materiarfrom parents to offspring. 
Mutations consist of random gene modifications and make it possible to 
recover prominent genetic information that may otherwise be permanently 
lost from the gene pool. Crossover is used to combine genetic information 
from both parents in an attempt to produce a child with a higher fitness 
value. 

Once a string representing the modified structure has been generated, it 
is interpreted geometrically using the following two assumptions: 

• symbols O and I denote line segments of unit length, and

• the branches are issued alternately to the left and to the right, using a
constant branching angle.
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( a) Evolved Structure (b) Hogeweg's Structure

(b) Hogeweg's Structure

Figure 2: Two structures represented by chromosome 0.11.0.0.0.1[1].1.0 

The fractal (Hausdorff-Besicovitch) dimension of the resulting figures are 
defined as the value of the parameter D which satisfies the inequality [8]: 

0 < limr--+DN(r)rD < oo, 

where N(r) is the number of regularly shaped objects, such as squares with 
side length r, that are required to cover the figure. The estimation of D

proceeds by covering the figure with a succession of cijects of decreasing 
size r. The accuracy of the method depends largely on the quality of the 
coverings [2, pagesll-17]. The actual method employed in this research pro­
duced estimates containing less than 2% error [7]. Figures 1 and 2 compare 
two of the evolved structures with those discovered by Hogeweg and Hesper. 
The corresponding L-systems are identical; images differ because the figures 
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presented by Hogeweg and Hesper [4] are projections of three-dimensional 
structures, whereas our evolved structures are two-dimensional. 

3 Variable Length Codings 

The L-systems presented in the previous section were restricted to a class that 
could be represented by chromosomes of constant length. In this section we 
remove this restriction by considering a class of DOL-systems with two non­
identity productions, admitting successors of variable length. Specifically, we 
assume that productions have the form: 

X -+ a1 o a2o ... o a11 

Y -+ b1 o b2o ... o bm , 

where each symbol a; and bi denotes an element of the set (gene pool): 

P = {X, Y, [+X], [-X], [+Y]. F, [-YI, [+F], [-F], +F, -F} 

and n, m E { 1, 2, ... , 10}. 1

The structures generated by these L-systems are visualized using the tur­
tle interpretation [11, 12]. For example, the symbol F causes the turtle to 
draw a line segment of unit length, whereas symbols + and - turn the turtle 
left and right, respectively. 

The eleven elements of the set P are coded using characters a, b, ... , k.

For example, the production X -+ [-X] FF F + F[ + Y] is represented by an 
"X-chromosome" dfffje. 

To illustrate the application of genetic operators, consider chromosome 
X ( chromosome Y is handled identically). Suppose a crossover operation is 
to occur between two parents A and B. A crossing point is randomly chosen 
within the parent with the shortest chromosome. The first child receives 
genes from parent A until the crossover site is reached, with the remainder of 
its genes copied from parent B. The second child is created in an analogous 
way (see Figure 3). Chromosomes are also subject to mutations which may 
either: 

1 In general, we could consider L-systems with more than two productions, each with
it's own gene pool. 
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Parents Children 
8 2 6 10 4 8 :2 4 4 9 1 5 

;3 7 4 4 9 1 5 ;3 7 6 10 4 

Figure 3: Example of crossover involving variable length chromosomes 
( crossover sit� = 2) 

l. replace an existing gene by a randomly selected member of the gene
pool,

2. insert a gene, or

3. delete a gene.

Figure 4 shows a sample "genealogical tree", illustrating the progression 
of generated forms resulting from the simulated evolution. 

4 Conclusions 

Figures 1, 2, and 4 show the emergence of a wide variety of realistic plant 
forms in a process of artificial evolution based on a measurable fitness cri­
terion. Thus, genetic algorithms operating on L-systems are suitable for 
simulating evolutionary processes on an abstract level. Our choice of genetic 
algorithm as the mechanism for generating plant forms is motivated by the 
appealing analogy between the formal operations of mutation and crossover 
and their real-life counterparts. It is an open problem, however, whether 
other algorithms could search the space of possible forms more efficiently, 
yielding a larger number of interesting forms in less time. 

We are currently experimenting with fitness criteria other than fractal 
dimension. For example, Figure 5 depicts three models of primitive land 
plants evolved using photosynthetic efficiency ( ratio between plant surface 
area exposed to light and total surface area) as the fitness criterion. The 
rightmost tree in the image is the most primitive plant. Exhibiting a closely 
knit crown, it is unable to capture much light. The leftmost tree evolved 
later. It has a vertically planated branching pattern, making it capable of 
intercepting more light than the previous forms. Boasting a horizontally 
planated branching structure, the tree in the foreground required longest to 
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X->X[+ YJFF(+X][-X] 

Y->[+XJFF[-FJFF[-Y] 

X->[ +XI[+ Y]FF[ +X][-X] 

Y->[-X][-X]FFFF[-Y] 

X->XYFF-F-F 

Y->[ +XJFF[-F]FF[-Y] 

X->[+XJFFX-F[-YJ 

Y->[-XJ[-X]FFFF[-Y] 

X->[+X]l+Y]FF[+X] [-X] 

Y->[-X](-Xl[-FJFF[-Yl 

X->[+X)l + Y][-Y]Y[-Y]-F 

Y->[-X)[-X][-F]FF[-Y] 

X->XYFF-FY 

Y->[+X]FF[ +FJ[+FJl+FJ 

Figure 4: Genealogic tree of branching structures generated by L-systems 

with successors of different lengths. Fractal dimension of the final structure 

is equal to 1.33. 
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Figure 5: Simulated evolution of early land plants 

evolve, but captures the most-light. This progression of artificially evolved 
forms is similar to that obtained by Niklas. 

An extension of the probl_ems addressed in this paper involves the arti­
ficial evolution of particular plant species. A good solution would provide 
an answer to the long-standing inference problem of L-systems theory (6]: 
How can we automatically synthesize an L-system that captures the essen­
tial characteristics of a particular plant species? 
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