
Interactive Arrangement of Botanical L−System
Models
Joanna L. Power1, A.J. Bernheim Brush1, Przemyslaw Prusinkiewicz2, and David H. Salesin1.
1 University of Washington, 2 University of Calgary

Abstract

In this paper, we explore the problem of interactively mauipulating plant models without
sacrificing their botanical accuracy. The primary technical contribution of the paper is a
method for interactively manipulating plant structures using a inverse−kinematics
optimizatitin technique. The branches of the plant are endowed with flexural and torsional
stiffnesses, and these are used in the IK optimization. We demonstrate our approach with
several examples of plant models arranged in this fashion.

Reference

Joanna L. Power, A. J. Bernheim Brush, Przemyslaw Prusinkiewicz, and David H. Salesin: Interactive
arrangement of botanical L−system models. In Proceedings of the 1999 Symposium on Interactive 3D
Graphics, pp. 175−182 and 234.



Interactive Arrangement of Botanical L-System Models 

Joanna L. Power A.J. Bernheim Brush Przemyslaw Prusinkiewiczt David H. Salesin 

University of Washington 

Abstract 

In this paper, we explore the problem of interactively mauipulat- 
ing plant models without sacrificing their botanical accuracy. The 
primary technical contribution of the paper is a method for interac- 
tively manipulating plant structures using a inverse-kinematics op- 
timizatitin technique. The branches of the plant are endowed with 
flexural and torsional stiffnesses, and these are used in the IK opti- 
mization. We demonstrate our approach with several examples of 
plant models arranged in this fashion. 

Keywords: botanical modeling, L-system, plant arrangement, 
inverse-kinematics, optimization, interactive techniques 

1 Introduction 

Lindenmayer-systems, or L-systems for short, were introduced as 
a theoretical model of plant development [6]. In the hands of com- 
puter graphics researchers, L-systems have evolved into a powerful 
tool for creating biologically faithful and visually realistic models 
of plants, capable of simulating their growth and interaction with 
the environment [4, 10, 111. 

The power of L-systems lies in their ability to generate complicated 
structures from a small number of rules, but the cost of this brevity 
is the lack of precise control over the final form. This is a draw- 
back of L-system models in applications such as illustration, scene 
design, and animation - areas in which a designer’s aesthetic vi- 
sion is the priority. In such areas, what is needed is a plant model 
that can grow and respond to its environment, yet that can be easily 
adjusted and controlled. Our application ilsa (interactive L-string 
arranger) allows a user to interactively manipulate a plant model 
while preserving its botanical accuracy and behavior, improving the 
usefulness of L-systems in domains beyond biological modeling. 

The ability to interact with L-system models extends their utility 
within the domain of botanical modeling as well. A model can be 
grown for a certain number of generations, arranged or pruned, and 
then grown some more. The final form of such a model expresses 
both the developmental behavior of the plant and the effects of hu- 
man intervention. 

Our project ties together threads of related work from two areas of 
computer graphics: plant modeling using L-systems and realistic 
model manipulation. The majority of work on L-system model- 
ing is that of Prusinkiewicz et al. [4, 10, 111. In the broad area of 
interactive manipulation, the most closely related work is that of 
Zhao and Badler, who developed a system for the interactive ma- 
nipulation of jointed figures using inverse-kinematics, and that of 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
arc not nradc or distributed for prolit or commercial advantage and that 
topics bear this notice and the full citation on the first page. TO copy 
otherwise. to republish. to post on servers or to redistribute to lists, 
requires prior specific permission and!or a fee. 

1999 Symposium on Interactive ?D Graphics Atlanta GAUSA 
Copyright ACM 1999 I-581 13-082-1/99/04...$5.00 

+ University of Calgary 

Harada et al., who invented a technique for interactive manipula- 
tion of grammar-based models [ 15,3]. 

The remainder of the paper is organized as follows: Section 2 pro- 
vides relevant background information on L-systems. Section 3 de- 
scribes ilsu and the arrangement process. Section 4 presents some 
results and discusses their creation. Section 5 concludes with a dis- 
cussion of contributions and possible directions for future work. 

2 L-systems and L-strings 

An L-system consists of a set of textual rules called productions 
that describe the development of plant branches, leaves, flowers, 
and other components. In a generation phase these productions are 
applied in a sequence of derivation steps to the initial string, called 
the axiom. The state of the L-system model after any number of 
steps is encoded in a string of symbols, called the L-sting. In a 
subsequent interpretation phase the L-string is converted to a geo- 
metric representation of a plant. 

L-strings encode form using turtle geometry [ 11. A turtle, starting at 
a specified location and orientation in world-space, interprets an L- 
string as a series of position- and orientation-changing instructions. 
The position of the turtle is represented by a vectorp; its orientation 
is given by three vectors h, I, and u, indicating in the turtle’s local 
frame of reference which directions are forward (or heading), lef, 
and up. As the L-string is scanned from left to right, these four state 
vectors change according to the instructions encoded in the string. 
In addition to the basic symbols listed in Table 1, many additional 
symbols encode the information required for a detailed, realistic 
plant model. For a thorough introduction to plant modeling using 
L-systems see The Algotithic Beauty of Plants [ 111. 

F(a) move forward distance a 
+(Q turn left 19 degrees 
-(e) turn right 6 degrees 
a(e) pitch down 8 degrees 
A(e) pitch up 0 degrees 
i(e) roll right 8 degrees 
48) roll left B demees 
I., I 

1 
I I 

save state, start new branch 
end branch, restore state 

Table 1 Basic L-sting symbols and their turtle interpretations. 

In addition, in the context of this work we introduce a new sym- 
bol Z(sh, s“, sl) to specify the stiffness of joints between subsequent 
branch segments. The impact of the parameters 2, s”, and s’ is dis- 
cussed in Section 3.1. If the stiffness values are not incorporated in 
the L-system model and the resulting L-string, ilsu estimates them 
for the purpose of model manipulation, as described in Section 3.3. 

175 



3 Arrangement 

Our interactive application ilsa acts as a specialized editor of L- 
strings. To allow interactive response time, ilsa displays an un- 
detailed view of the model being manipulated. A detailed view 
is displayed in cpfg (continuous plant and fractal generator), the 
L-system interpretation and rendering environment developed by 
F’rusinkiewicz el al. [4]. This detailed view is updated as arrange- 
ment changes are made in ilsu. The arranged model preserves 
the growth and environmentally-sensitive behavior of the original 
model. An example of the two applications working together is 
shown in Figure 1. 

Since our goal is to preserve and augment the ability of L-systems 
to model botanically-accurate plants, we constrain the manipula- 
tions allowed by ilsa to those that could be performed on an actual 
plant: bending and pruning branches and arranging and clipping 
leaves and flowers. Removing elements (i.e., pruning or clipping 
them) is straightforward and will not be discussed in depth. Bend- 
ing branches interactively in a physically plausible way is a much 
more interesting problem and will be fully explored in this section. 

In nature, branches are continuous, beam-l&e structures that bend 
and twist in response to natural forces. The degree to which a 
branch bends or twists depends on its st@wm. In ilsa, branches are 
chains of straight, rigid segments connected by spring-like joints 
that bend and twist in response to user input. Consider a branch 
with FZ segments and n joints. At each joint i, numbered Born 1 to n, 
the vectors hi, Ui, and li define the heading, up, and Iej? axes of the 
turtle reference frame of the next segment. These vectors are illus- 
trated in Figure 2. Each joint i has three associated stiffness values: 
sh, sy, and SI that define how difficult it is to rotate the joint about 
the local h, I(, and I axes. Meaningful stiffness values range from 
0 to infinity. An infinitely stiff joint allows no rotation around the 
axis in question, and a joint with zero stiffness rotates freely. When 
a plant is manipulated in ilsa, joint stiffness information is used by 
an inverse-kinematics (IK) optimization to determine a “natural” 
branch position. 

Figure 2 Branches in ih are made up of rigid segments connected 
by spring-like joints. At each joint i, the vectors hi, ui, and li define 
the heading, up, and left vectors of the turtle as it draws the next 
segment. 

3.1 Branch manipulation 

Manipulation in ilsa must satisfy two goals: it must seem realistic, 
and it must be interactive. A physical simulation would satisfy the 
first goal but would be too slow for our purposes. Instead, we use 
flexural and torsional joint stiffness values in an IK optimization 
that allows interactive manipulation and achieves pleasing, “natu- 
ral” branch arrangements. 

The branch-positioning process in ilsa consists of two nested loops. 
As the user manipulates a branch, an outer loop repeatedly calls the 
IK optimization routine with parameters supplied by the user inter- 
action. Each time the optimization routine is called, it solves for 
a new branch position based on the current position of the branch, 
the supplied user input, and the stiffness of the branch. First we 
will discuss the objective function used by the inner loop of the 

optimization; we will then discuss the parameters passed to the op 
timization routine by the outer loop. 

Objective function 

The objective function minimized by ilsu’s IK solver positions a 
branch by solving for a set of joint rotations along that branch. Ex- 
amining the objective function for a series of n different joints with 
one degree of freedom (hereafter referred to as I joints), let i be an 
integer from 1 to n, and let (Yi be the current angle at joint i. We 
refer to the joint angles collectively as the vector a = (cyi, . . . , CU,). 
When manipulating a branch, the user is primarily interested in 
three things: the location of the end of the branch, the twist of the 
branch, and the curve of the branch. Our objective function contains 
two terms that attempt to meet user-supplied targets for branch end- 
position and branch twist, and two tears that attempt to maintain 
“natural” branch curvature. The four terms are described below: 

l branch end-position 

The branch end-position term tries to match the current branch 
end-position, denoted by p, with the target branch end-position, 
denoted by@. The branch end-position tennis then ]lp -$I]. 

. branch twist 

The branch twist term considers the vectors I and u of the final 
segment in the manipulated branch. We call these the twist vec- 
Fors and denote them by s and t respectively. The twist term tries 
to minimize the difference between the current twist vectors and 
the target twist vectors, denoted by B and 1. The branch twist term 
is then 11s - $11 + IIt -ill. 

spring-energy 

The spring-energy term is a sum over the n joints in the branch 
and effectively bends flexible parts of the branch more than stiff 
parts. Let si be the stiffness value at joint i, where i is an integer 
from 1 to n. Let cui be the current angle at joint i, let pt be the rest 
angle at joint i, and define 6i to be cur - pi. The spring-energy 
term is then CL, s&. Examining the spring-energy term of a 
joint i in terms of the potential energy of a spring $2, we see 
that the spring constant k represents the stiffness of the joint. 

smoothness 

The smoothness term is a heuristic term designed 
to provide reasonable behavior when the input 
L-system does not contain joint stiffness information. This term 
attempts to minimize the difference in bend between n - 1 
consecutive joints. The smoothness term is C~~;‘(&+t - 6i)2. 
When joint stiffness information is present in the input L-system, 
the user turns off smoothness by setting the importance weight 
of this term to 0. 

Let wP, w,, wc, and w, denote the importance weights for the branch 
end-position term, the branch twist term, the spring-energy term, 
and the smoothness term respectively. The objective function for a 
set of n l-joints is then the weighted sum of the four terms described 
above: 

f(a) = %llp -AI +~dlls - 311 + Ilt -m 

+WekSi6f+Wsg(L+I -6i)2 (1) 
id i=l 

For a three-dimensional plant model, each branch joint has three 
degrees of freedom. (We will call such a joint a 3-joinl). To arrange 

176 



Figure 1 Our application ilsa was designed to work in conjunction with cpfg. The detailed rendering on the left is provided by cpfg; ilsa uses
a simpler rendering style to allow interactive response time.

Figure 3 Branch manipulation in 2D. The branch consists of 11 segments connected by l-joints. From left to right: (a) the original branch;
(b) the result of manipulating a branch with constant joint stiffness values; (c) the result of manipulating a branch with increasing joint stiffness
values; (d) the result of manipulating a branch with decreasing joint stiffness values; and (e) the result of manipulating the uniformly stiff
branch in two separate moves. Leaf sizes indicate the stiffness of the associated joints.

a branch in three-dimensions, ilsa interprets each 3-joint as three
l-joints, two of which are followed by a segment of length zero.

The importance of the spring-energy term to the results of a manip-
ulation is illustrated in Figures 3 and 4. In Figure 3 we show the
results of manipulating simple branches with constant, increasing,
and decreasing joint stiffness values. In Figure 4 we show the re-
sults of applying a single manipulation to a more complex branch in
three situations: first using no stiffness information and no smooth-
ness term, next using only the smoothness term, and finally using
only stiffness information. The same manipulation was used in each
case: the left branch was selected just above the last joint and pulled
down and to the left. The difference between subfigures (b) and
(c) indicates that in the absence of stiffness information, using the
smoothness term gives slightly more natural results. Obtaining the
most natural result, however, requires stiffness values.

Optimization parameters

In ilsa, we use conjugate gradient descent optimization, since the
function we are optimizing is nonlinear and differentiable [9]. (For
details on the derivative function, see the appendix.) Conjugate
gradient descent is sensitive to local minima. However, this po-
tential shortcoming does not present serious problems in practice
because our application is interactive and because the optimization
converges quickly given a good starting point. Thus, any branch
that settles into an undesired configuration due to a local minimum
can simply be “pulled out” interactively, and the optimization will
continue. This approach is also used by Zhao and Badler in their
work on positioning articulate figures using inverse kinematics [15].

Positioning a branch requires the specification of a set of n joints
with joint angle values a. Let the initial joint angle values be CTr.
A new set of joint angle values a is chosen by the IK-solver using

d as a starting point. The specified set of n joints defines a set of
branch segments that will be directly affected by the manipulation.
We call this set of branch segments the branch path. Let r denote
the position of the root of the branch path and p denote the position
of the movable end. (Note that the position of r will not change
during manipulation.) The branch axis-vector v(p,r) describes a
vector pointing from the root of the branch path to its movable end.
As we described in the previous section, the twist vectors s and t are
the vectors I and u respectively of the last joint in the branch path.
A branch path and its associated vectors are illustrated in Figure 5.

As the user interacts with a branch in ilsa, an outer loop repeatedly
calls the IK-optimization routine with targets for the branch end-

routine solves for a new set of joint angle values (Y.  The actual  end-
position and twist-vectors of the branch change as a function of the

The inner loop of the optimization process minimizes the objec-
tive functionf(a).  The branch end-position term of the objective
function requires p(a), which is calculated, and the target branch
end-position @, which is supplied as input. The branch twist term
of the objective function requires the twist vectors s(a) and t(a),
which are calculated, and the target twist vectors 3 and 2, which are
supplied as input. Thus the full set of inputs to the optimization rou-
tine is 6.8, r, i, and s^.  The values of a are determined by conjugate
gradient descent from a starting set of values 6.

As the following section will describe, ilsa provides manipulation
widgets that allow subsets of the optimization parameters to vary si-
multaneously, while holding other parameters fixed. These widgets
allow the user to control which aspects of a branch will be affected
by a manipulation and interact with a plant in meaningful ways by
rotating, twisting, straightening, and bending branches.

177



Figure 4 Plant manipulation with and without joint stiffness information. From left to right: (a) the original plant with the active branch in
dark gray and the branch path in white; (b) the result of manipulating the lower branch with no joint stiffness values and smoothness turned
off; (c) the result of manipulating the branch with no joint stiffness values and smoothness turned on; (d) the result of manipulating the branch
with automatically-assigned joint stiffness values and smoothness turned off.

3.2 User interface

As mentioned before, ilsa renders models using lines for branches
and wire-frame surfaces for leaves and petals. This drawing style
allows ilsa to achieve good interactive behavior even for complex
models. A detailed view of the plant is provided by c&g and up-
dated in response to messages sent by ilsa through a socket connec-
tion. The manipulations allowed by ilsa include pruning branches,
clipping leaves and flowers, and arranging branches by bending and
twisting them.

Pruning

Pruning and clipping are straightforward: the user simply chooses
the delete tool, selects the portion of the plant to be removed, and
hits delete on the keyboard. A special symbol is inserted into the
L-string to indicate that pruning has taken place. This symbol can
be used in further generations of the L-system model to trigger re-
growth induced by pruning [IO].

Selection

In order to arrange branches in ilsa, the user first selects the part of
the plant to be manipulated. This selection process has two com-
ponents, as does the analogous selection process on a real plant.
Imagine that a user wants to physically bend an inconveniently-
placed branch. She holds the base of the plant in her left hand, then
grasps the end of the plant in her right hand, and pulls. The ma-
nipulation directly affects a path of branch segments, starting with
the manipulated point on the branch that she pulls and ending at
the fixed point at the base of the plant. Now imagine that the user’s
goal is to achieve a more local change. She chooses a manipulated
point at the end of the branch as before, but she chooses a different
fixed point, one above the base of the plant, shortening the affected
path. In either case, the effect of the manipulation may or may not
propagate all the way from the manipulated point to the fixed point,
depending on the rigidity of the branches along the way.

We have already defined the set of branch segments that may be

Figure 5 Branch path. The branch path, shown as dashed lines, A spherical widget centered at r with a radius 11111  allows the
consists of n segments between the branch path root r and the branch user to rotate and drag the branch with track-ball-like interac-
path end p. The branch axis vector v and the twist vectors s and t are tions. The spherical dragger affects all three parameters: 8, 9,
used by ilsa’s  IK-optimization over joint angles ai, 1 5 i 5 n. and i.

directly affected by a manipulation as the branch path. There may
be any number of branches attaching to the branch path whose po-
sitions may also be indirectly affected by this manipulation. We
call this set of branches the active branch. An example of an active
branch is shown in Figure 6. To define a branch path and an active
branch in ilsa. the user first picks one point to be the fixed point of
both the branch path and the active branch, the point r in our previ-
ous discussion. The active branch consists of all structures from r
to the branch ends, and these structures are highlighted as soon as r
is picked. The active branch selection can be easily modified using
the arrow keys: up moves the fixed point toward the branch end,
down moves the fixed point toward the base of the plant, and left
and right move to sibling branches. The user specifies the moveable
end of the branch path, the manipulated point p, by picking again
within the active branch.

Figure 6 In ilsa, the active branch is highlighted in red (shown
in dark gray), the brunch path is highlighted in yellow (shown in
white), and the immobile portion of the plant remains green (shown
in middle gray).

Arrangement

Once the branch path has been selected, an arrangement tool ap-
pears at the end of the branch path. The four arrangement tools that
ilsa provides come from the Open Inventor Toolkit and are shown
in Figure 7 [13]. These tools allow the user to modify different
subsets of the parameters passed to the optimization routine. Any
parameter that is unaffected by a particular tool remains fixed at the
value the parameter had at the time the arrangement tool was in-

respectively. The optimization parameters that vary according to ar-

The behaviors of the arrangement tools and their interaction with
the optimization routine are described below:

l Spherical dragger

178



l Disc dragger a branch.

lows the user to twist the branch with steering-wheel-like mo-
tions. The disc dragger affects the branch twist parameters: tar-

Borrowing notation from the field of biomechanics, let E represent
the elastic modulus of the branch material and let I represent the
second moment of area of the branch cross-section.’ Let the mag-
nitude of the torque required to bend the branch to a curvature K be
represented by 7. Then, according to Niklas [8, page 135],

0 Axis dragger

A widget consisting of a cylinder and an orthogonal plane posi-
tioned at p. The cylinder is axis-aligned with t and allows the
user to move the branch end-position in and out along 1. (The
user may also use the plane portion of the widget to position the
end of the branch, but we have found that the spherical dragger
provides a more natural interface for this action, since it attempts
to preserve the length of the branch.) The axis dragger affects
only the target branch end-position parameter @. Since branch
twist does not change, the dragger always passes the initial twist
vectors S and Z for the target twist vectors f and 2.

We see that the torque required to bend a branch to a curvature
K depends on some inherent properties of the branch and on the
degree of curvature. The resistance of the branch to bending, rep-
resented by the product of E and I, is called the flexural stiffness of
the branch [8].

l 2D-plane dragger

This dragger consists of the axis dragger widget, positioned so
that the plane is useful. The dragger appears at p and is ori-
ented in the view-plane. It allows the user to interact with a 3-
dimensional plant as if it were 2-dimensional. The dragger af-
fects only the target branch end-position parameter fi only. The
dragger always passes the initial twist vectors 3 and f for the tar-
get twist vectors s^ and 3.

Typically we do not know the value of E, the elastic modulus of
the branch material. However, using our assumptions that E is con-
stant and that the branch has a circular cross-section of radius r, we
can conclude that the flexural stiffness EI is proportional to r4 [8,
page 134]. This information is sufficient for our purposes, since the
multiplication of all the joint stiffness terms by a constant does not
change the outcome of the branch-positioning optimization. Let us
denote by cf the constant portion of flexural stiffness:

The spherical dragger can also be used to manipulate structures
such as leaves and flowers. In this case, the root of the branch path
r is the attachment point of the structure, and the branch path con-
sists of a single virtual segment in the direction of the turtle heading
vector h at r. The length of the virtual segment is chosen such that

Equation (2) describes the behavior of a continuous branch, but in
L-system models a branch is represented as a sequence of stiff seg-
ments connected by joints. We can replace curvature by its discrete
approximation: K = e/t, where L = (li-i + li)/2 is the average
length of two adjacent segments, and 0 is the angle between them.
By substituting this expression into Equation (2), we obtain:

3.3 Assigning joint stiffness values

Branch stiffness values are not readily available for most plants,
nor are they easily measured. Therefore, we want our system to
automatically assign reasonable joint stiffness values to existing L-
system models. Studies in the field of plant biomechanics, along
with some help from a Renaissance man, provide the tools we need
to accomplish this task. As discussed in detail by Niklas, plant
branches behave like beams that are subject flexion, or bending,
and torsion, or twisting [8]. The flexural and torsional rigidities of
a branch depend on both its material and cross-sectional geometry.
If we assume that all branches of a plant are composed of the same
material and have circular cross-sections, we can determine relative
branch rigidities based solely on branch radii.

Not surprisingly, we see that the torque required to bend a joint to
an angle 8 is proportional to 8.

Since we have assumed circular cross-section of the branch, the
flexural stiffness values for bending around the u and I axes are the
same:

Branch flexion

In turtle terms, branch flexion means rotation about the I or u axis.
Our goal is therefore to obtain values for z$ and sr for each joint i of

‘The second moment of area describes both the geometry of the cross-
section and the plane of bending. In a bending branch, there is a neutral
axis at which opposing tensile (stretching) and compressive stresses bal-
ance. The second moment of area, I, is an integraI summing the products
of each infinitesimally small area within a cross-section and the square of

example, for a branch with a circular cross-section of radius? the second

179



Equation (4) allows us to assign flexural stiffness values to the joints 
of a branch once we know the flexural constant cf for the plant and 
the radius r of the branch in question. 

Branch torsion 

In ilsa, torsion corresponds to rotation around the h axis. To cal- 
culate $ for each joint i of a branch, we consider the resistance of 
the branch to twisting. This resistance is the torsional rigidity of 
the branch. Like flexural stiffness, torsional rigidity depends both 
on the branch material and the branch cross-sectional area [8, page 
1601. For a branch with a circular cross-section and constant mate- 
rial, there is a constant c, for which the torsional rigidity 5’, is given 
by 

Replacing L by the average length of the adjacent se 
.mentst we arrive at an equation for the torsional rigidity of the r joint of a 

particular branch with radius r: 

h 2c,r4 
Si=ei_l+ 

Equation (5) allows us to assign torsional rigidity values to the 
joints of a branch once we know the torsional constant C, for the 
plant and the radius r of the branch in question. 

For branches with non-circular cross-sections, we can calculate two 
second moments of area, 1’ and I“, to account for differences in 
flexibility along the I and u axes. 

Automatic assignment 

It should now be clear that given values for the flexural stiffness 
constant cf, the torsional rigidity constant g, and the radii of all the 
branches in the plant, we can automatically assign joint stiffness 
values. 

If the radii values are not available, we assign reasonable values 
using a formula proposed by Leonardo da Vinci. He postulated that 
the cross-sectional area of a tree branch is equal to the sum of the 
cross-sectional areas of its children branches [2]. 

Let us assume that all children of a particular branch have the same 
radius. Let r represent the radius of a branch with n children and 
let r, represent the radius of the children. Using the relationship 
proposed by da Vinci, we derive the following equations: 

r= 
*r2=n*r,2*r~=-. 

n 

In ilsu, the user provides a value for the trunk radius ro (in terms of 
turtle steps). The system then recursively assigns radii values to all 
branches using Equation (6). 

The user also provides values for the flexural stiffness and torsional 
rigidity of the trunk, stf (or s;) and 4 respectively. These values 
represent the stiffness of a joint between segments with average 
length equal to 1. We then use Equations (4) and (5) to calculate 
the constants cf and c,: 

s” Cf = a, 
r0 

4 
Cl = 7. 

r0 

The following pseudocode summarizes the recursive function used 
to automatically assign joint stiffness values to a plant: 

function AssignStifk.ss(branch, r, cf. ct) 
for each joint i 

$ :=& 
si’ :=sy 
sf :=2”“4 Ci-l+fj 

end for 
rc2 := 2 
for eachn child branch child 

AssignStifiess(child, r,, cf. c,) 
end function 

4 Examples 

We present three examples of plants generated using cpfg and 

arranged using ilsa: 

Rose campion 

We selected the rose campion (Lynchnis cormaria) because 
its architecture has already been described and modeled in de- 
tail [ 11, 121. Figure 4 presents three snapshots documenting the 
arrangement process. From the complex model generated by 
cpfs, we pruned and arranged the branches to create a simpler, 
more stylized plant. This arrangement was completed in about 
half an hour. 

Lily 

The lily model depicted in Figure 4 has exquisite detail, much of 
which is hidden in the original arrangement as generated by c&g. 
The original model did not provide branch stiffness information, 
so we assigned joint stiffness values in ilsa. This arrangement 
took about an hour to complete. A great deal of time was spent 
waiting for cpfg to render the detailed version of the plant so that 
the effects of precise manipulations might be discerned. 

Regrowth example 

The model depicted in Figure 4 is a very simple plant, based 
on an example from The Algorithmic Beauty of Plants. The 
branches are rendered as lines and the leaves and flowers as poly- 
gons. Joint stiffness values were again assigned using ilsu. This 
example hints at the many possible applications of the ability to 
grow a plant, arrange it, and then grow it some more. 

Discussion and future work 

We have presented a system for the interactive manipulation of 
plants modeled using L-systems. Our application ilsu allows the 
user to locally arrange a plant model while preserving its botanical 
accuracy. The approach implemented in ilsa is to interact with an 
L-system model at the level of the L-string. 

This work extends the usefulness of L-systems for both computer 
graphics and botanical modeling. Possible applications include L- 
system bonsai, interactive topiary, landscaping planning and de- 
sign. Our system could easily be extended to support flower ar- 
ranging and grafting, a process widely applied to fruit trees. Il- 
lustrators, scene designers, and animators could take advantage of 

180 



the growth and environmental interaction capabilities of L-system 
models, yet achieve more precise control over the final presen- 
tation of the plants. Another interesting area for further explo- 
ration is 2D Aoral pattern design, potentially extending the work 
of Wong et al. [ 141. 

Another very interesting direction for future work is the develop- 
ment of an interactive toolkit for creating L-system models. We 
imagine a library of basic components like branching structures, 
leaf profiles and surfaces, flowering patterns, thorns, etc. that could 
be put together and interactively adjusted, resulting in a new model. 
Lintermann et al. developed a system that allows intuitive assembly 
of botanical components [7]. Extending the user-interface concepts 
presented in their work to take advantage of the growth and envi- 
ronmental interaction capabilities of L-system models could lead to 
a powerful botanical modeling system with an easy-to-use visual 
interface. 

Acknowledgments 

Many thanks to the people who volunteered their time and exper- 
tise to help with this project, especially Radodr Mech and Eric 
Stollmtz. This work was supported by an NSF Presidential Faculty 
Fellow award (CCR-9553199), an ONR Young Investigator award 
(NO001495-l-0728), a NASA Space Grant, an NSF Graduate Re- 
search Fellowship, and industrial gifts from Interval, Microsoft, and 
Xerox to David Salesin, and the NSERC grant GGPO130084 to 
Przemyslaw Prusinkiewicz. 

Appendix: Gradient of objective function 

Here we derive the gradient of the objective function used in the 
IK-optimization and presented in Equation (1): 

f(a) = wpllp --@II + w(lls - $11 + Ilt - ill) 
n n-1 

+wc 
c 

s;$ t w,, 
c 

(&+I - Si)’ 

i=l i=l 

The gradient is a vector of partial derivatives: 

VfW=(&$.-,g-) 

We need to find the partial derivative off with respect to a single 
joint rotation (Yi: 

af awptllp -Al) + 
dcvi = &Xi 

&wt(lIs - ill + Ilt - ill) + 

a 
g-&Wdisi + 

&W,s((C,I - Si)* + (Si - 6i-1)*) 

For clarity we consider the derivative terms one at a time. Let A, 
B, C, and D be the derivatives of the branch end-position term, the 

branch twist term, the spring-energy term, and the smoothness term 
respectively: 

g=A+B+C+D. 

Let us first look at the partial derivative of the branch end-position 
term with respect to Lyi. Let the rotation axis of the i’ joint be the 
unit vector w. Let pi denote the position of the turtle at joint i, after 
drawing segment i - 1. Let the branch end-position p = pn. Let 
$mr =p - pi. Let s and f be the turtle vectors I and IL respectively 
after drawing the n’ branch segment. The derivatives of p, s, and t 
can be computed from w and v,,, as follows [ 151: 

8P G = w x vpm 

as 
aLyi=wxs 
at 

3G-i =WXc 

Thus, 

(8) 

Now let us look at the partial derivative of the branch twist-term 
with respect to Lyi: 

B = &,(lls - iI1 + Ilt - ill) I 

= 2w,((s - S) . g +(t--i). E) 
(9) 

I I 

Now let us look at the partial derivatives of the branch energy and 
smoothness terms with respect to at: 

a 
C = GWcSibf 

(10) 

= WeSi6i 

and 

D = &W.v((&+l - 6i)* + (6 - &-I)*) 
r (11) 

= W.s(26i - h-1 - Si+l) 

By substituting expressions (2) to (5) into (l), we obtain the gradi- 
ent function needed. 

181 



References 

Ul 

PI 

[31 

I41 

[51 

161 

[71 

PI 

191 

1101 

illI 

WI 

v31 

I141 

(151 

H. Abelson and A. A. diSessa Turtle geometry. M.I.T. Press, Cam- 
bridge, 1982. 

L. da Vinci. The notebooks of Leonardo da Vinci, compiled and edited 
from the original manuscrtpts by Jean Paul Richter. Dover Publica- 
tions, New York, 1970. 

Mikako Harada, Andrew Witkin, and David Baraff. Interactive 
physically-based manipulation of discrete/continuous models. In SIG- 
GRAPH 95 Conference Proceedings, pages 199-208. ACM SIG- 
GRAPH, New York, 1995. 

Mark James, Mark Hammal, Jim Hanan, Radomir Mech, and Prze- 
myslaw Prusinkiewin. CPFG Version 2.7 User’s Manual. 

A. Lindenmayer. Mathematical models for cellular interaction in de 
velopment, Parts I and II. Journal of Theoretical Biology, 18280-3 15, 
1968. 

Berd Lintermann and Oliver Deussen. Interactive modelling and ani- 
mation of branching botanical structores. In Eurographics Computer 
Animation and Simulation EGCAS%. Springer-Verlag, 1996. 

Radon& Mech and Przemyslaw Prusinkiewicz Visual models of 
plants interacting with their environment. In SIGGRAPH 96 Con- 
ference Proceedings, pages 397-110. ACM SIGGRAPH, New York, 
1996. 

K. J. Niklas. Plant Biomechanics: an Engineering Approach to Plant 
Form and Function. The University of Chicago Press, Chicago, 1992. 

William H. Press, Saul A. Teukolsky, William T. Vetterling, and 
Brian P. Flannery. Numerical Recipes in C: The Art of Scient$‘ic Com- 
puting, chapter Chapter 10: Minimization or Maximization of Func- 
tions. Cambridge University Press, 1992. 

Przemyslaw Prusinkiewicz, Mark James, and Radon& Mech. Syn- 
thetic topiary. In SIGGRAPH 94 Conference Proceedings, pages 351- 
358. ACM SIGGRAPH, New York, 1994. 

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic 
Beauty of Plants. Springer-Verlag, 1990. 

Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan. 
Developmental models of herbaceous plants for computer imagery 
purposes. In SIGGRAPH88 Conference Proceedings, pages 141-150. 
ACM SIGGRAPH, New York, 1988. 

Josie Wemecke. The Inventor Mentor. Addison-Wesley Publishing 
Company, 1994. 

Michael T. Wong, Douglas E. Zongker, and David H. Salesin. 
Computer-generated floral ornament. In SIGGRAPH 98 Conference 
Proceedings, pages 423434. ACM SIGGRAPH, New York, 1998. 

Jiamuin Zhao and Norman I. Badler. Inverse kinematics position- 
ing using nonlinear programming for highly articulated figures. ACM 
Transactions on Graphics, 13(4):313-336, October 1994. 

182 



Figure 8 Rose campion. From left to right: (a) the original L-system model; (b) an intermediate stage in the arrangement process; (c) the final arrangement

Figure 9 Lily. The original L-system model (a) and the final arrangement (b).

Figure 10 Regrowth example. From left to right: (a) a simple plant grown for four generations; (b) the same plant grown for five generations
(rescaled to the same display size); (c) the fourth-generation plant arranged in ilsa; (d) the arranged plant grown for one more generation.


