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ABSTRACT. 

A method for object modeling is presented and illustrated with examples. It extends to three dimen­
sions a previously described technique for generating two-dimensional pictures using L-systems 
[Prusinkiewicz 1986]. The objects are modeled in two steps: 

• A string of symbols µ is generated using an L-system,

• µ is interpreted graphically as a sequence of commands controlling a turtle which maneuvers in
three dimensions. The turtle can draw lines of various widths and colors, and trace boundaries of
filled polygon�.

Examples of synthesized objects are given and the construction of the corresponding L-systems is 
explained. Attention is focused on the modeling of plants. Stochastic L-systems are introduced to 
model various specimens of the same species. The turtle interpretation is extended to allow for incor­
porating predefined curved surfaces in the model. In spite of the apparent complexity of the resulting 
images, all discussed objects are generated by very concise L-systems. 

KEYWORDS: L-systems, turtle geometry, fractals, plants, 3D object modeling, computer imagery, 
database amplification. 

1. INTRODUCTION.

L-systems are rewriting systems introduced by Lindenmayer [1968] for the pur­

pose of describing the growth of living organisms. They are particularly well suited to 

present the branching structures of plants. Hand-made drawings illustrating these struc­

tures have accompanied the theory of L-systems from its beginnings. However, only 

the topology of plants was formally defined. The geometry resulted from arbitrary 

decisions made by the draftsman. 

The possibility of automatically generating pictures of plants using L-systems 

with a formally specified graphical interpretation was first investigated by Hogeweg 

and Hesper [1974]. They have conducted an exhaustive study of a subclass of pro­

pagating deterministic 2L-systems (with brackets). The generated strings were inter­

preted as three-dimensional branching patterns using the following set of rules: 
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• Substrings between the same pair of brackets form a branch.

• A sidebranch is attached to that symbol of another branch which defines the left­
side context of the left-most symbol.

• Branches grow straight, sidebranches leave their main branch at a given angle.

• All sidebranches attached to the same symbol are spread evenly over 360° while
the direction of the first sidebranch at the symbol is defined according to a

"spiralling coefficient".

• Alphabetic symbols are each represented by a line of given length, ended by a
dot.

Hogeweg and Hesper used a plotter as the graphics output device. Consequently, the 
images they obtained were not realistic - they are perceived as schematic diagrams of 
plants. The potential of L-systems to generate realistic-looking plants was first real­

ized by A.R. Smith [1978]. His subsequent paper [1984] established L-systems as a 
modeling tool for computer imagery purposes. Basically, the graphical interpretation of 
L-systems used by Smith was similar to that of Hogeweg and Hesper. Modifications

included a greater variety of branching angles selected by a pseudo-random mechanism
(implemented using a look-up table), changes of the branch sizes with the distance

from the root, and the use of three-dimensional primitives - cylinders and spheres.

The essential improvement in the quality of the generated images resulted from better
rendering techniques which provided antialiased color images with shades, shadows,
etc.

While the work of Hogeweg, Hesper and Smith concentrated on the modeling of 
plants, other interpretations introduced L-systems as a tool for generating abstract 
mathematical objects, specifically fractal curves. Szilard and Quinton [ 1979] defined a 

graphical interpretation in which both lines and angles were explicitly represented by 

string symbols. Prusinkiewicz [1986] noted that such interpretation could be easily 
described in terms of the turtle geometry [Papert 1980, Abelson and diSessa 1982]. 
The string symbols were then viewed as commands controlling a LOGO-like turtle (the. 
basic commands being "move forward", "make a left turn" and "make a right tum"). 

A related interpretation based on chain coding [Freeman 1961] was introduced by Siro­

money and Subramanian [1983]. In this case the string symbols denoted line segments 

drawn in predefined directions: up, down, left, or right. The curves generated by L­
systems under these interpretations included the classic space-filling curves (the 
Sierpinski curve, the Hilbert curve and the Peano curve) and various Koch curves. 
The book by Mandelbrot [1982] made it possible to consider these curves in a unified 
way within the theory of fractals. 

This paper further explores graphical applications of L-systems. The necessary 
definitions related to the L-systems are collected in Section 2. Section 3 introduces the 

three-dimensional graphical interpretation of strings. Section 4 presents examples of 
objects modeled using L-systems. While the L-systems provide astonishingly concise 

descriptions of many complex-looking objects (this feature was called database 

amplification by Smith [1984]), the construction of an L-system which would generate 
a specific object is not always straightforward. To illustrate the process of object 



- 3 -

modeling, two case studies are explained in detail. Section 5 introduces the notion of 
stochastic L-systems. They are used to model specimen-to-specimen variation within a 
species. An extension of the interpretation function which allows for incorporating 
curved surfaces in the modeled object is outlined in Section 6. Finally, section 7 sum­
marizes the obtained results and presents topics open for further research. 

It should be noted that while L-systems provide an effective and biologically 
well-motivated method for modeling plants, other methods have also been used in 
computer imagery. They can be divided into two basic categories: 
• The methods in which the variety of forms is achieved primarily by modifying

the geometric aspects of the branching structures. The topology results from the
recursive algorithms used to generate these structures and is not controlled in
detail. The best known methods of this group were proposed by Kawagushi
[1982], Aono and Kunii [1984], Reeves and Blau [1985] and Bloomenthal [1985].

• The methods in which the variety of forms is achieved primarily by controlling
the topology of the branching structures. The approaches based on the L-systems
obviously fall in this category. A different method was developed by Eyrolles
[1986] who adapted the Horton-Stahler analysis to generate diverse silhouettes of
trees.

2. L-SYSTEMS.

This section summarizes fundamental definitions and notations related to L­
systems. For their tutorial introduction, see Salomaa [1973], Herman and Rozenberg 
[1975], and Rozenberg and Salomaa [1980]. 

Let V denote an alphabet, V" - the set of all words over V, and v+- - the set of 
all nonempty words over V. 

Definition 2 .1. A OL-system is an ordered triplet G = < V, ro, P > where V is the 
alphabet of the system, roe v+- is a nonempty word called the axiom and P c VxV" is 
a finite set of productions. If a pair (a, X) is a production, we write a ➔ X· The 
letter a and the word X are called the predecessor and the successor of this produc­
tion, respectively. It is assumed that for any letter a e V, there is at least one word 
X e V" such that a ➔ X· · A OL-system is deterministic iff for each a e V there is 
exactly one X e V" such that a ➔ X· 

Definition 2.2. Let G = < V, ro, P > be a OL-system, and suppose thatµ= a1 ... am is 
an arbitrary word over V. We will say that the word v = Xi ···Xm e V" is directly 
derived from (or generated by) µ and write µ ⇒ v iff ai ➔ Xi for all i = 1, ... ,m. A
word v is generated by G in a derivation of length n if there exists a sequence of 
words µ0, µ1, ... , µn such that µ0 = ro, µn = v and µo ⇒ µ1 ⇒ ... ⇒ µn. 

Definition 2 .3. A TOL-system is an ordered quadruplet Gr = < V, ro, P, T > where V, 

ro and P are as in the definition of a OL-system and T is a finite nonempty collection 
of subsets of P, called tables. It is assumed that for each table t e T and each letter 
a ➔ V there is at least one production p e t with the predecessor a. 
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Definition 2.4. A word v is directly derived from the word µ in a T0L-system 
Gr = < V, co, P, T > if v is directly derived from µ in 0L-system G = < V, co, P > and all production used in this derivation belong to the same table t e T.The notion of the direct derivation in a T0L-system generalizes to the derivation of length n as in Definition 2.2. All productions used in a given derivation step must belong to the same table but different tables may be used in different derivation steps. 
Convention. If no production is explicitly specified for a given predecessor a e V, we assume that the identity production a ➔ a belongs to the set of productions P or to the table t under consideration. 
3. THREE-DIMENSIONAL TURTLE INTERPRETATION OF STRINGSThis section presents a method for mapping strings of symbols into graphicalobjects. This method is based on maneuvering a LOGO-like turtle in three dimensions [Abelson and diSessa 1982]. The key concept is to represent current orientation of the turtle in space is by three vectors ii, L, U, indicating the turtle's heading, the direction to the left and the up direction, respectively. Obviously, these three vectors are perpendicular to each other. Additionally, they are assumed to have the unit length, and to satisfy the equation ii x L = U. Rotations of the turtle can be then expressed by the equation: 

(3.1) where R is a 3x3 rotation matrix. Specifically, rotations by angle a. about vectors 
U, Land ii are represented by matrices: 

[ cosa. sina. O] R0(a.) = -sin a. cosa. 0 

RL(a.) =

0 0 1 
rma 0 0 1 sina. 0 

-s: a] cosa.
R8(a) = [� 

0 -si� a]cosa. sina. cosa. 

(3.2) 

(3.3) 

(3.4) 

Definition 3 .1. A three-dimensional turtle is a triplet T = < V, S, N > where V is called the turtle's alphabet, S is a set of states and N: VxS ➔ S is a state transition function. The alphabet V consists of symbols: 
F f @ + - & " \ I I # ! ' ' { } [ ] (3.5) The state of the turtle is a sextuplet s = < P, ii, L, U, w, c >. The position vector P represents the turtle's position in Cartesian coordinates. Vectors ii, Land U represent 
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the turtle's orientation, as described above. Number w represents the width of the 
_ line drawn by the turtle. Number c corresponds to the color of the lines and polygons 

drawn(*). 

The state transition function has four parameters: the step size d, the angle increment 
o, the width increment w _inc and the color increment c _inc. Given these parame­
ters, the turtle responds to the symbols of V as follows: 

F Move forward a step of length d. The position of the turtle changes to 
P' = P + dH. A line segment of width w and color c between points P and P' 
is drawn. 

f Move forward a step of length d without drawing a line. 

@ Draw a dot of diameter w and color c at the current position P. 

+ Turn left by angle o. The orientation of the turtle changes according to formula
(3.1), with the rotation matrix equal to Ru(o).

Turn right by angle o. The rotation matrix is equal to Ru(-o).

& Pitch down by angle o. The rotation matrix is equal to RL(o). 

Pitch up by angle o. The rotation matrix is equal to RL(-o). 

\ Roll left by angle o. The rotation matrix is equal to RH(o). 

/ Roll right by angle o. The rotation matrix is equal to RH(-o). 

I Turn away. The rotation matrix is equal to Ru(180°). 

# Increment current line width according to the formula: w' = w + w _inc. 

{ 

} 

[ 

] 

Decrement current line width according to the formula: w' = w - w _inc. 

Increment current color according to the formula: c' = c + c _inc 

Decrement current color according to the formula: c' = c - c _inc 

Start saving the subsequent positions of the turtle as the vertices of a polygon to 
be filled. 

Fill the saved polygon using the current color c. 

Push current state of the turtle into a pushdown stack. 

Pop a state from the stack, and make it the current state of the turtle. No line is 
drawn, although the position of the turtle may change. 

All other symbols are ignored by the turtle (the turtle preserves its state). 

Remark 3 .1. The above definition specifies only the essential aspects of the turtle's 
behavior. Specifically, exception handling is left undefined and may depend on the 
particular implementation of the turtle. An exception occurs, for example, if the line 
width decreases to a negative value or if an attempt to pop a state from the empty 
stack is made. 

(•) In the actual software implementation of the described concepts on a SUN 21160 workstation, w is a parameter to 
the SunCore function set_linewidth, and c is the index to the color table. (SunCore is a trademark of Sun Microsys­
tems, Inc.) 
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Definition 3 .2. Let s0 = < Po, il0, �. U0, w0, c0 > be the initial state of the turtle, and 
suppose that d, o, w _inc and c _inc are fixed parameters. The object (set of lines and 
polygons) created by the turtle responding to a word v is called the turtle interpreta­

tion of v. 

4. OBJECT MODELING USING L-SYSTEMS.

This section presents examples of three-dimensional objects modeled using L­
systems, and explains the techniques which were used to construct these L-systems. 
Example 4.1. Consider a cube divided into 27 equal "subcubes", and remove from it 
seven subcubes according to Fig. 1. Apply this process recursively to the remaining 
twenty subcubes. The object resulting from this construction is called the Menger
sponge [Menger 1932, Mandelbrot 1982]. The following T0L-system generates the 
sponge shown in Fig. 2. In order to make this system easier to analyze, identifiers 
corresponding to Fig. 1 are used instead of single letters. 

ro: SPONGE 

pl: 
p2: 

p3: 
p4: 
p5: 

p6: 

p7: 
p8: 

p9: 

plO: 

SPONGE➔ [SLICE -1+ slice -1+ SLICE]

SLICE ➔ [ROW 2 row 2 ROW]

slice ➔ [row 2 2 row]

ROW ➔·[SPONGE "3& SPONGE "3& SPONGE]

row ➔ [SPONGE "33& SPONGE]

1 ➔2 
2➔3 
3 ➔ 111 
SPONGE➔ [lf+f+f+f+}f&'lf+f+f+f+}l'lf+f+f+f+}] 

3 ➔J 

(4.1) 

The set of productions P is divided into two tables. Table t1. contains productions 
p1 - p8, plus the necessary identity productions ( [ ➔ [ , -➔ - , etc.). Table t2
contains productions p9 and p10 (and the identity productions for the remaining sym­
bols). The angle increment o is equal to 90°. 

The system operates as follows. First, the productions of table t1 define the struc­
ture of the sponge to the desired level of recursion. These productions are applied in a 
sequence of phases. Each phase corresponds to a well-defined modification of the 
generated object and is characterized by a particular subset of the productions used. 
• Phase 1 (productions p1 and pg).

Decompose each sponge into three slices according to Fig. 1. (Obviously, 
there is only one sponge in the first derivation step.) Note that the external 
slices are different from the internal one. Consequently, they are denoted by 
distinct identifiers: SLICE and slice.
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Decompose each slice into rows. 
• Phase 3 (productions p4, Ps and p7).

Decompose each row into sponges. 

In general, productions p1 - p5 describe the recursive structure of the sponge, while 
productions p6 - p8 are responsible for placing the sponge components at the appropri­
ate distances from each other. 

After the sponge structure has been defined to the desired level of recursion, pro­
ductions of table t2 are used to present this sponge as collection of adjacent small 
cubes. Actually, the production p9 constructs only three front faces of each cube. The 
back faces are neglected, since they are always invisible by virtue of being away from 
the observer. 

Example 4.2. The following L-system generates the bush shown in Fig. 3. 

co: 
pl: 
p2: 

p3: 
p4: 
p5: 

apex 

apex ➔ [branch Ill/II' branch Ill/Ill' branch] 

branch➔ [& stem leaf! apex] 

stem➔ F leaf 

F ➔ Fl/Ill stem 

leaf ➔ [
"'

'"' { -f+f+f-1-f+f+f } ] 

(4.2) 

(The angle increment 6 is equal to 22.5°.) The system operated as follows. Production 
p1 creates three branches from an apex. Production p2 describes a branch as consisting 
of a stem, a leaf and the apex which will subsequently create three new branches. 
Productions p3 and p4 specify the growth process of a stem: in the subsequent deriva­
tion steps the stem gets longer and produces new leaves. Finally, production p5 
specifies a leaf as a filled polygon with six edges. 

The growth of the stem requires an additional comment. Basically, productions 
p3 and p4 have the structure of the simple L-system: 

ro: 
pl: 
p2: 

a 

a ➔ b 

b ➔ ba

(4.3) 

It is known that L-system (4.3) generates strings of lengths expressed by consecutive 
terms of the Fibonacci series (l,l,2,3,5,8, ... ) [Salomaa 1973]. Consequently, the 
lengths of the stems generated by (4.2) increase according to the same series. 

Although various manifestations of the Fibonacci series occur frequently in nature 
[Stevens 1974], the particular growth rate characterizing the bush shown in Fig. 3 was 
chosen purely because of aesthetic reasons. The object shown in Fig. 3 was supposed 
to look like a bush, but no attempt was made to model any existing species. 
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Example 4.3. An L-system modeling a plant with leaves and flowers (Fig. 4) is given 
below: 

ro: plant 

p 1: plant ➔ stem + [plant + flower] - -/ / 

p2: 

p3: 

p4: 
p5: 

p6: 

p7: 

[-- leaf] stem[++ leaf] -
[plant flower] + + plant flower 

stem ➔ F seg [//&& leaf] [//"" leaf] F seg 
seg ➔ seg F seg 

leaf ➔ [' { +f-ff-f+l+f-ff-f}] 

flower➔ [&&& pedicel '/ wedge Ill/ wedge//// 

wedge//// wedge /Ill wedge] 
pedicel ➔ FF 

wedge➔ ['"F][{&&&&-/+/ 1-f+f}] 

(4.4) 

(The angle increment 6 is equal to 18°). This L-system can be described and analyzed 
in a way similar to ( 4.2). The exponential growth of the stems (specified by produc­
tion p3) resulted in the "best-looking" plant in this case. 

5. STOCHASTIC L-SYSTEMS.

Figures 3 and 4 show single specimens of plants generated using L-systems. A
natural question is how to model more specimens (for example, in order to create a 
field covered with flowers). An obvious approach is to use a given L-system repeti:. 
tively. Unfortunately, due to the deterministic nature of the L-systems considered, all 
generated plants would be identical. An attempt to include them in the same figure 
would produce an artificial, eye-striking regularity. In order to prevent this effect it is 
necessary to introduce specimen-to-specimen variations. 

Specimen variation can be achieved by randomizing the interpretation function, 
the L-system, or both. Randomization of the interpretation function alone has a llin­
ited effect. While the geometric aspects of a plant - such as the stem sizes or the 
branching angles - are modified, the underlying topology remains unchanged. In con­
trast, a stochastic application of productions may affect both the topology and the 
geometry of the plant (by randomizing the branching patterns as well as the growth 
rates of the plant parts). Consequently, this approach was selected for implementation. 
At present it is not clear whether a randomization of the L-system and the interpreta­
tion function would offer any further improvement. 
Definition 5 .1. A stochastic OL-system is an ordered quadruplet G 1t = < V, ro, P, 1t >. 
The alphabet V, the axiom co and the set of productions P are defined as in a OL­
system (Definition 2.1). Function 1t: p ➔ Jr", called the probability function, maps 
the set of productions into the set of positive real numbers. The values of 1t are called 
the probability factors. 

Definition 5.2. Let P(a) c P denote the subset of all productions of P which have the 
predecessor a. We will call the derivation µ ⇒ v a stochastic derivation in Gn if for 
each occurrence of the letter a in the word µ the probability of selecting production 
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Pi eP(a) is defined as:
(5.1)

Note 5 .1. According to the above definition, different productions with the same
predecessor can be applied to various occurrences of the same letter in one derivation
step.
Note 5 .2. For another method of introducing probabilistic aspects to the L-systems see
JUrgensen [1976].
Example 5.1. A simple example of a stochastic L-system is given below.

ro: F
p 1: F ➔ F[' +F]F['-F]F 0.3
p2: F ➔ F[' +F]F 0.3
p3: F ➔ F['-F]F 0.3

(5.2)

The probability factors are listed after the productions. According to the formula (5.1),
each production can be selected with the same probability:

prob(p1) = prob(p2) = prob(p3) = 0_3 + �:; + 0_3 
= 0.33 (5.3) 

Examples of objects generated by the L-system (5.2) in derivations of length 5 are
shown in Fig. 5. Note that these objects look like different specimens of the same
species.
Example 5.2. The flower field presented in Fig. 6 consists of four rows and four
columns of plants. All plants are generated by a stochastic modification of the L­
system (4.4). The essence of this modification is to replace production p3 from (4.4)
with the following three productions:

p3': seg ➔ seg [//&& leaf] [//"" leaf] F seg 0.3
p3": 
p3,,,: 

seg ➔ seg F seg
seg ➔ seg

0.3
0.3

(5.4) 

Thus, in any step of the derivation, the stem segment seg may grow and produce new
leaves (production p3'), grow without producing new leaves (production p3"), or not
grow at all (production p/"). All three events occur with the same probability.
6. EXTENDING THE TURTLE INTERPRETATION WITH CUBIC SUR­

FACES. 

One of the essential limitations of the modeling mechanism considered so far is
related to the representation of surfaces. The concept of filling the area inside the con­
tour traced by the turtle is well defined only in the case of planar, closed and non­
self-intersecting polygons. In biological applications, flat polygons can be considered
as adequate approximations of small leaves or petals (Figs. 4, 6 and 7). However, in
other cases the use of curved surf aces may be essential.



- 10 -

The leaves of the plant showed in Fig. 8 were outlined by the turtle moving in 
three dimensions. The interior areas of these leaves were filled on the projection 
plane. Unfortunately, such approach has several drawbacks. A contour alone does not 
completely define a curved surface which, in consequence, cannot be properly ren­
dered. The problem of specifying a closed three-dimensional line as a sequence of tur­
tle commands is difficult. Furthermore, the obtained shape cannot be easily modified 
(as opposed to a real leaf which can be bent, twisted, etc.) 

A more general and flexible approach makes use of the standard method for 
representing curved surfaces with cubic patches [Foley and Van Dam 1982]. Their 
shape is predefined using an interactive patch editor. The alphabet of the L-system is 
extended to include symbols representing different patch shapes. When the turtle 
encounters a patch symbol while interpreting the string, the corresponding patch is 
incorporated into the model. Its position, orientation and color are determined by the 
current state of the turtle. Thus, the L-system controls the appearance of the surf aces 
and their distribution in space, while the shape of the surfaces is defined outside the 
conceptual framework of L-systems. 

Example 6.1. (prepared by Jim Hanan) Fig. 9 shows a wire-frame representation of a 
Bezier patch which models a leaf. A plant incorporating these leaves is shown in Fig. 
10. Its flowers were modeled using Bezier patches as well.

7. CONCLUSIONS.

This paper presents a method for modeling three-dimensional objects using L:­

systems. The basic idea is to generate a string of symbols using an L-system and to 
interpret this string as a sequence of commands which control a LOGO-like turtle. 
Examples of the generated objects include a three-dimensional fractal and several 
plants. The basic concepts are extended in two directions. Stochastic L-systems are 
applied to model many specimens of the same species. Cubic patches are used to 
enhance the turtle interpretation by incorporating curved surfaces into the model. In 
general, the presented method makes it possible to generate complex objects from con­
cise and intuitive specifications. 

Many interesting problems are open for a further study. The first group of prob­
lems is related to the modeling and rendering of plants. While the cubic patches 
present an obvious improvement over flat polygonal surfaces, their application to the 
modeling of biological structures is still limited. For example, patches are incon­
venient to use when modeling flowers with strongly wrinkled petals or leaves with the 
toothed margins. Patches also lack the texture which characterizes various surf aces of 
real plants (although it can be added using texture or bump mapping, cf. [Bloomenthal 
1985] and [Oppenheimer 1986]). Consequently, a developmental model properly 
representing the shapes and textures (venations) of leaves as well as the color struc­
tures of flowers would find an immediate practical application in computer imagery. 

Since L-systems describe the process of growth, they appear to be well suited for 
the computer animation of plant development. The problem is that the subsequent 
frames must be relatively similar to each other in order to produce a good impression 
of continuous growth. Sequences of plant images generated by L-systems usually do 
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not satisfy this condition. In other words, the plant development stages corresponding 
to the derivations of length n and n+ 1 are too different to appear in consecutive 
frames. It is therefore important to devise a technique which would provide for an 
arbitrarily small rate of change occurring between the consecutive frames. Addition­
ally, the overall growth curves should correspond to those observed in nature (cf. 
[Vitanyi 1986]). 

The faithful modeling of plants actually observed ht nature is yet another prob­
lem. In the context of this paper, its solution involves a good description of the plant 
in terms of an L-system. However, only a relatively small number of plants have been 
described this way so far (for examples see [Frijters and Lindenmayer 1976, Frijters 
1978a and 1978b]). 

Graphical applications of L-systems present a number of interesting mathematical 
problems. One of them is to find the L-systems which generate space-filling curves in 
three dimensions. Several other problems were listed by Szilard and Quinton (1979] 
and Prusinkiewicz (1986]. 
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Fig. 1. Construction of the Menger sponge. Fig. 2. The Menger sponge. 

Fig. 3. The bush generated by L-system (4.2). Fig. 4. The plant generated by L-system (4.4). 

Fig. 5. Sample objects generated by the stochastic L-system (5.2). Fig. 6. The flower field. 



Fig. 7. A plant with small leaves approximated by flat pdlygons. 

Fig. 9. A Bezier patch modeling a leaf. 

Fig. 8. A plant with curved leaves. 

Fig. 10. A plant with leaves and flowers 

modeled using Bezier patches. 




